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Abstract—Consistent, continuous, and long time series of global
biophysical variables derived from satellite data are required
for global change research. A novel climatology fitting approach
called CACAO (Consistent Adjustment of the Climatology to Ac-
tual Observations) is proposed to reduce noise and fill gaps in time
series by scaling and shifting the seasonal climatological patterns
to the actual observations. The shift and scale CACAO parameters
adjusted for each season allow quantifying shifts in the timing
of seasonal phenology and inter-annual variations in magnitude
as compared to the average climatology. CACAO was assessed
first over simulated daily Leaf Area Index (LAI) time series with
varying fractions of missing data and noise. Then, performances
were analyzed over actual satellite LAI products derived from
AVHRR Long-Term Data Record for the 1981–2000 period over
the BELMANIP2 globally representative sample of sites. Compar-
ison with two widely used temporal filtering methods—the asym-
metric Gaussian (AG) model and the Savitzky-Golay (SG) filter
as implemented in TIMESAT—revealed that CACAO achieved
better performances for smoothing AVHRR time series charac-
terized by high level of noise and frequent missing observations.
The resulting smoothed time series captures well the vegetation
dynamics and shows no gaps as compared to the 50–60% of still
missing data after AG or SG reconstructions. Results of simulation
experiments as well as confrontation with actual AVHRR time
series indicate that the proposed CACAO method is more robust
to noise and missing data than AG and SG methods for phenology
extraction.

Index Terms—Advanced Very High Resolution Radiometer
(AVHRR), climatology fitting, gap filling, inter-annual anomalies,
leaf area index (LAI), phenology, temporal smoothing.

I. INTRODUCTION

L EAF area index (LAI) is recognized as an Essential Cli-
mate Variable [44] that plays a key role in a number

of processes [12]. Global LAI products are routinely pro-
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duced from various moderate spatial resolution sensors such as
VEGETATION [3], [6], Moderate Imaging Spectroradiometer
(MODIS) [28], or the Advanced Very High Resolution Ra-
diometer (AVHRR) [17]. However, the current LAI products
are spatially and temporally discontinuous mainly due to cloud
occurrence, residual atmospheric or directional effects, snow
cover, retrieval algorithm failure or sensor problems which limit
their use for the monitoring of vegetation dynamics. To better
describe and understand vegetation dynamics in response to
climate fluctuations and trends (e.g. temperature, rainfall, solar
radiation) and/or anthropogenic forcing (e.g., ground water
extraction, farming decisions, change in land use) [9], [10],
[29], [31], consistent and continuous long time series of global
LAI products are thus required. Variations in magnitude and
shifts in the timing of vegetation phenology are key indica-
tors for global change issues [41]. However, extracting the
associated metrics to quantify trends, anomalies, or changes
from the satellite time series is not straightforward: the noise
in the data and missing observations may induce significant
uncertainties in the estimation of these metrics [23]. The lit-
erature shows a broad variety of strategies designed to reduce
noise and fill gaps in time series including the widely used
asymmetric Gaussian (AG) [23], Savitzky-Golay (SG) filter
[13], [37], double logistic function [20], [25], Fourier analysis
[9], and wavelet decomposition [33]; as well as to extract
phenological metrics and monitor vegetation dynamics based
on thresholds [29], [42], moving averages [32], empirical equa-
tions [27], conceptual-mathematical phenology models [15],
first derivatives and piecewise logistic functions [43], spectral-
frequency decomposition techniques [9], [33], [34], and curve
fitting [23], [25]. The choice of the smoothing gap filling or
compositing method may have a large impact on the accuracy
of the extraction of phenology indicators since their ability
to preserve the integrity (magnitude and shape) of the overall
time series may vary [1], [21]. Recently, [41] compared several
methods for extracting phenological timing and found some
large discrepancies, up to ±60 days in the detection of start
of the season. Most of these time series analysis have been
carried out using the normalized difference vegetation index
(NDVI) which is a proxy of vegetation biophysical variables.
However, LAI offers the advantage to be more sensitive to
the larger vegetation amount as compared to NDVI or other
vegetation characteristics such as the Fraction of Absorbed
Photosynthetically Active Radiation [2], [30].

