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Abstract— Uncertainties in the retrievals of microwave land surface emissivities were quantified 

over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based 

microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there 

are considerable differences between the retrievals from different sensors and from different groups 

over these two land surface types. In addition, the mean emissivity values show different spectral 

behavior across the frequencies. With the true emissivity assumed largely constant over both of the 

two sites throughout the study period, the differences are largely attributed to the systematic and 

random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies 

than at higher ones, with systematic differences ranging 1~4% (3~12 K) over desert and 1~7% (3~20 

K) over rainforest.  The random errors within each retrieval dataset are in the range of 0.5~2% (2~6 

K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval 

datasets, and within each retrieval dataset itself. Further investigation reveals that these differences 

are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 10~17 K 

under the most severe conditions.  

 

 

Index Terms—microwave radiometry, remote sensing, land surface emissivity, measurement 

uncertainty, systematic errors, random errors, brightness temperature.  
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I. INTRODUCTION 

AND surface emissivity at microwave frequencies contains a wealth of information on the physical, 

biological and hydrological states and processes of the Earth’s surface. This forms the basis for remote 

sensing of a wide range of land surface states and processes such as soil moisture, vegetation 

characteristics and land cover dynamics [1]. In addition, land surface emissivity acts as the background signal 

for the retrieval of atmospheric variables, such as water vapor, rainfall and snowfall, and therefore greatly 

affects the accuracy and uncertainty in such measurements [2], [3].   

 Currently, global-scale land surface emissivities are mostly derived from satellite-based observations 

though radiative transfer calculations. Microwave radiometers onboard polar-orbiting satellites produce 

brightness temperature (Tb) measurements at the top of the atmosphere (TOA). With atmospheric 

temperature and moisture profile data, one can remove the portion of Tb originated from the atmosphere, to 

obtain the microwave emission from the land surface. Subsequently the land surface emissivity can be 

computed if the surface temperature effective for the emission is known [4]. Retrieval of emissivity can also 

be implemented in a variational [5] and/or iterative [6] framework in which many variables affecting the 

radiative transfer processes, including emissivity, can be estimated simultaneously.  

Usually emissivity retrievals are only performed for clear days, due to the difficulty in estimating the 

atmospheric contribution from a cloudy or rainy atmosphere, and to the strong atmospheric scattering and 

absorption of land surface signals under such conditions, especially at higher frequencies. However, even for 

a cloud-free atmosphere, there are many error sources that lead to uncertainties in emissivity retrievals, 

including instrumental errors, inaccuracies in the atmospheric profile data, imperfect cloud screening, and 

misrepresentation of the land surface temperature [7]-[9]. In addition, the heterogeneity of the land surface 

radiometric properties and the shifts in instrument footprint locations introduce sampling errors that enhance 

the uncertainties. 

Despite its importance, the uncertainty in emissivity retrievals has not been well quantified. The leading 

difficulty is the lack of “ground truth” data, especially on the global scale. Most of the field campaigns for 

land emissivity studies are short-lived and small-scale, and generally they are not carried out in coordination 

with any specific satellite-based instruments or overpasses. Without reliable reference data, the immediate 

impediment to uncertainty quantification is the inability to apportion the variability to measurement error or 

to natural variability of land surface emissivity. 

In this work, we circumvent this difficulty by strategically selecting two types of land surfaces whose 

emissivities are largely constant: the Sahara Desert and the Amazon Rainforest. Then all the variation within 

a set of retrievals is caused by the uncertainties, defined as the spread among independent measurements. 

L 
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Although this study is limited to these two types of land surfaces, it represents a practical effort to make 

progress in solving an otherwise intractable problem. Thus this study not only provides the first quantitative 

results, but also facilitates more educated inference on the magnitude of uncertainty over other surfaces. 

The emissivity datasets and methodology we employed are described in the following Section. In Section 

III, we provide observational evidence to substantiate our assumption of the constant emissivity over the 

desert and rainforest areas. Based on such an assumption, we present results in Section IV to quantify the 

uncertainties. The results are then summarized and discussed in Section V. 

