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Abstract—The K distribution can be arguably regarded as
one of most successful and widely used models for radar data.
However, in the last two decades we have seen tremendous growth
in even more accurate modeling of radar statistics. In this regard,
the relatively recent G0 distribution filled some deficiencies left
unaccounted by the K model. The G0 model actually resulted as
a special case of a more general model; the G distribution, which
also has the K model as its special form. Singlelook complex
(SC) and multilook complex (MC) polarimetric extensions of
these models (and many others) have also been proposed in
this prolific era. Unfortunately, statistical analysis using the
polarimetric G distribution remained limited, primarily because
of more complicated parameter estimation. In this paper, the
authors have analyzed the G model for its parameter estimation
using state-of-the-art univariate and matrix-variate Mellin Kind
Statistics (MKS). The outcome is a class of estimators based
on Method of Log Cumulants (MoLC), and Method of Matrix
Log Cumulants (MoMLC). These estimators show superior
performance characteristics for product model distributions like
the G model. Diverse regions in TerraSAR-X polarimetric SAR
(PolSAR) data have also been statistically analyzed using the G
model with its new and old estimators. Formal Goodness-of-fit
(GoF) testing, based on MKS theory, has been used to assess the
fitting accuracy between different estimators and also between
G, K, G0, and Kummer-U models.

Index Terms—synthetic aperture radar (SAR), polarimet-
ric G distribution, generalized inverse gaussian (GIG), Fisher,
Kummer-U distribution, radar statistics, Mellin kind statistics,
Method of log cumulants, numerical differentiation

I. INTRODUCTION

OBJECTS illuminated by light from a highly coherent
continuous wave laser are readily observed to acquire

a peculiar granular appearance called speckle. The origins of
speckle were promptly recognized by early researchers in the
laser field [1]. Direct analogs of speckle are found in all types
of coherent imagery including SAR. One intuitive explanation
of speckle formation in coherent imagery is that the reflected
waves from different scatterers arrive back at the source with
random delays. The incoherent addition of these out-of-phase
reflected components results in chaotic bright and dark spots
[2]. Due to the random nature of speckle, SAR imagery is
inherently probabilistic. Consequently, statistical modeling of
SAR data is a fundamental aspect of SAR image analysis.

Let us make the following assumptions 1) a large number of
scatterers are present in a resolution cell, 2) the slant range is
much larger than the wavelength, 3) the amplitude and phase
from individual scatterers are independent and identically
distributed random variables, and 4) the phase is uniformly dis-
tributed. Then, according to central limit theorem, the complex
return from a singlelook complex (SC) SAR image follows
a zero mean circular complex gaussian distribution [3]. The

gaussian model also includes the corresponding distributions
of singlelook (and multilook) amplitude and intensity returns.
It can be readily derived, that the corresponding singlelook am-
plitude is Rayleigh distributed, while the singlelook intensity is
exponentially distributed [3]. For multilook data, the amplitude
is square root of gamma distributed, while the intensity is
gamma distributed [3]–[5]. It has been experimentally verified
that the gaussian model generally provides a good fit to
singlelook and multilook SAR data specially when the image
roughness is relatively low and a large number of scatterers are
present. As the resolution increases, the assumption of a large
number of scatterers in a resolution cell is not always true. It
has also been noted that in certain areas of a SAR image the
statistics deviate from the gaussian assumption e.g. urban areas
show considerable non-gaussianity [6], [7]. Similarly, natural
areas like forests and rough sea surface are also known to
exhibit non-gaussianity [8], [9].

Many distributions have been proposed to model non-
gaussianity for single-channel SAR data e.g Weibull, Log-
normal, Nakagami-Rice [7]. However, some distributions have
been derived for single-channel as well as multi-channel
(PolSAR) data using a doubly stochastic product model. This
model provides a framework to generate multivariate non-
gaussian distributions by assuming that the observed signal
is a product of a gaussian speckle random variate and a non-
gaussian texture random variate. A special case of this model,
called scalar texture product model, has been extensively
and successfully used to model non-gaussianity for single-
channel and more importantly PolSAR data. This model
assumes that the texture random variate is restricted to a
positive scalar random variable. The extension to PolSAR
data is not straightforward as noted in [4], and mandates
certain assumptions. Recently, some research has been done
in multi-texture modeling as well [10], [11]. In this paper,
we will restrict ourselves to the scalar texture case as our
methods are scalable to certain multi-texture cases. In contrast
to contemporary literature, we will use the terms textured and
textureless areas when we refer to areas with non-gaussian and
gaussian statistics, respectively1.

Singlelook PolSAR speckle can be shown to follow a
multivariate zero mean complex gaussian distribution [12].
The gaussian counterpart for the multilook PolSAR case is
the matrix-variate scaled complex Wishart distribution [12].
Both these models have been experimentally verified on real
PolSAR data [13], [14]. In the context of scalar texture
product model, different distributions for the texture random

1gaussian and non-gaussian areas have been commonly referred to as
homogeneous and heterogeneous areas, respectively. We refrain from this
nomenclature as some homogeneous areas also show non-gaussianity.
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variable will result in different expressions for the resulting
compound distribution. The choice of texture distribution can
be based on physical characteristics, empirical evidence, or
simply flexibility of fitting real data. Some of the important
texture distributions proposed in literature are gamma (γ),
inverse gamma (γ−1), Generalized Inverse Gaussian (GIG),
Fisher2 (F), beta (β), and inverse beta (β−1) with the resulting
compound distributions K, G0, G, Kummer-U , W , and M,
respectively [6], [18]–[24]. All the compound distributions
have certain special functions in their closed form expressions.
Generally, the less complicated the special function, and the
more flexible the distribution shape, the better. In this regard,
the G0 distribution has been shown to be very flexible and
computationally inexpensive, capable of modeling varying
degrees of texture [6], [21]. However, real PolSAR data in
various frequency bands often requires more flexibility than
the G0 model [22]–[25]. This paper concentrates on the G
distribution, a very flexible model, derived assuming GIG
texture, with K and G0 distributions as its well known special
cases [6], [21], [25]. Recently, it has also been shown by
the authors that this model is at least as flexible as the
Kummer-U distribution [11]. It is also pertinent to mentioned,
that the G distribution has another special case referred to
as the harmonic G distribution, denoted as Gh, proposed for
single-channel case in [26], and extended to model multilook
complex (MC) polarimetric data in [27], and SC polarimetric
data in [28]3.

Efficient parameter estimation of the polarimetric G dis-
tribution has been a hard computational task [6], [21], [25].
One alternative is to estimate parameters on each individual
channel, and average the so called mono-pol estimates to
obtain estimates for the polarimetric distribution (See Section
III). Such mono-pol estimators have been shown to be inferior,
in terms of estimator bias and variance, to polarimetric estima-
tors4 [29]. An important development in this regard has been
the MoLC for mono-pol parameter estimation [15], which has
been extended to polarimetric estimators in [29], [30]. The
MoLC estimation has been shown to be suitable and intuitive
for compound distributions (mono-pol and polarimetric) aris-
ing from the doubly stochastic product model [15], [24], [29],
[30].

In this paper, we apply the MoLC estimation to the po-
larimetric singlelook and multilook G distribution, extending
our preliminary work presented in [11]. Then, we compare the
new polarimetric estimator to two other somewhat traditional
estimators: 1) based on mono-pol fractional moments, and
2) numerical Maximum Likelihood Estimation (MLE) [25],
extended to the multilook case. Further, we apply all the above

2It is relevant to mention, that the F distribution, proposed by Nicolas, 2002
[15], [16] to model texture and also intensity [17], is only the G0I intensity
distribution parameterised by its mean, proposed earlier by Frery et al., 1997
[6]. Both result from the product of γ and γ−1 distributed random variables.
However, the latter was proposed only for intensity return, while the former
modeled both texture and intensity.

3In [28], the SC polarimetric Gh distribution was referred to as multivariate
normal inverse gaussian (MNIG) distribution.

4Polarimetric estimators utilize fully polarimetric information in the form
of covariance structure between polarimetric channels for estimation unlike
mono-pol estimators.

mentioned estimators for G distribution to real PolSAR data.
Also, we apply the polarimetric MoLC estimators for G0, K,
and Kummer-U distributions to real PolSAR data [29], [30].
Finally, we compute a formal χ2 distributed Goodness-of-Fit
(GoF) test statistic, based on multiple log cumulants and spe-
cially designed for polarimetric data [31]. This facilitates the
GoF comparison between different estimators and distributions
on real data.

