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Abstract—The extraction of information on land cover classes study area of interest, as it is the fastest growing province
using unsupervised methods has always been of relevance to theSouth Africa, housing more than 11.3 million people in the
remote sensing community. In this paper a novel criterion is year 2011. This equates to 22% of South Africa’s population

proposed which extract the inherent information in an unsuper- . . . . 0
vised fashion from a time series. The criterion is used to fit a living in the province that has land area of only 1.4% of

parametric model to a time series and derive the corresponding the total land in South Africa. Proper knowledge of land
covariance matrices of the parameters for the model and estimat cover is critical for effective allocation and manageméithe

the additive noise on the time series. The proposed criterion environmental resources. Digital classification of landero
uses both spatial and temporal information when estimating the - ¢4nsjst mainly of spatial and spectral analysis. Few method
covariance matrices and can be extended to incorporate specira - - .
information. The algorithm used to estimate the parameters for eXpIO!t the te.mporal resolution offered bylcoarse resofuti
the model is the Extended Kalman filter. An unsupervised search Satellites, which enables the capture of different landecov
algorithm, specifically designed for this criterion, is proposed dynamics. An example of land cover change is illustrated
in conjunction with the criterion that is used to rapidly and in figure 1. The red box in figure 1 illustrates a land cover
efficiently estimate the variables. The search algorithm attempts conversion from natural vegetation to newly formed human

to satisfy the criterion by employing density adaptation to the L .
current candidate system. The application in this paper is the settlements. The blue box in figure 1 illustrates a seasonal

use of an Extended Kalman filter to model MODerate-resolution Variation of natural vegetation. The limitation of usingotw
Imaging Spectroradiometer time series with a triply modulated images is that similar land cover types (blue box in figure 1)
cosine function as the underlying model. The results show that can look different at various times of the year [3]. This will
the criterion improved the fit of the triply modulated cosine require the incorporation of local information to adjuse th

function by an order of magnitude on the time series over all - . , .
seven spectral bands when compared to the other methods. Thechange detection algorithm’s settings to reduce the nuraber

state space variables derived from the Extended Kalman filter are false alarms caused by seasonal variation.

then used for both land cover classification and land cover change  The remote sensing community’s monitoring capabilities

detection. The method was evaluated in the Gauteng province keep improving with the development and deployment of

of South Africa where it was found to significantly improve on ey technologies. Global data sets are becoming more ac-

land cover classification and change detection accuracies when ibl d tati | b .

compared to other methods. cessible and computational resources are becoming more
affordable [4]. These data sets come from several differ-
ent sensors. The more popular satellite based sensors are:

|. INTRODUCTION Landsat Multi-Spectral Scanner (MSS), Multi-angle Imagin

Reliable surveying of land cover and the detection of chang@€ctroRadiometer (MISR), Sgshe Pour I'Observation de
in land cover has always been a key interest of the remdtel€re (SPOT), Advanced Very High Resolution Radiometer
sensing community. The increase in human population is off&/HRR) and MODerate-resolution Imaging Spectroradiome-
of the major contributions to anthropogenic activities igea €7 (MODIS). The type of land cover change that can be
ographical area [1]. Several studies have since investige detected also changes with newer technologies, which nesjui

effects that anthropogenic activities have on the enviremm the continual pursuit of new change detection methods &, [
and it is estimated that more than a third of the Earth's land Lhermitte et al. proposed a method that separates different
surface has been transformed [2]. The Gauteng provinceis fANd cover classes using a Fourier analysis of NDVI time
series [7]. It was concluded that good separation is achieva
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Fig. 1. Land cover change detected in Protea G##? {5'52.38"'S, 27°47/07.42"E). The Quickbird image at the top was taken on 31 July 2001 bhed t
bottom on 7 September 2008 (Courtesy of GodgfeEarth). A change in land cover type is shown in the red boxJeminly a seasonal change is shown
in the blue box.

The Extended Kalman filter (EKF) can be used as a featumproved parameters to use within the EKF in an unsupervised
extraction method based on the assumption that the paresmeteanner. An unsupervised search algorithm is provided which
of the underlying model can be used to separate a seti®fused to search through this defined parameter space. The
time series into different classes. Consideration mustivieng method of setting the initial parameters is tested with the
when selecting the model, as it should reflect the seasofedture extraction method proposed by Kleynhansl. [8].
behaviour of a specific land cover class. It follows that mofEhe spectral bands in the paper are modelled separately as
separable parameters derived by the EKF makes it easieitriply modulated cosine functions, which is an extensiothef
detect changes in the assigned classes [8]. method proposed in [8]. The performance of this new method

is compared to a non-linear least squares algorithm and an

The objective of this paper is to propose a novel criterioBKF, which is set using the Autocovariance Least Squares
that can be used to set the initial parameters of an EKRLS) method [9].

An operator typically uses a training set to supervise the

adjustment of the initial parameters within the EKF until The paper is organized as follows. A description of the
acceptable performance is obtained for a set of time séfes. data set is given in section Il. Section 1lI-A discusses the
criterion proposes an appropriately defined parameterespacinciple behind using an EKF to model a time series using a
which uses a spatio-temporal window to enable the search foply modulated cosine function. The importance of thaiahi



. . . TABLE |
parameters used to set the Extended Kalman filter is distUS$8pyarion ESTIMATES PROVIDED BYSTATISTICS SOUTH AFRICA IN AN

in section llI-B, illustrating how the behaviour is depente ANNUAL REPORT FOR THEGAUTENG PROVINCE FOR THE YEAR
on these initial parameters. A novel criterion is proposed, 2000-2011

called the Bias-Variance Equilibrium Point (BVEP) critariin Year | Estimated Population
section IlI-D, which defines a desired set of initial paraengt 2000 8,571,705

that will provide optimal performance. The BVEP criterion 2001 8,865,664

uses both the temporal and spatial information to design a 2002 9,181,751
system with desirable behaviour and it is concluded on how it 2003 9,518,114

can easily be extended to incorporate spectral informa#on 2004 9,643,428
specifically designed search algorithm called the Biasaviae 2005 9,799,634
Search Algorithm (BVSA) is proposed in section IlI-E, that 2006 10,046,871

will adjust the Bias-Variance Score (BVS) to best satisfy th 2007 10,192,199
BVEP criterion that will provide good initial parametersr fo 2008 10,467,705

the Extended Kalman filter. Section IV presents the resilts o 2009 10,554,587
optimizing the EKF, along with the land cover classification 2010 11,198,051

and change detection experiments in the Gauteng province. 2011 11,326,375

Section VI presents the conclusion on how this criterionidou

be used for land cover information extraction. TABLE I

MODIS SPECTRAL BANDS SPECIFICATIONS USED IN THEMCD43A4

Il. DATA DESCRIPTION (COLLECTION V0O05) PRODUCT.