A novel approach is proposed here to smooth and fill gaps
in LAI long time series derived from AVHRR observations at
0.05◦ spatial resolution [39]. The method is based on the typical
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Fig. 1. Flow chart of the algorithm for deriving consistent and continuous long-term daily LAI data set as well as quantifying temporal anomalies.

seasonal pattern of each pixel, i.e., the pixel phenology model.
It is used as a background information to fill gaps and smooth
the time series of daily LAI estimates derived by learning
GEOV1 LAI products [5]. The phenology model is based on the
climatology of LAI values computed as the average value for a
given date in the year across all years of the time series. For
each pixel, the corresponding phenology model is adjusted to
each season of the time series by shifting its time reference and
scaling its magnitude. As opposed to several other smoothing
and gap filling methods listed previously, the phenology model
derives only from the satellite observations themselves. The
resulting smoothed and gap filled time series provides the shift
and scale parameters associated to each season as subproducts.
They can be used to quantify inter-annual deviations in vegeta-
tion status from the average pattern often called “anomalies.”
Because the same climatological phenology model is used
across all the years, the method applies strictly to quantify
phenological changes, i.e., change in the parameters of the
phenology model, rather than a change of the phenology model
[16] corresponding to a change generally associated to abrupt
disturbances [26], [35].

This study presents the principles of the proposed method.
It is then evaluated against other methods, focusing on the
capacity to smooth the daily LAI estimates and to fill the gaps.
Finally, the interest of the resulting shift and scale parameters
to quantify anomalies is evaluated.

II. DATA AND METHODS

Global long-term LAI time series derived from AVHRR
in the 1981–2000 period were used to assess the proposed
approach under a variety of conditions. The analysis was con-
ducted over the 445 BELMANIP2 (BEnchmark Land Multi-
site Analysis and Inter-comparison of Products) sites that are
supposed to represent the possible range of surface types and
conditions over the Earth [Fig. 5(b)] [4]. The LAI data set is

first presented, followed by a description of the main steps for
the implementation of the proposed method (Fig. 1) as well
as the AG and SG companion methods from TIMESAT. Then,
the simulation experiment designed for assessing the methods
under varying fraction of missing data and noise level and the
metrics are described.

A. Generation of a Long-Term LAI Data set

The derivation of the long-term daily LAI data set is based on
the previous work of [36] demonstrating that neural networks
could be trained to consistently estimate a given product from
the reflectance measured by another sensor providing that a
strong link exists between the inputs (radiometric signal) and
outputs (the products). This principle is applied here to mimic
GEOV1/VGT dekadal LAI product [6] from historical AVHRR
archive data.

AVHRR Long-Term Data Record (LTDR, Version 3) [45]
provides global coverage at 0.05◦ (5.6 km at equator) sampling
interval in a latitude/longitude climate modeling grid and at a
daily temporal step for the 1981–2000 period. LTDR top of the
canopy normalized reflectances (nadir, sun at 45◦) result from
the reprocessing of Global Area Coverage data set by apply-
ing the preprocessing improvements identified in the AVHRR
Pathfinder II and MODIS projects for radiometric calibration,
geometric correction, cloud screening, and corrections of the
atmospheric and directional effects [38], [39].

GEOV1/VGT LAI product, available at [46], provides global
coverage for the period 1999–2010 at 1 km spatial resolution
and dekadal time step [6]. Recent validation studies showed the
GEOV1 products to outperform the currently available products
both in terms of accuracy and precision [11].

A back-propagation neural network with a relatively simple
architecture made of one hidden layer of five tangent sigmoid
neurons and one output layer with one linear neuron was
considered based on the previous findings of [36]. Red and
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Fig. 2. Illustration of CACAO implementation over the cropland site #128 (Fig. 5(b); Lat = −23.48◦, Lon = 28.20◦). (a) Climatology computation. Dots
indicate the accumulated LAI daily data over the period 1981–2000. The bold line corresponds to the climatology computed as the median of inter-annual values
over a 30-days compositing window at a dekadal step. The several gray values correspond to 50% (dark gray), 95% (medium gray) and 99% (light gray) of
the population of values for a given date. (b) CACAO fitting for the period 1996–2000. Circles correspond to raw LAI data. The dotted line corresponds to the
climatology and the continuous line corresponds to the CACAO time series resulting from adjusting the climatology to the data at a daily step. The plus symbols
indicate the position of the minima and maxima in the climatology and the segments indicate the duration of the sub-seasons for the fitting.