The rest of the paper has been organized as follows. Section
II elaborates the scalar texture product model for single-
channel intensity and polarimetric SC and MC SAR data
formats. Section III presents the G distribution corresponding
to these formats. Previously known estimators of the G dis-
tribution are also listed in Section III. In Section IV, a brief
review of MKS is documented as an essential prerequisite to
MoLC. Section V covers the MoLC for the above mentioned
SAR data formats. Univariate MKS theory has been applied
to GIG pdf in Section VI. Close form expressions for log
cumulants of G distribution are listed in Section VII. In Section
VIII, the proposed estimator’s accuracy and precision are
compared to those of the known estimators. Section IX briefly
describes the GoF framework. Section X shows the application
to real PolSAR data. Finally, in Section XI some conclusions
are drawn.

II. THE SCALAR TEXTURE PRODUCT MODEL

The scalar texture product model, as mentioned before,
states that the observed signal is a product of a positive scalar
texture random variable and a speckle random variate. The for-
mer is analogous to the natural spatial variation of radar cross
section, which generally varies even for thematically similar
pixels. It is also assumed that the texture is spatially varying
on a larger scale than speckle. The product model takes
different forms for SC and MC PolSAR data formats. This is
because MC data contains all the second order moments of the
scattering coefficients of SC data within a multilook window
[32]. Hence, the statistics of these data formats are different.
In the following, we assume τ to represent a positive scalar
texture random variable with an unspecified pdf pτ (τ). We
also assume that the speckle random variate is normalized so
that the scale is transferred to the texture variable, and hence
its scale parameter must be separately estimated.

A. Single-channel Intensity Return

First we consider the case of mono-pol intensity return. The
product model is thus given by:

I = τx (1)

where I is the intensity return, and x is the speckle intensity
random variable. The pdf of x is exponentially distributed
for singlelook case and γ distributed for multilook case.
As exponential distribution is a special form of the γ, it is
sufficient to show only the distribution of multilook intensity
speckle [5]:

px

(
x;L,

σ2

L

)
=

(
L

σ2

)L
xL−1

Γ(L)
exp

(
−Lx
σ2

)
, (2)
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where L (number of looks) is the shape parameter, σ2

L is the
scale parameter, σ2 = E{x} is the mean speckle intensity,
and E{·} is the expectation. Since speckle is considered
normalised, it follows:

σ2 = 1, (3)
⇒ E{I} = E{τ}. (4)

B. Singlelook Complex Polarimetric Scattering Vector

The product model for SC polarimetric data is based on
further assuming that the texture in all polarimetric channels
is the same. The SC polarimetric scattering vector k is defined
as:

k =
[
shh shv svh svv

]T
(5)

where sxy represents the complex scattering coefficient with x
as transmit, y as receive polarization (h-horizontal, v-vertical),
and [·]T represents the transpose. The SC polarimetric product
model is given by:

k =
√
τx (6)

where x is a d dimensional speckle vector, which follows a
zero mean multivariate complex gaussian distribution, denoted
as x ∼ NC

d (0,Σ), where Σ = E{xxH} is the covariance
matrix of x, and (·)H represents the Hermitian i.e. conjugate
transpose. The pdf is given by [12]:

px(x; Σ) =
1

πd|Σ|
exp

(
−xHΣ−1x

)
, (7)

where |·| represents the determinant, and Σ is computed using
the sample covariance matrix (SCM), ΣSCM, as follows:

ΣSCM = E{kkH} = E{τ}E{xxH} = E{τ}Σ⇒ Σ =
ΣSCM

E{τ}
.

(8)

It is normalized as in [28], such that:

|Σ| = 1, (9)
⇒ E{τ} = |ΣSCM|

1
d , (10)

and ensures that Σ contains only polarimetric covariance
structure information.

C. Multilook Complex Polarimetric Covariance Matrix

Multilooking of single-channel SAR data discards all the
phase information and results in real valued amplitude or
intensity data. However, multilooking of PolSAR data retains
the mean phase difference between the channels and produces
complex data called MC [33]. The polarimetric multilooking
operation is given by:

C =
1

L

L∑
l=1

klk
H
l , (11)

where C ∈ Ω+ ⊂ Cd×d is the multilook polarimetric
covariance matrix. Note that C is a random matrix defined on
the cone, Ω+, of positive definite complex Hermitian matrices.

It must be noted that, for MC case, the texture is further
assumed to be the same between all the real (diagonal) and

complex (off-diagonal) elements of C. The MC polarimetric
product model is, therefore, given by:

C = τX (12)

where X is a random speckle matrix. It has been shown that
Y = LX follows a complex Wishart distribution, denoted
as Y ∼ WC

d (L,Σ), where Σ = E{X} = E{Y}/L is
the speckle covariance matrix. It can be readily derived that
X follows a scaled complex Wishart distribution, denoted
as X ∼ WC

d (L,Σ)|JY→X|, where |JY→X| = Ld
2

is the
Jacobian determinant of the transformation Y = LX [34].
The pdf of X is given by:

pX(X;L,Σ) =
LLd|X|L−d

Γd(L)|Σ|L
etr
(
−LΣ−1X

)
(13)

where etr(·) is the exponential of matrix trace operator, and
the scaling factor, Γd(L), is the multivariate gamma function
of the complex kind, defined as:

Γd(L) = πd(d−1)/2
∏d−1

i=0
Γ(L− i) (14)

where Γ(·) is a standard Euler Gamma function. If we assume
that the texture remains constant within a multilook window,
then the covariance matrix, Σ, can be computed using the
SCM as follows:

ΣSCM = E{C} = E{τ}E{X} = E{τ}Σ⇒ Σ =
ΣSCM

E{τ}
,

(15)

and is normalized in the same way as it was done in (9), and
(10).

III. THE G DISTRIBUTION

The G distribution was first proposed by Frery et al., 1997
[6] for the single-channel case, followed by its extension
to MC polarimetric case by Freitas et al., 2005 [21], and
recently to the SC polarimetric case by Khan et al., 2012
[25]. The product model, in conjunction with Bayes’ theorem
[35], can be readily used to derive closed form compound
distributions assuming certain texture distributions. When the
texture is modeled as GIG distributed, the return signal follows
the G distribution. The particular form of the G distribution
depends on the dimensionality of the data i.e. single-channel
or polarimetric, and also on the data format i.e. singlelook or
multilook.

A. Generalized Inverse Gaussian (GIG) Texture
GIG is a very flexible univariate distribution, which has

γ, γ−1, inverse gaussian, reciprocal inverse gaussian, and
hyperbolic distributions as its special forms [36]. The pdf of
GIG is given by [37]:

pτ (τ ;α, ω, η) =
1

ηα2Kα(ω)
τα−1 exp

(
−ω

2

(
η

τ
+
τ

η

))
,

(16)
where τ > 0, ω, η > 0, α ∈ R, and Kν(·) is the modified
Bessel function of the second kind and order ν. Denoted as
N−1(α, ω, η), GIG has two shape parameters α, ω, while η is
the scale parameter5. The shapes of GIG densities for different

5In [25], the authors used the parameterization ω′ = ω/2, λ′ = ω′/η,
γ′ = ω′η, where ′ denotes the parameters in [25]
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values of α and ω can be found in [21]. The v-th order
moments are given by:

E{τv} = ηv
Kα+v (ω)

Kα (ω)
. (17)

GIG reduces to inverse gaussian or reciprocal inverse gaussian
when α = − 1

2 or 1
2 , respectively. The γ and γ−1 forms

can be obtained by assuming ω → 0+ and α positive or
negative, respectively. While, α = 0 produces the hyperbolic
distribution [36]. Consequently, the compound distributions
of Gh [26]–[28], G0 and K [6], [21], [25] corresponding to
inverse gaussian, γ−1, and γ textures, respectively, are only
special forms of the G distribution.

B. Single-channel Intensity G Distribution

The multilook intensity G distribution, denoted as
GI(L,α, ω, η), can be easily obtained by using (16), (2), and
(3) in the product model of (1) and invoking Bayes’theorem
[6]:

pI(I;L,α, ω, η) =
LLIL−1

Γ(L)ηαKα(ω)

(
2LI + ωη

ω/η

)α−L
2

×Kα−L

(√
ω/η(2LI + ωη)

)
.