A. Study Area Spectral| Wavelengths| Spectral range
bands | (hanometers

An increase in anthropogenic activities is usually dirgectl Band 1 620-670 | Visible (Red)
correlated to the increase in human population in a geograph Band 2 841-876 | Near infrared
ical area. The Gauteng province is located in the Highveld Band 3 459-479 | Visible (Blue)
of South Africa and is currently the fastest growing prognc Band 4 545-565 | Visible (Green)
in South Africa, which is evident in the growth in population Band 5 | 1230-1250 | Short infrared
provided by the population estimates shown in Table I. These Band 6 | 1628-1652 | Short infrared
estimates are provided by Statistics South Africa in an ahnu Band 7 | 2105-2155 | Short infrared

report for the Gauteng province. The province is also thetmos
urbanized province in the country and contributes more than
one third of South Africa’s economy. Large areas of natural
vegetation still exist even with the mass expansion within [Il. M ETHODOLOGY
the province. The method was applied to a validated stugy Extended Kalman Filter

area that corresponds to a total area of approximately 285.5 . _ o
km?. The Study area’s land cover is predominanﬂy natural The EKF is a non-linear estimation method that prOduceS an

vegetation and human settlements. The time series in @imated observation from an actual noisy observatioe. Th

validated study area were verified using visual interpiatat estimated observations are computed using a defined paramet
of SPOT images to map areas of no change in land coVvé model. The EKF estimates the state-space parameters for
type during the study period for the temporal component §1€ model using the noisy observations. The EKF has been
the analysis. The proposed method was then tested on #$€d in the remote sensing community for parameter estima-

entire Gauteng province (19676Knto measure the growth tion of values related to physical, biogeochemical proegss
of human settlements. or vegetation dynamics models [12], [13]. The observations

used in this study were obtained from the spectral bands of
] ] the MODIS sensor.

B. MODIS Time Series Data In figure 2(b), a Fourier transform is used to observe that
The MODIS (MCD43A4, Collection V005) 500-meter, Nadirthe majority of the signal energy is contained in the mean
and Bidirectional Reflectance Distribution Function (BRDFand seasonal component of the second spectral band’s time
adjusted spectral reflectance bands were used, as it sigsifiries which is the infrared spectrum (figure 2(a)). Thisliesp
cantly reduces the anisotropic scattering effects of seda that the time series is well represented in the time domain as
under different illumination and observation conditiod®], a single cosine function with a mean offset, amplitude and
[11]. The data set provides a sample on a rolling 8 day interyghase, as shown in figure 2(c).
based on a 16-day of MODIS surface reflectance compositeThe EKF has also been used as a feature extraction method
period, for each of the seven spectral bands at 500 metermodel a NDVI time series for a given pixel as a triply
resolution. For each pixel in the study area, a time series waodulated cosine function to improve land cover separation
extracted for all 7 bands from the data set (tile H20V11) fier t [8]. This paper proposes an extension to this model predente
time period February 2000 to January 2011. The specificatian [8] by modelling each spectral band separately as a triply
for the 7 spectral bands are provided in table II. modulated cosine function. This is expressed as
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(a) Time series of reflectance values recorded by the MODIStigdeband 2.

5og ‘ ‘
5 Mean component — Spectral band |2
Q.
£0.6- -
o
[S]
204 R
g Seasonal component
0.2 T/ i
i<
= 0 ? e 2 4 o 4 4
0 5 10 15 20 25
(b) Discrete Fourier transform of the time series shown in (a)
T T T T .. - -
. S 3500 —Original time series
Ng . —Kalman tracking
g [} N -".’\
S 33000 e 4
S5
€ © 2500
o 2
o B P
2 o 2000 . e —
n X e
s, "/"

15\]0(: 1 1 1 1 1
an 02 Mar 02 May 02 Jul 02 Sep 02 Nov 02

(c) Extended Kalman filter tracking the observation vectottsagted from spectral band 2.

Fig. 2. The time series recorded by the second spectral baraddeographical area is shown in (a) with the correspondingnithade of the discrete Fourier
transform shown in (b). A triply modulated cosine functiorfitted to the time series using an EKF in (c).
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Xikw = [Mikp Qigy Dirp]"

)

The relation betwee; ;. , and X(; 1) ;. for theb-th spectral
band is denoted by the transition functifin The state-space
vector)?myb is related to the observatigp ;, , via a non-linear
measurement functioh,. These relationships are expressed as

Yikp = i kb + b cOS(wk + @s k) + ik, (1)

where y; 1, denotes the observed value of th¢h spectral
band’s time series) € [1, 7], of the k-th pixel at time index
i. The noise sample of thi-th pixel at timei for the b-th

spectral band is denoted by ; ;. The noise is additive with

an unknown distribution. The cosine function is fitted toleac Kip = (X (i-1).k0) + 26-1) kb (3)
spectral band and is based on several parameters; therfiqueng
w, which is the same over all the spectral bands, the nonzero Jiko = 0y (Xi kp) + Visk.b- (4)

mean p; 1., the amplitudec; ;, , and the phasep; ;. The

frequency is explicitly calculated as=27 f, wheref is based The estimated observation is denotedihy ; in equation (4).

on the annual vegetation growth cycle and the sampling fateld'e€ process noise is denoted By _)x, and the measure-
the MODIS sensor. Given the 8 daily composite period of tHaent noise byv; . 5.

MCD43A4 MODIS data productf is set to8/365. The values ~ For the present case of land cover classification, it is
of pi kb, ik and the phase; j , are functions of time and assumed that the state-space vech;k,b does not change
must be estimated for each pixél,k € [1, Kinax, given the significantly through time; hence, the transition functisn
observationsy; 1, for time indicesi = {1,...,Inax} and assumed linear. The measurement function, however, osntai
spectral bands = {1,..., 7}. The maximum number of pixels the cosine function and, as such, is evaluated via the s@nda
in the data set is denoted W#,,.,, and the maximum number Jacobian formulation, through linear approximation ofrtbe-

of observations in a time series is defined hy,.. A state- linear measurement function around the current stateespac
space vector is estimated by the EKF at each time index fegctor. Both these functions are possibly non-perfect,hgo t
each spectral band and contaifisparameters, which in this addition of process;_i);;, and measurement; ;. ;, noise
case isS=3 and is defined as is required [14]. The state-space vector's update is based o



the newest observation valye, , [14]. The estimated values using the optimal Kalman gain denoted W8, which is

of X, ., over time: effectively results in a time series ofcomputed as

the state-space vectors for each of g .. pixels for each

spectral band. Rik = Bai—1) o HewSi - (10)
Cor_wertmg _state-spa_ce ve_:ctors to land cover class_les: The matrix Hey, is the local linearization of the non-linear

machine learning algorithm is used to process the eStImaﬁigasurement functioh. The matrixS; ; denotes the innova-

state-space vectors to corresponding class labels. A lelask tiop term which is computed as b

is assigned to each state-space vector for each pixel at eacﬂ

time index as Sie = HestDB (iji—1),u Hog, + Rk (11)

b=7 The posterior estimate of the covariance maty;; . is
Cix = Fe ({{Xi,k,b,s}z:f } ) =Fc ({Xi,hb}Zj). computed as
b=1