near-infrared AVHRR LTDR surface reflectance normalized at
nadir viewing for a 45◦ sun zenith angle were used as inputs.
The network was trained over the BELMANIP2 sites in the
1999–2000 period in which LTDR and GEOV1 products are
coexisting. Differences in spatial resolution between AVHRR
LTDR (0.05◦) and GEOV1/VGT (1/112◦) products were taken
into account by averaging the GEOV1/VGT products over
3× 3 km2. Residual differences due to spatial resolution and
geometry uncertainties are expected to be small because the
BELMANIP2 sites were selected to be relatively homogeneous
at the medium spatial resolution [4]. The dekadal GEOV1/VGT
product was linearly interpolated at the dates for which LT-
DRV3 reflectances were available since the objective is to
provide daily LAI products. This interpolation benefits from
the smooth character of GEOV1/VGT temporal profiles [11].
To account for possible spectral sensitivity differences between
the several AHVRR-XX sensors available over the 1981–1998
period and AVHRR-14 used in 1999–2000 for the neural net-
work training, AVHRR-XX reflectances in the red and near
infrared were corrected to mimic the AVHRR-14 ones. The
correction was achieved by computing a scaling factor between
the reflectance of AVHRR-XX with that of AVHRR-14. The
correction factor was adjusted over radiative transfer model
simulations using the PROSAIL radiative transfer model [22]
and the specific spectral responses of the several AVHRR-XX
sensors. A flowchart of the retrieval algorithm is presented in
Fig. 1. Further information about the generation of the LAI data
set is provided in [7].

B. Consistent Adjustment of the Climatology to
Actual Observations

A climatology defined as the inter-annual median of the daily
products available within a 30-days compositing window (±15
days) was generated at a dekadal temporal step (a 10-days
period; there are thus 36 dekads over one year) and at the pixel
scale (0.05◦ spatial resolution). It corresponds to the phenology
model used later for smoothing and gap filling. The clima-
tology value was computed for each dekad if a minimum of
five observations over the 30-days compositing window exist.
Climatology computation is illustrated in Fig. 2(a). The whole
period (1981–2000) was used to minimize the probability of
finding a gap. The resulting dekadal pixel phenology model was
generally showing very smooth profiles [Fig. 2(a)]. It was thus

linearly interpolated to provide a daily climatology, LAICLIM ,
consistent with the daily time step of the daily LAI products
derived from AVHRR observations.

A Consistent Adjustment of the Climatology to Actual Ob-
servations (CACAO) was then performed by shifting (shift) and
scaling (scale) the phenology model in order to minimize the
root mean square error (RMSE), between the actual daily LAI

estimates, LAI(t), and the CACAO estimates L̂AI
CACAO

=
scale.LAICLIM (t+ shift) over portions of the seasonal cy-
cle called “sub-seasons”:

RMSE =

√√√√ 1

n

n∑
i=1

(
LAI(ti)− L̂AI

CACAO
(ti)

)2

(1)

where t is the time in days and n is the number of available dates
of observations during the sub-season. If the actual observations
follow the phenology model, LAICLIM (t), the scale factor
and the temporal shift parameter are by definition scale = 1
and shift = 0. The cost function was evaluated for 121 values
of the shift (−60 days < shift < 60 days with steps of 1
day), the scale being adjusted using a linear regression with
no intercept. However, difficulties to fit the shift parameter are
expected when a small number of observations are available
in the sub-season or if the data present a limited seasonality.
Therefore, CACAO is applied if a minimum of n = 10 ob-
servations representing at least 30% of the LAI climatology
amplitude (difference between minima and maxima in the cli-
matology values) within the sub-season is available. Otherwise,
the climatology is used as a backup solution.

A sub-season is defined as the period between two consecu-
tive minimum and maximum in the LAI climatology. To allow
more robust fitting by providing better handle on temporal
features and smoother transitions between sub-seasons, the sub-
season period used to adjust the phenology model is slightly
extended. This extended period added before (respectively,
after) the sub-season should contain either 30% of the season
amplitude or 30% of the period length (in days) of the previous
(resp. next) sub-season. Over the transition periods where CA-
CAO fitting extended sub-seasons overlap, a weighted average

of L̂AI
CACAO

values is finally computed to get continuous and
smooth temporal profiles. CACAO fitting process is illustrated
in Fig. 2(b) with each sub-season used to adjust the phenology
model displayed.