(18)

The v-th moments of GI are given by [6]:

E{Iv} = ηv
Kα+v(ω)

Kα(ω)

Γ(L+ v)

LvΓ(L)
. (19)

Assuming an estimate of the shape parameters α, ω is avail-
able, the scale parameter, η, can be easily computed using the
first moment of GI as:

η = E{I} Kα(ω)

Kα+1(ω)
. (20)

C. Singlelook Complex polarimetric G Distribution

The SC polarimetric G distribution, denoted as
Gd(Σ, α, ω, η), can be obtained by using (16), (7), and
(9) in the product model of (6), and invoking Bayes’ theorem
[25]:

pk(k; Σ, α, ω, η) =
1

πdηαKα(ω)

(
2kHΣ−1k + ωη

ω/η

)α−d
2

×Kα−d

(√
ω/η (2kHΣ−1k + ωη)

)
,

(21)

where Σ is computed and normalized using (8)-(10), as
mentioned before. Assuming an estimate of the shape param-
eters α, ω is available, the scale parameter, η, can be easily
computed using the first moment of GIG pdf (17), and the
scale matrix normalization implication in (10), as:

η = |ΣSCM|
1
d
Kα(ω)

Kα+1(ω)
. (22)

D. Multilook Complex polarimetric G Distribution

In a similar manner, the MC polarimetric G distribution,
denoted as Gd(L,Σ, α, ω, η), can be obtained by using (16),
(13), and (9) in (12), and invoking Bayes’ theorem [21]:

pC(C;L,Σ, α, ω, η) =

LLd|C|L−d

Γd(L)ηαKα(ω)

(
2LTr

(
Σ−1C

)
+ ωη

ω/η

)α−Ld
2

×Kα−Ld

(√
ω/η (2LTr (Σ−1C) + ωη)

)
,

(23)

where Σ is computed using (15), and normalized using (9),
(10), as mentioned before. Again, assuming an estimate of the
shape parameters α, ω is available, the scale parameter, η, can
be easily computed using (22).

E. Known Parameter Estimators

The parameters of G distribution are inherited from the GIG
texture pdf (α, ω, η) and the specific speckle pdf: only L in the
case of single-channel intensity, only Σ in the SC polarimetric
case, and both (L, Σ) in the matrix-variate MC polarimetric
case. We start with the speckle pdf parameters, and assume
that an estimate of the equivalent number of looks, L̂, is given.
In Section V, an estimator for L, based on log cumulants, is
mentioned for both single-channel and MC polarimetric data.
Computation of the normalized covariance matrix, Σ, based
on SCM, for the SC and MC polarimetric cases, has already
been given in sections III-C and III-D, respectively.

For a textureless area, Σ computed using SCM is known
to be Maximum Likelihood (ML), unbiased, complex Wishart
distributed [38], and is an example of MC polarimetric data.
However, for textured areas it is neither ML nor complex
Wishart distributed. In section V, we will see that the MoMLC
estimation for MC polarimetric data is independent of Σ.
However, the MoLC for SC polarimetric data is based on
the Polarimetric Whitening Filter (PWF) and is, therefore,
dependent on Σ [30]. In this case, we will estimate Σ using
the so called Fixed Point (FP) estimator [39], denoted as Σ̂FP,
listed in (50), and presented later in section V-B. Further, in the
computation of η in (22), Σ̂FP will replace ΣSCM. This implies,
that Σ̂FP will be normalized by forcing its determinant to unity
in the same way as done before, resulting in ˜̂ΣFP, usable in
(21) in place of Σ. For now, we assume the SCM based Σ.

The scale parameter, η, is a nuisance parameter as it does
not add any texture information, but must still be computed
for analysis. Its computation for single-channel, SC, and MC
polarimetric cases has already been shown in sections III-B to
III-D, respectively. Two estimation techniques for the texture
shape parameters α, ω of the G distribution can be noted
from literature. In the following, we elaborate each estimation
technique:

1) Mono-pol Fractional Moments: This estimator is based
on combining the first moment and fractional moments of the
mono-pol intensity6. It is a simple extension to the estimators
proposed for G0

I and KI distributions by Frery and Freitas

6No reference listing this estimator has been found in literature.
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et al. [6], [40]. The first, quarter, and half moments (19) of
mono-pol intensity can be combined into two equations:

K2
α̂F+ 1

4

(ω̂F)

Kα̂F(ω̂F)Kα̂F+ 1
2
(ω̂F)

Γ2
(
L+ 1

4

)
Γ(L)Γ

(
L+ 1

2

) −
〈
I

1
4

〉2

〈
I

1
2

〉 = 0,

K2
α̂F+ 1

2

(ω̂F)

Kα̂F(ω̂F)Kα̂F+1(ω̂F)

Γ2
(
L+ 1

2

)
Γ(L)Γ (L+ 1)

−

〈
I

1
2

〉2

〈I〉
= 0,

(24)

which can be solved for α̂F, and ω̂F. This estimation is done
on each mono-pol intensity channel. The polarimetric estimate
is computed as an average of the mono-pol estimates.

2) Numerical Maximum Likelihood Estimation: This esti-
mator is based on numerically maximizing the log likelihood
function of the SC and MC polarimetric G distributions.
It was originally implemented by the authors (Khan et al.
[25]) for the SC polarimetric case. Here, it has also been
extended to the MC polarimetric case7. This is the only
truly polarimetric estimator available in literature for the G
distribution. However, it is computationally very expensive as
it is directly dependent on the sample size.

Given a sample of target scattering vectors, S =
{k1,k2, . . . ,kN}, the log likelihood function of the SC po-
larimetric G distribution is given by:

` (α̂K, ω̂K, η̂K|S,Σ) = N
[
−α̂K ln(η̂K)− ln{Kα̂K(ω̂K)}

]
+

N∑
i=1

[(
α̂K − d

2

)[
ln
(
2kHi Σ−1ki + ω̂Kη̂K

)
− ln

(
ω̂K

η̂K

)]

+ ln

[
Kα̂K−d

(√
ω̂K

η̂K
(2kHΣ−1k + ω̂Kη̂K)

)]]
.

(25)

Similarly, given a sample of polarimetric covariance matri-
ces, S = {C1,C2, . . . ,CN}, the log likelihood function of
the MC polarimetric G distribution is given by:

` (α̂K, ω̂K, η̂K|S, L,Σ) = N
[
−α̂K ln(η̂K)− ln{Kα̂K(ω̂K)}

]
+

N∑
i=1

[(
α̂K − Ld

2

)[
ln
(
2LTr

(
Σ−1Ci

)
+ ω̂Kη̂K

)
− ln

(
ω̂K

η̂K

)]

+ ln

[
Kα̂K−Ld

(√
ω̂K

η̂K
(2LTr (Σ−1Ci) + ω̂Kη̂K)

)]]
.

(26)

The negative of the log likelihood functions in (25) and (26)
can be minimized for α̂K, ω̂K. At each iteration of minimizer,
the scale parameter η̂K is computed as mentioned before. The
minimization algorithm used is the Nelder-Mead simplex, see
[25] for more details.

7Some alternative and improved MLE techniques have also been developed
for the special case of G0I intensity distribution by Frery et al. in [41]–[43],
but have not yet been extended to the GI intensity or the polarimetric G
distribution.

IV. MELLIN KIND STATISTICS: A BRIEF REVIEW

An ingenious way of dealing with radar data is to perform
the statistical analysis in logarithmic domain. This elegantly
separates the statistics of the radar return into an additive
composition of its constituent speckle and texture parts. It was
Jean-Marie Nicolas who formalised this idea into a systematic
theory on logarithmic statistics for characterisation of single-
channel radar data distributions, and their parameter estimation
[15], [16]. This is achieved by the application of a less well
known univariate Mellin transform (MT) to the pdf as opposed
to the use of Fourier transform (FT) in classical statistics.
Originally, referred to as second kind statistics by Nicolas,
the framework is now increasingly being termed as Mellin
kind statistics (MKS).

In classical statistics, the well known FT is applied to a pdf
to obtain the characteristic function (CF) [35]. The v-th order
derivative of the CF with respect to the transform variable
gives the v-th order moment of the pdf. The logarithm of the
CF, in turn, defines the cumulant generating function (CGF).
The v-th order derivatives of the CF and CGF with respect
to the transform variable give the v-th order (linear) moments
and cumulants of the pdf, respectively.

In MKS, on the other hand, the MT is used in place of
FT. Consequently, the CF and CGF are called the Mellin
kind CF and CGF, respectively. The corresponding v-th order
derivatives of the Mellin kind CF and CGF result in Mellin
kind moments and cumulants, also referred to as log moments
(LM) and log cumulants (LC), respectively.

Nicolas’ MKS theory was intended for single-channel in-
tensity/amplitude returns, defined on R+. It was the work of
Anfinsen et al. [29], that extended the MKS theory to MC
polarimetric matrix-variate data by using the matrix-variate
MT. Later, Anfinsen also developed asymptotic MKS for
SC polarimetric case by applying Nicolas’ univariate MKS
to singlelook polarimetric whitening filter (PWF) [30], [44].
In the following, we briefly list the MKS relevant to this
contribution:

A. Mellin Transform

The MT of a real valued function f(x) defined on R+ is:

F (s) =M{f(x)}(s) =

∫ ∞
0

xs−1f(x)dx (27)

where s ∈ C is a complex transform variable, but, under
certain conditions s ∈ R [29].

