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Abstract— Data provenance allows scientists to validate their
model as well as to investigate the origin of an unexpected
value. Furthermore, it can be used as a replication recipe for
output data products. However, capturing provenance requires
enormous effort by scientists in terms of time and training. First,
they need to design the workflow of the scientific model, i.e.,
workflow provenance, which requires both time and training.
However, in practice, scientists may not document any workflow
provenance before the model execution due to the lack of time
and training. Second, they need to capture provenance while
the model is running, i.e., fine-grained data provenance. Explicit
documentation of fine-grained provenance is not feasible because
of the massive storage consumption by provenance data in the
applications, including those from the geoscience domain where
data are continuously arriving and are processed. In this paper,
we propose an inference-based framework, which provides both
workflow and fine-grained data provenance at a minimal cost
in terms of time, training, and disk consumption. Our proposed
framework is applicable to any given scientific model, and is
capable of handling different model dynamics, such as variation
in the processing time as well as input data products arrival
pattern. Our evaluation of the framework in a real use case with
geospatial data shows that the proposed framework is relevant
and suitable for scientists in geoscientific domain.

Index Terms— Data provenance, geoscience applications,
hydrology, provenance graph, workflow.

I. INTRODUCTION

A. Data-Intensive Applications and Geoscientific Research

Scientists from many domains, such as physical, geolog-
ical, environmental, biological etc. facilitate data-intensive
e-Science applications to study and better understand these
complex systems [1]. In these applications, the data collection
contains both in-situ data collected from the field and stream-
ing data sent by sensors. Scientists use this data fitting into
their model describing processes in the physical world and get
the output, which is used to facilitate either a process control
application or a decision support system.

Many of these data-intensive e-Science applications are
focusing on geoscientific research. In a geoscientific research,
scientists collect geospatial data, i.e., measurements or sen-
sor readings with time and space, from different sources.
Later, this data are processed to produce the output, i.e., a
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data product. A new generation of information infrastructure,
known as cyberinfrastructure, is being developed to support
the geoscientific research [2]. One of the requirements of this
cyberinfrastructure is to trace the creation of the output data
products. This path to the origin would be useful in cases
of the generation of any imprecise or unexpected output data
during the execution of a geoscientific model. To investigate
the origin of the unexpected output data, scientists need to
debug through their models, which are used for the actual
processing.

Furthermore, reproducibility of data products is another
major requirement in the geoscientific domain. Reproducibility
of data products refers to the ability to produce the same data
product using the same set of input data and model parameters
irrespective of the model execution time. Maintaining data
provenance, also known as lineage, allows scientists to achieve
these requirements and thus, leading toward the development
of a provenance-aware cyberinfrastructure.

B. Data Provenance

Provenance is defined in many different contexts. One of
the earlier definitions was given in the context of geographic
information system (GIS). In GIS, data provenance is known
as lineage, which explicates the relationship among events
and source data in constructing the data product [3]. In the
context of database systems, data provenance provides the
description of how a data product is achieved through the
transformation activities from its input data [4]. In a scientific
workflow, data provenance refers to the derivation history of a
data product starting from its origin [5]. In the context of the
geoscientific domain, geospatial data provenance is defined as
the processing history of a geospatial data product [2].

In all contexts, provenance can be defined at different levels
of granularity [6]. Fine-grained data provenance is defined
at the value-level of a data product, which refers to the
determination of how that data product has been created and
processed starting from its input values. It helps scientists
to trace the value of an output data product. It could be
facilitated to have reproducible results as well. On the other
hand, coarse-grained or workflow provenance is defined at the
more higher level of granularity. It captures association among
different activities within the model at design time. Workflow
provenance can achieve reproducibility in a few cases where
data are collected beforehand, i.e., offline data. In cases of
streaming data, workflow provenance itself cannot achieve
reproducibility due to the creation of new data products
and update of existing data products during the model exe-
cution. However, based on the workflow provenance of a
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model, we can infer fine-grained data provenance which can
significantly reduce storage overhead for provenance data.
Therefore, a framework integrating both workflow and fine-
grained data provenance will be proven beneficial to scientists
using provenance data.

C. Goal of This Research

We aim to develop a framework managing both workflow
and fine-grained data provenance for data-intensive, geosci-
entific applications. To accomplish such a framework, we
identify three key design factors. First, the framework would
be generic, i.e., applicable to any given model. The biggest
challenges to make the framework generic in nature is to
address different types of developing approach, i.e., with or
without facilitating any specific tools, as well as to address
different types of representation of model’s structure (e.g.,
data-flow or control-flow) [7]. Second, the framework should
be storage-efficient, i.e., manage provenance data at lower disk
consumption. To accomplish this feature, instead of document-
ing fine-grained data provenance explicitly, inference-based
methods could be an alternative solution. Finally, the frame-
work should be self-adaptable to cope with any given scientific
model and the model dynamics, such as processing delay,
data arrival pattern etc. The self-adaptability of the framework
decides to apply an appropriate provenance inference method
based on the aforesaid parameters to build provenance traces.
Accomplishing a framework with these properties requires us
to closely examine the complete problem domain, i.e., entities
involved with geoscientific applications.

D. Complete Problem Domain

In the following, the problem space is described, which is
addressed by the proposed framework. The problem space can
be characterized into two phases: design phase and execution
phase. Fig. 1 uses rectangles and round-shaped boxes to
represent different entities pertinent to a geoscientific model
and the corresponding example based on their characteristics,
respectively. The entities defined during the design phase
of a scientific model are: 1) the scientific model itself and
2) different activities within the model. These two entities
are represented by the top two rectangles in Fig. 1. The
entities involved during the execution phase of a scientific
model are represented by the bottom two rectangles shown in
Fig. 1. Each activity defined at the design phase instantiates
a corresponding processing element during the execution of
a model and these processing elements process incoming
data products and produce output data products. We discuss
different characteristics of these entities below.

1) Design Phase Characteristics: During the design phase,
scientists define the model which is based on different activ-
ities, i.e., atomic units of work performed as a whole [8].
In case the scientific model is specified in a provenance-
aware platform, the provenance information is automatically
acquired. Examples of platforms, where provenance awareness
has been considered, are e-Science workflow engines, such as
Kepler [9], Karma2 [10], Taverna [11], VisTrails [12], stream
processing and complex event processing engines, such as
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Fig. 1. Complete problem domain showing different characteristics of a
scientific model at design and execution time.

SensorDataWeb,1 STREAM [13], Aurora [14], Borealis [15],
or Esper.2 Provenance has been considered in these platforms
because they could be used to model provenance-aware appli-
cations.

In case the scientific model is specified in a provenance-
unaware platform, the workflow provenance must be main-
tained manually by the user. This requires training of the
user and a significant effort in manually acquiring provenance
information. Examples of provenance-unaware platforms are
general purpose programming and scripting languages, such
as Python,3 general purpose data manipulation tools, such as
Microsoft Excel,4 R,5 or MATLAB.6

The second dimension of classifying scientific models is
based on the underlying coordination approach of the model.
In control-flow coordination, the execution of an activity
depends on the successful completion of the preceding activity.
This paradigm is used in many programming languages that a
statement can only be executed after the previous statement has
been completed. It also applies to many workflow models and
logical formulations. As a contrast, in data-flow coordination,
the execution of an activity depends on the availability of data
and that in turn, can potentially produces data again, which
may trigger the execution of other activities. This paradigm
is used in stream processing and complex event processing
environments as well as in the models used in distributed
systems research, such as I/O automata [16].

The next entity in the design phase is activities. Several
activities comprise a scientific model. There are two important
characteristics of an activity, which need to be documented
to help scientists finding and understanding the origin of a
data product during execution phase. One of them is input–
output ratio. The input–output ratio [17] refers to the ratio
between the number of contributing input data products to the
number of produced output data products. There are many

1Available at https://sourceforge.net/projects/sensordataweb/.
2Available at http://esper.codehaus.org/.
3Available at http://www.python.org/.
4Available at http://office.microsoft.com/en-us/excel/.
5Available at http://www.r-project.org/.
6Available at http://www.mathworks.nl.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUQ et al.: INFERENCE-BASED FRAMEWORK TO MANAGE DATA PROVENANCE 3

activities where this ratio remains constant during execution
phase, such as arithmetic operations without any condition,
projections, aggregate operations in a database etc. We refer
to these activities as constant ratio activities. On the other
hand, there are a few activities which do not keep the input–
output ratio constant during execution phase, such as a typical
selection operation in a database etc. These are referred to as
variable ratio activities.

The other important characteristic is about the persistence
of the output data product, referred to as IsPersistent. The
IsPersistent characteristic describes whether the data product
produced by an activity is stored persistently or not. If
the data product is persistent, it can be used to infer fine-
grained data provenance. As an example, in general purpose
programming languages, writing to a file results into persistent
data. Documenting the input–output ratio and the IsPersistent
characteristics and potentially the other characteristics of the
activities during the design phase explicated in the workflow
provenance helps scientists to understand the origin of a data
product during execution phase.

The documented characteristics and the relationship
between activities during the design phase result into the work-
flow provenance of the scientific model. While the workflow
provenance is acquired automatically in a provenance-aware
platform, this must be done manually in a provenance-unaware
platform. However, there is a high demand in the scientific
community to capture workflow provenance automatically in
a provenance-unaware platform like a scripting environment
[18]. To accomplish this, the challenge is to transform the
data- and control-flow aspects of a scripting language into data
dependences between activities, i.e., workflow provenance, by
interpreting and analyzing the code. That is to transform a
control-flow statement (e.g., function call) into an activity or
a group of activities, which only exhibits data dependences.

