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Abstract—With a continuous increase in the number of Earth
Observation satellites, leading to the development of satellite im-
age time series (SITS), the number of algorithms for land cover
analysis and monitoring has greatly expanded. This paper offers a
new perspective in dynamic classification for SITS. Four similarity
measures (correlation coefficient, Kullback–Leibler divergence,
conditional information, and normalized compression distance)
based on consecutive image pairs from the data are employed.
These measures employ linear dependences, statistical measures,
and spatial relationships to compute radiometric, spectral, and
texture changes that offer a description for the multitemporal
behavior of the SITS. During this process, the original SITS is
converted to a change map time series (CMTS), which removes the
static information from the data set. The CMTS is analyzed using
a latent Dirichlet allocation (LDA) model capable of discovering
classes with semantic meaning based on the latent information
hidden in the scene. This statistical method was originally used
for text classification, thus requiring a word, document, corpus
analogy with the elements inside the image. The experimental
results were computed using 11 Landsat images over the city
of Bucharest and surrounding areas. The LDA model enables
us to discover a wide range of scene evolution classes based on
the various dynamic behaviors of the land cover. The results are
compared with the Corinne Land Cover map. However, this is
not a validation method but one that adds static knowledge about
the general usage of the analyzed area. In order to help the
interpretation of the results, we use several studies on forms of
relief, weather forecast, and very high resolution images that can
explain the wide range of structures responsible for influencing the
dynamic inside the resolution cell.
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with the Research Center for Spatial Information, Department of Applied
Electronics and Information Engineering, Faculty of Electronics, Telecom-
munications and Information Technology (ETTI), University “Politehnica” of
Bucharest, 061071 Bucharest, Romania (e-mail: corina.vaduva@gmail.com;
c_teodor@yahoo.com; cami.patrascu@gmail.com; igavat@lpsv.pub.ro;
vl@elia.pub.ro).

M. Datcu is with the Remote Sensing Technology Institute, German
Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany. He is also with
the Research Center for Spatial Information, Department of Applied Electron-
ics and Information Engineering, Faculty of Electronics, Telecommunications
and Information Technology, University “Politehnica” of Bucharest, 061071
Bucharest, Romania (e-mail: mihai.datcu@dlr.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2012.2219316

Index Terms—Change detection, dynamic evolution classifica-
tion, latent Dirichlet allocation (LDA) model, satellite image time
series (SITS), similarity measures.

I. INTRODUCTION

THE Earth’s surface is constantly affected by various pro-
cesses, thus explaining why the study of its dynamics

is one of the emergent issues in the field of remote sensing
imagery processing. Seasons, climate, natural disasters, human
activities, and the urban development are few of the reasons
underlying surface transformations. Monitoring the land cover
evolution is imperative for understanding the environmental
changes and complex land transformations identifiable over
short (days–weeks) to long (seasonal–years) periods of time.
Vast data collections have been created using images presenting
a region at different moments of time (years, months, or days),
which have been identified as satellite image time series (SITS)
that can provide significant knowledge about the Earth’s surface
dynamics.

By exploiting their rich information content, a broad range of
new applications may be opened. For instance, by using SITS
covering short periods of time, one can observe the growth
and the maturation periods of cultures and their harvesting, the
evolution of rivers and flooded areas, or other details helpful in
domains such as agriculture, forestry, or hydrology. Moreover,
images acquired during long periods of time may explain urban
development, natural resources exploitation and their subse-
quent consequences, or the pollution phenomenon. These are
only few examples of potential applications for urbanization,
industry, and ecology.

It is difficult though for the human eye to observe and
extract relevant information directly from such an important
amount of data. Therefore, significant attention has been paid
to a set of various techniques developed for temporal infor-
mation extraction [1] in order to apply them on SITS. Several
methods have been developed for the automatic discovery of
regularities or relationships inside collections of unstructured
data indexed according to the temporal interdependences. The
spatiotemporal study presented in [2] aims at extracting relevant
information based on the information-bottleneck principle. A
method depending on a suitable model selection and a rate-
distortion analysis are combined. A novel method for extrac-
tion of frequent temporal patterns is depicted in [3]. It relies
on the identification of evolutions and subevolutions at pixel
level for finding groups of pixels that could be of interest
to the end users. Furthermore, unsupervised learning of dy-
namic cluster trajectories followed by an interactive learning
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process is proposed in [4]. Landsat SITS was characterized
considering spectral indices [5] and a mixed information mea-
sure [6]. A methodology for compressing an image database
is presented in [19] by taking into account interobject re-
dundancies and using the informational similarity measure.
Recently, a method for SITS analysis that is able to deal
with temporal irregular sampling and to compare time series
having different numbers of temporal observations based on
dynamic-time-warping similarity measure has been introduced
in [27].