 

II. DATA AND METHODOLOGY 

 To support the upcoming Global Precipitation Measurement (GPM) mission, NASA’s Precipitation 

Measurement Missions (PMM) Science Team formed the Land Surface Working Group (LSWG) to improve 

land surface characterization at microwave frequencies. LSWG has assembled a collection of clear-sky land 

surface emissivity retrievals from many contemporary space-borne passive microwave sensors, over selected, 

representative land surface types such as desert, rainforest, mid-latitude agricultural land, wet land and 

high-latitude cold regions [10]. The collection of sensors includes the Special Sensor Microwave Imager 

(SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), WindSat aboard the 

Coriolis satellite, the Advanced Microwave Sounding Unit (AMSU), and the Advanced Microwave Scanning 

Radiometer for EOS (AMSR-E). This data collection greatly facilitates inter-comparison and evaluation of 

land surface microwave retrievals, and enables us to assess the current skills and uncertainties. 

In this study, we focus our evaluation on the three conical-scan microwave imagers: SSM/I, TMI and 

AMSR-E (Table I), because they have a similarly wide frequency range, and most of their channels have both 

vertical and horizontal linear polarizations. Instantaneous retrievals, including both ascending and 

descending passes, are used whenever available. Retrievals from different data providers for the same imager 

are all included as independent estimates, as they are mostly derived from different algorithms and/or with 

different ancillary data.  A common one-year period, July 1, 2006 – June 30, 2007, is used for our study.  

For SSM/I, retrievals from three Defense Meteorological Satellite Program (DMSP) platforms (F13, F14 

and F15) are included. The data are provided by the Centre National de la Recherche Scientifique (CNRS), 

France, and the retrieval procedure is described in [4], [11]. TMI retrievals are produced by Nagoya 

University, Japan, with a similar method. For AMSR-E, two independent retrieval datasets are used. One is 

produced by NOAA’s Microwave Integrated Retrieval System (MIRS) using a one-dimensional variational 

algorithm [5], and is denoted as AMSR-E (MIRS). The other is produced by NOAA’s Cooperative Remote 

Sensing Science and Technology Center (CREST), and the retrieval procedure is documented in [12], [13]. 
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This dataset is denoted as AMSR-E (CREST). 

Uncertainty essentially is the quantification of the spread or disagreement among independent 

measurements of the same physical quantity. If each of the measurements has no systematic biases, then such 

spread arises solely from the random errors. However, most often each measurement has distinct systematic 

biases that contribute to the total uncertainty. Difficulty arises when there are no “ground-truth” data 

available: one is not able to separate systematic errors from random ones, and either type of error from the 

natural variability of the measured quantity. Under these conditions, uncertainty quantification is impossible. 

A practical starting point to elude this difficulty is to quantify the uncertainty over areas where the physical 

variable, here microwave emissivity, is constant. This is the one case in which “ground-truth” data are not 

needed, as all the variations in the data are from the measurement errors. One may still not be able to identify 

the absolute amplitude of systematic errors, but their differences among independent measurements can be 

obtained, and these differences provide substantial insight into their reliability as an ensemble. Moreover, the 

random errors can be easily quantified, which more often are the dominant part of the total uncertainty. 

For this study, we selected two land surface types, the Sahara Desert and the Amazon Rainforest. In these 

regions, the desert roughness and the vegetation properties of tropical forest are not expected to change 

significantly with time. Since roughness and vegetation are two key controlling factors for microwave 

emissivity at these frequencies, they can be used as a constant-reference surface. This property has been 

exploited for validation and calibration of other land surface parameter retrievals (e.g., [14], [15]). In the 

following section, we will substantiate this assumption with long-term AMSR-E observations. Though the 

true value of the assumed constant emissivity is unknown, we can compare the independent retrieval datasets 

and their disagreements to infer the magnitude of the uncertainties, including both systematic and random 

errors. The two sites we used in this study are designated by LSWG as “Desert” and “Amazon2,” located at 

(22°N, 29°E) and (2°N, 55°W), respectively. 

 

III. CONSTANT EMISSIVITY OVER STUDY SITES 

To prove that the land surface emissivities are approximately constant over the Desert and Amazon2 sites, 

we examined the microwave polarization difference index (MPDI) over these two locations. MPDI is 

essentially a normalized measure of the polarization. The MPDI is computed from the daily AMSR-E Tb data 

over the three-year period of July 2004 through June 2007, for all weather conditions. Tb-based MPDI is 

defined as [16]:  
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where vε and hε  are the land surface emissivity of vertical and horizontal polarizations, respectively, for a 

specific frequency and scan angle. 