Please note that in different scientific models, activities
have different granularities ranging from complex operations
to a single arithmetic operation. While the granularity of the
activities does not influence the provenance acquisition, it is
influencing the complexity of the provenance graph and the
interpretation by the user.

2) Execution Phase Characteristics: The entities involved
during the execution phase are: 1) processing elements and
2) data. These entities and their characteristics are explicated
using the bottom two rectangles in Fig. 1. An activity defined
in the design phase is transformed into a corresponding
processing element during the execution phase. Processing
elements have variations in their processing delay, i.e., amount
of time required to manipulate input data products. As an
example, processes performing addition or projections have
constant processing delays, referred to as constant delay
processing elements. Alternatively, executing some processing
elements, such as performing a join in a database or calculating
the greatest common divisor, require different amount of time
at each execution. These are referred to as variable delay
processing elements.

Independent of processing elements characteristics, the con-
tributing data also exhibit its own characteristics. Data might
arrive continuously (e.g., streaming data) or can be collected

before the execution begins (e.g., offline data). Streaming data
might have different data arrival patterns. Data arriving at
regular intervals are referred to as constant sampling data
(e.g., temperature measurements sent at regular intervals). On
the other hand, data might also arrive at an irregular interval,
such as buying and selling quotes on an instrument in a stock
market. These are referred to as variable sampling data.

The relationship between data and processing elements
during the execution phase explicates the fine-grained data
provenance of a scientific model [6]. Existing work documents
fine-grained data provenance explicitly in a database [19], [20].
However, these mechanisms require a considerable amount of
storage to maintain fine-grained data provenance especially in
a data streaming scenario where a single incoming data prod-
uct may contribute to produce multiple output data products.
Sometimes, the size of provenance data becomes a multiple of
the actual data. Since provenance data are just metadata and
less often used by the end users, the explicit documentation
of fine-grained provenance seems to be infeasible and too
expensive [21]. One of the potential solutions to overcome
this problem is to infer fine-grained data provenance based on
the given workflow provenance. Therefore, inferring the fine-
grained data provenance can make the complete framework
storage-efficient.

However, developing an inference-based framework to man-
age both workflow and fine-grained data provenance requires
attention to the underlying platform along with the model
dynamics, including processing element and data character-
istics. The inference mechanisms should take variation in the
used platform, processing delay, and data arrival pattern into
consideration to infer highly accurate provenance information.
To accomplish that, self-adaptability of the framework is
required, which can decide when and how to execute the
most appropriate inference-based methods based on a given
scientific model and its associated data products.

E. Our Contribution

In this paper, we describe an inference-based framework
to manage both workflow and fine-grained data provenance
for geoscientific applications. Our proposed framework is
applicable to any given model specified in either a provenance-
aware or a provenance-unaware platform using data-flow or
control-flow-oriented structure, which conforms to its generic
nature. To accomplish that, we propose a technique to build
the workflow provenance automatically based on a given
script. This overcomes the difficulties with collecting workflow
provenance automatically for a model developed on top of a
provenance-unaware platform, such as a scripting language.
Since there are many programming and scripting languages
and each has its own set of programming constructs and
syntax, we showcase our approach using Python. Python
is widely used to handle spatial and temporal data in the
scientific community as well as in commercial products, such
as ArcGIS,7 which has inspired us to make this choice.

Our proposed framework is also capable of managing fine-
grained data provenance in a storage-efficient way. We discuss

7Available at http://www.esri.com/software/arcgis.
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the applicability of several existing provenance inference
methods [17], [22], [23] in this paper, which can infer prove-
nance based on the given workflow provenance of the model
and the timestamps associated with data products.

To achieve a self-adaptable framework, we build a decision
tree not only to control when both workflow and fine-grained
provenance inference methods are executed but also to decide
dynamically per processing element which fine-grained infer-
ence method to use for the inference based on the observed
model dynamics, i.e., data arrival pattern, processing delay
etc. The inference of fine-grained data provenance over the
complete scientific model allows the users to debug the model
by specifying the space and time of interest.

These contributions are made accessible to users by devel-
oping a tool known as ProvenanceCurious, which visualizes
provenance information as a graph. Using our framework,
scientists can utilize both workflow and fine-grained data
provenance with minimal effort in terms of time, training, and
storage cost. We have also evaluated the proposed framework
based on a case-study, involving a model for estimating the
global water demand [24]. This model includes geospatial
data, i.e., raster maps with timestamp. Our evaluation demon-
strates the applicability and suitability of using the proposed
framework in geoscientific domains. Furthermore, we briefly
discuss the performance of the existing provenance inference
methods in terms of storage consumption and accuracy using
both real and synthetic dataset. The proposed inference-based
framework provides scientists sufficient information to inves-
tigate the unexpected behavior of a scientific model.

II. USE CASE: ESTIMATING GLOBAL WATER DEMAND

To illustrate the problem description in Section I-D, the
use case for estimating the global water demand based on
the scientific model reported in [24] is introduced. The model
used in this use case is developed using a provenance-unaware
platform, i.e., Python language, and the model manipulates
offline data.

A. Background of the Model

Freshwater is one of the most important resources for
various human activities and food production. During the past
decades, use of water has been increased rapidly, yet available
freshwater resources are finite. Therefore, estimating water
demand and availability on a global level is necessary to assess
the current situation as well as to make policies for the future.
In this use case, we focus on the script that estimates the
total water demand from the year 1960 to 2000 at a monthly
resolution by facilitating the collected geospatial data from
different sources.

B. Model Inputs

Source data are collected from different existing datasets.
Irrigated areas are prescribed by the MIRCA2000 dataset [25]
and the FAOSTAT database.8 Crop factors, growing season
lengths, and rooting depth are obtained from GCWM [26]. The

8Available at http://faostat.fao.org/.

Fig. 2. Different types of data and their dependency in the use case.

irrigated areas are representative for the period 1960–2000 at
a yearly temporal resolution, i.e., remains constant over each
year, while the crop-related datasets are representative for the
year 2000 at a monthly temporal resolution. A map of country-
specific irrigation efficiency factors is also obtained from [27].
In addition, daily potential and actual bare soil evaporation
and transpiration are prescribed from the simulation results
from the global hydrological and water resources model PCR-
GLOBWB [28]. Fig. 2 shows the input and output data and
the dependences between them. The white boxes are input
data collected from various sources and the shaded boxes
represent output data of this model. The edges represent data
dependences from one to another.

C. Model Activities

The model begins with reading the annual and monthly
input maps described above. First, using irrigated areas, crop
factors, growing season lengths, and potential transpiration,
we calculate potential crop transpiration. Then, we calculate
actual crop transpiration and determine the difference between
potential and actual crop transpiration. In addition, we com-
pute the difference between potential and actual bare soil
evaporation for the top soil layer. Net irrigation water demand
thus equals the sum of the differences between the potential
and actual crop transpiration and between the potential and
actual bare soil evaporation. However, much of this water is
lost to evaporation and percolation during the transport and
application. Therefore, we calculate irrigation loss and add
this to the net irrigation demand. At last, we use country-
specific irrigation efficiency factors and multiply these with
the net irrigation water demand to yield gross irrigation water
demand.

The estimated gross irrigation water demand is then added
to other sectoral water demands, i.e., industrial, domestic,
and livestock water demand that are directly read from maps.
Furthermore, we use gross irrigation water demand to calculate
return flow to groundwater.

D. Model Outputs

Finally, the resulted total water demand, gross irrigation
water demand, and irrigation return flow are reported as
PCRaster maps (shaded boxes in Fig. 2) containing geospatial
data for each year from 1960 to 2000 at a monthly temporal
resolution.
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III. WORKFLOW PROVENANCE

A. Workflow Provenance Model

The core concept of the proposed framework is the work-
flow provenance model. Workflow provenance is represented
as a graph referred to as workflow provenance graph. A prove-
nance graph G p is a set of (V , E) where V denotes the set
of vertices or nodes and E denotes the set of directed edges.
We introduce a graph model to distinguish different types of
nodes. In our graph model, there are four different types of
nodes. These are as follows.

1) Constant: Represents any constant value taking part in
an operation.

2) Source Processing Element: Represents any operation
that either assigns a constant or reads data from the disk.

3) Computing Processing Element: Represents any opera-
tion that either computes a value based on its parameters
or writes data into the disk.

4) View: Represents either any variable defined in the script
or an intermediate result generated by a processing
element.

A directed edge connecting two nodes represents the data
dependence in a workflow provenance graph. In the workflow
provenance model, every source and computing processing
element generate a view. Further, a view or constant node
can be used as an input for multiple source and computing
processing elements.

Each type of nodes has different properties. Fig. 3 shows
the graphical representation of these nodes and their properties.
A constant node has an id starting with “C,” a value, the type of
the value (e.g., integer, string etc.) and a line# referring to the
line number in the code where it is defined. All nodes have
this line# property. Since source and computing processing
elements could be defined over multiple lines, they have start
and end line#.