Nevertheless, the scene dynamic can be analyzed considering
only two images and computing how alike they are. This
could be extremely helpful for finding specific details about the
transformations that a certain area had suffered at a specific
moment of time. In order to identify those transformations,
change detection algorithms may be applied on image pairs
depicting the same region at different moments of time, before
and after a certain event. Similarity measures are generally used
to estimate the degree of variation between the pixels of two
images. The correlation coefficient (CC) is probably one of the
most common similarity measures, and it helps highlighting
radiometric changes [7], [8]. The Kullback–Leibler divergence
(KLD) [8] and the conditional information (CI) [9] are two
measures that emphasize the changes associated to the spectral
features of the compared scenes. The changes related to the
images’ texture are captured when computing the normalized
compression distance (NCD) [10], [11]. While change detec-
tion algorithms using two images represent the starting point
for long-term analysis, leading to SITS modeling, the similarity
measures employed provide new features for describing the
evolution of scene dynamics.

Supporting this idea, this paper introduces a new approach
for the study of land cover dynamic evolution by combin-
ing SITS temporal analysis with classical change detection
techniques. The main idea is to model an image time series
based on the transformations occurring between consecutive
acquisitions of the considered SITS. The innovation of the
proposed technique lies in the conversion of the multispectral
information from the entire data set in a change map time
series (CMTS). Hereby, each pair of consecutive images will
be described by a number of four change maps computed using
the four different similarity measures mentioned previously.
Complementary information about the changes occurred in the
scene will be extracted and further employed in order to provide
the user with a broader perspective on the land transformation
processes.

CMTS size will quadruple compared to the original SITS,
making the usual processing even more difficult. In order to
structure the collection of images for a fast analysis, each
pixel of the scene will be described by a temporal signature.
A k-means classification will be performed over all available
signatures, such that the values assigned to a precise position
in the image will be reduced to a single label and denoted as
a “word.” In order to apply text statistics for image analysis,
the definition of a dictionary is mandatory. For this purpose, the
authors propose a k-means classification over the set of tem-
poral signatures (words) such that the assigned labels denote
the dynamic evolution of pixels in the scene. Moreover, each

class can be regarded as a “visual word,” and it comprises areas
characterized by the same type of change in the same period of
time as the SITS. For instance, different types of crops or veg-
etation can be separated according to their periodicity and life
spans. Based on this image–text analogy, the scene described
by the CMTS will be modeled using latent Dirichlet allocation
(LDA) generative model [12], [13], a technique developed for
text analysis. Using a bag-of-words assumption, the order of
visual words is neglected, and the dictionary will be reduced
to a set of latent parameters treated as variables drawn from
a Dirichlet distribution. The result is a thematic map which
highlights regions with similar dynamic evolution, offering a
different perspective from the already existing ones.

All the previously developed algorithms for SITS modeling
analyze sequences of image classifications characterizing the
scene at the time of data acquisition. Therefore, the process
uses precisely defined temporal attributes as inputs to obtain
a classification of the considered scene. The evolution of Earth
surface is indirectly pursued.

The methodology that we propose in this paper emphasizes
the process of Earth surface dynamic evolution using attributes
of change which are computed in order to express the land
dynamic between consecutive image acquisitions. Based on
these attributes, the generative process of LDA model is able
to latently discover classes of evolution whose semantics is de-
fined by similar dynamic evolution in time of different regions.
The LDA modeling proved to be effective with a small training
data set, randomly chosen and with no prior information about
the classes to be extracted. Even if our methodology may
seem similar to a classification process, LDA is nevertheless
an algorithm for information retrieval. In this case, it can
find, annotate, and return regions characterized by a similar
evolution in time, pointing toward specific directions of Earth
surface transformation.

The remainder of this paper is organized as follows.
Section II presents the method proposed by the authors for
the analysis of Earth surface dynamic evolution. The similarity
measures used to describe short-time changes (CC, KLD, CI,
and NCD) are defined in Section III, while the LDA modeling
of the dynamic evolution is explained in Section IV. Experi-
mental results (Section V) and the conclusions (Section VI) will
contribute to the exemplification and validation of the proposed
methodology.

II. PROPOSED METHOD FOR THE LATENT ANALYSIS

OF EARTH SURFACE DYNAMIC EVOLUTION

This section focuses on describing the proposed methodol-
ogy for the analysis of Earth surface dynamic using remote
sensing image time series.

Considering a SITS with N + 1 images (of m× p pixels
each), we form pairs of consecutive acquisitions that will
be integrated as inputs of a change detection process. Four
different similarity measures will be used to identify various
types of changes occurred in the scene, offering the user an
overview about the nature of the analyzed landscape. The four
different measures will provide complementary information
as follows: the CC determines radiometric changes, the KLD
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Fig. 1. Processing chain of the proposed approach used to classify the dynamic evolution of the scene.

and CI measure the local and, respectively, general spectral
differences, and the NCD is used for detecting transformations
of the land cover texture.

In order to perform a change detection analysis, we employ
a sliding window that simultaneously covers the same area
from both images. The size of the window depends on both
the image spatial resolution and the type of analyzed change.
The value of the similarity measure gives us the amount of
change corresponding to the pixel in the center of each tile. The
resulting change maps are gray level images with the intensity
of the pixel defining the degree of change. Thereby, each pair of
consecutive acquisitions will be characterized by a set of four
change maps.