The MT of a real valued scalar function f(X) defined on a
cone Ω+ of complex, positive definite and Hermitian matrices
with dimension d× d is [29]:

F (s) =M{f(X)}(s) =

∫
Ω+

|X|s−d f(X)dX (28)

where it is also assumed that f(XY) = f(YX) for X, Y ∈
Ω+.
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B. Univariate Mellin Kind Statistics

The univariate MT (27) is directly applicable on amplitude
and intensity pdfs because of the common domain. Hence, the
Mellin kind CF of pdf, pI(I), is given by:

φI(s) = E{Is−1} =M{pI(I)}(s)

=

∫ ∞
0

e(s−1) ln IpI(I)dI

=

∞∑
v=0

(s− 1)v

v!

∫ ∞
0

(ln I)vpI(I)dI

=

∞∑
v=0

(s− 1)v

v!
µv{I}

(29)

where the exponential function has been expanded in Maclau-
rin series. This shows that the Mellin kind CF of pI(I) can
be expanded in terms of its log moments (LM), µv{I} =
E{(ln I)v}. The LMs can be retrieved from φI(s) as:

µv{I} =
dv

dsv
φI(s)

∣∣∣∣
s=1

(30)

Similarly, the Mellin kind CGF, given by ϕI(s) = ln{φI(s)},
can also be expanded as:

ϕI(s) =

∞∑
v=0

(s− 1)v

v!
κv{I} (31)

where κv{I} are the log cumulants (LC), which can be
retrieved from ϕI(s) as:

κv{I} =
dv

dsv
ϕI(s)

∣∣∣∣
s=1

(32)

C. Matrix-variate Mellin Kind Statistics

The matrix-variate MT (28) is applicable to multilook
polarimetric covariance matrix pdfs because of the common
domain. In this case, the Mellin kind CF is given by:

φC(s) = E{|C|s−d} =M{pC(C)}(s)

=

∞∑
v=0

(s− d)v

v!
µv{C}

(33)

which shows that the Mellin kind CF of pC(C) can also be
expanded in terms of matrix log moments (MLM), given by
µv{C} = E{(ln |C|)v}. The MLMs can be retrieved from
φC(s) as:

µv{C} =
dv

dsv
φC(s)

∣∣∣∣
s=d

(34)

Similarly, the Mellin kind CGF, given by ϕC(s) = ln{φC(s)},
can also be expanded as:

ϕC(s) =

∞∑
v=0

(s− d)v

v!
κv{C} (35)

where κv{C} are the matrix log cumulants (MLC), which can
be retrieved from ϕC(s) as:

κv{C} =
dv

dsv
ϕC(s)

∣∣∣∣
s=d

(36)

D. Relations between Moments and Cumulants

The moments and cumulants of a pdf are directly related to
each other. The cumulants can be computed as a polynomial
of moments up to the same order and vice versa. This is
irrespective of the fact that they are log or linear and also
independent of the type of random variate. Relations upto the
tenth order are listed in [45], and the first three are given here:

κ1 = µ1 (37)
κ2 = µ2 − µ2

1 (38)
κ3 = µ3 − 3µ1µ2 + 2µ3

1 (39)

It should be noted that the first LC is dependent on scale
parameter. The second and higher order LCs, if they exist,
are independent of scale and can be used for the estimation
of shape parameters of the pdf. Also, the sample LCs can be
obtained by first computing sample LMs up to the same order
and then using the equations above.

E. Product Model Mellin Kind Statistics

In the realm of compound pdfs defined by the product
model, MKS framework plays a significant role in statistical
analysis. The MT has certain advantages in its application
to the product model. This behaviour has a direct analogy
in the application of FT, due to its convolution property, to
additive noise signal model. Nicolas, in [15], showed that for
the univariate product model in (1), the following relations
hold:

pI(I) = pτ (τ)?̂px(x) (40)
φI(s) = φτ (s) · φx(s) (41)
ϕI(s) = ϕτ (s) + ϕx(s) (42)
κv{I} = κv{τ}+ κv{x} (43)

where ?̂ denotes the Mellin kind convolution. Equation (41)
follows directly from (40) and the convolution property of MT:

M{pτ (τ)?̂px(x)}(s) =M{pτ (τ)}(s) · M{px(x)}(s) (44)

Equation (43) shows that the LCs of intensity return de-
compose as the sum of LCs of texture and speckle random
variables.

Anfinsen et al. [29] derived equivalent relations for the
polarimetric covariance matrix product model (12):

φC(s) = φτ (d(s− d) + 1) · φX(s) (45)
ϕC(s) = ϕτ (d(s− d) + 1) + ϕX(s) (46)
κv{C} = dvκv{τ}+ κv{X} (47)

Equation (47) shows that the observed MLCs decompose as a
sum of speckle MLCs and texture LCs scaled by dv .

V. METHOD OF LOG CUMULANT ESTIMATION

In classical statistics, the well known method of moments
(MoM) is employed to estimate the parameters of a pdf. This
is based on solving as many moment equations as the number
of unknown parameters and substituting population moments
with sample moments. The estimates can generally be im-
proved by using more moment equations than the number of
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unknown parameters in the form of an optimization problem.
The covariance matrix of the sample moments is used as a
weighting matrix in the optimization. This is also referred to
as the generalized method of moments (GMoM) [46].

In MKS, direct counterparts of MoM and GMoM exist
and are called MoLC [15], [30] and Generalized MoLC
(GMoLC), respectively. The only difference being that, in
place of moment equations, LC equations are used, sample
LCs substitute population LCs. Further, in GMoLC, the co-
variance matrix of sample LCs, instead of sample moments, is
used as a weighting matrix. For the matrix-variate case, these
methods are intuitively called method of matrix log cumulants
(MoMLC) [29] and generalized MoMLC (GMoMLC) [31].

In practice, the LC (43) and MLC (47) relations, derived
using the product model MKS, can be used in the MoLC and
MoMLC estimation, respectively. This results in estimators
with good statistical properties like low bias and variance [29].
It must be noted that the mathematical expressions of texture
LCs, κv{τ}, depend on the choice of the texture pdf. The
LCs of speckle are generally quite well defined under certain
assumptions (see Section I). Extensive account on this can be
found in [15], [24], [29], [30].

The LCs of GIG texture pdf will be defined in Section VI.
In the following we list the speckle LCs for the intensity, SC
polarimetric scattering vector, and MC polarimetric covariance
matrix cases of the product model.

A. Intensity Case

Multilook intensity speckle is γ distributed (2) and its LCs
are given by [15]:

κv

{
x;
σ2

L
,L

}
=

{
ψ(0)(L) + ln

(
σ2

L

)
for v = 1,

ψ(v−1)(L) for v > 1.
(48)

where ψ(v)(·) is the v-th order polygamma function. Interest-
ingly, over a textureless area, the first order LC equation can
be easily used to estimate L̂. This is done by first computing
the mean intensity, σ2, followed by numerically solving the
first order LC equation for L̂, after substituting sample LCs,
〈κ1{x}〉, in place of theoretical LCs, κ1{x}. Alternatively, the
second order LC equation, alone, can also be used in a similar
way as shown by Nicolas in [15].

B. Singlelook Complex Polarimetric Scattering Vector Case

Speckle LCs for SC polarimetric data have only been
derived for the asymptotic case. The derivation is not as
straight forward as for the intensity or MC polarimetric case.
Here, we will only list the most relevant analysis and results.
Detailed explanation can be found in the work of Anfinsen
[30].

Let us examine the product model decomposition of the
fixed-point polarimetric whitening filter (FP-PWF):

y = kHΣ̂−1
FP k = τ(xHΣ̂−1

FP x) = τQ, (49)

where the quadratic form Q represents the speckle contribu-
tion, and Σ̂FP is the FP estimator of Σ given by [39]:

Σ̂FP =
d

N

N∑
i=1

kiki
H

ki
HΣ̂−1

FP ki

, (50)

where N is the sample size. Anfinsen [30] found that Q
asymptotically follows a Fisher variate, F(m, a, b), with pa-
rameterization given in [15]:

Q
N→∞∼ Nd

N − d+ (1/d)
F1,d,( d

d+1 )(N−d+(1/d)), (51)

whose LCs are given by [30]:

κ1{Q} = ψ(0)(d)− ψ(0)

(
d(N − d+ 1

d )

d+ 1

)
+ ln

(
Nd

(d+ 1)

(N − d− 1)(
N − d+ 1

d

)) (52)

κv>1{Q} = ψ(v−1)(d)− ψ(v−1)
(
d(N−d+ 1

d )

d+1

)
(53)

It is important to note that the product model decomposition
in the SC polarimetric case is univariate. Therefore, the SC
MoLC uses MKS of the univariate case (40)-(43).