A view node has an id prefixed with “V” and a name
(variable name). It also has two important boolean properties:
1) IsPersistent and 2) IsIntermediate. When IsPersistent =
true, it means that the variable which corresponds to this
view is read from the disk or is written into the disk and
hence, persistent. Otherwise, the view is not persistent and
thus IsPersistent becomes false. The property IsIntermediate
is true when the view is produced by a processing ele-
ment and contains an intermediate result. Otherwise, IsIn-
termediate becomes false and it indicates that the view is
created because of defining the corresponding variable in
the script.

The set of properties of both source and computing process-
ing elements are almost similar except one property, hasOut-
put. This property belongs to a computing processing element,
which indicates whether a produced result is persistent, i.e.,
written into the disk, or not. Since source processing elements
only read data from the disk, hasOutput is not applicable
for a source processing node. Moreover, both source and
computing processing elements have an id prefixed with “SP”
and “P,” respectively, a name and type of operation (e.g.,
binary, function call etc.). The other properties of both source
and computing processing elements shown in Fig. 3 are:
1) windows; 2) trigger; and 3) input–output ratio.

1) Windows: A window specifies a subset of data products
used by an activity to produce an output data product.
Therefore, a window with a predefined size is applied
over the input data products, i.e., views, to limit the num-
ber of data products to be considered by the processing
element. Windows could be defined based on the number
of tuples, i.e., tuple-based window, or time units, i.e.,
time-based window.

2) Trigger: A source or computing processing element is
repeatedly executed after elapsing a predefined interval,
also known as trigger period. The interval is defined
based on the number of tuples, i.e., tuple-based trigger,
or time units, i.e., time-based trigger.

3) Input–Output Ratio: It refers to the ratio of the number
of the data products contributed in a processing element
to the number of the data product produced by the
same processing element during the execution phase.
As for example, an aggregate operation considers all
input data products to produce an output data product.
Therefore, the input–output ratio for the processing
element representing aggregates is n : 1 where n is the
number of input data products in the window.

This set of properties are quite similar to the process prove-
nance reported in [10]. The value of these three properties
is inferred by analyzing the control- and data-flow of the
given script. Since in a provenance-unaware platform man-
ual preparation of workflow provenance is time consuming,
maintaining workflow provenance automatically by inference
is a much needed initiative that can save significant amount of
time. Furthermore, this inference-based workflow provenance
management can easily cope with the change in the scripts
used in the model.

B. Workflow Execution Model

After collecting the workflow provenance automatically, the
workflow is executed based on the execution model described
in [29]. In cases of streaming scenarios, data are continuously
propagated through the workflow. The execution never stops
as long as new data products arrive and the arrival of new
data triggers an activity, which is receiving the data. Different
activities are loaded into the execution engine, where each
activity is performed based on a time or tuple-based trigger.
For a time-based trigger, at every point in time where the
trigger predicate is interpreted as valid, the activity is fired and
output data products are produced. For a tuple-based trigger,
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it is more difficult to predict when the next trigger will be
enabled. Therefore, the particular activity continuously checks
whether the set of new data products observed at a specific
time is sufficient to validate the trigger predicate as true. If
this is the case then the activity is executed and output data
products are generated.

C. Provenance Representation and Sharing

It is important to choose an appropriate provenance repre-
sentation model to enable interoperability for sharing prove-
nance data. To achieve interoperability, the PROV data model,
known as PROV-DM, could be facilitated to represent prove-
nance information [30]. PROV-DM is a generic data model
for provenance that allows domain- and application-specific
representations of provenance to be translated into such a
data model and then allowing interchange between systems.
Therefore, PROV-DM is domain and application agnostic and
heterogeneous systems can export their native provenance into
such a core data model.

In GIS, there is a standard known as ISO 19115:20039

which defines the schema required for describing geographic
information and services. This metadata can be translated
into Geography Markup Language10 (GML) which is the
XML grammar defined by the open geospatial consortium
(OGC) to express geographical features. GML serves as a
modeling language for geographic systems as well as an
open interchange format for geographic transactions on the
Internet. Yue et al. [39] proposed to facilitate XML encoding
to represent provenance data for better interoperability. In our
proposed framework, since provenance data are represented
as a graph, we facilitate GraphML11 which is a XML-based
file format for exchanging graph structure data. GraphML
is supported by most of the graph editing tools such as
yEd,12 Gephi13 etc. Therefore, provenance graphs generated
by the proposed framework can be shared easily throughout
the scientific community.

IV. WORKFLOW PROVENANCE INFERENCE IN A

PROVENANCE-UNAWARE PLATFORM

A. Overview of the Approach

The proposed workflow provenance inference mechanism
can infer workflow provenance information by analyzing a
Python script. A typical Python script might be comprised
of assignment, arithmetic operation, user-defined function
call, conditional branching, looping etc. Activities, such as
assignment, arithmetic operation are purely based on data-
flow coordination where availability of data triggers the next
activity. However, other activities, such as user-defined func-
tion call, conditional branching, looping etc. are implemented
by using control-flow based coordination and result into con-
trol dependences between activities. Since data provenance
identifies the data dependences between activities, control

9Available at http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020.
10Available at http://www.opengeospatial.org/standards/gml.
11Available at http://graphml.graphdrawing.org/.
12Available at http://www.yworks.com/en/products_yed_about.html.
13Available at https://gephi.org/.

dependences must be transformed into data dependences to
infer the workflow provenance.

A control-flow maintains the dependence in such a way
that an activity is started only after the preceding activity
has been completed. As a consequence, variables defined or
updated in an activity are accessible after the activity has been
completed. Therefore, control dependence can be represented
as data dependence by versioning the variables. In particular,
a new version of a variable is created after its modification by
an activity. The control dependence determines which version
of a variable is used by a read operation of an activity on the
variable.

We start the inference mechanism by parsing a given Python
script based on a combined grammar, containing parser and
lexer rules. After parsing the script, it returns an abstract
syntax tree (AST) for the given Python script. Then, we
traverse through this AST based on a tree grammar and for
each node in the AST, an object of the appropriate class based
on the object model of Python is created. Having obtained all
objects, we can build the initial provenance graph maintaining
the syntactic relationship between these objects, including
control-flow based coordination.

Since the initial provenance graph preserves the control-
flow based coordination and contains some extra nodes due to
the syntactic sugar of Python, it needs to be transformed in
a form where the graph exhibits data dependences only and
becomes more compact. Therefore, we introduce a set of re-
write rules to transform the initial provenance graph into the
workflow provenance graph. A re-write rule has two parts:
left-hand side (LHS) and right-hand side (RHS). Once a rule
is defined and is executed, it searches for an isomorphic sub-
graph equivalent to the sub-graph pattern mentioned in the
LHS of the rule. If the pattern is found, it is replaced by the
sub-graph in the RHS of the rule.

The first set of rules are used to transform the control-
flows in the initial provenance graph into the data-flows and
are referred to as flow transformation rules. Furthermore, we
apply another set of rules to propagate the persistent property
of a view to the next view where applicable as well as to
identify the processing element, which produces output data.
One of the rules in this set discards intermediate nodes. We
name this set of rules as graph maintenance rules. Finally,
we apply model modification rules to reduce the number of
nodes further by integrating the view and constant nodes with
processing element nodes. Each re-write rule in these sets is
executed one after another according to the aforesaid sequence.
Execution of a particular rule is stopped and switched to the
next rule if there is no other isomorphic subgraph found in the
initial provenance graph, equivalent to the sub-graph pattern
mentioned in LHS of that particular rule. After applying all
these re-write rules, we get the workflow provenance graph.

We have used an off-the-shelf grammar14 as a starting point
and extend it according to our requirements to obtain the AST.
In this section, we focus on the mechanism of creating an
initial graph and building a workflow provenance graph from
the initial graph based on the set of graph re-write rules.

14Available at http://www.antlr.org/grammar/1200715779785/python.g.
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1 choice = raw_input
('Enter (+/-): ')
2 a = 10
3 b = 5
4 if choice=='+':
5 c = a+b
6 else:
7 c = a-b
8 result = c

C2: 10
(#2)

P2: =
(#2)

V3: a
(#2)

C3: 5
(#3)

V4: b
(#3)

V7
V6: c
(#5)

Sample code

P3: =
(#3)

P5: +
(#5)

P6: =
(#5)

P8: -
(#7) V8

V9: c
(#7)

P9: =
(#7)

P7: if
(#4-5)

P10: else
(#6-7)

P12: =
(#8)

C1: Enter 
(+/-)
(#1)

SP1: 
raw_input

(#1)

V1: 
choice

(#1)
V2

P1: =
(#1)

P4: ==
(#4) V5

C4: +
(#4)

V10: 
result
(#8)

P11: if-
elif-
else 

block
(#4-7)

Fig. 4. Example of the initial provenance graph.

B. Creating Initial Provenance Graph: An Example

Building an initial provenance graph depends on the cre-
ated objects based on the object model of Python and their
syntactic relationship to each other. We generate the initial
provenance graph by facilitating attributed graph grammar
(AGG),15 which is a graph writing engine.

Fig. 4 shows a sample script and the initial provenance
graph of the given script. In this script, first, the user is
asked to enter either “+” or “−,” which is then assigned
into the variable choice in line 1. Based on the value of
choice, the script calculates either addition or subtraction of
two variables a and b, which are assigned with the value 10
and 5, respectively, in lines 2 and 3. It then assigns the result
into the variable c. Afterward, the variable result is assigned
with the value hold by c in line 8.

