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Abstract—The extraction of information on land cover classes
using unsupervised methods has always been of relevance to the
remote sensing community. In this paper a novel criterion is
proposed which extract the inherent information in an unsuper-
vised fashion from a time series. The criterion is used to fit a
parametric model to a time series and derive the corresponding
covariance matrices of the parameters for the model and estimate
the additive noise on the time series. The proposed criterion
uses both spatial and temporal information when estimating the
covariance matrices and can be extended to incorporate spectral
information. The algorithm used to estimate the parameters for
the model is the Extended Kalman filter. An unsupervised search
algorithm, specifically designed for this criterion, is proposed
in conjunction with the criterion that is used to rapidly and
efficiently estimate the variables. The search algorithm attempts
to satisfy the criterion by employing density adaptation to the
current candidate system. The application in this paper is the
use of an Extended Kalman filter to model MODerate-resolution
Imaging Spectroradiometer time series with a triply modulated
cosine function as the underlying model. The results show that
the criterion improved the fit of the triply modulated cosine
function by an order of magnitude on the time series over all
seven spectral bands when compared to the other methods. The
state space variables derived from the Extended Kalman filter are
then used for both land cover classification and land cover change
detection. The method was evaluated in the Gauteng province
of South Africa where it was found to significantly improve on
land cover classification and change detection accuracies when
compared to other methods.

I. I NTRODUCTION

Reliable surveying of land cover and the detection of change
in land cover has always been a key interest of the remote
sensing community. The increase in human population is one
of the major contributions to anthropogenic activities in age-
ographical area [1]. Several studies have since investigated the
effects that anthropogenic activities have on the environment
and it is estimated that more than a third of the Earth’s land
surface has been transformed [2]. The Gauteng province is the
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study area of interest, as it is the fastest growing provincein
South Africa, housing more than 11.3 million people in the
year 2011. This equates to 22% of South Africa’s population
living in the province that has land area of only 1.4% of
the total land in South Africa. Proper knowledge of land
cover is critical for effective allocation and management of the
environmental resources. Digital classification of land cover
consist mainly of spatial and spectral analysis. Few methods
exploit the temporal resolution offered by coarse resolution
satellites, which enables the capture of different land cover
dynamics. An example of land cover change is illustrated
in figure 1. The red box in figure 1 illustrates a land cover
conversion from natural vegetation to newly formed human
settlements. The blue box in figure 1 illustrates a seasonal
variation of natural vegetation. The limitation of using two
images is that similar land cover types (blue box in figure 1)
can look different at various times of the year [3]. This will
require the incorporation of local information to adjust the
change detection algorithm’s settings to reduce the numberof
false alarms caused by seasonal variation.

The remote sensing community’s monitoring capabilities
keep improving with the development and deployment of
new technologies. Global data sets are becoming more ac-
cessible and computational resources are becoming more
affordable [4]. These data sets come from several differ-
ent sensors. The more popular satellite based sensors are:
Landsat Multi-Spectral Scanner (MSS), Multi-angle Imaging
SpectroRadiometer (MISR), Systéme Pour l’Observation de
la Terre (SPOT), Advanced Very High Resolution Radiometer
(AVHRR) and MODerate-resolution Imaging Spectroradiome-
ter (MODIS). The type of land cover change that can be
detected also changes with newer technologies, which requires
the continual pursuit of new change detection methods [5], [6].

Lhermitteet al. proposed a method that separates different
land cover classes using a Fourier analysis of NDVI time
series [7]. It was concluded that good separation is achievable
when evaluating the magnitude of the coefficients of the
Fourier transform associated with the NDVI signal’s mean and
amplitude components. Kleynhanset al. proposed a method
which jointly estimates the mean and seasonal components
of the Fourier transform using a triply modulated cosine
function [8]. Kleynhanset al. used an Extended Kalman filter
(EKF) to estimate the parameters for the triply modulated
cosine function to model NDVI time series by updating the
mean (µ), amplitude (α), and phase (θ) parameters for each
time increment.