MPDI is closely related to the land surface states. This is because with a clear-sky atmosphere, the 

polarization difference originates exclusively from the land surface; the atmosphere’s attenuation and 

emission generate no additional polarization, serving only to suppress the polarized signals down below. 

Thus Tb-based MPDI, which contains both signals from the land surface and (un-polarized) signals from the 

atmosphere, can be shown to be a lower-bound estimate of the emissivity-based MPDI. 

For a non-scattering, plane-parallel atmosphere and for a given scan angle and frequency, the TOA 

brightness temperatures for vertical and horizontal polarizations can be computed by the following integrated 

radiative transfer equations (e.g., [4]):  
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where ↑
aT and ↓

aT are the upward and downward (including cosmic background) radiation through the 

atmosphere, sT the land surface temperature, and τ the atmospheric optical depth along the view path, 

respectively. Then from (1) and (2) one can derive 
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and since 2≈+ hv εε for most land surfaces, the above equation can be approximately rewritten as 
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 As ↓> as TT  for the Earth’s clear atmosphere in the frequency range under study, we have 

εMPDIMPDIT ≤ . In other words, the Tb-based MPDI is a lower-bound estimate of the emissivity-based 

MPDI. The more transparent the atmosphere is (the smaller the values of ↑
aT , ↓

aT  and τ are), the closer the two 

MPDIs will become.  

Fig. 1 shows the Tb-based MPDI for all the six AMSR-E channels, over the Desert (Fig. 1a), Amazon2 

(Fig. 1b) and a third LSWG site, the Southern Great Plains (SGP; Fig. 1c). Over the three-year period, the 

MPDI for both Desert and Amazon2 remains fairly constant. In contrast, SGP MPDI values exhibit strong 

seasonal variations across all the channels that are related to the seasonal variations in vegetation and soil 

moisture. Though the data contain both clear and cloudy days, the latter only serve to further reduce MPDI 

values and do not obscure variations during clear days. Comparing Figs. 1a and 1b with 1c, we can verify that 

our assumption of constant emissivity over Desert and Amazon2 is valid. 

Over Desert, the MPDI values are large, and so are the differences among the channels. This is consistent 

with the well-known strong polarization signature over desert areas [17]. Nevertheless, over the three-year 

period, the values are remarkably constant, especially for lower frequencies, which are not sensitive to the 

atmosphere. Slight seasonal variations are present in the water vapor channel (23.8 GHz), which suggests 

they are mostly atmosphere-induced. The synchronized, less pronounced fluctuations in the 89.0 GHz 

channel indicate their atmospheric origin as well.  

Over Amazon2 (Fig. 1b), the MPDI values are much lower, and close to zero for all the frequencies. This is 

consistent with the fact that over dense forest the microwave signals are not strongly polarized. Despite the 
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dense canopy, the lower frequencies exhibit slightly higher MPDI values, indicating some of the emission 

from the soil surface transmits through the canopy. Overall one can see MPDI remains fairly constant and 

very small across all the channels. Thus it is reasonable to assume the emissivity values over Amazon2 are 

approximately constant too. 

We also examined another arbitrarily selected, distant desert site (22°N, 5°W) and Amazon site (7°S, 

70°W). The temporal variation in their respective MPDI time series is similarly small (not shown), indicating 

the stationarity of MPDI over these two types of surfaces is robust feature.   

IV. RESULTS 

 

In this section, we first present the basic characteristics of both the systematic and random errors, including 

their statistical distributions shown as histograms. To gain additional insight, we then examine the errors in 

MPDI space, with comparisons with AMSR-E Tb data. Finally, we provide diagnostic analysis on the sources 

of some of the error features identified in the study. 

 

A. Systematic and Random Errors 

 Land surface emissivity retrievals over the two evaluation sites show considerable systematic and random 

errors. Figure 2 shows box-and-whisker plots for the six datasets and for both polarizations. Over the Desert 

site (Figs. 2a and 2b), the ensemble as a whole showed the expected behavior – vertically polarized emissivity 

decreases with frequency (Fig. 2a) while horizontally polarized emissivity increases (Fig. 2b) [17]. However, 

there are considerable systematic differences between the mean values from each retrieval dataset, indicating 

most of them, if not all, have systematic errors, regardless of the unknown “ground truth.”  The systematic 

differences are the smallest at lower frequencies (6.9 and 10.65 GHz), reflecting partly their insensitivity to 

atmospheric effects. The random errors also show a strong dependency on frequency. The higher frequencies 

(85.5/89.0 GHz) tend to have the highest spread from their mean values, suggesting again atmospheric effects 

are the source. The vertically polarized channel of SSM/I F15 at 22.2 GHz shows extremely high values (Figs. 