In Fig. 4, the source processing element node S P1 represents
the raw_input method, which allows the user to enter either
“+” or “−” represented by the constant node C1 and assigns
the value into choice denoted by the view node V1. For each
method used in a given script, the user has to provide a few
information beforehand, such as: whether a method reads data
from disk (true/false) and whether a method writes data into
disk (true/false) to make a distinction between source and
computing processing elements.

The nodes P2 and P3 in Fig. 4 represent the assignment
operations, which assign the value 10 and 5 denoted by C2
and C3 into the variables a and b represented by nodes V3 and
V4 according to lines 2 and 3, respectively. Later, these views,
V3 and V4 participate to the addition and subtraction operation
represented by nodes P5 and P8, respectively. The output of
these two nodes is then assigned to two different versions of
the same variable c, denoted by V6 and V9, respectively, due
to the conditional branching defined within lines 4–7.

To represent the control-flow resulting from the aforesaid
conditional branching, we create the node P11 which holds
the block of statements in lines 4–7. Moreover, in the initial
provenance graph shown in Fig. 4, there are two nodes created
for if and else branch found in the code, denoted by the nodes
P7 and P10, respectively. Both of these nodes are connected to
P11 as they are parallel branches of the same conditional block.

15Available at http://user.cs.tu-berlin.de/ gragra/agg/.

They get connected from the views created within their scope
(e.g., V6 to P7, V9 to P10). Moreover, these nodes are also
connected from the view that holds true or false, representing
the status of the given condition in a particular branch (e.g.,
V5 is connected to P7). Eventually, the node P12 assigns the
value of c into the new variable result represented by V10.

The initial provenance graph is developed in such a way
so that it can transform the implicit control-flow between
statements that define the order of execution between process-
ing elements into data dependences. However, the initial
provenance graph shown in Fig. 4 exhibits explicit control-
flow coordination due to the conditional branching in the
given script. In the next section, we discuss the set of re-
write rules, which transform control dependences into data
dependences.

C. Flow Transformation Re-Write Rules

One of the biggest challenges to infer workflow provenance
directly from scripts is to transform the control dependences
into data dependences, i.e., execution of a processing element
only depends on the availability of data, not on the execution
of the preceding processing element. To transform control
dependences into data dependences, we define a set of rules,
one for each type of control-flow statements. We consider three
types of statements, involving control dependences. These are:
1) conditional branching (e.g., if-elif-else); 2) looping (e.g.,
for); and 3) user-defined function/subroutine call (e.g., passing
parameters to a defined function and assigned the returned
value into a variable).

1) Conditional Branching: Conditional branching refers to
the execution of a set of statements only if some condition
is met. A conditional branching statement exhibits control-
flow based coordination and is translated into data dependence
by correlating a variable read of an activity in a conditional
branch to the latest version of that variable available before
the conditional branching language construct. All conditional
branches are represented as parallel data dependences each
containing an additional activity with variable ratio, i.e., selec-
tively forwarding the data product based on the condition.
Then, all parallel branches are condensed into a single data
dependence again using a union activity.
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P4:If-Elif-
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P3: else
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V2
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else if
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V1
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value2

assigned 
value2

assigned 
value3

P1
out1: 
if

P3
out1: 

else

V2
out1

V3
out1

Vout1

Rule Conditional Branching (if-elif-else): LHS

RHS

1 if Vgiven==comparison_value1:
2 Vout1 = assigned_value1
3 elif Vgiven==comparison_value2:
4    Vout1 = assigned_value2
5 else:
6 Vout1 = assigned_value3

Sample code

V1
out1_initial

V2
out1_initial

V3
out1_initial

Deleted Node

Added Node

Fig. 5. Re-write rule for conditional branching.

LHS of Fig. 5 shows the sub-graph pattern that could be
found in the initial provenance graph if a conditional branching
is defined in a given script. In the initial provenance graph,
a computing processing element (e.g., P1, P2, and P3) is
created for each of these conditional branches. Each of these
processing elements has two parts: 1) conditional part and
2) activity part if the condition is met, connecting toward
itself. For P1, the conditional part is originated from the node
comparison_value1 and the view Vgiven, i.e., if (Vgiven ==
comparsion_value1). The activity part is originated from the
node assigned_value1 that represents an assignment into the
variable V out1, i.e., (V out1 == assigned_value1), if the condi-
tion is met. Since V out1 may hold different values depending
on the condition that is satisfied, we denote these different
versions of out1 as the view nodes V1

out1, . . . , Vn
out1 where

n is the total number of conditional branches in the current
scope.

To transform the control dependences into data dependences
in a conditional branch statement, we use the concept intro-
duced in a program representation graph [31]. In a program
representation graph, after every conditional branch one extra
node is added to represent the output variable to follow static
single assignment forms [32]. Therefore, in the RHS of Fig. 5,
we replace the nodes V1

out1, V2
out1, and V3

out1 with the
nodes V1

out1_initial, V2
out1_initial, and V3

out1_initial, representing
the potential value to be assigned if that particular branch
satisfies the condition. After checking the condition, the value
could be assigned to any of these nodes V1

out1, V2
out1, and

V3
out1. Therefore, they have been placed after P1, P2, and P3,

respectively. Furthermore, several activities could be carried
out if a particular condition is met. Therefore, each processing
element is decomposed into multiple instances where each
instance of the same processing element handles exactly one
activity and produces the corresponding output. In the RHS
of Fig. 5, processing elements P1

out1, P2
out1, and P3

out1

represent the instance of P1, P2, and P3, respectively, created
for handling the assignment activity of the variable out1.
Depending on the condition, only one of these nodes: V1

out1,
V2

out1, and V3
out1, actually holds the value of out1. Finally, we

add an union processing element to capture the data available
in one of these nodes and produce the view V out1, representing
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C1: Enter 
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raw_input
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(#4) V5
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V10: 
result
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P11: if-
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else 

block
(#4-7)

C1: Enter 
(+/-)
(#1)

SP1: 
raw_input

(#1)

V1: 
choice

(#1)
V2

P1: =
(#1)

C4: +
(#4)

comparison value

given value

assigned value

Deleted Node

Added Node
Initial Provenance Graph

After applying the rule: Transformed Graph

Fig. 6. After applying the re-write rule for conditional branching on the
initial provenance graph.

V2

RHS

P2: 
forLoop 

V3

Vother

P1: range

V1 SP3 V3

Loop control variable

SP4 uses loop control variable 
to read batch files

V1 SP3

P1: range

Rule Loop iterating over data: LHS
Pother

 (processing chain for other statements)

...

VotherPother...  (processing chain for other statements)

1 for i in range (start,end,incr):
2 V3 = read(‘sampleFile_%d’%i)

Sample code

Deleted Node

Fig. 7. Re-write rule for a loop that iterates over data products.

the value assigned into out1 variable. RHS of Fig. 5 shows
the pattern after the transformation. The light and dark shaded
nodes in LHS and RHS represent the deleted and added nodes,
respectively.

Fig. 6 shows the transformation of the initial provenance
graph (see Fig. 4) after applying the rule for conditional
branching. The sub-graph pattern mentioned in the LHS of
the rule for conditional branching is represented by the nodes
surrounded by the rectangle in the initial provenance graph.
After applying the aforesaid rule, the transformed graph is
shown in the bottom part in Fig. 6. The newly created
processing elements in the transformed graph have trigger = 1
and 1 : 1 input–output ratio. All associated views have window
size = 1.

2) Looping Constructs: In any programming language,
loops are used for different purposes. We identify two major
operations of looping constructs. First, loops can be used for
iterating over input data products only. As an example, the
usage of a loop to iterate over several input files falls into this
category. The other usage of loop is to manipulate input data
products to produce new output data products. As an example,
usage of a loop to produce running sum over a defined range
of data tuples, executing at a fixed interval. In the former
case, the default window size and trigger rate is 1. However,
in the later that manipulates data products, the window and
trigger depends on the boundary and increment value used in
defining a loop. Therefore, in this case, the control dependence
is translated into data dependence by inferring the window size
and trigger predicate of the activities defined within the loop.

LHS of Fig. 7 shows the sub-graph pattern that could
be found in the initial provenance graph if the given script
has a looping construct iterating over data products. Based
on the sample code shown in Fig. 7, each iteration of the
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V2

Rule Loop manipulating over data: LHS

RHS

P2: 
forLoop 

VotherPother

P1: range

 (processing chain for other statements)

Loop control variable

V1

... ...

Pmanipulation

VotherPother

P1: range V1

...

Pmanipulation

 (processing chain manipulating data)

TR   = incr
WS = end-start+1

 (processing chain for other statements)

... (processing chain manipulating data)

1 for i in range (start,end,incr):
2 sum[i] = data[i]+ data[i+1]

Sample code

Deleted Node

Fig. 8. Re-write rule for a loop that manipulates data products.

loop reads an input file (e.g., sampleFile_1, sampleFile_2
etc.) based on the value of the loop control variable, i . The
processing element P2 represents the defined loop and it
takes the range parameters as input and produces the view
node V2, representing the loop control variable. Later, if the
loop control variable, i represented by V2, is used only in
an activity that reads source data (S P3), we conclude that the
loop is used to iterate over data products, not to manipulate
data products. In this case, the processing element referring
to the loop, P2, and the corresponding loop control variable
V2 are eliminated from the initial workflow provenance
graph to transform the control dependences into the data
dependences. RHS of Fig. 7 shows the data dependences after
the transformation where the execution of S P3 only depends
on the data in V1. In this case, the window size and trigger
rate of S P3 is 1 and the input–output ratio is 1 : 1.