C. Multilook Complex Polarimetric Covariance Matrix Case

MC polarimetric speckle follows a scaled complex Wishart
distribution (13), whose LCs are given by [29]:

κv{X;L,Σ} =

{
ψ

(0)
d (L) + ln |Σ| − d lnL for v = 1,

ψ
(v−1)
d (L) for v > 1.

(54)
where ψ(v)

d (·) is the v-th order multivariate polygamma func-
tion of the complex kind, defined as ψ(v)

d (z) =
∑d−1
i=0 ψ

(v)(z−
i). Notice, that the first order MLC equation can be easily used
to estimate L̂ over a textureless area as shown in [47].

VI. GENERALIZED INVERSE GAUSSIAN MELLIN KIND
STATISTICS

The univariate MKS, visited in Section IV-B, can be directly
applied to the GIG texture pdf (16). In the following, we
present the mathematical forms of the Mellin kind CF, CGF,
and LCs of GIG pdf.

A. Mellin Kind Characteristic Function

The Mellin kind CF of GIG pdf can be derived by applying
the univariate MT on (16):

φτ (s;α, ω, η) =M{pτ (τ ;α, ω, η)}(s)

=
1

2ηαKα(ω)

∫
R+

τα+s−2e(−
ωη
2τ −

ωτ
2η )dτ,

(55)

multiplying and dividing the right hand side of (55) by ηs−1

and using the following integral relation of modified Bessel
functions:

Kν(2
√
ab) =

(ab )
ν
2

2

∫
R+

uν−1e(−au−
b
u )du, (56)
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eq. (55) reduces to:

φτ (s;α, ω, η) = ηs−1Kα+s−1(ω)

Kα(ω)
. (57)

B. Mellin Kind Cumulant Generating Function

The Mellin kind CGF of GIG pdf is thus given by:

ϕτ (s;α, ω, η) = (s− 1) ln η + lnKα+s−1(ω)

− lnKα(ω).
(58)

C. Log Cumulants

The LCs of GIG pdf can be found by applying (32) on (58):

κv{τ ;α, ω, η} =

{
ln η + lnK

(1)
α (ω) for v = 1,

lnK
(v)
α (ω) for v > 1.

(59)

where lnK
(v)
α (ω) = d

dsv lnKα+s−1(ω)
∣∣
s=1

i.e. the v-th
derivative, with respect to order, of the logarithm of modified
Bessel function of the second kind. No special function exists
for directly computing lnK

(v)
α (ω), therefore we must resort to

numerical differentiation. For now, it is interesting to derive
two special cases of GIG LCs. The advantage of this will
become apparent later in this section.

The two cases correspond to the γ and γ−1 special forms of
the GIG pdf. These special pdfs have been studied in detailed
in [6], [21], [25]. Also, their LCs are well defined [15]. The
first case corresponding to the γ pdf, arrives when ω → 0+

and α + s− 1 > 0. Let us list the following two relations of
modified Bessel functions, which will be useful:

Kν(µ) = 2ν−1Γ(ν)µ−ν , (60)
Kν(µ) = K−ν(µ). (61)

Also, the definition of polygamma function will be useful [35]:

ψ(m)(x) =
dm+1

dxm+1
ln Γ(x), m = 0, 1, 2, . . . (62)

where m = 0 represents the digamma function. Equation (60)
only holds for positive order and small values of argument,
which are exactly the assumptions in our first case. Then, using
(60) and (62) in (59), one can easily derive:

κv{τ ;α, ω, η} α>0∼
ω→0+

{
ln
(

2η
ω

)
+ ψ(0)(α) for v = 1,

ψ(v−1)(α) for v > 1.
(63)

Equation (63) proves that the GIG LCs are asymptotically
equivalent to γ LCs under the given parametric assumptions.
It must be pointed out that the term 2η

ω is the scale parameter
of γ pdf.

Similarly, the second case, corresponding to the γ−1 pdf,
results when ω → 0+ and α + s − 1 < 0. In this case, (61)
is first used to make the order of modified Bessel function
positive. Finally, again using (60) and (62) in (59) one finds:

κv{τ ;α, ω, η} α<0∼
ω→0+

{
ln
(
ωη
2

)
− ψ(0)(−α) for v = 1,

(−1)vψ(v−1)(−α) for v > 1.
(64)

Equation (64) proves that the GIG LCs are also asymptoti-
cally equivalent to γ−1 LCs. Also, ωη2 is the scale parameter
of γ−1 pdf.

Let us now turn our attention back to numerical differentia-
tion i.e. computing lnK

(v)
α (ω). We have used the well known

extended Neville’s algorithm to obtain derivatives numerically
(see [48], [49]). This algorithm is also implemented in the
commercial Numerical Algorithms Group (NAG) Fortran li-
brary as routine d04aaf, which computes derivatives of an
analytical function up to the fourteenth order. However, we
have used a well documented Matlab version of the same
algorithm easily available at [50], [51]. This implementation
only computes derivatives up to the fourth order. We have
extended this to compute the first eight derivatives8. This
implementation uses Taylor series expansion of a function up
to a certain order around some point x0. It then rearranges the
expansion to form a finite difference approximation to compute
the v-th derivative of the function at x0. The derivative is
approximated at a sequence of points following a log spacing
away from x0. The maximum point away from x0 should be
the same order of magnitude as that of the shape parameters
α, ω (whichever is greater). Further, the algorithm reduces
the amount of work by approximating the even and odd
order derivatives by only using even and odd Taylor series
expansions, respectively. Finally, Romberg extrapolation is
used to improve the approximations. The reader is encouraged
to study the algorithm and its implementation in detail at the
above mentioned references. However, we restrict ourselves
here to only show the accuracy of the GIG LCs computed
using this algorithm. It should be noted that lnK

(v)
α (ω) can

also be computed by first computing K
(v)
α (ω) (i.e. without

the logarithm transformation) up to order v, followed by the
application of the well known Leibniz product rule. This
alternative has not been tested.

The accuracy of GIG LCs is validated by comparing them
to the asymptotic case of γ LCs (63). Equivalently, (64) could
have also been used for this purpose. Let us assume α = 5,
η = 1, and ω = 10−6. Then, we can compute the first eight
GIG LCs (59) and the first eight γ LCs (63), and compare
their values to find εv , the relative error:

εv =
κGIG
v − κgamma

v

κgamma
v

(65)

where the superscript is shown only to distinguish between
the two LCs. Table I shows the first eight GIG and γ LCs,
along with the absolute value of the relative error. Note that
the γ LCs are represented in their standard two parameter
form, κv{;α, 2η

ω }, and also the reference to the texture random
variable, τ , has been dropped. The relative error is reasonably
low and increases for higher order LCs, as expected. For
the eighth LC it is of order 10−4. For even smaller values
of ω ≈ 10−10, the error does not decrease significantly.
Also, it was observed that the order of magnitude of the
error approximately remains the same whatever value of α
is chosen. It is important to mention that only the second and
third GIG LCs, with very small relative error, are used for
parameter estimation. We will see later that the higher order
LCs are only utilized in GoF testing, and their accuracy is
acceptable for the purpose at hand.

8The Matlab implementation of this algorithm can be obtained from the
corresponding author on request.
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TABLE I
GIG AND GAMMA PDF LOG CUMULANTS AT α = 5, ω = 10−6, η = 1.

GIG LC Gamma LC

v κv{;α, ω, η} κv{;α, 2ηω } |εv |
1 16.014775406956350 16.014775406956020 2.06× 10−14

2 0.221322955738990 0.221322955737115 8.47× 10−12

3 -0.048789732107969 -0.048789732245114 2.81× 10−09

4 0.021427827882668 0.021427828192755 1.45× 10−08

5 -0.014063194626264 -0.014063191342113 2.34× 10−07

6 0.012261446278990 0.012261509635954 5.17× 10−06

7 -0.013315057585594 -0.013316295488551 9.30× 10−05

8 0.017291171522857 0.017295357774073 2.42× 10−04

Let us now give a geometrical representation to the GIG
LCs. In [15], Nicolas first proposed the univariate (κ3, κ2)
LC diagram. A matrix-variate extension to this geometri-
cal representation was presented in [29], resulting in the
(κ3{C}, κ2{C}) MLC diagram. We restrict our presentation
to the univariate LC diagram as even the MLCs can be
translated back to the univariate texture LCs after subtracting
out the speckle MLCs and appropriate scaling (rearranging
(47)). This diagram is based on our earlier observation that
the second and higher order LCs are independent of the scale,
and are only dependent on the texture shape parameters and
the number of looks. Considering the number of looks as a
constant throughout the SAR image, the LC diagram shows the
solitary impact of texture shape parameters on the model. The
LC diagram simultaneously shows 1) the manifolds spanned
by the theoretical population LCs attainable under given pdf
models, and 2) points that represent empirical sample LCs
computed from data. The dimension of the manifold spanned
by a distribution model is equal to the number of texture
parameters. As a result, γ and γ−1 pdfs are represented by
a line, while β, β−1, F , and GIG pdfs are represented by
surfaces. The degenerate textureless case (Dirac delta) will
thus be represented by a point. For a more general definition
of the LC diagram see [29].