1966 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 4, APRIL 2013

Similar to other methods [19], [33] based on the fitting of a
phenology model, CACAO implicitly assumes that the vegeta-
tion species composition and state did not dramatically change
so that a single phenology model can be used over the whole
20-years period. CACAO is therefore expected to encounter
difficulties in case of disturbances such as landcover or land-
use change, fire or flood events covering a large fraction of the
pixel. However, the sub-season fitting approach provides some
capacity to adapt to reasonable deviations from the original
shape of the phenology model. Further, disturbances occur
mainly at finer spatial scale as compared to the 0.05◦ coarse
spatial resolution considered here. They are therefore expected
to impact only occasionally the shape of the phenology model.
Difficulties are also expected when artifacts in phenology
model may appear due to a small number and/or very noisy
observations are observed during the period used to compute
the climatology. However, the daily temporal sampling of
AVHRR observations, the 30-days compositing window, and
the 20-years period used to compute the climatology decrease
the probability to get strong artifacts in the phenology model.
Nevertheless, the 30-days compositing window and the averag-
ing over the 20 years may flatten particular features in the phe-
nology model such as rapid LAI changes shifted significantly
across years and sub-seasonal anomalies mostly linked with
unusual temperature or rainfall events. CACAO further assumes
that the actual LAI as a function of time is only proportional to
the shifted climatological LAI value without considering any
possible LAI offset. This approximation is reasonable since
the minimum LAI values are generally relatively small and
stable in absolute term. In all these situations, the RMSE value
will provide a quantitative quality assessment indicator of the
consistency between the phenology model and actual daily ob-
servations. Finally, although CACAO is able to provide realistic
temporal profiles in case of marginal seasonality observed over
bare areas or evergreen forests, it is expected to be more difficult
to fit the shift parameter in a robust way. Therefore, the time
shift parameter should not be interpreted in such conditions.

C. AG and SG TIMESAT Methods

For comparison purposes, CACAO was compared with two
widely used temporal filtering methods: AG and adaptive SG
as implemented in the TIMESAT toolbox for analyzing time
series of satellite observations [24], [47]. Double logistic func-
tion produces very similar results as AG while being more
sensitive to discontinuities in the data in agreement with [18].
TIMESAT has been successfully applied to extract phenology
from AVHRR time series and was found to outperform Fourier
decomposition methods that were experiencing difficulties in
presence of noise and missing data such as in the AVHRR series
[23]. The adaptive SG-filtering method uses local second-order
polynomial functions in fitting three observations at each side of
the date being processed. AG method uses a Gaussian function
that is fitted to data around maxima and minima in the time
series.

AG and SG methods failed in processing a significant part
of the daily AVHRR time series characterized by many gaps.
Indeed, data cannot be processed if there is a missing time
period longer than 0.2 years or when more than 25% of data
are missing over the entire time series. To use AG and SG over

AVHRR time series characterized by more than 70% of missing
data (Section III-A3), a simple gap filling method was applied:
first, an iterative linear interpolation was used to fill gaps
smaller than 120 days [37]; second, a temporal compositing
was applied at 10-day step through a Gaussian function with
a 30-day compositing period.

In addition to the time series reconstructions, TIMESAT
toolbox allows to compute some phenological metrics including
the season amplitude (i.e., difference between the maximal
value and the base level), the start of season (hereafter referred
as SoS) and the end of season (hereafter referred as EoS). The
time of the SoS (EoS) is defined as the time for which the left
(right) edge reached 20% of the seasonal amplitude measured
from the left (right) minimum level.

D. Simulation Experiment

A simulation experiment was conducted to evaluate the
performances of the several methods in presence of noise and
missing observations as already proposed by [34], [37], [40].
For this purpose, the complete and smooth time series resulting
from the median of CACAO, AG, and SG reconstructed profiles
for site #338 showing a double season (Fig. 4) was first consid-
ered as a reference, LAIref . Note that only few observations
are missing over site #338, resulting in a relatively good con-
sistency between the three methods investigated. Then, missing
observations were randomly distributed, and several levels of
white noise were introduced in the reference LAI time series to
simulate the actual daily LAI data, LAIday . The noise compo-
nent was generated using a normal distribution ℵ(0, σ) (mean
value equal to 0 and variance, σ2), i.e., LAIday = LAIref +
ℵ(0, σ). The values for the absolute LAI uncertainty used in this
study were varying between σ = 0 and σ = 0.5 by 0.05 steps.
The fraction of missing data was ranging between 0 and 0.85;
few tests showed that for fractions of missing data larger than
0.85, all the methods were unreliable and AG and SG failed
in most of cases which prevents deriving meaningful statistics.
Finally, the CACAO, AG, and SG methods were applied to the
simulated time series with variable fraction of missing data and
level of uncertainties.