However, in the other case, when the looping constructs
are used to manipulate input data products to produce output
data products, the transformation of control dependences into
data dependences is accomplished by inferring the window
size and trigger rate of the manipulating processing elements.
LHS of Fig. 8 shows the sub-graph pattern when a loop is used
to produce a new output data product (sum[i]) by adding two
input data products (data[i], data[i+1]). In Fig. 8, P2 represents
the loop and V2 is the view node created for representing the
loop control variable, i . If V2 participates in a manipulating
processing element Pmanipulation, which manipulates input data
products and results into a new output data product as in
this case, we can infer the window size and trigger rate of
the manipulating processing elements from the given range
parameters defining the loop. V1 holds these parameters (start,
end, incr). The first two specifies the boundary of the loop
control variable, i , represented by V2. Therefore, the win-
dow size of the manipulating processing element Pmanipulation
and the successive processing elements in the chain is end-
start+1. The last parameter incr refers to the increment of
the i and therefore, it is the trigger rate of the manipulating
processing elements and other successive processing elements
in the chain. The processing elements enclosed within the
rectangle in RHS of Fig. 8 have the inferred window size
and triggers, which are documented. The input–output ratio
of these processing elements remains same as it was.

3) User-Defined Function/Subroutine Call: Function or
subroutine call executes a set of statements defined in the
body of the function, after which the flow of control usually
returns to the activity which calls the particular function.
Since the successful execution of the caller activity and other
activities to be executed after the caller activity depends on

P4: Fname P6: 
Call Function

param1

Rule User-defined Function/Subroutine Call: LHS

RHS

P5: Fname V1

param2

Vp1

Vp2

P1 Vresult P3: return...
Processing chain

Input Parameters

param1
V1

param2

P7: 
paramInFname

Vp1

Vp2

P1 Vresult...
Processing chain

P9: 
returnFnameP8: 

paramInFname

Optional

If P3 exists 
IsIntermediate=false

Otherwise
IsIntermediate=true

1 def Fname (Vp1, Vp2):
… … … … # function body  

9 V1 = Fname(param1, param2)
Sample code

Deleted Node

Added Node

Fig. 9. Re-write rule for a user-defined function/subroutine call.

the successful completion of the activities defined within the
function, function call exhibits control-flow based coordination
between activities.

To transform the control dependences into data dependences
in a user-defined function call, we replicate the nodes within
the function body into the place where the caller activity calls
the function. LHS of Fig. 9 shows the sub-graph pattern for
a function call in the initial graph based on the sample code.
The user-defined function Fname is defined and later in the
code it is called. The processing element P5 represents the
caller activity and it takes parameters represented as param1
and param2 and calls the function which Fname is defined by
the processing element P4. P6 connects the caller P5 to the
function body hold by P4.

For the transformation, we introduce two specific
activities:paramIn and return. The paramIn activities take
parameters from the caller P5 as input and then connects them
to the parameters mentioned in the function definition hold by
P4. Then, the processing chain defined within P4 is replicated.
The return activity takes the returned value from the function
if there is any and assigns the value into the view V1 with
IsIntermediate = false. Otherwise, it assigns an intermediate
value into V1 (IsIntermediate = true). RHS of Fig. 9 shows
the pattern after the transformation.

In this case, the trigger rate is 1 for all the processing
elements and the window size is also 1. However, the input–
output ratio of the processing elements defined in the function
must be given by users at the beginning of the model execution
because the input–output ratio cannot be inferred for a user-
defined function.

D. Graph Maintenance Re-Write Rules

This set of re-write rules are defined to ensure the prop-
agation of persistence of views from one to another as well
as to discard unnecessary intermediate views followed by the
assignment processing element. Furthermore, one of the rules
in this set helps scientists to identify the computing processing
element, which generates persistent output data products.

Fig. 10 shows three graph maintenance rules. The first
rule propagates the persistence of a view to the next one
if some conditions hold. This rule ensures that if scientists
use Python methods, such as read to read input data products
from persistent storage and to assign this data into a variable,
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Fig. 10. Re-write rules for graph maintenance.

the corresponding view created for the variable will also be
persistent (IsPersistent = true). Rule A in Fig. 10 shows the
sub-graph pattern for such an activity. The intermediate view
V1 is produced by the read method and contains persistent
data. Later, the persistent data hold by V1 is assigned into a
variable represented by V2 through processing element P1. In
this case, the persistence of view V1 is propagated toward view
V2 and V2 becomes also persistent (IsPersistent=true). RHS
of rule A shows the changed property of V2.

Rule B minimizes the size of the workflow provenance
graph. It deletes all intermediate views (IsIntermediate = true)
and subsequent assignment process nodes (name = “=”) if
they are followed by a view representing a variable defined in
the script, i.e., (IsIntermediate = false). It has two variants
depending on the type of the node, which produces the
intermediate view shown in the LHS of Fig. 10.B.i and 10.B.ii.
Executing these rules, discard the light-shaded nodes from
the initial graph and makes a connection between S P1 and
V2 as well as between P1 and V2 for rules B.i and B.ii,
respectively.

Rule C identifies the computing processing element gener-
ating a persistent result, i.e., the result that is written into the
disk. In Python, there are a few methods, such as write, report,
which writes data into the disk. However, these methods do
not compute the data rather they write the data produced by
another processing element. Therefore, the processing element
which produces the data that is written into the disk later,
is the computing processing element generating persistent
output. LHS of Fig. 10.C shows the sub-graph pattern for the
aforesaid activities. P2 is the processing element representing
the method, such as write or report and it generates a view V2
which refers to the data written into the disk. Before, P2 has
taken V1 as input and V1 is nonintermediate view, it means that
V1 represents a defined variable in the script, which contains
the data written by P2. Therefore, the processing element
P1 which produces V1 is the computing processing element
having persistent output data. It is represented by hasOutput =
true value. RHS of Fig. 10.C shows the processing chain with
the changed values of relevant properties.
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Fig. 11. Re-write rules for model modification.

E. Model Modification Re-Write Rules

In the provenance graph model described in Section III-A,
both source and computing processing elements have a view
as an output. Therefore, the initial workflow provenance graph
based on this model can be further reduced by discarding
the views. Moreover, the constants read by the processing
elements can also be omitted. To ensure that no information is
lost, we copy the properties of the view or constant node to the
corresponding source or computing processing element node.
Therefore, to apply these rules, we change our provenance
graph model described in Section III-A. The new model has
two types of nodes: 1) source and 2) computing processing
element. Both source and computing processing elements
include properties of constant and view nodes so that we can
copy these values of constants and views to the corresponding
properties in the corresponding processing element.

Fig. 11 shows all four model modification rules. Rule MA
unifies a constant node with the following source processing
element and deletes the constant node. If a match is found,
the rule MA copies all properties of the constant node C1
to the corresponding properties of the source processing node
S P1 and deletes the constant node C1 eventually. Since several
constant nodes might be connected with the same source
processing element, source processing element maintains an
array or a list for keeping the values of the constant nodes
properties. The dotted line in S P1 refers to the source process-
ing element based on the new modified model. Rule MB unifies
a constant node with the following computing processing
element. The computing processing element also maintains an
array of values of the constant nodes properties.

The other two rules, MC and MD, unify a view node
with the preceding computing processing element and source
processing element, respectively, and discard the view node.
Rules MC and MD also ensure that the outgoing edges from
the view node, i.e., e1, . . . , en , are now connecting from the
respective processing elements.

After applying all these re-write rules, we have the workflow
provenance graph. Fig. 12 shows the workflow provenance
graph after being transformed from the graph shown in the
bottom part in Fig. 6. The workflow provenance graph is
significantly more compact than the initial one and it also
transforms all control dependences into data dependences.
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Fig. 12. Workflow provenance graph after applying re-write rules on the
provenance graph shown in the bottom in Fig. 6.

F. Discussion

The concepts of workflow provenance inference as proposed
in this paper are based on Python scripts. The Python program
language is block-structured with user-defined functions and
control-flow constructs, such as loops and conditional branch-
ing. Many programming languages share at least a subset
of these ingredients, such as e.g., PHP or MATLAB scripts.
While others have additional concepts like interfaces in Java
or interaction with other users or components using messages
instead of method calls in BPEL.

The core idea of the proposed approach is, however, inde-
pendent of the used programming language. It is to auto-
matically translate a control-flow coordinated program into a
data-flow coordinated program. The mechanisms to perform
this transition as proposed in this paper are limited to certain
control flow coordination mechanisms, such as conditional
branching, looping, and modularization. However, we have not
addressed coordination mechanisms, including multiple parties
as often done in BPEL or recursion besides others used as a
means to realize an iteration.

Please be aware that provenance provides the origin of
an individual result but does not explicate its semantics.
The user has to interpret and understand the meaning of
the processing steps and the used sources and constants. If
semantic information, like e.g., metadata of the sources and
their data structure, is available then this may help the user
interpreting the provenance graph, but it is not part of the
provenance graph as addressed in this paper.

V. FINE-GRAINED PROVENANCE INFERENCE

Based on the workflow provenance, either created and stored
by a provenance-aware platform or inferred in a provenance-
unaware platform as discussed in Section IV, the user can infer
fine-grained data provenance. Fine-grained data provenance
supports debugging during execution of the model as well as
it can also be used to reproduce results.