Figure 1 shows the manifolds spanned by the theoretical
population LCs under different texture distribution models.
The GIG LCs occupy the whole yellow space asymptotically
reducing into the γ and γ−1 LCs. This also shows that the
GIG pdf is very flexible in terms of the texture shapes it can
attain. Interestingly, the F distribution also occupies the same
LC space in (κ3, κ2) diagram [24]. The figure also shows two
sets of orange and dotted black lines within the GIG LC space.
These lines represent equi-α and equi-ω curves, respectively.
Along an equi-α curve (orange), ω logarithmically increases
as we move towards the textureless case, represented by the
black circle. Some special equi-α manifolds have also been
highlighted by thick black lines. These represent the inverse
gaussian (long dashes), reciprocal inverse gaussian (solid),
and hyperbolic (short dashes) distributions corresponding to
α=−0.5, α=0.5, and α=0, respectively. The asymptotic cases
of γ and γ−1 arise when ω approaches zero, represented by
the red and blue manifolds, respectively. Along an equi-ω
curve (dotted black), α approaches zero when κ3 tends to
zero, α is positive when κ3 is negative, and vice versa. Also,
on either side along this curve |α| increases logarithmically
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Fig. 1. Theoretical GIG pdf log cumulants in (κ3, κ2) LC diagram.

towards the textureless case. It must also be pointed out that
the GIG LCs are symmetric about κ3 = 0.

VII. LOG CUMULANTS OF G DISTRIBUTION

We are now in a position to list the LC expressions for the G
distribution. For the multilook intensity case we can put (59),
(48), and (3) in (43):

κv{I;L,α, ω, η} =

=

{
ln
(
η
L

)
+ ψ(0)(L) + lnK

(1)
α (ω) for v = 1,

ψ(v−1)(L) + lnK
(v)
α (ω) for v > 1.

(66)

Assuming we have an estimate of L̂, we can estimate mono-
pol α̂N, ω̂N

9 by simultaneously solving second and third order
LC equations after replacing population LCs with sample LCs.
The mono-pol estimates can be averaged to obtain estimates
for the polarimetric pdf.

In the SC polarimetric case we can combine (59), (52),
and (53) by applying univariate MKS (43) on product model
decomposition of FP-PWF:

κ1{y;α, ω, η} = ψ(0)(d)− ψ(0)

(
d(N − d+ 1

d )

d+ 1

)
+ ln

(
ηNd

(d+ 1)

(N − d− 1)(
N − d+ 1

d

))+ lnK(1)
α (ω)

(67)

κv>1{y;α, ω} = ψ(v−1)(d) + lnK(v)
α (ω)

−ψ(v−1)

(
d(N − d+ 1

d )

d+ 1

) (68)

again we can estimate α̂A1, ω̂A1
9 by simultaneously solving

second and third order LC equations after replacing population
LCs with sample LCs.

9The subscript is used to keep nomenclature consistency with Anfinsen’s
contribution [29]. ’N’ for Nicolas mono-pol estimators, ’A1’ for Anfinsen’s
MoLC and MoMLC based estimators, ’F’ for Frery’s mono-pol estimators
(24), and ’K’ for Khan’s numerical MLE based polarimetric estimators (25),
and (26).
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Fig. 2. Estimator performance analysis for MC polarimetric G distribution texture shape parameters α, and ω after 5030 Monte Carlo simulations. True
value: α=5, ω=5 at L=10. (Top row) Estimator bias (left), variance (middle), and MSE (right) for α, and (Middle row) the same for ω as functions of
sample size. (Bottom row) Box plots of estimator error, ε(·), for (left) α , and (right) ω. The tiny black dots and green squares represent the medians and
means, respectively. The mean estimator error is the bias. Outliers are larger than q3 + w(q3 − q1) or smaller than q1 − w(q3 − q1), where q1, q2, and q3
are the median, 25th, and 75th percentiles, respectively, while w=1.5 is the whisker length corresponding to ±2.7 standard deviation for gaussian data. Data
points above and below black dashed lines are compressed inside gray lines for plot legibility. Red dashed lines indicate zero error.

For MC polarimetric case we can combine (59), (54), and
(9) in (47):

κv{C;L,α, ω, η} =

=

{
d ln

(
η
L

)
+ ψ

(0)
d (L) + d lnK

(1)
α (ω) for v = 1,

ψ
(v−1)
d (L) + dv lnK

(v)
α (ω) for v > 1.

(69)

Similar to the previous cases, we can estimate α̂A1, ω̂A1
9 by

simultaneously solving second and third order LC equations
after replacing population MLCs with sample MLCs, and

assuming L̂ is given.
One critical observation must be made. If the sample LCs

fall outside the GIG manifold in (κ3, κ2) LC diagram, then
only α needs to be estimated as ω is close to zero. The GIG
LCs (59) reduce to γ (63) or γ−1 (64) LCs depending on the
sign of κ3. Consequently, the G LCs reduce to K or G0 LCs,
respectively.

VIII. ESTIMATOR PERFORMANCE ANALYSIS

We have performed Monte Carlo simulations to compare
the performance of different estimators for texture parameters
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Fig. 3. Estimator performance analysis for SC polarimetric G distribution texture shape parameters α, and ω. Estimator bias (left), variance (middle), and
MSE (right) for α (top row), and for ω (bottom row) as a function of sample size. True value: α=5, ω=5 at L=1.

TABLE II
COMPUTATION TIME (MILLISECONDS) OF ESTIMATION ON SIMULATED

MC POLARIMETRIC DATA WITH SAMPLE SIZE 256.

Mean Max.
GA1 56.4 192.3
GK 25.2 162.1
GF 91.3 319.5
GN 208.9 679.2

of polarimetric G distribution. This has been carried out for
both simulated SC and MC polarimetric SAR data. In each of
the two cases we have compared four estimators, namely 1)
Nicolas’ mono-pol estimator (N estimator) i.e. α̂N, ω̂N using
(66) for both SC and MC polarimetric data, 2) Anfinsen’s
estimator (A1 estimator) i.e. α̂A1, ω̂A1 using (68) and (69) for
SC and MC polarimetric data, respectively, 3) Frery’s mono-
pol estimator (F estimator) i.e. α̂F, ω̂F using (24) for both SC
and MC polarimetric data, and 4) Khan’s numerical maximum
likelihood estimator (K estimator) i.e. α̂K, ω̂K using (25), and
(26) for SC and MC polarimetric data, respectively. For N and
A1 estimators, only second and third order equations are used
for estimation as explained in section VII.

Figure 2 shows the bias, variance, mean squared error
(MSE), and box plots of estimator error for the four estimators
after 5030 Monte Carlo simulations with α=5, ω=5, and
L=10 at different sample sizes. The plots of bias, variance,
and MSE are simply a summary of the detailed estimator
errors represented in the form of box plots in the bottom
row of fig. 2. In fact, the summary results can be easily
validated by comparisons with the corresponding box plots as

the same color coding has been used. Clearly, the polarimetric
estimators show lower bias than the mono-pol estimators. The
bias, variance, and MSE of the K estimator is generally the
lowest. The variances of F and N estimators of α are too
high for sample size 32, and hence omitted. The same is also
true for F estimator of ω at sample size 32. The variance of
A1 estimator of α is clearly lower than those of F and N
estimators, while the variances of the F, N and A1 estimators
of ω are very similar. However, even with similar variances for
ω, the performance of F and N estimators is degraded by the
higher bias. This is highlighted by computing MSE, which is
a sum of the variance and squared bias. The lower MSE of A1
estimator than F and N estimators for both shape parameters
is evident for all sample sizes. Therefore, we can conclude
that the two polarimetric estimators perform better than the
mono-pol estimators. Between the polarimetric estimators, K
estimator performs better. However, this is tainted by the
fact, that for large samples, it is computationally extremely
expensive as it is directly dependent on the sample size. The
computation times of the four estimators were also recorded
in the Monte Carlo simulations using Matlab software on a
3.10 gigahertz processor with 8 gigabytes of memory. Their
mean and maximum values at sample size of 256 are shown
in table II, which shows that the computational time of A1
estimator competes well with other estimators. Interestingly,
the K estimator is faster at this sample size, but it will
become slower as the sample size increases. Finally, between
the two mono-pol estimators, the F estimator exhibits lower
bias, similar variance, and lower MSE for α, but for ω the
performance is generally very similar except for samples size
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greater than 256, where the N estimator shows lower bias,
variance, and MSE. We have observed very similar bias,
variance, and MSE at other values of α, ω, and L as well.