. _ _ ©) _ Biji ke = Bk — RinSi kg (12)
The function 7 denotes either a supervised or unsupervised
classifier. The class label for tHeh pixel at time indexi is ~ The tracking performance of the EKF is assessed by eval-
denoted byC; . Land cover change is declared when a pixéfating the stability of the state-space vector and the error
k has a persistent change in class label as a function of tifReestimating the observation. The error in estimating the

i. This is expressed as observation is computed as the absolute error between esti-
mated observatioy); , and the actual observatigp ;.. This is
Cik # Cips 0 <i<j¥i,j (6) expressedas

The MODIS spectral bands are assumed to be uncorrelated Evik = Wik — ikl = |Yik — h<X(i\i),k)" (13)
and are treated independently in this method. The inklex ) o
is omitted for convenience with no loss in generality if €quation (13), it is observed that the state-space vector

the description of the method. The importance of the initiaX ;) » determines the observation ergy; . The state-space

parameters will be discussed in the next section. vectorX ;) » can thus be selected to minimise the observation
error. The observation error can be easily minimised by
B. Importance of the initial parameters significantly varyingX(i‘,M to accommodate the fluctuation

in observations. This does not bode well if the underlying

Itis well known from estimation theory that many predictionyy,,cture of the system is being analysed. A significantly

results simplify when Gaussian distributions are used. The . = LT
' . . varying state-space vectof ;) ; is indicative of an unstable

process noise and observation noise are thus assumed tg T )
odel. The conclusion is that the state-space model must be

i istributed. Th i is th t . . I .
Gaussian distributed € process naise Is thus denoted kr%e)f)t stable, while also attempting to minimise the obsémat
i)k 2=1)k ~ N0, Qimy) k), With Q1) . represent error in equation (13).
ing the process noise covariance matrix. The observati@eno The initial estimates provided to the EKF will now be

is denoted by s, v ~ N (0, Ry ), with R, representing discussed to illustrate their importance. A stable stpaee
the observation noise covariance matrix. The EKF recussive - =

adapts the state-space vector for each incoming obsemagio Vector requires small adaptation fraify; ;1) t0 X,k
predicting and updating the vector. In the prediction step t The initial estimated state-space vecio) k. X(0j0).x € X,
state-space VECIOf((i\iq),k and covariance matris ;1) for the first obser.vatioryo_,k is optimised qsipg a local search
is computed. The subscrigt|i — 1) denotes the evaluation atmethod or domain knowledge which satisfies
time index: given all the previous indices up to and including - -
(i —1). The predicted state-space vector's estimsg; 1) X(0jo),x = argmin { ‘yo,k - h(X> ‘ } (14)
is computed as Xex
" - _The recursive adaptation of the state-space vector’s atim
Xii—1).k = f(X(i—1|i—1),k>a (7) X(ih‘),k is then calculated using the predicted step given in
equation (7) and the updating step in equation (9). Equdtipn
is substituted into equation (9) which yields

Biji—1)k = Q1) + Fest Bi—1]i—1),5 Fest- ® .

o o _ X :f()?i, i)+ (v .—h(f()?i, )
The matrixF.; is the local linearization of the non-linear tran- (1), (=1l ) Rik Yok (i—1li=1).k 15
sition functionf. In the updating step, the posterior estimate

and the predicted covariance mat;;_,) ; is computed as

- ; The Kalman gaing; , sets the magnitude of change in the
of the state-space vectdf(;|; » is computed as estimated state-space vector for each time increment.elf th
observation error is large and the Kalman gain is large, then
large changes will be made to the current state-space vector

Xaliyr = Xifi-1). + Risk (y“C - h(X““)>’ ©) " if the observation error is large and the Kalman gain is small



then the state-space’s estimaig‘i),k will adapt slowly which
typically leads to large observation eri®y ; 5, (equation (13))

until it eventually converges. If the observation error risadi Bii-ali-nr = (Qi-2)k + FeaBimgjimg pFest) -
and the Kalman gain is large, then the state-space vector (( (i— 2)k+Febt%(z 2]i—2), #Fes) Hog
will struggle to converge as it will continually overshodiet (Hest (Q(i—2)k + FostB(i—2/i—2) 1 Fest)

deswgd _f,tate—space. vector that WI|! minimise equat!on).(13 HT, + R k)_l)(Hest(Q(i—Q),k i+

Substituting the optimal Kalman gain given in equation (10) R

into equation (15) expands it to FestB(i—2)i—2) 1 Fest) Hese + Ri—1),%)
((Qi—2) + Fest B (i—o)i—2) 1 Fast ) HLy

z 2 _ (Hest (Qi—2).k + Fest B(i—2)i—2) 1 Fst)
Xk = F(Xu_1— +B i s HE S (i — ’ T es
(310 (X 1 ) + Bi ) HES ! (v HY 4 Ry )T 20)
h(f(X(i—W—l)vk)))’ (16) Equation (18) is computed for every newly obtained obser-

The Kalman gain is dependent on the predicted covarianéion- The state-space vector's estimalg;) . requires the

matrix B;;_1), and innovation terms; ,. The innovation results from equation (20) to compute the current estimates

term controls the trust region within the state-space wicto | '€ transition functiorFe,, and measurement functioH.

space. This is dependent on the predicted covariance s known, then the only variables left to compute in equa-

trix B;;_1), and observation noise covariance matRx;. tion (20) are: (1) initial covariance matri® o)., (2) process

Substltutmg the innovation term given in equation (11pmtn0|se.covar|ancg matri®; 1) x, and (3) observation noise’s
equation (16) results in covariance matrixk; . The conclusion from equation (18)

and equation (20) is the initial parameters which are of
importance are:

X(i|z’),k = f(X(iflﬁfl),k) + %(i\iq),kH;fst(Hest%(mq),k 1) Initial state-space vector’s estimaf(ego‘o),k,
_ = 2) Initial covariance matrix estimat®
T . 1 L . . (0]0),k>»
Heo + Rik) (y”"”’ h<f(X(Z‘1|'L‘1)”“))>’ 3) Process noise covariance maté; 1 .,