Fig. 1. Land cover change detected in Protea Glen (26
◦
15

′
52.38

′′S, 27◦47′07.42′′E). The Quickbird image at the top was taken on 31 July 2001 and the
bottom on 7 September 2008 (Courtesy of GoogleTM Earth). A change in land cover type is shown in the red box, while only a seasonal change is shown
in the blue box.

The Extended Kalman filter (EKF) can be used as a feature
extraction method based on the assumption that the parameters
of the underlying model can be used to separate a set of
time series into different classes. Consideration must be given
when selecting the model, as it should reflect the seasonal
behaviour of a specific land cover class. It follows that more
separable parameters derived by the EKF makes it easier to
detect changes in the assigned classes [8].

The objective of this paper is to propose a novel criterion
that can be used to set the initial parameters of an EKF.
An operator typically uses a training set to supervise the
adjustment of the initial parameters within the EKF until
acceptable performance is obtained for a set of time series.The
criterion proposes an appropriately defined parameter space
which uses a spatio-temporal window to enable the search for

improved parameters to use within the EKF in an unsupervised
manner. An unsupervised search algorithm is provided which
is used to search through this defined parameter space. The
method of setting the initial parameters is tested with the
feature extraction method proposed by Kleynhanset al. [8].
The spectral bands in the paper are modelled separately as
triply modulated cosine functions, which is an extension ofthe
method proposed in [8]. The performance of this new method
is compared to a non-linear least squares algorithm and an
EKF, which is set using the Autocovariance Least Squares
(ALS) method [9].

The paper is organized as follows. A description of the
data set is given in section II. Section III-A discusses the
principle behind using an EKF to model a time series using a
triply modulated cosine function. The importance of the initial



parameters used to set the Extended Kalman filter is discussed
in section III-B, illustrating how the behaviour is dependent
on these initial parameters. A novel criterion is proposed,
called the Bias-Variance Equilibrium Point (BVEP) criterion in
section III-D, which defines a desired set of initial parameters
that will provide optimal performance. The BVEP criterion
uses both the temporal and spatial information to design a
system with desirable behaviour and it is concluded on how it
can easily be extended to incorporate spectral information. A
specifically designed search algorithm called the Bias-Variance
Search Algorithm (BVSA) is proposed in section III-E, that
will adjust the Bias-Variance Score (BVS) to best satisfy the
BVEP criterion that will provide good initial parameters for
the Extended Kalman filter. Section IV presents the results of
optimizing the EKF, along with the land cover classification
and change detection experiments in the Gauteng province.
Section VI presents the conclusion on how this criterion could
be used for land cover information extraction.

II. DATA DESCRIPTION

A. Study Area

An increase in anthropogenic activities is usually directly
correlated to the increase in human population in a geograph-
ical area. The Gauteng province is located in the Highveld
of South Africa and is currently the fastest growing province
in South Africa, which is evident in the growth in population
provided by the population estimates shown in Table I. These
estimates are provided by Statistics South Africa in an annual
report for the Gauteng province. The province is also the most
urbanized province in the country and contributes more than
one third of South Africa’s economy. Large areas of natural
vegetation still exist even with the mass expansion within
the province. The method was applied to a validated study
area that corresponds to a total area of approximately 285.5
km2. The study area’s land cover is predominantly natural
vegetation and human settlements. The time series in the
validated study area were verified using visual interpretation
of SPOT images to map areas of no change in land cover
type during the study period for the temporal component of
the analysis. The proposed method was then tested on the
entire Gauteng province (19676km2) to measure the growth
of human settlements.

B. MODIS Time Series Data

The MODIS (MCD43A4, Collection V005) 500-meter, Nadir
and Bidirectional Reflectance Distribution Function (BRDF)
adjusted spectral reflectance bands were used, as it signifi-
cantly reduces the anisotropic scattering effects of surfaces
under different illumination and observation conditions [10],
[11]. The data set provides a sample on a rolling 8 day interval
based on a 16-day of MODIS surface reflectance composite
period, for each of the seven spectral bands at 500 meter
resolution. For each pixel in the study area, a time series was
extracted for all 7 bands from the data set (tile H20V11) for the
time period February 2000 to January 2011. The specifications
for the 7 spectral bands are provided in table II.