2a and 2c). This is caused by an instrument problem documented in [18].  

Over Amazon2 (Figs. 2c and 2d), the magnitude of the systematic differences among the retrievals is 

similar to that of the Desert site, except that the differences at the higher frequencies (85.5/89.0 GHz) are 

much larger. Similarly, the random errors are also much higher at these frequencies. This also suggests that 

the atmospheric effects are playing an even larger role here, considering Amazon2 has a much moister 

atmosphere and many more cloudy/rainy days, than the Desert site. 
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There is a lack of smoothness in the mean emissivity spectra at either site. For example, CREST’s AMSR-E 

retrievals fashioned a bump at 23.8 GHz in its horizontal polarization at the Desert site, but it has a dip at 36.5 

GHz in both polarizations at Amazon2. Other retrievals show such bumpiness in varying degrees. We believe 

the emissivity spectra should be smooth and monotonic, because over the frequency range under study the 

land surface does not have any physical known mechanism that responds differently to a particular frequency. 

Thus the roughness in the shapes of the emissivity spectra is another manifestation of systematic errors. 

 

B. Histograms of Emissivity Retrievals 

Further insight into the uncertainties can be obtained from histograms of the retrievals. Figure 3 shows the 

histograms of horizontally polarized emissivities for both sites. Overall the Desert site exhibits a gradual 

increase in H-pol emissivity with frequency (left) from all the retrievals, while over Amazon2 the emissivities 

are largely confined in the range of 0.9 to 1.0 for all the frequencies. Consistent with Fig. 2, there are 

considerable differences among the mean value of each of the retrievals over either site, a strong indicator of 

the existence of systematic errors. In addition, for each retrieval dataset, there is a range in spread around its 

mean emissivity value, with the shape of the histogram indicating the distribution of the random errors.  

Over Amazon2, all the emissivity histograms are single mode, while over Desert, some of the retrievals, 

such as TMI and AMSR-E (MIRS), exhibit dual modality at some of the frequencies. We speculate this might 

be related to the strong diurnal cycle in the variation of the surface temperature and the microwave 

penetration depth, which makes it tricky to represent the effective emission characteristics in the retrieval 

process [13], [17], [19], [20]. 

  

C. Uncertainties in MPDI 

 Because MPDI can largely cancel the effect of errors in atmospheric contribution and surface temperature, 

we also examined the uncertainties in MPDI computed from the emissivity retrievals. This will reveal how 

much of the error is common in both V- and H-pol channels, and how much is not. If a significant portion of 

the error in an emissivity retrieval is common to both channels, MPDI will show much lower systematic and 

random error amplitudes than the emissivity values alone. Indeed, as shown in Fig. 4a, MPDI values over 

Desert show much better agreement among the retrievals, except AMSR-E (MIRS). This suggests most of the 

systematic errors in the emissivity retrievals are common to both channels. In addition, the variance becomes 

much smaller, indicating both channels have the same random error as well most of the times. Similar 

conclusions can be drawn for Amazon2 (Fig. 4c) for most of the frequencies, except for 85.5/89.0 GHz which 

shows fairly large systematic and random errors. Obviously the errors at the highest frequencies are larger and 
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less co-varying between the vertical and horizontal polarizations.  

For comparison, we also studied the MPDI computed from AMSR-E TOA Tb values over these two sites 

(Figs. 4b and 4d). Interestingly, the spectral shapes between emissivity-based (Fig. 4, left) and Tb-based 

MPDI (Fig. 4, right) are strikingly similar. Since Tb-based MPDI is the lower bound of emissivity-based 

MPDI, any values in the former (Fig. 4, right) higher than those in the latter indicate systematic errors in the 

emissivity retrievals, such as the F15 retrievals at higher frequencies over Amazon2 (Fig. 4c). In addition, 

there is an elbow in Tb-based MPDI at 23.8 GHz over either site, due to the strong water vapor attenuation in 

the atmosphere. But such a depression should not be present in emissivity-based MPDI, had the atmospheric 

effect been completely removed in the retrieval process. But its very existence (Figs. 4a and 4c) suggests 

otherwise. This is understandable because there is no way to recover the polarization difference from the 

TOA Tb if such a signal is strongly dissipated through the atmosphere. Therefore satellite-based direct 

retrieval of land surface emissivity in this frequency range (21-24 GHz) will remain a challenge, and a 

feasible solution is interpolation from its more transparent neighboring frequencies, as done by the Tool to 

Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) [21].  