Figure 3 shows exactly the same scenario but for simulated
SC polarimetric data. The box plots have been omitted for
brevity. It should be mentioned here that, although A1 esti-
mator has been derived using asymptotic statistics, we boldly
apply it on finite samples. The results clearly show that both
the polarimetric estimators perform significantly better than
the mono-pol estimators. Between the polarimetric estimators,
although A1 has a slightly higher bias than K for sample
size greater than 100, it has a significantly better variance for
sample size smaller than 256. This reflects as significantly
better MSE of A1 estimator than K estimator for samples
smaller than 256, and only slightly worse for larger samples.
Keeping in perspective the computational complexity of the
K estimator, we can conclude that the A1 estimator is also
a better choice for the SC polarimetric case. Finally, overall
both the mono-pol estimators perform very poorly, with the
exception of N estimator performing reasonably well only for
the ω parameter.

IX. GOODNESS OF FIT USING LOG CUMULANTS

A specialized GoF statistic, based on multiple LCs, has been
recently developed for PolSAR distributions [31]. Tradition-
ally, GoF testing has been performed by assessing the fitting of
intensity or amplitude pdfs to data histogram for each channel
separately. GoF using LCs offers a truly multivariate approach,
where a single test statistic is obtained for the multivariate
PolSAR data. Further, it captures more statistical information
by performing GoF using multiple LCs. In the following, we
briefly list the most relevant results for the simple hypothesis
case, where the model parameters are considered known (for
details see [31]).

Let 〈κ〉 be a p dimensional vector of sample MLCs of
selected orders {v1, v2, . . . , vp}:

〈κ〉 = [〈κv1〉 , 〈κv2〉 , . . . ,
〈
κvp
〉
]T, (70)

with mean vector κ:

E{〈κ〉} = κ = [κv1 , κv2 , . . . , κvp ]T. (71)

It was shown in [31] that for sample size n:
√
n (〈κ〉 − κ)

D→ Np (0,K) (72)

where K is the scaled covariance matrix, given by:

K = nE
{

(〈κ〉 − κ) (〈κ〉 − κ)
T }
. (73)

The mean vector κ is formed using the corresponding p
population MLCs of the hypothesized model, and the K matrix
requires MLCs up to order 2vmax = 2 · max{v1, v2, . . . , vp}.
The equation to construct K matrix using MLCs up to order
2vmax is given in the appendix of [31].

We can define a test statistic, Qp, which uses p sample
MLCs:

Qp = n (〈κ〉 − κ)
T

K−1 (〈κ〉 − κ) (74)

It readily follows from the multinormal assumption:

Qp
D→ χ2(p) (75)

where χ2(p) denotes the χ2 distribution with p degrees of
freedom. Therefore, a test with a certain significance level
can be constructed and the p value can be computed. We
have also utilized the same theory to compute GoF for the
SC polarimetric case. In this case sample MLCs are replaced
by sample LCs of the FP-PWF, the rest of the theory remains
the same.

One important remark should be made. The number of
MLCs required by GoF test is at least one more than the
number of texture shape parameters. Thus, for the G distri-
bution (two shape parameters) we utilize second, third, and
fourth MLCs and, therefore require up to order eight MLCs to
construct the K matrix. This also explains why we computed
GIG LCs upto the eighth order. Finally, higher order LCs have
higher variance, therefore the relative error of order 10−4, for
the eighth GIG LC, is considered acceptable for GoF testing.

X. APPLICATION TO REAL DATA

We have statistically analyzed two PolSAR images acquired
using TerraSAR-X experimental quad-pol mode. The first
image is over Amsterdam, which has been multilooked to have
7.5 equivalent number of looks. The second one is a singlelook
image over Barcelona. Note that for both images, the results
are organized in a way very similar to [31] for consistency,
ease of comparison and clarity.

Figure 4 and 5 show the statistical analysis on Amsterdam
and Barcelona images, respectively. In both cases the first row
presents a carefully chosen subset image, which has a variety
of different types of areas. The image subsets are displayed
in false color using the well known Pauli decomposition [52].
From these subset images four square areas are extracted, each
of size 16 × 16 pixels. The selection process is shown as
tiny color-coded squares in the top row subset images. In the
middle row, the color-coded squares expand to show zoomed
sample images. The sample images are selected carefully
such that they are as homogeneous as possible so as to
keep the statistics stationary. The bottom row shows sample
LCs obtained from each extracted area and plotted using
’+’ symbol in texture LC diagram. It also shows multiple
color-coded bootstrapped sample LCs plotted for each sample
image. These are obtained by collecting 128 bootstrap samples
(using sampling with replacement [53]) each of size 128 from
the 256-pixel sample images. We also show 95% confidence
ellipses drawn using 2×2 K matrices, which are computed by
utilizing sample LCs up to the fourth order10 (see [10], [31]).
This gives a good idea of the statistical variation of sample
LCs for each extracted sample image.

We have also fitted K, G0, and Kummer-U distributions to
the sample images apart from the G distribution. In this way,
we can compare the fitting of G distribution to the less flexible
K and G0 distributions, and also to the Kummer-U distribution

10Note that appropriate scaling by 1
dv

needs to be taken into account when
converting sample MLCs to sample texture LCs, and also in the calculation
of K matrices.
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as it has similar representation in the LC diagram. For G
distribution we have used the A1, F, N, and K estimators. We
should emphasize that the GoF using LCs is also computed for
F, N and K estimators, although they are not based on MKS.
Consequently, we expect low p values for these estimators.
For K, G0, and Kummer-U , in addition to the A1 estimator,
we have also used the so called A2 estimator. It must be
noted that the A1 and A2 estimators for Kummer-U model are
only utilized in the MC polarimetric case as this is sufficient
for comparing the modeling flexibility of G and Kummer-U
distributions. Let us list these additional estimators before GoF
analysis.

The A1 estimators for K, G0, and Kummer-U distributions
for MC polarimetric data are given by [29]:

κv>1{C} = dvψ(v−1)(ξ̂) + ψ
(v−1)
d (L), (76)

κv>1{C} = (−d)vψ(v−1)(ζ̂) + ψ
(v−1)
d (L), (77)

κv>1{C} = dv
(
ψ(v−1)(ξ̂) + (−1)vψ(v−1)(ζ̂)

)
+ψ

(v−1)
d (L),

(78)

respectively, where v=2 for K, and G0, while v=2, 3 for
Kummer-U model, and ξ, ζ > 0 are the shape parameters.
In SC polarimetric case, the A1 estimators for K and G0

distributions are given by:

κv>1{y} = ψ(v−1)(ξ̂) + κv>1{Q}, (79)

κv>1{y} = (−1)vψ(v−1)(ζ̂) + κv>1{Q}, (80)

respectively, where v=2 and ξ, ζ > 0 are again the shape
parameters.

The A2 estimator for K, and G0 distributions can be directly
deduced from (74) in Section IX. Its general form usable for
K, and G0 distributions is given by [31]:

θ̂ = arg
{

min
θ

{
(〈κ〉 − κ)

T
K−1 (〈κ〉 − κ)

}}
, (81)

where θ is the vector of texture shape parameters (only one in
this case) and 〈κ〉 = [〈κ2〉 , 〈κ3〉]. The squared Mahalanobis
distance is minimized by changing κ and K, both of which
depend on θ through theoretical LCs. A three dimensional
A2 estimator for the G, and Kummer-U distributions, using
second, third, and fourth LCs, can also be defined but this will
require up to the eighth order LCs to form the K matrix at each
iteration of the minimizer. We have refrained from using such
an estimator due to its computational complexity. However,
two dimensional A2 estimators (81) can also be defined for
the G, and Kummer-U distributions. These are based on the
fact that within the GIG/Fisher texture LC domain, these
estimators reduce to the corresponding A1 estimators. Outside
this domain, they simply reduce to the A2 estimator for either
K or G0 distribution depending on the sign of third texture
LC, κ3{τ}.