TABLE I
POPULATION ESTIMATES PROVIDED BYSTATISTICS SOUTH AFRICA IN AN

ANNUAL REPORT FOR THEGAUTENG PROVINCE FOR THE YEAR

2000–2011

Year Estimated Population
2000 8,571,705
2001 8,865,664
2002 9,181,751
2003 9,518,114
2004 9,643,428
2005 9,799,634
2006 10,046,871
2007 10,192,199
2008 10,467,705
2009 10,554,587
2010 11,198,051
2011 11,326,375

TABLE II
MODIS SPECTRAL BANDS’ SPECIFICATIONS USED IN THEMCD43A4

(COLLECTION V005) PRODUCT.

Spectral Wavelengths Spectral range
bands (nanometers)
Band 1 620–670 Visible (Red)
Band 2 841–876 Near infrared
Band 3 459–479 Visible (Blue)
Band 4 545–565 Visible (Green)
Band 5 1230–1250 Short infrared
Band 6 1628–1652 Short infrared
Band 7 2105–2155 Short infrared

III. M ETHODOLOGY

A. Extended Kalman Filter

The EKF is a non-linear estimation method that produces an
estimated observation from an actual noisy observation. The
estimated observations are computed using a defined paramet-
ric model. The EKF estimates the state-space parameters for
the model using the noisy observations. The EKF has been
used in the remote sensing community for parameter estima-
tion of values related to physical, biogeochemical processes
or vegetation dynamics models [12], [13]. The observations
used in this study were obtained from the spectral bands of
the MODIS sensor.

In figure 2(b), a Fourier transform is used to observe that
the majority of the signal energy is contained in the mean
and seasonal component of the second spectral band’s time
series which is the infrared spectrum (figure 2(a)). This implies
that the time series is well represented in the time domain as
a single cosine function with a mean offset, amplitude and
phase, as shown in figure 2(c).

The EKF has also been used as a feature extraction method
to model a NDVI time series for a given pixel as a triply
modulated cosine function to improve land cover separation
[8]. This paper proposes an extension to this model presented
in [8] by modelling each spectral band separately as a triply
modulated cosine function. This is expressed as
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(a) Time series of reflectance values recorded by the MODIS spectral band 2.
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(b) Discrete Fourier transform of the time series shown in (a).
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(c) Extended Kalman filter tracking the observation vectors extracted from spectral band 2.

Fig. 2. The time series recorded by the second spectral band for a geographical area is shown in (a) with the corresponding magnitude of the discrete Fourier
transform shown in (b). A triply modulated cosine function isfitted to the time series using an EKF in (c).

yi,k,b = µi,k,b + αi,k,b cos(ωk + φi,k,b) + vi,k,b, (1)

where yi,k,b denotes the observed value of theb-th spectral
band’s time series,b ∈ [1, 7], of the k-th pixel at time index
i. The noise sample of thek-th pixel at timei for the b-th
spectral band is denoted byvi,k,b. The noise is additive with
an unknown distribution. The cosine function is fitted to each
spectral band and is based on several parameters; the frequency
ω, which is the same over all the spectral bands, the nonzero
meanµi,k,b, the amplitudeαi,k,b and the phaseφi,k,b. The
frequency is explicitly calculated asω=2πf , wheref is based
on the annual vegetation growth cycle and the sampling rate of
the MODIS sensor. Given the 8 daily composite period of the
MCD43A4 MODIS data product,f is set to8/365. The values
of µi,k,b, αi,k,b and the phaseφi,k,b are functions of time and
must be estimated for each pixel,k, k ∈ [1,Kmax], given the
observationsyi,k,b for time indicesi = {1, . . . , Imax} and
spectral bandsb = {1, . . . , 7}. The maximum number of pixels
in the data set is denoted byKmax, and the maximum number
of observations in a time series is defined byImax. A state-
space vector is estimated by the EKF at each time index for
each spectral band and containsS parameters, which in this
case isS=3 and is defined as