(17)  4) Observation noise covariance mamx k-

The last term to evaluate is the predicted covariance ma-! N€ initial state-space vector's esnmésfg)‘o) » IS initialised
trix B;j;_1)x- The predicted covariance matri® ;;_1) . is using equation (14). Even if an incorrect estimate is used,
substituted to yield an updated state-space vector as the state-space vectdf(m ),k should converge to the correct

vector asi — oo. The same is true about the initial covariance
o o matrix B go),x- AS i — oo, the covariance matrisB ;) i
Xae = f(X(i—l\i—l),k) + (Qi-1),k + FestB(i—1i—1),» Should tend to converge to the correct matrix. Usual opamati
est)HeTgt(Hest(Q(z Dk T FestBi—1)i-1), kFest)g:etk:seEnl;; Srﬁ;rfze initial covariance matfioo), equal to
H 4+ Rip)™ ! (ym — h(f(X(Z 1i-1), k))) The initial covariance matrix3 o), Will stabilise as
(18 )equation (8) is a discrete Riccati equation, and under icerta
circumstances will converge which results in equation (20)
The transition functionf and measurement functioh are CONVverging to a stable state [15], [16]. The conditions for
assumed to be known. The observatin is supplied by the convergences of the discrete Riccati equation are:
real system. The only variables left within equation (18) ar 1) the process noise covariance maw@y; 1) x is a posi-

the: (1) previous state-space vector’s estlnm1|171),k, (2 tive definite matrix, . .
process noise’s covariance matd,_) ;, (3) previous esti- 2) the observation noise covariance matRx, k is a pos-

mate of covariance matri®s;_1;_1)x, and (4) observation Itrl1ve de_f|n|te matrix, ) liabl
noise’s covariance matrir; . 3) the pair Fest, 2(;-1),x) IS controllable,

) o ] _4) the pair Fos, Hegt) iS Observable.
The previous estimation of the covariance matnt(J L . .
: . o nder the conditions set above, the predicted covariance
Bi—1)i—1),. Will be briefly explored as it is part of

equation (18). The covariance matfi, 1,1 is updated matrix B ;;_1),;, converges to a stable matrix and is expressed
Z 11— as

with
Zl;rr()l() %(“7‘,_1)7]@- = %stablca (21)

— T
Bi-1)i-1)k = sB(ifllif2),k_ﬁ(ifl)-,ks(if1)”%&(1'71),16' (19) whereBg.11c IS @ symmetric positive definite matriapie
is a unique positive definite solution of the discrete Riccat
The Kalman gain given in equation (10), the Inr‘Ovat'oequatmn andB;.p1e IS independent of the initial distribution
term given in equation (11) and the predicted covarianc

matrix 9B ;_1};_2) x given in equation (8) are substituted |ntoOf initial state-space vector's estlmaIQmO) k-
equation (19), to yield The values ofX (00),x and*Bg|p),x can also be estimated



using an offline training phase. Offline refers to observetiothe dimension of the observation vector is smaller than the
which are stored and are used recursively for estimatiostates, which leads to the condition where the ALS method
The process noise covariance mat@y;_ ), and observation will produce multiple solutions to the estimation of thetiai
noise covariance matrixR;; are assumed to be constanparameters. The best performing covariance matrices peatu
throughout the recursive estimation of the observatioris &h by the ALS method were used and were obtained by applying
usually manually set by a system analyst in an offline trgininthe ALS method to various different initial estimates of the
phase through successive adjustments. The initial settingcovariance matrices.
the EKF is thus defined as setting the following:
2 D. Bias-Variance Equilibrium Point Criterion
The general approach to estimating and initialising the

3) Process noise covariance mat@y, ) is set to a fixed state-space vectors, as well as the observation- and groces
matrix ’ noise’s covariance matrices for the EKF, is usually for an

4) Observation noise covariance matf; , is set to a analyst to determine these offline using a training data set.
fixed matrix. " Proper estimation of the initial parameters through vaiou

The EKF will track the observations with minimum residualinmrhOOdesr (leesetlidr:att?or?cc):gﬂIglf:(;ruggga\gtzl:r: T;Zgbt.:te E\IK| F ’ Wlls hile
and have a stable internal state-space vector if all initif'ﬂ] prop ) y "y
arameters are properly set 0 delayed tracklnglor_abnormal system behgwour.
P ' A novel BVEP criterion is proposed that will use temporal

and spatial information to design a parameter space where

1) Initial state-space vectof(om),k is estimated offline,
2) Initial covariance matrixs o), is estimated offline,

C. Estimation of the noise covariance matrices desirable system behaviour is expected. This is accongalish
From the previous section it was shown that the initidly first observing the dependencies between the initial pa-
parameters that need to be set are: rameters. The proposed criterion is used by an unsupervised

BVSA to iteratively adjust a BVS to determine proper initial
parameters for the EKF. The characteristics of the initial
parameters are first explored before describing the aiteri
The first parameter to investigate is the observation noise
i o X ) .. covariance matrixR; ;. The observation noise covariance
The setting of the initial parameters requires reliablerinf matrix R, is defined here as only observing the diagonals of

mation about the system. The practical implementation ef tlfhe matrix and that only a single spectral band is evaluased a
EKEF is usually done in the absence of this information and the

initial parameters are set in an ad-hoc method by an operator Rix = El(yin—Elyir))?): (22)
to obtain reasonable performance.

Several different approaches have been formulated to soMais expression holds as the spectral bands are assumed to
the estimation of the initial parameters [17], [18], [19hel be uncorrelated and that the MODIS sensor only produces a
Autocovariance Least Squares (ALS) method was presentedsiiygle reflectance value per pixel per spectral band. Thensec
Odelsoret. al[20], where the correlation within the innovationparameter is the process noise covariance maix and is
data was explored to form a least squares problem to determéigfined as
the noise covariances for the disturbances. A motivation fo
using this method is that it avoids a complicated non-linear Qi = diag{ E[(Xi k,s—E[X;1,s))°]}, Vs.  (23)
estimation approach used by methods that employ a maXim"ms expression holds as the state-space variables witlkin t

likelihood estimation approach [21]. The_ drawba<_:k was t_hg{ate-space vector are assumed to be uncorrelated. Thegsett
all these _r_nethods ?SS“_”‘ed that the n0|se-_sh_ap|ng matiX,ipese initial parameters have a major effect on the olveral
the transition equation is known, where this information '§ystem performance. The initial state-space v & foy.. for
usgallyk:]ot.avallablg. Ir? t?e absc;ance 9f |nf0(;m|qt|on %bt:g[dtthe first observationy ; is optimised using equation (1'4). This
noise-shaping 'matrlxt € linéar dynamic model IS MOCelEd B, either be done using a local search algorithm or applying
a Gaussian noise vector. Rajamani and Rawlings [9] dest”tiﬁrect domain knowledge. The initial state-space vectahis

a method which estimates the structure of the noise-shapwgrk was set using the Fourier transform's components as
matrix in an iterative approach. The ALS method assumes thﬁoposed by Kleynhanet al. [8]