The output of the change detection process consists of a
series of 4∗N components comprising four change maps com-
puted based on the similarity measures employed for each of the
N pairs of images in the original SITS consecutively acquired.
A new quadruple sized time series is formed based on the newly
computed maps. At this stage, every pixel will be described by
a 4∗N component temporal signature that depicts the dynamic
evolution of the area.

Once the CMTS is obtained, a k-means algorithm employing
a Euclidean distance will be applied on the set of m× p
temporal signatures obtained in order to define some patterns
for the dynamic evolution. All the pixels characterized by a
similar temporal behavior will receive the same label, reducing
the CMTS to a single image. These patterns will be denoted
as visual words and used as inputs for the LDA modeling in
order to perform an interactive classification which is based on
a text analysis method. Considering that LDA is a probabilistic
generative model for collections of discrete data or text corpora,
the purpose is to identify symbolic characteristics for the ob-
jects in the analyzed collection that enable efficient processing
while preserving fundamental statistical relationships necessary
for a semantic classification of Earth’s surface dynamic. The
model requires an arbitrary training set to learn the statistic
interactions in the scene and afterward apply them for the anal-
ysis of the entire collection. The scene will be described as a
mixture of topics characterized by latent variables. Every topic
is, in turn, distinguished by means of a probability distribution
based on the co-occurrence of visual words extracted from the
image.

A general diagram for the proposed approach is shown
in Fig. 1. The method is unsupervised and assigns semantic
meaning to the scene, according to the dynamic evolution of
the Earth’s surface.

Nevertheless, the extension of the SITS with a new image
implies the resumption of the entire analysis, because no new
information can be added without discarding the previous
model. After the radiometric correction of the new image,
depending on its time positioning in the series, one or two sets
of change maps need to be obtained and then introduced in the
CMTS. Even if this is a simple and independent computation, it
will significantly affect the parameters of the analysis. This will
result in a new feature space, and for vector quantization, we
have to apply k-means on this new feature space. Increasing the
dimensionality of the feature space also changes the semantic
meaning of the extracted “words,” and as such, the optimal
number of LDA topics and the optimal number of words have
to be determined. The final influence depends on the amount
of existing differences between the new scene and the existing
ones.

A theoretical overview over the similarity measures and
the LDA generative model is given in the following sections,
detailing the computation method and type of information
that it extracts from a SITS in order to help environmental
understanding based on Earth’s land cover dynamic.

III. SIMILARITY MEASURES FOR CHANGE DETECTION

During the change detection process, we compare two im-
ages acquired at different times, before and after an unspecified
event, unknown for the user. The purpose is to identify the
differences occurred in the landscape by applying a patch-
based analysis on two images of the same size. Therefore,
we simultaneously scan the images with a window, measure
the similarity between them, and assign the obtained value
to the coordinates corresponding to the center of the window.
The measures applied assess similarity from different points of
view. Thus, the CC computes radiometric information based on
linear dependences, the KLD and CI use first- and second-order
statistics to depict spectral changes, and the NCD considers the
spatial information to extract textural differences between two
regions in consecutive images.
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A. CC

The CC is a measure of the dependences existing between
two quantities, and we use it to express the quality of a least
squares fitting of the image after to the one before a certain
event.

The computation of the CC between two image windows i
(in the first image) and j (in the second image) can be made by
means of the following formula:

CC(i, j) =
1

n

∑
x,y

(i(x, y)−mi) (j(x, y)−mj)

σiσj
(1)

where n is the number of pixels included in the analysis
window, x and y represent their coordinates, mi and mj are
the estimated mean values for the ith and jth windows, respec-
tively, and σi and σj are their standard deviations. CC(i, j) = 0
when the landscape is completely changed, while CC(i, j) = 1
for identical images.

There are two approaches for the use of this similarity
measure; it can model geometric deformations by local rigid
displacements [7] or detect radiometric scene transformations
[8]. In this paper, the authors employ the CC in order to identify
radiometric changes occurred between two consecutive images
included in a SITS.

B. First-Order KLD

The KLD is based on pixel statistics and has been used as a
similarity measure for change or anomaly detection processes
in image analysis [7], [8], [11]. In this paper, we apply this
measure to detect the transformations that occurred in the land-
scape, aiming to quantify the divergence between two image
windows characterized by the probability distributions p(x) (in
the first image) and q(x) (in the second image).

Considering the two probability distributions p(x) and q(x)
related to the same random variable X , the KLD or relative
entropy [14] is given by

DKL(p, q) =
∑
x

p(x) log
p(x)

q(x)
. (2)

The KLD is a positively defined not-symmetric measure,
being equal to zero only if p(x) = q(x). When the analyzed
images are very similar, DKL(p, q) → 0.

Based on this measure, the change detection algorithm com-
pares the density probabilities of the gray level pixels for
both image windows, offering information about the spectral
differences of the data. It is important to mention that all the
pixels inside a sliding window are characterized by identical
weights.