A. Overview of the Concept

Fine-grained data provenance helps scientists to investigate
the unexpected behavior of the model by keeping trace of

output data products. Reproducible results validating the
scientific model can also be achieved by facilitating fine-
grained data provenance. Therefore, efficient management of
fine-grained data provenance is in of utmost importance to
the scientific community especially to the scientists handling
massive and continuous data stream.

Fine-grained data provenance can be explicitly documented
and stored in a database. However, in cases of massive stream-
ing data, it requires storage space which becomes multiples of
actual sensor data. To manage fine-grained data provenance
in a storage-efficient manner, we proposed several methods
to infer fine-grained provenance data [17], [22], [23]. These
inference-based methods infer fine-grained provenance based
on the given workflow provenance of the scientific model and
timestamps attached to the data products.

In this section, we discuss the general principle of each of
these methods and their applicability based on the model char-
acteristics mentioned in Section I-D. To explain the general
principle of each method, we introduce a few variables. A view
Vi contains tuples tk i where k indicates the point in time when
it is entered into a database referred to as the transaction
time. We define a window w j

i over the view Vi , which is
an input view of processing element Pj . The window size is
defined based on the number of data products, i.e., tuple-based
window, or based on the interval in time units, i.e., time-based
window. In either way, the window size of w j

i is referred to
as W Sj

i . The processing element Pj is triggered after every
T R j time units known as trigger rate. The processing delay
of Pj is referred to as δ j .

B. Basic Provenance Inference

Basic provenance inference method [17] infers fine-grained
data provenance in two phases: 1) backward computation and
2) forward computation. First, the scientist chooses an output
data product for which the fine-grained provenance would be
requested. Then, the backward computation phase is started.
During the backward computation phase, this method takes the
given workflow provenance graph into account. Facilitating
the workflow provenance graph, i.e., window size over the
input dataset, it reconstructs the original processing window
over the input data products. Afterward, the second phase is
executed. In the forward computation phase, the method estab-
lishes relationships between the input data products within
the inferred window and the output data product based on
the given workflow provenance, i.e., input–output ratio of the
corresponding processing element.

Fig. 13 shows the different phases in the basic provenance
inference method. Fig. 13(a) represents the data products
in both input and output view V1 and V2, respectively. A
data product arrives in V1 after a fixed interval is elapsed,
also known as sampling time, which is 2 time units in this
example. The window size over V1, W S1

1 is 5 time units and
the processing element P1 triggers after every 5 time units,
i.e., T R1 = 5. We also assume that the processing delay of
P1, δ1 = 0. The user requests the provenance of t10 in the
output view V2.

Fig. 13(b) shows the reconstruction or backward compu-
tation phase. The transaction time of the chosen tuple is t10,
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Fig. 13. Backward and forward computation in basic provenance inference
technique.

which is the reference point to reconstruct the original process-
ing window, also known as inferred window. The formula
for calculating upper and lower bound of the inferred window
is given below

upperBound = referencepoint − δ j (B1)

lowerBound = referencepoint − δ j − W Sj
i (B2)

where i and j be the index of the view and the processing
element.

In the formula, the upper bound is always exclusive and the
lower bound is inclusive. The given window size, W S1

1 is 5
time units and processing delay, δ1 = 0 time unit. Therefore,
based on (B1) and (B2), we retrieve the data products having
transaction time within the boundary [t5, t10) from the view
V1. This set of data reconstructs the processing window, which
is shown by the tuples surrounded by a light-shaded rectangle
in Fig. 13(b).

The forward phase of the method establishes the relationship
among the chosen output data product with the set of contribut-
ing input data products. This mapping is done by facilitating
the input–output ratio of the processing element and the data
products order in the respective view. P1 takes all the input
data products (i.e., n number of data products) and produces
one output data making the input–output ratio n : 1. Therefore,
we conclude that all the tuples in the reconstructed window
contribute to produce the chosen tuple. In Fig. 13(c), the dark
shaded rectangle shows the original processing window, which
exactly coincides with the inferred processing window. There-
fore, in this case, we achieve accurate provenance information.
For processing elements with input–output ratio 1 : 1, we have
to identify the contributing input data product by facilitating
the monotonicity in tuple ordering property in both views V1
and V2. This property ensures that input data products in view
V1 producing output data products in view V2 in the same
order of their transaction time and this order is also preserved
in the output view V2.

C. Probabilistic Provenance Inference

Probabilistic provenance inference [22] is a variant of the
basic provenance inference method. The general principle
remains the same. However, probabilistic inference can handle
variation in the processing delay and data products arrival
pattern by facilitating some prior knowledge about the delay
and sampling time distributions.

Since the basic provenance inference method reconstructs
the window based on the given processing delay δ j for the j th
processing element (B1) and (B2), the variation in the process-
ing delay δ j can result into inferring inaccurate provenance.
As an example, in Fig. 13, if there is a processing delay, δ1 of
1 time unit, the transaction time of the chosen tuple would be
t11. According to (B1) and (B2), the inferred window becomes
[t6, t11). In this case, the inferred window excludes the data
product with transaction time t5, which actually contributed to
produce the data product at t11. Therefore, due to a variation in
the processing delay, the basic provenance inference method
provides inaccurate provenance. It is also possible to have a
variation in the data products arrival pattern, i.e., sampling
time. The basic provenance inference method is unable to cope
with these variations.

Probabilistic provenance inference method overcomes this
drawback by determining an optimal offset value, represented
by O j , for a given processing element Pj instead of using δ j

during backward computation phase. O j refers to the distance
in time between the reference point and the upper bound of
the window. The optimal offset value avoids the problems
of excluding contributing data products at the lower bound
of the window and including noncontributing data products
at the upper bound of the window in most cases based on
the given model dynamics. The formula for calculating the
inferred window is

upperBound = referencepoint − O j (C1)

lowerBound = referencepoint − O j − W Sj
i (C2)

where i and j be the index of the view and the processing
element.

The calculation of O j depends on the observed processing
delay distribution δ j and the sampling time distribution λi ,
where i is the index of the respective view participating
in the processing element Pj . First, a probabilistic model
is built, which represents data products arrival pattern with
respect to the start of a processing window by facilitating
Markov Chain modeling [33]. Since one of the characteristics
of Markov Chain is to enter into an equilibrium state after
repeated arrivals of data products, we can achieve a probability
distribution of the distance in time between the point in
time the window started and the arrival of the first tuple in
that particular window. This distribution is known as αi . We
observe that if a particular value of αi is less than the value
of δ j for the same processing window, the boundary of the
window needs to be adjusted to achieve accurate provenance
information. Since both δ j and αi are independent to each
other, we can calculate their joint probability distribution and
can compute the value of the optimal offset, O j where the
value of O j maximizes the probability of P(αi > δ j − O j ).

After computing the optimal offset O j , the boundary of
the inferred window can be calculated based on the formula
given in (C1) and (C2). The forward computation phase is then
executed to establish relationship between the data products
within the inferred window and the output data product exactly
in the same way as the basic provenance inference method
does.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUQ et al.: INFERENCE-BASED FRAMEWORK TO MANAGE DATA PROVENANCE 13

D. Multistep Probabilistic Provenance Inference

Multistep probabilistic provenance inference [23] is an
extension of the probabilistic provenance inference method.
While the working principle remains the same, the multistep
method can infer fine-grained provenance data for an entire
processing chain even in the presence of nonpersistent views.

In general, scientists facilitate a scientific workflow that is
comprised of multiple processing elements to produce results.
Some of these processing elements are intermediary steps and
produce intermediate results, which might not be persistent
in a database due to the lack of their reuse and sometimes
ease of their calculation. Since the processing chain involves
multiple intermediate steps and results of the intermediary
steps are transient, the working mechanism of both backward
and forward computational phase needs to be adjusted.

Like other inference-based methods, multistep provenance
inference technique also depends on the given workflow prove-
nance information. After receiving the provenance request for
a chosen output data product, the backward computation phase
is executed. During this phase, we observe the processing
delay distributions δ of all processing elements, which allow
us to calculate a window boundary on the materialized input
view or source dataset. The formula to calculate the initial
window boundary is given below

upperBound = referencepoint −
n∑

j=1

(min(δ j )) (D1)

lowerBound = referencepoint −
n∑

j=1

(max(δ j )) −
n∑

j=1

(W Sj
i )

(D2)

where n be the total number of processing elements and i and
j be the index of the view and the processing element.

Next, we execute the forward computation phase. In this
phase, for each processing step, processing windows are
reconstructed, i.e., inferred windows, and we compute the
probability of existence of an intermediate output data product
at a particular timestamp based on the δ distributions and
other windowing constructs documented as workflow prove-
nance. Multistep probabilistic method associates the output
data product with the set of contributing input data products
for each processing step with a probability. This process is
continued till we reach the chosen data product for which
provenance information is requested. The inferred provenance
information has a cumulative probability PC (< 1), which
refers to the probability of being correctly inferred provenance.
The detailed probability calculation is discussed in [23].

Furthermore, like the probabilistic provenance inference
method, multistep probabilistic inference technique can also
estimate the accuracy beforehand. To estimate the accuracy,
we extend the approach discussed in the probabilistic inference
method. In addition to compute αi distribution, multistep
probabilistic inference method is capable of computing λi

distribution by facilitating a model that is built based on the
same Markov Chain principle. The λi distribution is then used
to compute the αi+1 distribution and this process continues till
the end of the processing chain.