1) both the measurement functibrand transition function = The initial estimated covariance matri oo« is usually
f are known, set to the identity matrix as it is recursively estimated hg t
2) enough observation vectors are available to ensure $RF. This only leaves the estimation of the observation @ois
internal covariance matri® ; ;) , becomes stable, and covariance scalaiR; ; and process noise covariance vector
3) the residuals at different time increments are uncorrgy, , . et the uncorrelated observation noise covariance ma-
lated. trix’s diagonals be placed into a vector called the obs@mat
The ALS has the ability to provide unique solution to theandidate vectofl'z ; ;. where T ;. is selected from the
initial parameters if the measurement functians full rank, spacevy, and it is expressed as
which implies that the dimension of observation vector is
equal to the dimension of states [9]. In the case of this study TRk =10%#/10 (24)

1) Initial state-space vectoX (o) x,
2) Initial covariance matrixs o)«
3) Process noise covariance mate;_1)x,
4) Observation noise covariance matfy j.



with The second criterion is based on the internal stability ef th
state-space vector. This can be measured as the variations i

Ciw = 101ogyo (E[(yin—Elyik])?])- (25) each of the state-space variables. The second desirediti@hav

ids_ expressed as the minimal achievable absolute deviation i

Let the uncorrelated process noise covariance matrix’s b . L
d% t;;1ete—space variables, which is computed as

agonals be placed into a vector called the process candi
vectorY g ; 1, whereY g ; i, is selected from spacey, which

is expressed as Kmax Tmax
p 0s = min { Z Z HXZ-_,kysE[XMyS]H}, Vs, (33)

- TR, kEVR, ‘
T = 108k - Sksl/10  10%/10 - (26) Tonevg \ k=l i1

with then

Siskys = 1010gyo (E[(Xik,s—E[Xik,s))?])- (27)

Kmax Tmax
It should be noted that the EKF only recursively updates th&o., Qo.] = argmin { Z HXz-,k,s—E[Xi,m]H}, Vs.
state-space vectox (;|;),x, and the covariance matri® ;) - ?;’;EJ; k=1 i=1

The time index of the observation noise covariance matrix (34)

Qi k has.be.en left inserted to emphasise the time effect fihe et [Ro..Q,.] represents the parameters required to
a dynamic linear system. The EKF, however, does not aligghieve the minimal absolute deviation in the state-space

the observation noise covariance matrix at each time indgxriaple s. The minimal absolute deviation for state-space
and is thus assumed constant for all time indices. This \i§raple s is computed as

formally stated asQ=9,, Vi. The process noise covariance
matrix is also retained as a constant for all time indices and

is stated asR=R;, Vi. This concludes that the observation Fomape Tmax

noise covariance matrix and process noise covariancexmatri s — Z Z HX“%S E[Xiﬁk’S]H
are time independent. This property allows the observation

candidate vector to be rewritten as The spatial information is included through the use of a set
of time series all located in a specific geographical are@ Th
Trp=10%/10 vk, (28)  set of K.y time series for a geographical area is denoted by
{7} = {{yir}i=Im). Let ¢; ¢ denote the probability density
function derived at time index from the residuals given over
Yo = 100k = ks1/10 — 105/10 v (29) the set of observation§y; , }¥== such that

(39)

k=1 i=1 R=Rs,,2=Q0,

and the process candidate vector rewritten as

_ It was stated earlier that the p_erformance_of the _Kalman Ry Ry

filter is benchmarked by the residual error in tracking the pip, < £ < R, :/ g(€', R, Q)dE" = gi.edE’.

observations and the internal stability of the state-spacéor. Ry Ry

A parameter space is defined here to describe the system (36)

behaviour. Let ¢; s denote the probability density function for the state-
The first desired behaviour is the tracking of the obsermatispace variables derived at time index from the deviations

with minimal residual. This desired behaviour is expresaed given over the set of state-space vectol§ ; ; }i= <= such

the minimal achievable sum of absolute residugjswhich is that

computed as

R4 R4

K T
. mex Tmax PlR: < s < R, = s\ R,Q dS/:/ i sds’.
o= min {zznyi,k—yi,ku}, gy FRSssRi= [ a6 R 0 = [ Ca
Yoneve O k=1 i=1 (37)

A conditioned observation probability density functign.
is defined as the probability density functiang, given in
equation (36), which uses the sg®,,., Q,.] to satisfy the

} (31) condition given in equation (32) as

then

Kmax Imax

[Roe, Qoe] = argmin { Z Z |93k — vk

Trrcvr, =y =1
Yo kEvg Re
The set[R,.,Q,.] represents the parameters required tB[Rs <& < Rg :/ 9(€', Roe, Qoe )dE’ :/ q; £d€’.
achieve the minimal residual. The minimal residual is then fts fia (38)

computed as A conditioned process probability density functigp, is

Reg

Kumax Zmax defined as the probability density functiop s, given in
oe =Y > |[gis —vikl (32) equation (37), which uses the sR,., Q,.] to satisfy the
k=1 i=1 R=Rop,Q=Q0, condition given in equation (35) as
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(a) In the initial iteration it is determined that the ampliéysrameteb) After the first iteration it is determined that the ampligud
is the least satisfied parameter and second the mean parametguarameter and the mean parameter can be better satisfied.

q2
R,k |1,
* ) ) ES k k3
%i.e Qi Yise Di,p
Propagation 3
qiz,oc direction 3 ?R’k 5
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3
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direction
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(c) After the second iteration it is determined that the aragbt(d) After the third iteration it is determined that the obsgion
parameter and the mean parameter can be better satisfied. ~ vectors need to be tracked better.

Propagation

* iracti *
Qi,g direction q’zk,p, ng q;;k,u
4 o0
4 ¥R7k 4 oS A R,k 5o
qiag T4Q,k qi,p, qi,g OQO’k qi)ﬂf
4 €9
qi,a qi,a
* *
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(e) After the fourth iteration it is determined that the mearapeeter(f) Through the decaying variabtg' the search algorithm terminates.
can be better satisfied

Fig. 3. An visual example of the operations of the unsupedvisgarch algorithm attempting to satisfy the BVEP criterion.