E. Metrics

The reconstructed time series were then compared with
the original reference data and the corresponding RMSEref

computed and used as an indicator of performances:

RMSEref =

√√√√ 1

n

n∑
i=1

(
̂LAI(ti)− LAIref (ti)

)2

(2)

where ̂LAI(t) is the estimated LAI value at date t, LAIref (t)
is the reference LAI data, and n is the number of dates in the
time series for which the reconstructions of the three compared
methods are available. In order to obtain representative values,
the RMSEref was derived from 50 iterations for each level of
noise and gap fraction. The closeness to the actual daily raw
LAI data is also evaluated using RMSEraw

RMSEraw =

√√√√ 1

n

n∑
i=1

(
̂LAI(ti)− LAIraw(ti)

)2

. (3)
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Similar metrics were used for the evaluation of the pheno-
logical parameters (P ) extracted from CACAO and TIMESAT
methods. RMSEP

ref is defined as

RMSEP
ref =

√√√√ 1

n

n∑
i=1

(
̂P (ti)− Pref (ti)

)2

(4)

where P̂ (t) is the estimated phenological P parameter at date
t, Pref (t) is the corresponding P parameter as computed from
the reference time series, and n is the number of available
dates used in the comparison. When the methods are applied
to actual AVHRR time series, a reference is not available,
and the deviation of P parameters from their mean value (the
climatological one) is considered in this case for computing the
RMSEP

raw

RMSEP
raw =

√√√√ 1

m

m∑
j=1

1

n

n∑
i=1

(
̂Pj(ti)− P j

)2

(5)

where Pj(ti) is the P value at date t for the time series j, P j is
the mean value of P along the time series j, n is the number
of dates corresponding to the phenological P stage in the time
series, and m the number of time series.

III. RESULTS

The performances of the CACAO method was evaluated
against TIMESAT AG and SG methods for A) improving the
consistency and continuity of the time series and B) for the
characterization of inter-annual anomalies through time shifts
of phenological stages and magnitude (scale) of LAI values.
The assessment was performed over the BELMANIP2 sites
across the main biome classes based on the GLOBCOVER land
cover map [8].

A. Performances of CACAO for Improving the Consistency
and Continuity of Time Series

The theoretical performances of CACAO, AG, and SG are
first presented. Then, typical temporal profiles are inspected.
Finally, the continuity and consistency are evaluated over the
entire BELMANIP2 sites.

1) Theoretical Performances as a Function of Fraction of
Missing Data and Daily LAI Uncertainties: The theoretical
performances were evaluated over the simulated data using the
RMSEref value computed with the reference data. Results
show that for low to medium values of fraction of missing
data, the performances are mainly depending on the daily LAI
uncertainties [Fig. 3(a)]. For the larger fraction of missing data,
CACAO performances are strongly degrading with the fraction
of missing data and the daily LAI uncertainties.

The performances of SG and AG methods as a function of
the fraction of missing data and the daily LAI uncertainties
show similar patterns as those of CACAO (figures not shown
for the sake of brevity). However, Fig. 3(b) demonstrates that
the CACAO method outperforms AG and SG methods in all
the situations, particularly for the higher levels of the fraction
of missing data and daily LAI uncertainties. AG gets slightly
lower RMSEref values as compared to SG.

Fig. 3. (a) Evaluation of theoretical performances of CACAO in terms of
RMSEref as a function of the fraction of missing data varying between 0 and
0.85 and the σ noise level (LAInoisy = LAI + ℵ(0, σ)) varying between 0
and 0.5. (b) Comparison of the RMSEref of the two TIMESAT methods
with the RMSEref of CACAO as evaluated over the reference data. (c)
RMSEraw of CACAO, AG, and SG over the raw data as a function of the
fraction of missing data.

Although the CACAO reconstructed LAI time series is the
closest to the reference LAI values, it is the one that allows more
departure from actual daily LAI values (higher RMSEraw

values), particularly when the daily LAI data are contaminated
with large uncertainties [Fig. 3(c)]. The use of the climatology
as background information provides robustness gap filling and
smoothing processes.