 

D. Error Diagnosis 

To further understand the causes of the errors, we inspected the daily emissivity spectra and their variations 

over our 1-year study period, for the various sensors for both sites. As an illustrative example, Fig. 5 shows a 

collage of daily emissivity retrievals from SSM/I on DMSP F13 over the Amazon2 site, for both polarizations 

and both morning (AM; descending) and afternoon (PM; ascending) passes. The emissivities for both 

polarizations are of similar values, as expected over such a site. Most of the emissivity spectra are confined 

within the range of 0.9-1.0, but there is considerable variation, driven largely by the seasonality. This 

variation is more likely introduced by the errors in both land surface temperatures and atmospheric profiles 

used in the retrievals. The impact of water vapor attenuation at 22.2 GHz for the vertical polarization, in the 

shape of an elbow, from either AM or PM passes, is obvious (Figs. 5a and 5c).  Such an elbow does not 

manifest itself in the horizontal polarization due to the lack of the 22.2 GHz (Figs. 5b and 5d).  

Figure 5 also reveals that the dominant source of random errors at the highest frequency (85.5 GHz) is 

likely the contamination from cloudy or rainy skies. As one can observe, during the morning passes, there 

were very few outliers at 85.5 GHz. But the afternoon passes saw a significant number of outliers with 

drastically reduced emissivity values in both polarizations at this frequency (Figs. 5c and 5d). This coincides 

with the rainy time of the Amazon precipitation diurnal cycle [22], and the outliers indicate strong scattering 

from ice particles aloft. This suggests that the cloud screen step in the retrieval processes missed a number of 
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cloudy and rainy conditions, resulting in enhanced random errors. 

V. SUMMARY AND DISCUSSION 

Due to the lack of ground truth data, quantifying the uncertainties in satellite-based land surface emissivity 

retrievals has been a challenge. We initiated an effort to evaluate such retrievals from microwave imagers 

over two types of land surfaces, the Sahara Desert and the Amazon Rainforest. The true emissivity over either 

type of land surface can be treated as virtually constant, as supported by a three-year AMSR-E Tb polarization 

difference record (Fig. 1). This enables us to identify both the random errors and many aspects of the 

systematic errors. Among the several retrieval datasets based on SSM/I, TMI and AMSR-E that we 

examined, there are substantial systematic differences, especially at higher frequencies (Fig. 2). The range of 

the systematic differences is approximately 1~4% of the mean values (equivalent of 3 to 12 K Tb) over the 

desert site and 1~7% (3 to 20 K) over Amazon, generally increasing with frequency (Table II).   Within each 

particular dataset, the random errors are in the range of 0.5~2% (2~6 K) over both sites, except for SSM/I 

aboard F13 and F14, which had much larger random errors (10~17 K) over Amazon at 85.5/89.0 GHz, due to 

the atmospheric contamination as shown in Fig. 5.   

These error components arose from various sources. Based on our analysis, we can summarize the error 

sources as the following: 

1. For systematic errors, inaccuracies in the atmospheric profile data and in the surface temperature data 

are the primary sources. Over Desert, the impact of the former seems insignificant, probably due to the 

low water vapor content in the atmosphere. Similar MPDIs (except MIRS) (Fig. 4a) but differing 

emissivities (Figs. 2a and 2b) suggest that the surface temperature differences and errors are primarily 

responsible for the systematic differences. To compound the problem, the strong diurnal variation of 

the surface temperature and penetration depth over desert makes it difficult to represent the effective 

values. On the other hand, over Amazon2, the fact that the emissivities (Figs. 2c and 2d) are notably 

different between the datasets, and the random errors in the emissivity-based MPDI (Fig. 4c) are much 

higher than those of the Tb-based MPDI (Fig. 4d), indicates both factors are responsible. 

2. Retrievals within the water vapor attenuation band (21-24 GHz) are systematic outliers and are less 

reliable (e.g., Figs. 4a and 4c). This is understandable because the signals from the land surface are 

strongly dissipated by the atmosphere, and TOA Tb measurements contain little information content 

originated from the land surface. Thus direct satellite-based retrievals in this frequency range will 

remain a challenge. Interpolation between more transparent neighboring frequencies has been shown to 

be a feasible solution [21].  