~Xi,k,b = [µi,k,b αi,k,b φi,k,b ]
T . (2)

The relation between~Xi,k,b and ~X(i−1),k,b for theb-th spectral
band is denoted by the transition functionfb. The state-space
vector ~Xi,k,b is related to the observationyi,k,b via a non-linear
measurement functionhb. These relationships are expressed as

~Xi,k,b = fb( ~X(i−1),k,b) + z(i−1),k,b, (3)

and
ŷi,k,b = hb( ~Xi,k,b) + vi,k,b. (4)

The estimated observation is denoted byŷi,k,b in equation (4).
The process noise is denoted byz(i−1),k,b and the measure-
ment noise byvi,k,b.

For the present case of land cover classification, it is
assumed that the state-space vector~Xi,k,b does not change
significantly through time; hence, the transition functionis
assumed linear. The measurement function, however, contains
the cosine function and, as such, is evaluated via the standard
Jacobian formulation, through linear approximation of thenon-
linear measurement function around the current state-space
vector. Both these functions are possibly non-perfect, so the
addition of processz(i−1),k,b and measurementvi,k,b noise
is required [14]. The state-space vector’s update is based on



the newest observation valueyi,k,b [14]. The estimated values
of ~Xi,k,b over time i effectively results in a time series of
the state-space vectors for each of theKmax pixels for each
spectral band.

Converting state-space vectors to land cover classes:A
machine learning algorithm is used to process the estimated
state-space vectors to corresponding class labels. A classlabel
is assigned to each state-space vector for each pixel at each
time index as

Ci,k = FC

(

{

{

Xi,k,b,s

}s=S

s=1

}b=7

b=1

)

= FC

(

{

~Xi,k,b

}b=7

b=1

)

.

(5)
The functionFC denotes either a supervised or unsupervised
classifier. The class label for thekth pixel at time indexi is
denoted byCi,k. Land cover change is declared when a pixel
k has a persistent change in class label as a function of time
i. This is expressed as

Ci,k 6= Cj,k, 0 < i ≤ j, ∀i, j (6)

The MODIS spectral bands are assumed to be uncorrelated
and are treated independently in this method. The indexb
is omitted for convenience with no loss in generality in
the description of the method. The importance of the initial
parameters will be discussed in the next section.

B. Importance of the initial parameters

It is well known from estimation theory that many prediction
results simplify when Gaussian distributions are used. The
process noise and observation noise are thus assumed to be
Gaussian distributed. The process noise is thus denoted by
z(i−1),k, z(i−1),k ∼ N (0,Q(i−1),k), with Q(i−1),k represent-
ing the process noise covariance matrix. The observation noise
is denoted byvi,k, vi,k ∼ N (0,Ri,k), with Ri,k representing
the observation noise covariance matrix. The EKF recursively
adapts the state-space vector for each incoming observation by
predicting and updating the vector. In the prediction step the

state-space vector~̂X(i|i−1),k and covariance matrixB(i|i−1),k

is computed. The subscript(i|i− 1) denotes the evaluation at
time indexi given all the previous indices up to and including

(i− 1). The predicted state-space vector’s estimate~̂
X(i|i−1),k

is computed as

~̂
X(i|i−1),k = f

(

~̂
X(i−1|i−1),k

)

, (7)

and the predicted covariance matrixB(i|i−1),k is computed as

B(i|i−1),k = Q(i−1),k + FestB(i−1|i−1),kF
T
est. (8)

The matrixFest is the local linearization of the non-linear tran-
sition functionf . In the updating step, the posterior estimate

of the state-space vector~̂X(i|i),k is computed as

~̂
X(i|i),k =

~̂
X(i|i−1),k + Ki,k

(

yi,k − h

(

~Xi,k

)

)

, (9)

using the optimal Kalman gain denoted byKi,k which is
computed as

Ki,k = B(i|i−1),kH
T
estS

−1
i,k . (10)