E. Bias-Variance Search algorithm

The Bias-Variance Search Algorithm is proposed that will

attempt to estlmatéTRk and T’Qk to satisfy the BVEP
(39) criterion using the BVS given in equation (43). The BVSA

The performance of the current estimafe, , and Yo, is Starts by creating ideal operating conditions for eachrpatar
defined by a criterion that evaluates how well the conditior8 the EKF to compute; . andg; ; followed by using a hill-
stated in equation (30) and equation (33) are satisfied. T¢lgnbing algorithm approach to search for a setltf ;, and
current estimates are recursively updated and are dengtedrog , that will satisfy at best the ideal operating conditions
T;z . and TQ »» Where. denotes the iteration number. Thefor all the parameters in the EKF.
current estlmateét“;2 . and T'Q . are used to derive the set of The first ideal condition is a system that employs perfect
probability density functlons{qlg} Vi, and{¢; .}, Vi. tracking of the observations. This ideal condition is used t

A f-divergent distance known as the Hellinger distance [2ZFeate the probability density functiajj ¢, which is obtained
is used to measure the similarity between the probability- dedy
sity functionsg; . and ¢; .. The modified Hellinger distance
Hie, Hie €[0,1], is computed as

Rg

P[R; < s < Ry :/ q(s", Ro., Q. )ds g;4ds’.

R Ry

4 e = {ai.c : {G} = —00; {cr,s} = 00,V s}. (46)

Under perfect condition the probability density functigh,
(40) should tend to be an impulse of unity power situated around
the zero position, meaning zero error residual is measured.
The second ideal condition is a system that employs a stable
state-space variable. This ideal condition is used to erted
probability density functiory; ;. This is obtained by

oo
Hie=1—4|1- / qi,é‘ q;k7gd5/7
—oc0

where a value of{; ¢ — 1 means high similarity betweejj
andg; ¢, while #; ¢ — 0 means low similarity. The modified
Hellinger distance is also used to measure the similaritytfe
state-space variables. The modified Hellinger distafgg,

H, . € [0,1], is computed as {ais : {G} = 005 {5114 yer=sia} = 00 {sk,s} = —o0}.

(47)
This condition creates an environment which attempts icktra
the state-space variable with the smallest variation. After
the ideal observation conditions’ probability density dtians

where a value of{; ; — 1 means high similarity betweejj , q; ¢ andg; ; are computed, a hill-climbing search algorithm is
and ¢, while #;, — 0 means low similarity. The BVS is applied to find a set of initial parameters that will bestsfgti
defined to encapsulates all the similarity metrics as all these ideal conditions. The BVSA iteratively searches
the parameter space and is shortly described below in the
following steps (a flow diagram is also provided in figure 4):

*
Qie

His=1— 41— / 4 s 47 545, (42)

(42)

I'; = min ({'H7 Iy Sy U{'H,;g}).

Finding optimal estimates fofI” = and TL , Tequires a

stable covariance matrl%( [) k- Equat|0n (21) states that

the predicted covariance matri%; ;) , should converge to
a stable matrix under certain prerequisite conditions. Zzet

denote the number of time steps which are required to ensurg)

the predicted covariance matrt¥ 7.z, 1), converges to
ensure a stable covariance matfXz, |z, . The BVS is

1) The BVSA starts with the initial parameters set(ds=
0dB, V k, andg,”deB v k,s.

Compute the state-space vectXi(IﬂIT 5 at timeZr
using the samérs, "x = ¢ and T’Qk = {¢}5=7 for
every time series in the ség, 1= K"“X

2)

errors gz, ¢ over the Ky, time series at time index
Ir.

Obtain the probability density functlon of the residual

deemed accurate dtr which is defined as 4) Obtain the probability density function of the variable
distribution g, , of the state-space variableover the
K.« time series at time indeX.
) Compute the modified Hellinger distandéz, ¢ as
shown in equation (40).
6) Compute the modified Hellinger distanggr, s Vs as
shown in equation (41).

7) Determine the best performing conditi@fy,.s; as
Hbest = max {{HZT,E} U {HIT,S}::zlS . (48)

If the reflectance values of the spectral bands are cortglate 8) Determine the worst performing conditiGf..s; as
then the BVS is expanded to compensate for this as i s—S
7'lworst = Inin {{HIT,E} ) {HIT,S}S;1 (49)

9) Adjust the new(; according to its relative position to the
best and worst performing parameters using a threshold

Iz, =min ({Hz, 5 UMz e}).  (49)

The BVEP criterion is defined as the BVS which optimally
maximises the conditions. The BVEP criterion is thus foilgnal
defined as

max

FI
T =R, T
R7k€v ) Q,ker

{T'z, }. (44)

r =

b=B
b=1 U{HIT»bS}

I'z, = min ({{HIT bos for T 9 ) (45)
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g,i; and C}?Ll distance Hz,. s distance Hz, ¢

. N
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No Stop criterion
satisfied

Initialize EKF with
L
Rk and TLQ,k

Fig. 4. A flow diagram that describes the various steps of theipervised search algorithm.

P, pu € [0,1], py € R. The adjustment is made as stabilises, or a stopping criterion is satisfied. This psscef
adapting the state parametéf , andY{, , are illustrated in

CL + L |f HZT,‘E‘*Hworst > . . . > )

-l ETY Hoot —Huwores ~ PH (50) a visual example in figure 3. It should be noted that figure 3

ko Ct—nt i % <on) is a visual example and not a mathematical description of the
pest T Thworst unsupervised search algorithm. In this illustrative exkntpe

The variabley* is a decreasing scalar measured iBearch algorithm converges after a set number of iterations
decibels and is a non-negative real number. After the search algorithm converges, the estimﬁteék and

10) Adjust the new;, according to its relative position to they . are used to initialise the EKF.
best and worst performing parameters using a threshold™

puy pr € [0,1], px € R. The adjustment is made as
IV. EXPERIMENTAL RESULTS

L + L |f HIT,S_Hworst >
A N Sk,s T Hbest — Hworst PH

Sk,s o (HIp o~ Hworst
Sk = I T o

A. Optimizing using the BVEP criterion

In this section the results obtained by using the BVSA are

The variable~* is a decreasing scalar measEJred ifliscussed. The BVSA is an iterative algorithm that moves the
BVS through a defined parameter space. In each epoch the

decibels and is a non-negative real number. ) Ppald -
algorithm attempts to minimise the standard deviation of al
Repeat steps 2-10 until one of the parametgror ¢, s the state-space variables while simultaneously minirgisie

<
Hbest —Hworst — pH
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Fig. 5. The expected standard deviation of the mean parameteputed over all the time series for the second MODIS spectaad lon the Gauteng
province study area as a function of epoch.
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Fig. 6. The expected standard deviation of the amplitudenpeter computed over all the time series for the second MODIStrgphdiand on the Gauteng
province study area as a function of epoch.
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Fig. 7. The expected residuals computed over all the time ssésiethe second MODIS spectral band on the Gauteng provitoly srea as a function
epoch.