3. Random errors with each retrieval dataset are both frequency- and location-dependent: higher 
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frequencies saw much more deviation from the mean values than lower frequencies (Fig. 2), and 

Amazon2 had more dispersion than Desert (Fig. 2 and Fig. 4). Further investigation revealed strong 

evidence that scattering by atmospheric hydrometeors is the dominant cause (Fig. 5), indicating 

rain/cloud contamination in the presumed clear-sky retrievals. Additionally, since it consistently 

decreases the emissivity, the scattering process also causes a systematic drop in the mean emissivity 

values (e.g., Figs. 2c and 2d).  

 

Apparently the retrieval of land surface emissivity, especially the instantaneous values, is a challenging 

task. In addition to factors highlighted in this study, many other ones, such as instrument errors (e.g., [18]), 

calibration errors, differences in locations and resolutions of the satellite footprints, spatial and temporal 

sampling errors, and representativeness of surface properties over highly heterogeneous and dynamic 

surfaces (e.g., desert) [13], [19], [20], all contribute to the complexity of the retrieval process and the 

associated errors.  It is therefore necessary to recognize the limitations in these instantaneous retrievals, and to 

develop strategies to alleviate their impact while exacting as much useful information as possible.  For 

example, the monthly emissivity atlas produced by Prigent et al. [11] and the climatology dataset used by 

TELSEM [21] employ extensive quality control and long-term averaging over multiple measurements from 

multiple sensors. We believe these measures can dramatically reduce both the systematic and random errors.  

Our study is confined to only two sites, and the results are certainly not representative of the other types of 

lands surfaces, or even the rainforest and desert themselves. Over highly variable surfaces, such as desert, the 

interplay of the error sources can differ dramatically from one site to the next.  Nevertheless, we believe the 

two sites over these extreme types of land surfaces give one an educated estimate on the range of errors over 

the land surface as a whole. This supplements another study by Ferraro et al. [10] which compared the 

systematic differences over a few LSWG sites in the continental United States. Together both studies yield 

considerable insights into the factors and processes affecting the uncertainties in these retrievals. Such 

insights will be helpful in future studies of a broader scope. 
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TABLE I 
FREQUENCIES OF THE MICROWVE IMAGERS 

 

SSM/I 19.35 22.2 (V) 37.0 85.5
TMI 10.65 19.35 21.3 (V) 37.0 85.5

AMSR-E 6.9 10.65 18.7 23.8 36.5 89.0

Frequencies of Microwave Imagers (GHz)

 
 

 

TABLE II 
MEAN AND STANDARD DEVIATION OF EMISSIVITY RETRIEVALS 

 
Frequency (GHz) 6.9 10.65 18.7/19.35 21.3/22.2/23.8 36.5/37.0 85.5/89.0

SSM/I F13 0.976 (3.1) 0.965 (3.4) 0.948 (2.9) 0.901 (3.9)
SSM/I F14 0.975 (4.0) 0.964 (4.4) 0.948 (3.3) 0.901 (4.3)
SSM/I F15 0.980 (3.5) 1.014 (8.0) 0.952 (3.3) 0.907 (3.4)

TMI 0.989 (5.5) 0.992 (4.4) 0.982 (4.5) 0.967 (3.4) 0.935 (3.8)
AMSR-E (MIRS) 0.983 (1.9) 0.980 (2.2) 0.986 (2.7) 0.987 (2.8) 0.966 (4.0) 0.934 (6.5) 

AMSR-E (CREST) 0.959 (3.7) 0.958 (3.4) 0.954 (3.0) 0.943 (3.0) 0.926 (2.6) 0.910 (2.6) 
Max - Min 0.024 (7.2) 0.031 (9.3) 0.038 (11.4) 0.044 (13.2) 0.041 (12.3) 0.034 (10.2) 

SSM/I F13 0.831 (2.8) 0.839 (2.7) 0.834 (4.3)
SSM/I F14 0.831 (3.6) 0.841 (3.1) 0.832 (4.6)
SSM/I F15 0.836 (3.1) 0.848 (2.9) 0.841 (4.0)

TMI 0.812 (4.7) 0.843 (4.1) 0.861 (3.5) 0.867 (4.0) 
AMSR-E (MIRS) 0.786 (1.8) 0.793 (2.0) 0.819 (2.9) 0.833 (3.5) 0.827 (4.0) 0.829 (6.7) 