C. CI

The third algorithm for change detection is an adapted ver-
sion of the Alparone method used for synthetic aperture radar
images [8]. The rationale is that the negative of logarithm of
probability of an amplitude level in one image conditional to the
level of the same pixel in the other image conveys information
on the amount of change occurred between the two images.

The algorithm is based on the computation of the CI at each
pixel (m,n) from the before and after images:

CI(m,n) = − log(q (�ḡ2(m,n)� | �ḡ1(m,n)�) (3)

where g1 and g2 are the before and after images and q is the
rescaled conditional probability.

Although this algorithm finds spectral changes between the
pair of images, it differs from the KLD by decreasing the
weights of the pixels toward the edges of the window. Further
advantages of the method are its low sensitivity to noise and
lack of preprocessing requirements.

D. NCD

The NCD is a universal parametric free metric successfully
applied as a similarity measure to unstructured data in various
domains such as text corpora, computer programs, genomes,
or images. The NCD considers the length of the shortest
binary program used to transform two items into each other
[10]. Its main idea is based on the Kolmogorov complexity, a
noncomputable notion that needs to be approximated using a
compressor (i.e., gzip and jpeg).

In the present paper, we use the NCD to measure the dif-
ferences between two images and to detect major structural
changes that occurred in the landscape. Both spectral and
texture transformations will be identified.

The NCD is obtained by employing the following equation,
where i and j are the analysis windows in the first and second
images, respectively:

NCD(i, j) =
C(i, j)−min {C(i), C(j)}

max {C(i), C(j)} . (4)

C(i, j) denotes the compressed size of the concatenation of i
and j, C(i) denotes the compressed size of i, and C(j) denotes
the compressed size of j.

The result is a nonnegative number 0 < r < 1 + e repre-
senting how different the two images are. Therefore, smaller
numbers (darker areas) represent more similar parts in the map
of changes. The error e in the upper bound appears due to the
imperfections in the compression technique (in our case, the
“zip” program).

IV. LDA MODELING OF THE DYNAMIC EVOLUTION

After we have identified the changes that occurred between
consecutive images of the SITS, the CMTS is complete and
ready to be modeled in order to assess the dynamic evolution of
the Earth land cover. An interactive classification is performed
by applying a statistical tool initially developed for text classi-
fication [12] and also used for semantic image annotation [13],
[15], [16].

This is a generative model for collections of discrete data
named LDA, a random source that is able to generate infi-
nite sequences of samples based on a probability distribution
[12]. LDA is a three-level hierarchical Bayesian model (word,
document, corpus) founded on the bag-of-words assumption,
meaning that the order of words inside a document and that
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of documents inside a corpus are ignored. Consequently, each
document in the collection is defined as a finite random mixture
over a “latent” hidden set of topics, while a topic is defined as a
probability distribution over a set of words in the vocabulary.

Denoting a document as a collection of N words in
the vocabulary and the vocabulary W = {w1, w2, . . . , wN}
and the corpus as a collection of M documents D =
{W1,W2, . . . ,WM}, LDA assumes a generative process
for each document in the corpus, as will be described
hereinafter [12].

First, we choose a K-dimensional Dirichlet random variable
θ ∼ Dir(α), where K is considered known and preset. Fur-
thermore, for each of the word positions n ∈ {1, 2, . . . , N},
we choose a topic zn ∼ Multinomial(θ) and a word wn from
p(wn|zn, β), a multinomial probability conditioned on the topic
zn. The word probabilities are parameterized by a matrix βij =
p(wj = 1|zi = 1) whose size is given by the size of the vocab-
ulary and by the dimensionality of the Dirichlet distribution. It
is treated as a fixed quantity to be expected.

The corpus level parameters α and β are estimated during
the training phase, θ characterizes the documents, and z and
w represent the word level variables. Given α and β, one can
compute the joint distribution of a topic mixture θ, a set of N
topics z, and a set of N words w using the following formula,
where θi is represented in terms of the p(zn|θ) probability for
the unique i when zin = 1:

p(θ, z,W |α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β). (5)

Taking into consideration all the values of θ and z, we can
compute the marginal distribution of a document based on (6).
Furthermore, the probability of the corpus is measured as the
product of the marginal probabilities of single documents (7)

p(W |α, β)

=

∫
p(θ|α)

(
N∏

n=1

∑
zn

p(zn|θ)p(wn|zn, β)
)
dθ (6)

p(D|α, β)

=
M∏
d=1

∫
p(φd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)
)
dθd. (7)

We mention that M is the number of documents in the corpus
and Nd is the number of words in a document. Within the
three levels involved by LDA, the documents can be associated
with multiple topics. Due to its flexibility to assign probabilities
to documents outside the training corpus, LDA is considered
a suitable algorithm for supervised classification over an un-
known data set.