Test case parameters
(in time units)

Inference-based Methods: 
Accuracy

No. Window 
size

Trigger Avg. processing 
delay

Avg. sampling 
time

Basic Probabilistic Multi-step
Probabilistic

1 10 10 1 3 57% 87% 86%

2 10 10 2 3 51% 75% 72%

3 10 10 1 4 63% 92% 90%

Fig. 14. Comparison in terms of accuracy between different inference-based
methods.

Methods Non-overlapping Overlapping

Space consumed Ratio Space consumed Ratio

Explicit 950 5.5 1925 11

Inference-based 175 1 175 1

Fig. 15. Comparison in terms of provenance storage consumption in KB
between explicit and inference-based methods.

E. Performance of Inference-Based Methods

We evaluate three fine-grained provenance inference meth-
ods based on two factors: 1) accuracy and 2) storage cost.
To compare the accuracy, fine-grained provenance is recorded
explicitly, referred to as explicit method. This explicit prove-
nance is used as the ground truth. We compare the accu-
racy between basic, probabilistic, and multistep probabilistic
approach through a simulation.

The simulation is executed for 10 000 time units for several
times with different parameters for a processing element,
which performs average operation. Fig. 14 shows the test case
parameters. To evaluate the multistep probabilistic method,
we add another processing element in the chain performing
the same operation with same set of parameters. We assume
that both sampling time λ and processing delay δ distribution
follow Poisson distribution. Fig. 14 reports the result for three
different test cases. From this evaluation, our main findings
are as follows.

1) Basic provenance inference method does not perform
well under variable processing delay and sampling time.
The accuracy is around 60%.

2) Probabilistic provenance inference performs reasonably
well under variable model parameters. It achieves accu-
racy more than 85% if the average processing delay is
significantly shorter than the average sampling time (see
test cases 1 and 3). Otherwise, the accuracy gets lower
(see test case 2 in Fig. 14).

3) Multistep probabilistic provenance inference achieves
almost the same level of accuracy as the probabilistic
method does.

4) The longer the processing delay, the higher the chance
of getting low accuracy.

5) The longer the sampling time, the higher the chance of
getting high accuracy.

Furthermore, we compare the storage requirement of the
inference-based approaches with the explicit method of docu-
menting provenance. A real dataset16 reporting electrical con-
ductivity of ground water, collected by the RECORD project
is used for this purpose. The input dataset contains 3000

16Available at http://data.permasense.ch/topology.html#topology.
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tuples consuming 720 KB. Our experiments are conducted
for a single processing step performing an average operation
with nonoverlapping windows, i.e., window size of 5 and
trigger rate 5, and with overlapping windows, i.e., window
size of 10 and trigger rate 5. The result is reported in Fig. 15.
Basic and probabilistic provenance inference method have
the same storage cost and they are referred to as inference-
based methods. We have not applied the multistep probabilistic
method on this dataset since there is only one processing step.

Fig. 15 shows the storage cost to maintain fine-grained
provenance data for different methods. In case of nonover-
lapping windows, the inference-based methods take almost
6 times less space than the explicit method. In case of overlap-
ping windows, since the trigger is the same, it also produces
as many output tuples as produced in the nonoverlapping case.
The storage cost of inference-based methods only depends
on the number of input and output data products. Therefore,
the storage consumed in overlapping case by the inference-
based methods remains the same. However, the consumed
storage space for the explicit method gets bigger due to the
larger window size and overlapping windows. Therefore, in the
overlapping case, the inference-based methods take 11 times
less space than the explicit method. This ratio of course will
vary based on the window size, overlapping between windows,
and number of output data products. In general, the bigger
the window and overlapping between windows, the higher the
ratio of space consumption between explicit and inference-
based methods.

F. Self-Adaptability Mechanism

In Section I-D, we discussed the characteristics of different
entities associated with a scientific model at both design
and execution phase, which should be addressed by the
proposed framework. During the design phase, depending on
the model developing platform, the proposed framework needs
to decide whether to apply workflow provenance inference
method or not. After building the workflow provenance, the
framework is capable of inferring fine-grained data provenance
using three different inference-based methods described in
Section V.

However, each of these fine-grained inference-based meth-
ods has their own pros and cons. The basic inference method
has less complexity but achieves lower accuracy when the
model parameters, such as processing delay and sampling
time are variable as shown in Fig. 14. On the other hand,
the probabilistic and multistep probabilistic inference method
are more complex but achieve higher accuracy comparatively
(see Fig. 14). Moreover, multistep probabilistic technique can
infer provenance for a large processing chain with some
nonpersistent intermediate views, which cannot be handled by
the probabilistic method.

Therefore, the proposed framework would be more efficient
if it could decide autonomously when to apply a particu-
lar inference-based method based on the model parameters.
This ability is referred to as the self-adaptability. The self-
adaptability of the framework not only used to choose the
most suitable method but also to assess the variation in the
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Fig. 16. Flow chart explaining the self-adaptability mechanism.

model parameters once the model is running and can decide
switching from one method to another if necessary.

Fig. 16 shows the flow chart, which explains the decision
process executed by the self-adaptability mechanism. The
process starts when a scientist decides to use the proposed
framework. First, the mechanism considers the development
platform of the model. If the model is developed using a
provenance-aware platform, the workflow provenance graph is
readily available. Otherwise, the self-adaptability mechanism
decides to apply workflow provenance inference technique to
build the workflow provenance graph. The documented char-
acteristics of processing elements in the workflow provenance
graph are used later in the decision process.

The next phase of the self-adaptability mechanism is exe-
cuted per processing elements in the workflow provenance
graph. First, it considers whether the processing element
generates a persistent view or not. If the particular processing
element does not produce a persistent view, the decision mak-
ing process stops and considers the next processing element.
Otherwise, it considers the input–output ratio of the given
processing element in the next step. If the input–output ratio
of the given processing element is variable like selection
operations in a database, the decision tree then considers the
selectivity rate, i.e., the percentage of input data products to
be selected for processing within a processing window if the
given condition is met. If the processing element has a high
selectivity rate, then it switches NULL value mode ON, which
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refers to the inclusion of null data products in the output view
if the corresponding input data product is not selected for the
processing. The inclusion of null products in the output view
ensures that the output data product is created in the same
order as the appearance of the contributing input data product
and thus, the inference-based methods can be applied. If the
processing element has a low selectivity rate, inclusion of null
data products in the output view will incur more overhead
and therefore, the self-adaptability mechanism decides to use
explicit method for the given model.

After checking the selectivity rate, if the mechanism decides
that inference-based methods can be applied on the given
model (e.g., high selectivity rate) or if it finds that the given
processing element has constant input–output ratio, it executes
the next step. In this step, the decision process checks the type
of available data, i.e., streaming or offline. If the model uses
offline data for calculation, the decision process selects the
basic inference method as the most suitable one. Otherwise,
in cases of streaming data, it checks whether there exists
distributions of two parameters, such as processing delay
and sampling time as these are needed to apply the other
inference-based methods. If these distributions do not exist,
the model executing system collects this information for a
pre-defined time interval during the actual execution time and
prepares the required distribution information. After having the
computed distributions at run-time or available distributions
from the previous runs, the decision process checks the nature
of these distributions. If it finds that both processing delay and
sampling time are never changed, it chooses basic method to
infer provenance. Otherwise, the self-adaptability mechanism
checks whether the processing element has a nonpersistent
view as the source or not. If yes, it means that the given
processing element is the last one in the processing chain and
there are some nonpersistent intermediate views. Therefore,
in this case, the most suitable method to infer fine-grained
data provenance is multistep probabilistic inference method.
Otherwise, the decision process selects probabilistic method.

The self-adaptability mechanism always keeps track of the
variation in the processing delay and sampling time distrib-
ution so that it can adjust its decision based on the recent
executions of the system. To do that, it keeps updating the
distributions and after a pre-defined time interval, it again
executes the decision process by checking the nature of
the updated distribution. In this way, the self-adaptability
of the framework always ensures to apply the most suited
method for the given scientific model based on the model
dynamics.

VI. USE CASE EVALUATION

A. Quantitative Analysis

To evaluate the proposed provenance-aware framework, we
introduced the use case based on the model estimating global
water demand, described in Section II. The model used in the
use case facilitates Python to implement different activities.
Therefore, the model is built in a provenance-unaware plat-
form. Moreover, these activities exhibit both control-flow and
data-flow based coordination mechanism. Since the model is

built in a provenance-unaware platform and possesses both
control and data dependences between different activities, it
is an appropriate choice to evaluate the proposed workflow
provenance inference discussed in Section IV.

We build the initial provenance graph with 438 nodes
based on the Python script having 116 lines of code used
in the model. After applying the re-write rules explained in
Section IV, the inferred workflow provenance graph consists
of 139 nodes, which shows a significant reduction in the graph
size by more than 300%.

Next, we infer fine-grained data provenance based on
inferred workflow provenance of the model. To infer fine-
grained data provenance, we need to import input data prod-
ucts in a database first. In this use case, there are more
than 3000 PCRaster17 maps containing input data products.
We create a SQLite18 database that contains tables for each
persistent view found in the workflow provenance graph and
then populate these tables with the values transformed from
the map files. Further, we attach a timestamp to every value
based on the data collection time. The size of the database for
the use case is around 40 GB.

After importing the input data products, the model is
executed and output data products are produced and stored
into the same database. The input data products in this use
case are collected and stored before the execution takes place.
Therefore, these are offline data. Based on the self-adaptability
mechanism introduced in Section V-F, we choose to apply
basic provenance inference mechanism for this use case.