2) Inspection of Typical Temporal Profiles: The main fea-
tures associated to the temporal consistency of CACAO, AG
and SG are illustrated over a selection of six sites representing
different conditions with the location indicated in Fig. 5(b).
The sites were also selected so that AG and SG methods
were not failing. In most of the cases, a good agreement is
found between the three methods that similarly fit the raw
daily LAI data when few observations are missing (Fig. 4, site
#338). However, the reliability of the retrieved temporal profile
depends on the level of noise and the presence of gaps in the
data as demonstrated earlier with the simulated cases. Noisy
daily LAI data are partially filtered out for AG and SG methods
as implemented in TIMESAT where single spikes are removed
based on the distance to neighbor data. This approach may be
useful to eliminate possible high temporal frequency residual
artifacts but appears insufficient to process AVHRR series in
case of significant uncertainty associated to the daily LAI data
(e.g., Fig. 4, site #436) and repetitive occurrence of consecutive
outliers (year 1988 in site #325). SG seems to be the most
sensitive to accidents in the data: Fig. 4, site #436 which
is expected having a minimum seasonality; site #395, winter
time for years 1982, 1984, and 1990; or site #325, year 1990
during the maximum development of vegetation. Conversely,
AG reduces most of the residual noise. The assumption made
in AG about the shape of the seasonal phenology development
helps reducing the effect of noise in the data. However, AG
may present some limitations to reproduce abrupt variations in
LAI, related to the emergence, greening up, wilting, or harvest-
ing of the crops within a short growing season or secondary
sub-seasons as for site #69 in Fig. 4. In contrast, SG is not
explicitly tied to a specific shape regarding phenology devel-
opment and thus better adapt to local characteristics of the
observed signal (e.g., double seasonality in site #69). Similar
to AG, CACAO appears to be robust to noise. However, while
the phenological shape function is fixed in AG, CACAO is
able to adapt it from pixel to pixel thanks to the corresponding
phenology model derived from the climatology, which provides
additional flexibility. Nevertheless, some problems still remain
in the CACAO approach: scaling and shifting the climatology
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Fig. 4. Temporal profiles of raw LAI data (black circles), CACAO (red line),
AG (green line), and SG (blue line) LAI reconstructions for six BELMANIP2
sites from 1982 to 1992. The # number of each site refers to Fig. 5(b). The
GLOBCOVER biome class [8] and the latitude and longitude are also indicated.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

may be inappropriate to depict local rapid changes (e.g., local
minima in site #69) or sub-seasons that strongly differ from the
average seasonality (e.g., Fig. 4, site #279, year 1983).

The temporal continuity in the AVHRR data is generally poor
in the equator (e.g., Fig. 4, sites #436) due to the persistence
of clouds and at high latitudes in winter time (e.g., Fig. 4,
site #395) mainly due to snow and cloud cover as well as
poor illumination conditions due to large sun zenith angles.
CACAO approach appears very useful to fill gaps in the time
series and may overcome some of the limitations of AG and
SG to deal with gaps (e.g., Fig. 4, site #325, years 1982–1983).
Note that when there is no enough data over the entire sub-
season for fitting the model, the climatology is assumed as
the most probable solution (e.g., Fig. 4, site #436, years 1982,
1987–1989, 1990–1991; site #325, year 1983) which may be
not realistic for very anomalous years.

3) Continuity of the Time Series: The total fraction of
missing AVHRR daily observations is around 73% over the
445 BELMANIP2 sites in the period 1981–2000. It mainly
occurs along the equatorial zone because of high probability
of cloud coverage and in winter (respectively summer) in the
northern (respectively southern) higher latitudes because of the
poor illumination conditions [Fig. 5(a)]. This demonstrates that
the continuity of time series of the raw AVHRR observations

may be very poor in many situations. The CACAO method
allows filling all the missing data, even when there is not
enough data in a sub-season to achieve a good fit of the
phenology model. In this case, the phenology model derived
from the climatology is used. This happens in about 23% of
cases (pixels× dates). Note that there was always enough data
to compute the climatology of each of the 445 BELMANIP2
sites over the 20-years period and the 30-days local compositing
window. Cases with missing climatology are therefore expected
to be very limited over the globe.

Conversely, AG and SG methods were failing over, respec-
tively, 238 (53% of the sites) and 209 (47%) sites where there
were not enough high-quality observations to fit a curve over a
given local time period. These sites were mostly located at the
equator and at high latitudes where there are long periods with
missing data [black filled circles in Fig. 5(b)]. AG fails in more
cases than SG because AG requires a minimal seasonality in the
time series to fit the AGmodel: 29 desert sites are not processed
[gray-filled circles in Fig. 5(b)].

4) Temporal Consistency: Because there are generally no
reference LAI values for most of the sites, the temporal con-
sistency is evaluated based on the closeness to actual daily data
(RMSEraw) and the smoothness of the temporal profiles. The
spatio-temporal distribution of RMSEraw [Fig. 6(a)] shows
obvious patterns, with higher uncertainties in winter for the
higher northern latitudes and around the equator. The higher
RMSEraw values correspond to the more difficult observa-
tional conditions over regions/periods with permanent snow
and cloud cover [cf. Fig. 5(a) and Fig. 6(a)]. The relationship
between closeness to daily observations (RMSEraw) shows
that all the three methods agree well for fraction of missing data
lower than 0.5 [Fig. 6(b)]. For the larger fraction of missing
data, CACAO and AG show an increasing departure from the
daily observations as compared to SG. This was already noticed
with the simulation experiment where CACAO showed larger
RMSEraw as compared to AG and SG [Fig. 3(c)], but smaller
RMSEref [Fig. 3(b)], particularly in case of high fraction of
missing data and high level of uncertainties associated to the
daily LAI data. The smoothness of the temporal profiles derived
from CACAO confirms the good temporal consistency of the
CACAO method.