In order to be able to apply the algorithm to CMTS, we
need to define a correspondence between text and the current
approach. Due to the fact that the probability of two pixels
describing similar time evolutions in terms of change maps
is small, we have to perform a k-means classification to label
visual words and, thus, the vocabulary. Therefore, each pixel
characterized by a 4∗N component temporal signature repre-

TABLE I
ACQUISITION DATES FOR SITS

TABLE II
IMAGE PAIRS AND THE CORRESPONDING TIME PERIODS

FOR CHANGE DETECTION ANALYSIS

sents a visual word. An image tile represents a visual document,
while the corpus is the entire CMTS. As the LDA model can
only be applied on discrete data, the k-means classification can
also be considered as a vector quantization process that trans-
forms the extracted feature space into a word space modeled
based on the bag-of-words assumption. The rationale behind
the selection of this algorithm is its simplicity and frequent use.

V. LATENT ANALYSIS OF THE EARTH’S

SURFACE DYNAMIC EVOLUTION

The method was tested on 11 Landsat images [20] acquired
over a period of five months between May 5 and September 14,
2007 (Table I). The study area is Bucharest and its surround-
ings, with each scene being 1500 × 1100 pixels in size, which
corresponds to a surface of 45 × 33 km. Table II presents the
time periods for the change detection analysis.

A. Experimental Setup

The proposed processing chain implies the study of a series
of 11 images. Even if they are provided by the same sensor, the
conditions of acquisition vary according to the Earth–Sun posi-
tioning. A data preprocessing is required in order to standardize
the SITS for an optimum analysis. The actual methodology de-
scribed in this paper (Fig. 1) consists of two major parts: change
detection algorithm and LDA modeling. Their parameter setup
will be presented and detailed within this section along with the
characteristics of data preprocessing.

Data Preprocessing: Preprocessing of the data first includes
the conversion to the planetary top-of-atmosphere reflectance
ρλ [17] using the following equation in order to minimize the
illumination effects:

ρλ =
π · Lλ · d2

ESUNλ · cos θs
(8)
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Fig. 2. (a) and (b) Landsat image (16.05, 29.08). (c)–(f) Change maps
using the KLD. The sizes of the analysis window are (c) 5 × 5 pixels,
(d) 10 × 10 pixels, (e) 20 × 20 pixels, and (f) 30 × 30 pixels. As can be
noticed, smaller windows increase the sensitivity to local changes.

where Lλ is the spectral radiance at the sensor’s aperture, d is
the Earth–Sun distance, ESUNλ is the mean exoatmospheric
solar irradiance, and θs is the solar zenith angle.

The area chosen for the experiments in this paper is charac-
terized by a temperate climate, with a low occurrence of haze
during the studied period. As there are not enough weather data
to perform a full radiometric correction, we have performed a
relative radiometric correction using the COST method [18],
[22], choosing the image from September 19 as reference.
Normalization is performed on the basis of an invariant set of
pixels by means of a regression analysis. In addition, in order
to obtain accurate results, we have selected for the time series
analysis only scenes that are cloud free or with a very low
presence of clouds.

Every new image needs to be radiometric corrected with
respect to the reference scene. There is also the option of setting
the new image as reference if it is considered more accurate
than the present reference image. If that is the case, a complete
radiometric correction will be applied on the entire SITS.

Parameter Setup for Change Detection Process: The ex-
tracted classes are then used to compute change maps with
the described method: For every pair of consecutive images in
the SITS, we simultaneously scan the images with a window,
measure the similarity between them, and assign the obtained
value to the coordinates corresponding to the center of the
window.

The size of the analysis window must be set according to the
following three parameters:

1) image spatial resolution—the amount of details one can
distinguish;

2) type of deformations desired—the type of change one
wants to locate (for instance, a flooded area detection
requires a larger window, while damaged houses are
identified by a small window);

3) computation time—the computational load of the algo-
rithms increases with the reduction of the window.

Fig. 3. (a) and (b) Landsat image (16.05, 29.08). (c)–(f) Change maps using
CC, KLD, CI, and NCD. Areas with major changes are presented in white, and
areas with no changes are presented in black. Changes are visible in different
areas due to the complementarity of the extracted features (radiometry, spectral,
and texture). The analysis window’s size is 10 × 10 pixels.

The precision of the method depends significantly on the
size of the analysis window, as shown in Fig. 2. The change
maps were computed using the KLD similarity measure and a
window with various dimensions (5 × 5, 10 × 10, 20 × 20, or
30 × 30 pixels).

The change map is a gray level image. Its interpretation
depends on the similarity measure used. Consequently, the
areas with major changes are colored in white for the KLD, the
CI, and the NCD and in black for the CC. In order to uniform
the results, we use the negative of the change maps computed
based on the CC.

An example illustrating the change maps computed with the
four similarity measures for the 16.05–29.08.2007 image pair
is shown in Fig. 3.

Considering the employed data, a 10 × 10 pixel sliding
window was selected experimentally as a compromise between
the data features and accuracy of the results. Due to the image
low resolution, a window that is too large leads to an important
information loss. The identified changes would have no real
meaning. Considering these setups, we compute a set of four
change maps for every pair of consecutive images in the SITS
and form a new image series named CMTS. As a mention, if
the original SITS has N + 1 images, the obtained CMTS has
2N images.