. . TABLE Il
observation error. The experiments were conducted onléabel parameTeRs EVALUATION OF ALL THREE METHODS FOR THEGAUTENG

time series extracted from the Gauteng province. PROVINCE STUDY AREA THE MEASUREMENTS ARE MADE ON ALL SEVEN
In figure 5, the standard deviatien, of the mean parameter MODIS SPECTRAL BANDS ANDNDVI.
obtained by fitting the cosine model to the second MODIS Spectral Mode
spectral band is illustrated as a function of epoch in the BVS Band Least  EKRrs EKFgvep
inti i squares
Thg s?andard deviation reportgd here.|s the average sthndar NGV o004 5002 5003
deviation found over all the time series extracted from the 0.01 0.07 0.05
ou . . .

Gauteng province study area. It is clear from the graph that O 0.01 0.06 0.01
the standard deviation decreases as more epochs are gahcess

. . Band 1 o¢ 96.6 90.8 44.8
which implies that the mean parameter appears to become o 17.7 213 0.01
more stable with each iteration. 0a 225 17.3 15.3

The standard deviatioa,, of the amplitude parameter that Band 2 or 156.4 204.2 123.4
is used to fit the second MODIS spectral band is illustrated o 49.1 20.8 0.01
as a function of epoch of the BVSA in figure 6. The standard Oa 54.9 25.5 0.5
deviation reported here is the average standard deviatiamdf Band 3 os 55.1 46.7 38.5
over all the time series extracted from the Gauteng province ou 10.2 14.9 0.03
study area. It is clear from the graph that the standard tiemia Oa 14.0 12.2 0.02
decreases as more epochs are processed, implying ingreasin Band 4 o¢ 63.3 57.0 42.7
stability with further iterations. o 12.6 19.2 0.04

In figure 7, the mean residual over all the time series’ oo 147 14.5 0.03
difference between the actual observations and EKF output Band5 o¢¢ 153.2 162.9 105.3
is illustrated as a function of epoch in the BVSA. It is o 474 26.6 0.01
observed that the residual decreased significantly afeet B ga 542 22.6 0.01
epoch. Overfitting appears towards the end of the optinoisati Band 6 o 157.3 130.5 87.3
process. This overfit can occur on any metric and in this on 298 24.9 0.01
experiment the overfit is observed on the metric after the Ta 34.8 22.2 0.01
25" epoch. This overfit defines the end of the search and is Band 7 o¢  158.0 151.9 71.9
used as an early stopping criterion. o 278 23.0 0.02

Oa 35.0 21.7 20.5

The process noise covariance vect@r and observation
noise covariance scal® used in the 2% epoch are then used
to initialise the Extended Kalman filter for the experiments

The BVSA is applied independently to each of the seveyqe the EKF.s decreased its observation error at the cost

spectral bands and NDVI time series to obtain a process nojie,arameter stability when compared to the non-lineartleas
covariance vectog and observation noise covariance scalafyyares

R for each spectral band. The EKRsvep performed better than all methods in all the
spectral band experiments, except for the NDVI experiments
B. Parameter evaluation where the EKBygp improves its tracking by increasing the

. . ... variation in the mean parameters. A peculiar observatios wa
In this section the measured parameters of three d|fferc?ﬂgde for the EKFygp in spectral bands 1 and 7. For the

methods are compared, namely the least squares, the EKFngt' spectral band, overfitting was observed in the ampditud

ng the ALS method and the E.’VEP criterion. The COmpa”So|51arameter early in the BVSA, which is used as a early stopping
is based on the standard deviatiop of the mean parameter

the standard deviati f th litud ‘ q th’criterion. For the seventh spectral band case the standard
€ standard deviation, ot the amplitude parameter, an edeviationaa of the amplitude parameter slowly monotonically
observation errors. A mean (amplitude) parameter with

Il standard deviation indicat tabl able. Al 8ecreased for each epoch of the BVSA until on overfit was
small standard deviation indicates a stable varable. Sm?eported on the residuats: at the 22¢ epoch. If the overfit

o¢ indicates a _well—estimated output when compared to tl?ﬁd not occur, then the standard deviatigp of the amplitude
actual obseryatlons. . garameter would still have steadily decrease.

An analysis of the standard deviation of the parameter
evaluated from the Gauteng province’s data set is presented o
in table Ill. The EKF using the ALS method is denoted b{- Classification
EKFsrs and the EKF using the BVEP criterion is denoted In this paper a Multilayer Perceptron (MLP) was used for
by EKFsvEep. The EKFy1,s method increased its residuals idand cover classification. The MLP is a feedforward Atrtificia
spectral bands 2 and 5 to improve the parameters stabilMgural Network (ANN) model that uses multiple layers of
when compared to the non-linear least squares method.nkurons to distinguish inputs that are not linearly segarab
spectral bands 1, 3, and 4 the mean parameter's standéh@ case for using the MLP for urban land use classification
deviationos,, was increased to improve the other two metricsather than a maximum likelihood method was made in [23].
In spectral bands 6 and 7, EKEs performed better than It was shown that the MLP learned the complex non-linear
the non-linear least squares in all the metrics. In the ND\thterdependencies of the multi-dimensional time series da
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Fig. 8. An example of persistent change in land cover classl laer a time period of several months.

TABLE IV
CLASSIFICATION ACCURACY OFMLP USING THREE REGRESSION METHODSEACH ENTRY GIVES THE AVERAGE CLASSIFICATION ACCURACY FOR EAE
MODE, CALCULATED OVER 10 REPEATED INDEPENDENT EXPERIMENTS ALONG WITH THE CORRESP@ING STANDARD DEVIATION. THE AVERAGE
CLASSIFICATION ACCURACY IS GIVEN AS A PERCENTAGE FOR EACH OFHE CLASSES OVER A NUMBER OF SPECTRAL BAND COMBINATION$NDVI,
FIRST 2 SPECTRAL BANDS(RED AND NEAR INFRARED SPECTRAL BANDY AND ALL 7 SPECTRAL BANDS.