Smooth temporal profiles are expected since leaf area dy-
namics results from incremental bio-physical processes ex-
cept under sudden disturbance. The smoothness level of LAI
temporal series was evaluated using the difference, δLAI be-
tween LAI(t) product value at date t and the mean value be-
tween the two bracketing dates: δLAI = 1/2(LAI(t+ δt) +
LAI(t− δt))− LAI(t), where δt is the 10-days temporal
sampling interval ([37]). Difference δLAI is computed only
if the two bracketing LAI values at (t− δt) and (t+ δt)
exist. The smoother the temporal evolution, the smaller the
δLAI difference should be. The histogram of δLAI over the
BELMANIP2 sites in the 1981–2000 period (Fig. 7) shows
the effectiveness of the three methods to smooth the AVHRR
raw data. SG method appears the most sensitive to noise in
the data conversely to AG method that provides the smoothest
profiles since it benefits from fitting data to a single and smooth
phenology model. CACAO constitutes an intermediate solution
between SG and AG in terms of smoothness. It is very robust
to accidents in the data since the climatology plays a major



VERGER et al.: CACAO METHOD FOR SEASONAL ANOMALIES IN SATELLITE TIME SERIES 1969

Fig. 5. (a) Fraction of missing data for AVHRR daily products as a function of the latitude and the date of acquisition in 10◦ × 1-month cells. Evaluation over
the BELMANIP2 sites during the 1981–2000 period. (b) Location of the BELMANIP2 sites where (i) CACAO and SG and AG TIMESAT methods successfully
processed the AVHRR time series (unfilled circles), (ii) CACAO and SG success and AG fails (desert sites) (gray-filled circles) and (ii) only CACAO success
(black filled circles). The numbers refer to the sites in Fig. 2 and Fig. 4.

Fig. 6. (a) RMSEraw between CACAO and raw LAI data as a function of the latitude (10◦ steps) and the date of acquisition (monthly step). (b) RMSEraw

of CACAO, AG, and SG over the raw data as a function of the fraction of missing data. Evaluation over the 445 BELMANIP2 sites during the 1981–2000 period.

Fig. 7. Histogram of δLAI absolute difference representing temporal
smoothness.

regularization role while allowing fitting local variations at the
same time.

B. Use of CACAO to Characterize Inter-Annual Anomalies

The estimated shift and scale parameters from CACAO
provide indicators of phenological changes. For comparison
purposes, the phenological parameters derived from AG and SG
as implemented in TIMESAT for each of the full seasons were
used. For AG and SG methods, the lag between the time of start
or end of each season and the corresponding average date across

all seasons was compared with the CACAO shift. The variation
of the season amplitude parameter for AG and SG methods
was divided by the corresponding average amplitude across all
seasons and was compared to the CACAO scale factor.

The simulation experiment was first completed to better
assess the theoretical performances of the CACAO, AG, and
SG to accurately date the main phenological stages. Then,
performances will be analyzed over a larger set of actual sites.

1) Theoretical Performances for Phenology: The
RMSEP

ref computed over the simulated data as compared
to the reference data was used to score the performances of
CACAO, AG, and SG methods. Results (Fig. 8) show that
the performances are highly depending on the daily LAI
uncertainties and the fraction of missing data with similar
tendencies as in Fig. 3(a). The CACAO method outperforms
AG and SG methods in all the situations for SoS [Fig. 8(a)] and
EoS [Fig. 8(b)]. AG provides lower RMSEP

ref values than
SG. Conversely, only small differences are observed between
the three methods for the amplitude [Fig. 8(c)].

2) Quantifying Phenological Changes in the Time Series:
The comparison of phenological shifts and scales between the
three methods as computed over the actual time series across
the 445 BELMANIP2 sites shows a generally good agreement
between all the methods with unbiased residuals (Fig. 9).

However, the shift and scale parameters derived fromthe
CACAO method appear more stable: lower RMSEP

raw values
are observed (Fig. 10), quantifying the deviation between each
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Fig. 8. Theoretical performances (RMSEP
ref ) of the phenology extractions

for the (a) start of season (SoS), (b) end of season (EoS), and (c) amplitude of
the simulated LAI time series as derived from CACAO, AG, and SG methods
as a function of the fraction of missing data.