Parameter Setup for LDA Analysis: The LDA modeling is
applied on the CMTS. For an accurate analysis, the following
two parameters need to be set:

1) number of words;
2) size of the document.

In order to determine these parameters, we propose a method
that uses the perplexity to identify an optimum LDA model. The
perplexity is equivalent to the inverse of the geometric mean
per word likelihood, monotonically decreasing in the likelihood
of test data [12]. A good inference extent to the entire data
set is given by a low value of this measure. Given a test set
of M documents D = {W1,W2, . . . ,WM} containing N =
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Fig. 4. Evolution of perplexity based on the document size for dictionaries
of 150, 200, and 250 words. (a) Perplexity for 150 words. (b) Perplexity for
200 words. (c) Perplexity for 250 words.

{N1, N2, . . . , NM} words, the perplexity is computed using the
following formula:

perplexity(Dtest) = e

−

M∑
d=1

log p(Wd)

M∑
d=1

Nd

. (9)

In our experiments, we considered dictionaries containing
150, 200, and 250 words. For each set of words, we formed doc-
uments with variable sizes, and we assessed the perplexity for a
number of 3–70 topics. The obtained results are shown in Fig. 4.

We can observe that there is a strong link between the number
of words and an optimum size of the document.

1) For the dictionary of 150 words, the optimum size for the
document is 10 × 10 pixels.

2) For the dictionary of 200 words, the perplexity has the
lowest value for a document size of 6 × 6 pixels.

3) For the dictionary of 250 words, the optimum size for the
document is 9 × 9 pixels.

Fig. 5. Perplexity assessment for the best LDA models.

Fig. 6. Classification of the Earth’s surface dynamic evolution. The legend
specifies the classes’ indexes.

The selection of the dictionary and the optimum document
size were determined by comparing the values of perplexity
according to Fig. 5. According to this assessment, it is found
that the LDA model defined using a dictionary of 200 words
and a document size of 6 × 6 pixels is characterized by the
lowest value of the perplexity. Regarding the number of topics,
we can observe a local minimum and, thus, an optimum value
for a number of 15 topics.

B. Experimental Results

Considering the setup process described in Section V-A, we
resume here the selected parameters for the proposed latent
analysis of Earth’s surface dynamic evolution:

1) size of the sliding window for change detection: 10 × 10
pixels;

2) size of the dictionary for the LDA model: 200 words;
3) size of the document for the LDA model: 6 × 6 pixels;
4) number of topics for the LDA analysis: 15.

There are several processing steps, involving the analysis of
a SITS of 11 scenes, from which we extract a set of 40 different
change measures. In terms of time consumptions, we mention
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that, on a desktop personal computer with a 2.4-GHz quad-core
CPU and 16 GB of RAM, each run of k-means took about 2 h
and each run of LDA training process required about 1.5 h. The
classification (topic estimation) step of LDA is faster, requiring
about 15 min.

The obtained results (Fig. 6) are presented as a land cover
classification, each class (LDA topic) portraying areas with a
similar evolution (concerning the type and the time of changes
that occurred) during the entire SITS acquisition period. The
Earth’s surface is characterized based on the dynamic evolution
of objects and structures on the ground in the analyzed period.
Without previous information explaining certain transforma-
tions, a specific description of the retrieved LDA topics is
complicated, such that the legend of the obtained map specifies
only the indexes for the identified classes.

The specific features of each class (LDA topic) can be
described in terms of temporal signatures according to the
dynamic evolution of the pixels included in that class. One
temporal signature, subsequent to one pixel, is given by all the
values in the CMTS corresponding to the coordinates of that
pixel. Each temporal signature is characterized by four different
components, measured with the four similarity measures. The
components defining the dynamic evolutions for all the classes
in Fig. 6 are shown in Fig. 7(a) (for the CC-based evolution),
Fig. 7(b) (for the KLD-based evolution), Fig. 7(c) (for the CI-
based evolution), and Fig. 7(d) (for the NCD-based evolution).
We mention that we used the same colors for the classification
as well as for the dynamic evolution representation. On the x-
axis, we can find the image pairs (see Table II) for which the
degree of change on the y-axis was computed. The obtained
values were normalized between zero and one, such that all the
identified transformations have the same influence during the
LDA modeling.

We observe that the radiometric changes were smaller than
the texture and spectral ones. This can be explained by the
fact that the time interval for the analyzed SITS is included in
one year, which is too short for a city as large as Bucharest to
suffer important transformations. All the classes have a similar
evolution until the end of July, when some of the regions,
corresponding to five classes, continue to transform while the
rest of them tend to remain unchanged.

The spectral evolution is characterized by a higher degree
of change, from 0.7 to 0.93. The dynamic evolution computed
based on the KLD is similar for all the classes until July 3 when
all begin to be defined by a different variation. The dynamic
evolution computed based on the CI is more uniform for all the
classes, with small differences between the image pairs.

The specific of texture changes consists of dividing this
dynamic evolution in two groups of classes. The first has a
higher and constant degree of change. The second group is
characterized by smaller values and a marked variation.