Table III shows the p values (%) of GoF tests obtained
for the different model-estimators over sample images from
MC Amsterdam and SC Barcelona data sets11. For both
data sets, we have selected one water sample (orange), one

11Different estimators for each model are symbolically represented in the
subscript in table III.
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Fig. 4. (Top) A portion of TerraSAR-X polarimetric image over Amsterdam
(7.5 equivalent number of looks) shown in false color Pauli decomposition
c© DLR 2012 . (Middle) Four sample images extracted over different

homogeneous areas. (Bottom) Texture log cumulant diagram showing sample
log cumulants and color-coded bootstrapped samples of the extracted areas.

vegetation sample (magenta), and two urban samples, urban
A (cyan) and urban B (red). The corresponding sample LCs
and bootstrapped samples (color matched) are shown in the
texture LC diagram in the bottom row of each figure.

Let us first analyze the results on Amsterdam data set. The
texture LCs of the water sample are almost completely covered
by those of the vegetation sample. However, both of them
show gaussian behaviour as they are very close to the black
circle. In both the cases, we see that only GF, GN, and GK
fail the test at 5% significance level, while GA2, G0

A2, and
UA2 show the highest p values (84.82% for water sample and
89.60% for vegetation). All the remaining model-estimators
show smaller but similarly very high p values. Urban B sample
shows texture behaviour outside the γ−1 manifold. Again GF,
GN, and GK fail the 5% significance test, but this time KA1,
KA2, and also UA1 (4.73%) fail this test. This is intuitive for
KA1, and KA2 since the sample LCs lie on the opposite side
of the γ manifold, but unexpected for UA1 . All the remaining
cases pass this test with GA2, G0

A2, and UA2 sharing the highest
p value of 20.71%. The p values are equal because outside
the GIG/Fisher texture boundary on γ−1 side, GA2, and UA2
reduce to G0

A2. Interestingly, it can be noticed that UA1 (4.73%)
performs worse than GA1, and G0

A1 (16.86%). This can be
easily explained as, unlike UA2, UA1 suffers from over-fitting
when sample LC falls outside the GIG/Fisher LC domain.
Theoretically GA1 should also suffer from the same over-fitting,
but it does not as we estimate only α (assuming ω=10−6)
whenever sample LCs fall outside the GIG/Fisher domain.
Finally, Urban A shows a good example of sample LCs falling
inside the GIG/Fisher LC domain. In this case both GA1 and
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Fig. 5. (Top) A portion of TerraSAR-X singlelook polarimetric image over
Barcelona shown in false color Pauli decomposition c© DLR 2012. (Middle)
Four sample images extracted over different homogeneous areas. (Bottom)
Texture log cumulant diagram showing sample log cumulants and color-coded
bootstrapped samples of the extracted areas.

GA2 show the highest p value of 84.28%, while GF, GN, GK,
G0

A1, and G0
A2 fail the 5% significance test. It is also observed

that KA1, and KA2 both pass the test with relatively higher
p values of 20.49% and 30.48%, respectively. Interestingly,
although both UA1, and UA2 pass the test with a p value of
58.85%, it is less than the p value of 84.28% shared between
GA1 and GA2.

Let us now analyze the results obtained on Barcelona data
set. The water sample again shows gaussian characteristics and
all the model-estimators easily pass the 5% significance level
test except GN. In fact, GN fails the test for all the samples
examined, and hence has been omitted from further analysis.
As the water sample LCs fall slightly outside the GIG LC
domain on the γ−1 side, the highest p value of 94.44% is
shown by both GA2 and G0

A2. The lowest p value of 73.98%
is exhibited by GF. The vegetation sample LC falls outside
the γ side of the GIG LC domain. The highest p value of
85.71% is, therefore, given by GA2 and KA2. Again, all the
model-estimators pass the test, with GF performing the worst.
The sample texture LCs of Urban B sample show β−1 texture
behaviour. All the model-estimators, except GF, still pass the
test. The highest p value of 63.23% is shown by both GA2 and
G0

A2. Finally, for urban A sample both KA1 and KA2 fail the test
since it shows sample LCs around γ−1 manifold. The highest
p value of 91.56% is shown by both GA2 and G0

A2 followed
closely by GA1 and G0

A1, while GF fails the test.
We can draw a few important inferences from GoF analysis

on real data. In SC polarimetric case, GA2 performs the best,
followed closely by GA1, G0

A2, and G0
A1. For MC polarimetric

case, again GA2 performs the best, followed by UA2, GA1, and

TABLE III
P VALUES (%) OVER IMAGE SAMPLES EXTRACTED FROM SC BARCELONA

AND MC AMSTERDAM TERRASAR-X DATA SETS.

Urban A Urban B Vegetation Water
SC MC SC MC SC MC SC MC

GA1 91.45 84.28 48.72 16.86 81.99 87.75 87.56 84.07
GA2 91.56 84.28 63.23 20.71 85.71 89.60 94.44 84.82
GF 0 0.18 0.67 0 19.44 0 73.98 0
GN 0 0.09 0 0 0 0 0 0
GK 91.25 0.09 10.15 2.88 84.76 1.04 93.38 2.04
G0A1 91.30 0.83 41.60 16.86 73.29 87.75 87.46 84.07
G0A2 91.56 3.60 63.23 20.71 79.18 89.60 94.44 84.82
KA1 0.61 20.49 36.59 0.01 83.25 85.55 87.14 84.07
KA2 0.61 30.48 36.59 0.23 85.71 87.27 86.89 84.82
UA1 - 58.85 - 4.73 - 88.38 - 84.82
UA2 - 58.85 - 20.71 - 89.60 - 84.82

UA1. In fact, in this case, the highest p value is also shared by
UA2 in three of the four extracted samples. This is substantial
evidence that the modeling flexibility of G, and Kummer-U
distributions is very similar, and intuitively understandable by
their common representation in the LCs diagram.

Finally, we can comment about the computation times of
different model-estimators on real data. Table IV lists these
for all the model-estimators on extracted samples of MC
polarimetric Amsterdam data. The K, and G0 model-estimators
are the fastest because they have only one texture parameter.
Amongst the G model-estimators GA1 and GA2 are generally
the fastest except for urban A sample. The G model-estimators
also generally appear to be faster than Kummer-U model-
estimators. However, a closer look reveals that U model-
estimators are actually faster inside the GIG/Fisher domain
(urban A sample). Outside this domain (urban B, vegetation,
and water samples) only one texture shape parameter, i.e. α
(assuming ω=10−6) , was estimated for G model, while both
texture shape parameters were estimated for the Kummer-U
model. This explains the seemingly slower computation time
of Kummer-U estimators.

XI. CONCLUSION

The polarimetric G distribution has been explored in the
light of state-of-the-art Mellin kind statistics for PolSAR data.
We have derived closed form expressions for the Mellin kind
characteristic function, cumulant generating function, and log
cumulants of generalized inverse gaussian distribution. It has
also been shown that log cumulants of this distribution up to
the eighth order can be accurately computed using numerical
differentiation. We have also derived closed form expressions
for the log cumulants of G distribution under multilook inten-
sity, singlelook polarimetric, and multilook polarimetric cases
of the product model. The estimators derived by employing the
method of log cumulants have been rigorously compared with
existing estimators using simulated PolSAR data. Generally,
improvement in bias, variance, and mean squared error has
been reported for the new estimators on synthetic data, along
with a competitive computation time. On real data, state-of-
the-art GoF testing, using log cumulants, has been utilized
to compute the GoF of new and old estimators. This has also
been compared to GoF of K, G0, and Kummer-U distributions
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TABLE IV
COMPUTATION TIME (MILLISECONDS) OF ESTIMATION ON IMAGE

SAMPLES EXTRACTED FROM MC AMSTERDAM TERRASAR-X DATA.

Urban A Urban B Vegetation Water
GA1 137.5 11.3 23.8 30.4
GA2 137.5 16.3 19.0 18.8
GF 46.7 58.4 91.0 134.2
GN 390.4 370.0 167.5 205.3
GK 45.6 44.3 31.1 57.3
G0A1 5.8 11.2 25.8 26.2
G0A2 12.3 16.3 18.1 18.9
KA1 5.7 11.3 17.0 29.8
KA2 15.4 15.5 17.3 17.7
UA1 8.7 106.5 87.0 53.7
UA2 8.7 141.1 134.4 168.2

on real data. It can be confirmed that with the new estimators,
the G distribution can not only mimic the modeling flexibility
of K, G0, and Kummer-U distributions, but can also compete
well in terms of estimator computation time.

In the future, we will utilize the G distribution with its new
estimators in various PolSAR image analysis algorithms like
supervised and unsupervised classification, segmentation, and
target detection from background clutter.
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