Fig. 9. Histogram of differences of (a) the shift in the start of season (SoS) and
end of season (EoS) and (b) the scale factor (variation in seasonal amplitude)
representing temporal anomalies of LAI data to the climatological pattern as
resulted from CACAO and TIMESAT AG and SG method adjustments over the
BELMANIP2 sites for the period 1982–1992.

Fig. 10. RMSEP
raw of the phenology extractions for the (a) start of season

(SoS), (b) end of season (EoS), and (c) amplitude of the actual AVHRR LAI
time series as derived from CACAO, AG, and SG methods as a function of the
fraction of missing data.

season from the average value across all the seasons. Further,
CACAO shift and scales appear only little sensitive to the
fraction of missing data (Fig. 10). The same is observed for AG
and SG SoS and EoS [Fig. 10(a) and (b)], while the amplitude
derived from these two methods appears more sensitive to the
fraction of missing data [Fig. 10(c)]. Although these results
obtained on actual data do not constitute an undisputable proof
of the performances of CACAO for quantifying inter-annual
anomalies because of the lack of reference values, they con-
tribute to consolidate the promising theoretical results.

IV. CONCLUSION

This paper introduces the CACAO method: a new climato-
logical fitting approach for smoothing, gap filling, and quanti-
fying vegetation anomalies in satellite time series. It is based
on the fitting of a phenology model. This model is specific to
each pixel and is derived from the climatology computed over

the time series of the considered pixel. CACAOmethod appears
to be a compromise between very flexible methods such as the
adaptive SG filter and methods based on a unique phenology
model such as the AG method. The performances of CACAO
were evaluated by comparison with the widely used AG and SG
methods as implemented in the TIMESAT toolbox. In terms of
the required computer resources, CACAO is as demanding as
AG, although SG is twice faster.

The CACAO method was first applied to simulated time
series of daily LAI estimates as derived from AVHRR observa-
tions. This simulation experiment shows a significant improve-
ment in the theoretical performances of LAI reconstructions
and phenology extraction for CACAO as compared to SG and
AG methods in all the situations, particularly for the higher lev-
els of the fraction of missing data and daily LAI uncertainties.

Results observed over actual AVHRR satellite data showed
the potentials of the proposed CACAO method to capture
the seasonality in the data while improving consistency and
continuity of the time series. CACAO overcomes the difficulties
of AG and SG methods to process the irregular nature of
the AVHRR time series due to the large fraction of missing
data (around 73%) and the high noise level associated. The
AG and SG methods failed in processing, respectively, 238
and 209 of 445 BELMANIP2 sites because not enough high
quality data was available for fitting the function which re-
sulted, respectively, in 60% and 47% of invalid products. In
contrast, the CACAO method allowed filling all the gaps and
in particular during long periods of missing data where the
climatology computed across the 20-years period of available
AVHRR observations was used. The assessment of the temporal
consistency and the smoothness of LAI profiles revealed that
CACAO constitutes an intermediate solution between AG and
SG in terms of robustness and adaptability to local variations.

The scale and shift parameters derived from CACAO allowed
the quantification of inter-annual anomalies and showed a rel-
atively good consistency with the seasonality extracted from
AG or SG phenological parameters. However, the simulated
experiments conducted in this study showed a better accuracy
of CACAO for the dating of the start or the end of the season
as compared to that derived from AG and SG methods. Nev-
ertheless, further confrontations with climatic variables or phe-
nological models [14] as well as validation with ground-based
phenological observations should be conducted. This accuracy
assessment should include the spatio-temporal performances of
CACAO as compared with other existing methods including
Fourier analysis and piecewise decomposition.

However, the main limitation of CACAO reconstruction
method is its inability to capture underlying atypical modes
of seasonality including rapid natural and human induced dis-
turbances in the LAI time series that strongly differ from the
average climatology (e.g., flood or fire events, changes in the
land cover). To prevent from such drawback, the resulting fitted
climatology can be fused with a product closer to the actual LAI
observations as the one resulting from the adaptive SG filtering.
This fusion approach should overcome CACAO limitations
when enough daily LAI observations are available. It will be
implemented in future products to generate continuous long-
term Earth System Data Records from remote sensing data
collected with several sensors over the past three decades [7].
These algorithms will be adapted to the next generation of
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sensors such as VIIRS, PROBA-V, and Sentinel 3. These long-
term data records and the proposed climatology fitting approach
are expected to contribute to identify the trends at the global
scale corresponding either to a change (positive or negative) in
vegetation amount or in a shift of the seasonality.
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