Province Spectral Band Class Mode
Least squares EKf.s EKFevEP
Gauteng NDVI Vegetation 92.5+ 4.9 89.3+ 4.8 9144 5.7
Settlement  88.6t 6.4  72.1+ 16.9 86.9+ 9.1
2 Bands Vegetation 97.% 1.8 90.6+ 29 98.6+ 1.0
Settlement  95.1 2.6 87.6+ 3.2 96.2+ 15
7 Bands Vegetation 98.& 0.4 95.3+ 1.8 999+ 0.1

Settlement 98.2- 0.5 948+ 2.4 99.94 0.1

derived from multiple spectral bands. Another example & tltlassified as vegetation in the randg, [ 1], settlement in the
implementation of a MLP using a sliding window to classifyange [-1, 7},], and uncertain in the rangel{;, T3,). The
informal settlement in a MODIS time series [24]. The methodleights in the training phase of the MLP were determined
employs an iteratively retrained MLP described in [24] tosing a steepest descent gradient optimization methodh, wit
capture all local patterns and to compensate for the timgradients estimated using backpropagation [25]. A vabadat
varying climate change in the geographical area. set was used for initial MLP architecture optimization by

The MLP comprises an input layer, one hidden layer ar%(astmg the generalization error to |dent|fy pverﬂttlng thie _
twork for each study area. The retraining at each time

an output layer. All hidden and output nodes used a tan gr?t
) ‘P yer. N X . 950¢rement caused a small adaptation of the weights, and has
sigmoid activation function in each node. The input layer

. e : ow complexity due to the small incremental MLP weight
accepts input vectors for classification, while the outpyel hanges over each 8 day increment. These small MLP weight
represents the likelihood that an input belongs to a speciﬁ :

class. The MLP output was in the range (-1:1), where clﬁanges only required 300 epochs at each time increment for

represents a 100% certainty of class membership to natur}gfwork adaptation.

vegetation given the input vector, while a -1 represents aThe combination of different spectral band’s state-space
100% certainty of settlement. For correct classificatiowas vectors used as input vectors to the MLP were adopted from
required that the MLP correctly classified the time seridhe work presented in [24]. The NDVI, first two spectral

according to a thresholf},. This threshold was used to imposéands (Red and Near Infrared spectral bands) and all seven
a strict evaluation on the output class membership streamland bands were investigated. In table IV, the classificatio

ensure that coherent classification was achieved. This sneancuracies are reported for the three methods when the EKF
that the MLPs tangent sigmoid activation function outpuswas used to extract the features. The average classification
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Fig. 9. A classification/ change detection map of the entirat&@gy province (19676 k).

accuracy is calculated with cross validation using 10 regzba year (2011). In figure 8, an illustrative example is shown of

independent experiments [26]. persistent change in class labels from natural vegetation t
From these results it was concluded that the B¥fp per- human settlements.

formed better than any experiment conducted on the spectralhe change detection accuracy is based on the performance

bands using the EKEs and the least squares. This coul@f the classification accuracy reported in table IV. The ¢jgan

be owing to the fact that the BVEP criterion utilises spatialetection accuracies for the labelled data set is presented

information that is inherent in the set of time series. In thia table V along with the false alarms in parentheses. The

case of the NDVI time series, the least squares method didst performing classification experiment was the B

provide higher classification accuracies when comparetido tand was benchmarked to the least squares experiment. The

EKF initialize with either the BVEP or the ALS. EKFgyep experiment’s results perform better than the least
A general improvement trend was observed when usisguares in every spectral band combination.

more spectral bands in the experiments. The prospect ofA similar trend observed in the classification accuracies in

acceptable land cover classification was confirmed as gessigection IV-C is also observed in this section. An improvemen

by either using the NDVI time series or the first two spectrah the experimental results is reported when more spectral

bands time series of the MODIS data, as this was supporteshds are used.

by the results in [27]. The classification accuracies preduc TABLE v

by the MLP were however found to be the hlgheSt When USInH-lE LAND COVER CHANGE DETECTION ACCURACY ON THE LAND COVER

all seven spectral bands. CHANGE DATA SET IN THE GAUTENG PROVINCE EACH ENTRY GIVES THE
TRUE POSITIVES IN PERCENTAGKFALSE POSITIVES IN PARENTHESER
THE LAND COVER CHANGE DETECTION ACCURACY IS GIVEN AS A

D. Change detection PERCENTAGE OVER A NUMBER OF SPECTRAL BAND COMBINATIONS
. . . . ((,[}\‘IIDVI’ FIRST 2 SPECTRAL BANDS(RED AND NEAR INFRARED SPECTRAL
As stated in section llI-A, a class label is assigned to ea BANDS) AND ALL 7 SPECTRAL BANDS.

pixel at each time index as shown in equation 5. Land cover____
change is declared when a pixel's time series has a persisteff ovince Spectral Band Least Mode .
change in class label asa f_unction of time (equation (6»_3 Th Gauteng NDVI Seg_% (Slqelf?;es 83_?;(?;_0)
type of change detection is grouped as a post-classification
change detection algorithm [6]. The MLP’s output was used
to monitor if any change was detected in the time series. Land 7 Bands 94.3 (2.5) 95.5 (1.6)
cover change is declared in this section when the majority

of the class labels in the first year (2001) is different when

compared to the majority of the class labels in the last

2 Bands 87.7 (11.8) 92.1 (9.9)
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(a) Land cover change detected in Nietgedalht §9’15.58"’S, 27°55’46.46" E). The Quickbird image on the
left was taken on 18 April 2004 and the right on 26 November 2@@8urtesy of Googl€™ Earth).
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(b) Land cover change detected in Ga-Ranku®a©84/21.91”’S, 27°58'48.96"'E). The Quickbird image on
the left was taken on 18 April 2004 and the right on 10 Augu€i®(Courtesy of Google™ Earth).

(c) Land cover change detected in Dev@620’53.34"”’S, 28°46/29.50"'E). The Quickbird image on the left
was taken on 23 October 2004 and the right on 22 August 201ar(€y of Googlé™ Earth).

Fig. 10. Example of three geographical areas where land athamge was detected in the Gauteng province. The Quickiniagjery is overlayed with a
MODIS 500 meter coordinate grid.

TABLE VI
THE CLASSIFICATION AND CHANGE DETECTION RESULTS PRODUCED ROTHE ENTIRE GAUTENG PROVINCE THE RESULTS ARE PRESENTED IN
PERCENTAGE COVER OF TOTAL AREA IN THE PROVINCE

Feature Algorithm  Spectral Band Class allocation [%)]

extraction Natural Human Land cover
vegetation settlement change

EKF MLP 7 Bands 76.97 21.86 1.17




V. REGIONAL EXPERIMENTS above 90% for the first two spectral band and all seven spectra
In this section the optimized EKF was evaluated at hand combinations. From the results presented in sectigh IV

regional scale using a MLP operating on all seven spectl_“al's clear that better classification accuracies were obthi
bands. Using all seven spectral bands was preferred baed! seven spectral bands of the MODIS sensor were used.
on the classification accuracies presented in table IV aad th1® feature ex_trhacted from tr;e EhKF clan il_so be app"ff,’ In
change detection accuracies presented in table V. ThetsesfPmPination hW't a variety of other classifiers or machine
were produced by processing the entire Gauteng provinoe iffaning methods.
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