The presented approach is innovative in the field of SITS
modeling, and the related ground truth is more difficult to
obtain. Precise knowledge about the exploration areas is re-
quired. A comparison with a human-based already existing
classification can be very helpful for the interpretation of certain
areas. Table III presents a comparison between the obtained
results (Fig. 6) and the Corinne Land Cover (CLC) map (Fig. 8),

Fig. 7. Dynamic evolution corresponding to each of the 15 classes in Fig. 6
computed based on the following similarity measures: (a) CC, (b) KLD, (c) CI,
and (d) NCD.

offering information about how much the LDA and CLC classes
fit. The table provides the number of pixels that have identical
labels. An increase in the number of pixels ensures a higher
degree of similarity between the LDA and CLC classes.

It is important to mention that the two classifications present
the Earth surface from different perspectives. The Corinne clas-
sification divides the analyzed area in four types of static areas
according to a general land use: urban area, forest, water, and
agriculture. The method proposed in this paper offers a more
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TABLE III
COMPARISON BETWEEN LDA CLASSIFICATION AND CLC MAP

Fig. 8. CLC map for the analyzed area (Bucharest and surroundings,
Romania).

generous distribution of land cover classes based on the regions’
dynamic evolution. As we can see in the following figures, one
static CLC class can be split into several dynamic LDA classes.
We have identified several urban classes, forest types, and
agricultural fields. Our method is able to distinguish between
several residential areas inside the city, due to the variation of
the vegetation component encapsulated in the resolution cell
(Figs. 11 and 12). It can also separate different agricultural
classes according to the vegetation evolution, the type of crop,

Fig. 9. Area a) in Fig. 8. The first tile represents the result of our classification
for area a); the rest of the tiles are extracted from the initial SITS.

Fig. 10. Area b) in Fig. 8. The first tile represents the result of our classifica-
tion for area b); the rest of the tiles are extracted from the initial SITS.

Fig. 11. Area c) in Fig. 8. The first tile represents the result of our classifica-
tion for area c); the rest of the tiles are extracted from the initial SITS.
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Fig. 12. Area d) in Fig. 8. The first tile represents the result of our classifica-
tion for area d); the rest of the tiles are extracted from the initial SITS.

Fig. 13. Area e) in Fig. 8. The first tile represents the result of our classifica-
tion for area e); the rest of the tiles are extracted from the initial SITS.

Fig. 14. Area f) in Fig. 8. The first tile represents the result of our classification
for area f); the rest of the tiles are extracted from the initial SITS.

the soil processing, and the granularity of parceling (Figs. 13
and 14), as well as forested areas based on the tree types.

In order to exemplify our statements, we take out six tiles
from the analyzed scene, comparing the CLC map with our
results, and present the corresponding region in all the images
of the initial SITS. The positioning of the tiles in the scene is
shown in Fig. 8. The corresponding LDA classification and the
patches extracted from the SITS are shown in Figs. 9–14.

The first analyzed area, i.e., area a), was labeled in the CLC
map mostly as a forest area. The method described in this
paper was able to separate four classes of the forest dynamic
evolution. The classification corresponding to this area is given
in the first image in Fig. 9, while the rest of the images illustrate
the same area within the initial SITS.

The second area, i.e., area b), is included in the CLC water
class. Our results in Fig. 10 treat it as a single class, too.
However, another specific property of the proposed method
consists of grouping in the same class areas with different
physical interpretations but with the same type of dynamic
evolution, such as water and out-of-crop regions (blue class in
Fig. 6).

The next two areas, i.e., areas c) and d), were both labeled as
an urban area in the CLC map. The proposed method retrieves
regions with distinct features inside (Figs. 11 and 12). This
is due to the vegetation in the city, the type of buildings, and
the distance between them. All the structures integrated in a
resolution cell affect the dynamic of the land cover. In Fig. 16,
we see two very high resolution (VHR) images representing
the areas c) and d), where we can actually observe regions
containing different types of buildings.

The last two analyzed areas, i.e., areas e) and f), present
agricultural areas according to the CLC map. The proposed
method differentiates between a wide range of dynamic evo-
lution classes inside these areas based on the type of crop, the
parceling characteristics, or the harvesting period (Figs. 13 and
14). Even if we cannot assign a particular knowledge-based
label concerning the type of crop evolution due to the private
nature of the information, we are however able to identify the
bare land annotated as class 15 in the resulted map (Fig. 6).

Moreover, the results shown in Fig. 13 illustrate the latent
character of the methodology introduced in this paper. Us-
ing the change information computed with the four similarity
measures, the LDA model was able to retrieve similar areas
that a user with no specific knowledge background cannot
find. We can observe in this tile that the blue area (class 6)
represents agriculture. However, we can also view in Fig. 6
that this class is also assigned to lakes and rivers. The expla-
nation is given by several studies regarding the nature of the
soil covering the south southeast side of Romanian territory,
including the scene analyzed in this paper. It is stated in [23]
that Bucharest is surrounded by a specific form of relief called
microdepression [24]. Its main characteristic refers to the fact
that it is impermeable and has the shape of a funnel. Therefore,
it retains water for a prolonged period of time until that drains or
evaporates.