The user initiates the inference phase by choosing a par-
ticular value for which he wants to have fine-grained data
provenance. Each value is characterized by its data collection
time (year, month) and cell position in the (x , y) co-ordinates.
Having this input from users, we apply the basic provenance
inference method [17]. The accuracy of inferred fine-grained
provenance inference is 100%, and the inference method does
not consume any extra storage space to store provenance data.

B. Qualitative Analysis

We had several meetings with two scientists who developed
this geoscientific model used in the use case. In the first
meeting, we presented our approach of inferring provenance
information and collected related data and scripts. Later, we
developed our prototype and tested it with the given script.

After finalizing the prototype, we had another interview
with the scientists to ask them several open-ended ques-
tions. We evaluate the proposed approach on the basis of
three features: 1) extensibility; 2) debugging-friendliness; and
3) reproducibility.

1) Extensibility: Extensibility refers to the ability to handle
different Python scripts and building workflow provenance
graph out of them. Our prototype can handle varieties of
Python scripts using different libraries. However, a user has
to provide a few basic information on each method when
it is called during the first run of the model only. These
includes whether the function reads persistent data or not (e.g.,

17Available at http://pcraster.geo.uu.nl/.
18Available at http://www.sqlite.org/.
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true/false) and whether the function writes persistent data or
not (e.g., true/false) as well as the input–output ratio of the
function.

Question: To what extent do you think that the extensibility
of the proposed approach is helpful?

Feedback: The proposed approach is generic in the sense
that it can handle varieties of Python scripts and builds work-
flow provenance graph out of those. However, at the very first
run, the user has to enter method-specific information, which
might be time-consuming and also requires some training for
users.

2) Debugging-Friendliness: Debugging-friendliness refers
to the suitability of a provenance graph for debugging pur-
poses. Both workflow and fine-grained provenance graph can
be used for debugging purposes. The workflow provenance
graph shows the flow of the program, thus, can be used
for code-level debugging. In addition, fine-grained provenance
graph refers to the input data products and hence, can be used
for value-level debugging.

Question: Have you ever experienced the need for a graph-
based debugging tool? To what extent do you think that the
provenance graphs are useful as a debugging tool?

Feedback: Usually, the scientists use the debugging tool
which comes with the development environment. However,
they appreciate the idea of debugging their code and the model
using provenance graphs. Workflow provenance graph enables
the code-level debugging, which is useful to determine the
efficiency of the code, i.e., finding out code repetition. It is also
useful to compare two different versions of the code expected
to produce the same value. In addition, value-level debugging
facilitating fine-grained provenance graph provides easy access
to the actual data. It also proves beneficial when tracing back
for identifying missing values in the file.

3) Reproducibility: Reproducibility in this paper means the
ability to regenerate data items, i.e., for every processing
element P , executed on an input dataset I at time t resulting
in output dataset O; the re-execution of processing element P
at any later point in time t ′ (with t ′ > t) on the same input
dataset I will generate exactly the same output dataset O.

Question: To what extent do you think that fine-grained
provenance graph is useful to achieve reproducibility? How
do you use your reproducible results?

Feedback: Fine-grained provenance graph shows original
data values contributed to produce the result, which helps to
achieves reproducibility. In practice, reproducible results might
be useful to explain the mechanism of the model to one of the
other scientists from the same group.

C. Summary

Our quantitative evaluation shows that we can successfully
infer both workflow and fine-grained data provenance. The
provenance information is explicated as a graph. The set of
re-write rules discussed in Section IV transforms the control
dependences into data dependences and also makes the final
graph more compact, which is appreciated by the scientists
during the interview.

The scientists admit that the use of provenance graphs
for debugging purposes makes the proposed framework more

enticing to the scientific community. It is a common scenario
that researchers waste a lot of time to wonder about a particular
value. The fine-grained provenance graph comes very useful
in these cases. Furthermore, workflow provenance graph can
provide an overview on the complete model visually and can
save a lot of time of researchers. Moreover, the researchers
think that the proposed framework is extensible so that it can
be used in any other use case. Fine-grained data provenance
inference can achieve reproducibility, which can be used to
validate the outcome of the model. In sum, the proposed
inference-based framework is useful to the researchers in
practice.

VII. RELATED WORK

Data provenance has many applications in different
domains. It can be used to validate scientific models. It can
also be used as a replication recipe for the output data in a
database system. Furthermore, provenance is seen as a type
of data quality measure in geospatial domains. Therefore,
provenance is a widely studied topic by the researchers from
different domains.

Researchers have paid attention to make provenance-aware
workflow engines. A provenance model described in [34] can
collect provenance automatically during run time. This model
is an extension of the Kepler [9] workflow engine. A layered
model to represent workflow provenance is introduced in
[35], which facilitates windows workflow foundation19 as the
workflow engine. These techniques are used in a provenance-
aware platform but they do not offer any functionalities to infer
workflow provenance without any human intervention. How-
ever, the proposed framework builds the workflow provenance
graph automatically based on a given script.

One of the existing works in this direction is the usage of
a program dependence graph (PDG) to get an overview of
the model. A PDG makes explicit both the data and control
dependences for each statement in a program [36]. A system
dependence graph extends the definition of a PDG and it
is capable of providing data and control dependences for
multiprocedure programs [31]. To investigate a model with
anomalies, scientists need to interpret control dependences in
these graphs by themselves, which might be a tedious job due
to the high complexity of the model. Our proposed framework
can infer workflow provenance by transforming these control
dependences into data dependences.

Provenance is also discussed in the context of geospatial
domain. Yue et al. [37] proposed an approach to capture
provenance data automatically using semantic web technolo-
gies. The provenance data have been stored in a resource
description framework (RDF) triple store, and have been
queried using SPARQL based on a geospatial data provenance
ontology. Furthermore, a provenance framework has also been
proposed in [38] for geoprocessing workflows. This framework
provides provenance at different levels of a given geoscientific
model. Yue et al. [39] reported an approach that enables
interoperability for the collected provenance information in

19Available at http://www.windowsworkflowfoundation.eu/.
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a service-oriented GIS architecture. Another method of cap-
turing provenance has been discussed in [40]. In this paper,
authors build provenance traces of the computation of snow-
covered area by monitoring system-level calls from different
running processes. Like these aforesaid methods, the proposed
framework provides provenance at different levels facilitating
static analysis of the script as well as fine-grained provenance
inference methods. However, the proposed framework never
stores any explicit provenance information.

Furthermore, provenance has also attracted researchers from
the database systems. There are several existing methods
which maintain fine-grained provenance data explicitly in a
relational database. LIVE [19] is a complete DBMS, which
preserves explicitly the lineage of derived data items in form
of boolean algebra. In sensornet republishing, Park and Heide-
mann [20] used an annotation-based approach to represent data
provenance explicitly, which is expensive in terms of storage.
Furthermore, these approaches are not capable of self-adapting
themselves based on the model characteristics.

There are a few research for collecting provenance in a
provenance-unaware platform. Miles et al. [41] proposed a
methodology, known as PrIMe, that can adapt applications to
make them provenance-aware by exposing application infor-
mation documented through a series of steps and by modifying
the application design. Groth et al. [42] proposed a technique
that can reconstruct provenance of the manipulations done over
the data in a provenance-unaware system like excel sheet or
a programming tool like R. This approach used a library of
basic transformations to infer and reconstruct provenance for
a particular value. Since it requires predefined possible trans-
formations to reconstruct the data provenance, this approach
is not easy to apply in different platforms. Silles and Run-
nalls [43] proposed a variant of R interpreter, CXXR, which
can maintain and represent collected provenance information.
Miles [44] proposed to document provenance by modifying
the source code of a program automatically. It provides fine-
grained data provenance after executing the script. However,
one distinguishing factor is that our approach provides both
workflow provenance and fine-grained data provenance.

Our proposed framework can capture workflow provenance
automatically based on a given Python script. In StarFlow,
Angelo et al. [18] proposed a method which can build
provenance trace at functional level for a Python script.
However, this tool cannot explicate the data dependences
within a function. There are some other existing tools and
packages,20,21,22,23 which show the call graph based on a
given Python script, i.e., dependency among different modules
used in the script. However, neither of these tools can provide
data dependences for a given script.

VIII. CONCLUSION

Scientists understand the importance of provenance data.
However, provenance data were rarely maintained due to

20Available at http://furius.ca/snakefood/.
21Available at http://pycallgraph.slowchop.com/.
22Available at http://www.tarind.com/depgraph.html.
23Available at http://pypi.python.org/pypi/Sumatra.

the lack of time and proper training to use the workflow
engines and other tools. Furthermore, an integrated framework
to provide both workflow and fine-grained data provenance
was much needed due to the increasing popularity of data-
intensive applications. Therefore, we proposed an inference-
based framework to manage provenance data especially for
geoscientific applications. We introduced an approach that
can build workflow provenance graph automatically based
on a given Python script. Since every scientific model has
different characteristics, we incorporated the self-adaptability
mechanism to the framework, which can select the appropriate
method to infer fine-grained data provenance based on the
model parameters. We evaluated the proposed framework
using a hydrological model facilitating geospatial data. In
future, we plan to improve user interface of the framework
as well as to add new functionalities. Overall, our proposed
framework helps scientists to use provenance information with
minimal effort in time, training, and storage cost.
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