AMSR-E (CREST) 0.767 (3.1) 0.779 (2.8) 0.805 (2.8) 0.827 (3.6) 0.820 (2.8) 0.856 (3.2)
Max - Min 0.019 (5.7) 0.033 (9.9) 0.038 (11.4) 0.006 (1.8) 0.041 (12.3) 0.038 (11.4)

SSM/I F13 0.953 (3.1) 0.939 (4.5) 0.930 (4.2) 0.896 (15.7)
SSM/I F14 0.951 (3.2) 0.937 (4.6) 0.928 (3.2) 0.902 (10.8)
SSM/I F15 0.958 (2.7) 1.030 (12.0) 0.933 (2.7) 0.912 (6.3) 

TMI 0.949 (2.7) 0.955 (3.2) 0.945 (3.6) 0.936 (3.2) 0.931 (5.3) 
AMSR-E (MIRS) 0.960 (1.5) 0.954 (1.7) 0.961 (1.9) 0.955 (1.9) 0.943 (1.8) 0.934 (4.0) 

AMSR-E (CREST) 0.948 (2.3) 0.939 (2.4) 0.940 (2.6) 0.938 (2.5) 0.916 (2.9) 0.968 (1.9)
Max - Min 0.012 (3.6) 0.015 (4.5) 0.021 (6.3) 0.018 (5.4) 0.027 (8.1) 0.072 (21.6)

SSM/I F13 0.951 (3.0) 0.926 (3.2) 0.899 (16.8) 
SSM/I F14 0.952 (3.1) 0.930 (3.2) 0.902 (11.5) 
SSM/I F15 0.957 (2.8) 0.937 (2.8) 0.919 (6.9) 

TMI 0.945 (2.7) 0.952 (3.2) 0.936 (3.2) 0.922 (5.3)
AMSR-E (MIRS) 0.947 (1.5) 0.948 (1.8) 0.959 (2.0) 0.954 (2.1) 0.943 (1.9) 0.935 (4.2) 

AMSR-E (CREST) 0.939 (2.2) 0.933 (2.4) 0.938 (2.5) 0.935 (2.4) 0.914 (2.8) 0.966 (1.9) 
Max - Min 0.008 (2.4) 0.015  (4.5) 0.021 (6.3) 0.019 (5.7) 0.029 (8.7) 0.067 (20.1)

Desert, V-pol

Desert, H-pol

Amazon2, V-pol

Amazon2, H-pol

 
Standard deviations are shown in brackets in numbers equivalent to brightness temperatures (degrees Kelvin – K), assuming a 

physical temperature of 300K. The range (Max-Min) of mean emissivities for each frequency also has an equivalent Tb shown in 
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Fig. 1. MPDI calculated from AMSR-E brightness temperatures (Tb) for ascending passes of a 

three-year period (July 2004 through June 2007), over the three LSWG sites: a) Desert, b) 

Amazon2 and c) SGP.    
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Fig. 2. Inter-comparison of microwave emissivity retrievals at two LSWG sites: Desert (top) and 

Amazon2 (bottom), over a one-year period from July 1, 2006 to June 30, 2007, for SSM/I (F13, F14 and 

F15), TMI and AMSR-E. Both vertical (left) and horizontal (right) polarizations are shown. 
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Fig. 3. Inter-comparison of the histograms of the H-pol microwave emissivity retrievals at two LSWG 

sites: Desert (left) and Amazon2 (bottom), over a one-year period from July 1, 2006 to June 30, 2007, 

for SSM/I (F13, F14 and F15), TMI and AMSR-E, for various frequencies. 
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Fig. 4. Inter-comparison of emissivity-based MPDI values (left) at two LSWG sites: Desert (top) and 

Amazon2 (bottom), over a one-year period from July 1, 2006 to June 30, 2007, for SSM/I (F13, F14 

and F15), TMI and AMSR-E. For comparison, AMSR-E Tb-based MPDI values over the same two 

sites are also shown (right). 
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Fig. 5. Daily microwave emissivity retrievals over Amazon2 (bottom), over a one-year period from July 1, 

2006 to June 30, 2007, for SSM/I F13. Both vertical (left) and horizontal (right) polarizations, as well as 

descending (AM, top) and ascending (PM, bottom) passes, are shown. Each daily retrieval is designated by a 

colored line. 
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