The LDA classification is supported in this direction by the
weather forecast for the period when the SITS was acquired,
i.e., May–September 2007 (Table IV). This information was



VĂDUVA et al.: ANALYSIS OF EARTH SURFACE DYNAMIC EVOLUTION 2115

TABLE IV
MAY–SEPTEMBER 2007 WEATHER FORECAST FOR BUCHAREST. ACQUISITION DATES (IN RED) FOR THE IMAGE IN THE ORIGINAL SITS
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Fig. 15. VHR images illustrating (left) area a) and (right) area b) with
surroundings.

Fig. 16. VHR images [21] illustrating (left) area c) and (right) area d) with
surroundings.

Fig. 17. VHR images illustrating (left) area e) and (right) area f) with
surroundings.

extracted from weather archives [25]. We should consider that
this information is just a forecast and not a fact, explaining, in
the presence of microdepressions, the discrepancy between the
acquisition date and the rain periods. There are also paper news
from the summer of 2007 describing high temperatures and also
heavy rain alerts [26].

In the absence of precise ground truth, we can use a series
of VHR images in order to support a better visual inspection of
the considered region. Images in Figs. 15 and 17 were extracted
from Google Earth and were acquired in 2007, the time of the
analyzed SITS.

The tiles shown in Figs. 15–17 help sustain the variety of
classes extracted using the proposed algorithm. As can be
noticed, an increase in resolution allows us to observe a larger
variety of structures that can strongly influence the land cover
dynamics.

VI. CONCLUSION

The method described by the authors has offered a new
approach for SITS analysis based on the dynamic evolution of
the Earth’s surface which comes to complement the temporal

information extracted by previously known algorithms. We
applied four algorithms of change detection using four different
similarity measures that capture the differences between pairs
of consecutive acquisitions to extract new features for describ-
ing the evolution of scene dynamics. The complementarity of
the CC, the KLD, the CI, and the NCD is ensured by the infor-
mation derived from the basic data characteristics (radiometry,
spectral, and texture).

The idea behind the proposed approach consists of the con-
version of the original Landsat SITS in a new image time series.
After computing the differences between consecutive images
in the original data set using all four similarity measures, the
resulting change maps were gathered in a new image stack
called the CMTS. Therefore, a pixel is no longer characterized
by the static information of the original scene but expresses the
dynamics of the structures enclosed in the resolution cell. This
evolution can be observed using temporal signatures such as
those in Fig. 7.

The CMTS was analyzed by applying a latent discov-
ery method scene classification initially developed for text
analysis—LDA. Several text–image analogies have been used.
The LDA model has the ability to group words located at distant
positions in the feature space, as well as to extract classes that
have high semantic meaning. However, it is important to note
that the LDA model cannot be entirely viewed as a clustering
or classification method, as much as an algorithm for discover-
ing heterogeneous groupings enclosing semantic meaning. The
method has the advantage of good performances even for small
amounts of training data with no precise information about the
classes to be obtained. The main characteristic refers to its
ability of retrieving latent information that a user is not able
to find easily.

The purpose of the presented case study was to analyze the
evolution of the Earth surface by the changes that occurred,
considering the influence of seasons on vegetation, the crop
lifetime, and human activities. The LDA modeling is an ef-
ficient method to build a figurative classification of the scene
dynamic evolution.

The results were compared to the CLC classification. The
main difference is that, while CLC defines a number of four
static classes, the proposed algorithm is able to identify a
wide range of classes with dynamic evolution. Our method can
distinguish between several urban areas and types of forests and
can also separate different agricultural classes according to the
vegetation evolution, types of crop, soil processing, granularity
of parceling, and harvesting period. The LDA model revealed
the latent information encapsulated in the scene, similarly la-
beling the microdepressions filled with water by heavy rains
and the lakes or rivers. They are all characterized by alike
evolutions, as they contain water.

A major drawback of this method is the lack of reliable
ground truth related to the dynamic evolution of the land cover.
For this reason, the validation may often be based on VHR
images outside the database, acquired in the same time interval.

The competence of the proposed methodology to retrieve
latent information from a low-resolution Landsat image time
series has been demonstrated. It can be applied also for medium
SITS, but it is not extendable for high-resolution and VHR
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SITSs. The change detection algorithms require the images to
be very well superposed in order to obtain fair relevant results.
When increasing the spatial resolution, a multitude of details
become available, and the coregistration is extremely difficult.
Moreover, the high-resolution and VHR sensors usually acquire
images with different incidence angles and at a different mo-
ment of the day every time they survey an area. Given this
matter, the shape of objects and that of their shadows can have
significant variations, affecting the change detection process. It
is thus very unlikely to obtain a perfectly coregistered VHR
SITS, such that the method proposed in this paper can be
applied for its analysis. It is possible, however, to obtain an im-
age time series that fulfills these requirements, but the process
involves great expenses to be considered.
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