Abstract:
This paper proposes an extended nonlinear chirp scaling (CS) image formation algorithm for the bistatic synthetic aperture radar systems with the squinted transmitter and...Show MoreMetadata
Abstract:
This paper proposes an extended nonlinear chirp scaling (CS) image formation algorithm for the bistatic synthetic aperture radar systems with the squinted transmitter and a fixed receiver. Since the transmitter with the squint mode was adopted in the system, two main problems, i.e., the spatial variance of the frequency-modulation rate and cubic phase terms, were introduced in the image formation algorithm. The former problem was solved by the linearity approximation of parameter p and deduced q (the second- and third-order coefficients of CS factors in range, which could be used to remove the spatial variation and high-order phase in the range direction) along the range domain while the latter one was compensated by a cubic analytical phase term in the frequency domain. A corresponding experimental hardware system and the bistatic experiments were also described in this paper. Both the simulation and experimental results validated the proposed algorithm.
Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 51, Issue: 10, October 2013)