The matrixHest is the local linearization of the non-linear
measurement functionh. The matrixSi,k denotes the innova-
tion term which is computed as

Si,k = HestB(i|i−1),kH
T
est +Ri,k. (11)

The posterior estimate of the covariance matrixB(i|i),k is
computed as

B(i|i),k = B(i|i−1),k − Ki,kSi,kK
T
i,k. (12)

The tracking performance of the EKF is assessed by eval-
uating the stability of the state-space vector and the error
in estimating the observation. The error in estimating the
observation is computed as the absolute error between esti-
mated observation̂yi,k and the actual observationyi,k. This is
expressed as

Ey,i,k = |yi,k − ŷi,k| =
∣

∣

∣
yi,k − h

(

~X(i|i),k

)∣

∣

∣
. (13)

In equation (13), it is observed that the state-space vector
~̂
X(i|i),k determines the observation errorEy,i,k. The state-space

vector ~̂X(i|i),k can thus be selected to minimise the observation
error. The observation error can be easily minimised by

significantly varying ~̂
X(i|i),k to accommodate the fluctuation

in observations. This does not bode well if the underlying
structure of the system is being analysed. A significantly

varying state-space vector~̂X(i|i),k is indicative of an unstable
model. The conclusion is that the state-space model must be
kept stable, while also attempting to minimise the observation
error in equation (13).

The initial estimates provided to the EKF will now be
discussed to illustrate their importance. A stable state-space

vector requires small adaptation from~̂X(i−1|i−1),k to ~̂
X(i|i),k.

The initial estimated state-space vector~̂
X(0|0),k, ~̂

X(0|0),k ∈ X ,
for the first observationy0,k is optimised using a local search
method or domain knowledge which satisfies

~̂
X(0|0),k = argmin

~̂
X∈X

{

∣

∣

∣
y0,k − h

(

~̂
X
)∣

∣

∣

}

. (14)

The recursive adaptation of the state-space vector’s estimate
~̂
X(i|i),k is then calculated using the predicted step given in
equation (7) and the updating step in equation (9). Equation(7)
is substituted into equation (9) which yields

~̂
X(i|i),k = f

(

~̂
X(i−1|i−1),k

)

+Ki,k

(

yi,k−h

(

f

(

~̂
X(i−1|i−1),k

)))

.

(15)
The Kalman gainKi,k sets the magnitude of change in the

estimated state-space vector for each time increment. If the
observation error is large and the Kalman gain is large, then
large changes will be made to the current state-space vector.
If the observation error is large and the Kalman gain is small,



then the state-space’s estimate~̂X(i|i),k will adapt slowly which
typically leads to large observation errorEy,i,k (equation (13))
until it eventually converges. If the observation error is small
and the Kalman gain is large, then the state-space vector
will struggle to converge as it will continually overshoot the
desired state-space vector that will minimise equation (13).
Substituting the optimal Kalman gain given in equation (10)
into equation (15) expands it to

~̂
X(i|i),k = f

( ~̂
X(i−1|i−1),k

)

+B(i|i−1),kH
T
estS

−1
i,k

(

yi,k −

h

(

f

(

~̂
X(i−1|i−1),k

)))

. (16)

The Kalman gain is dependent on the predicted covariance
matrix B(i|i−1),k and innovation termSi,k. The innovation
term controls the trust region within the state-space vector’s
space. This is dependent on the predicted covariance ma-
trix B(i|i−1),k and observation noise covariance matrixRi,k.
Substituting the innovation term given in equation (11) into
equation (16) results in

~̂
X(i|i),k = f

( ~̂
X(i−1|i−1),k

)

+B(i|i−1),kH
T
est(HestB(i|i−1),k

H
T
est +Ri,k)

−1
(

yi,k − h

(

f

(

~̂
X(i−1|i−1),k

)))

.

(17)

The last term to evaluate is the predicted covariance ma-
trix B(i|i−1),k. The predicted covariance matrixB(i|i−1),k is
substituted to yield an updated state-space vector as

~̂
X(i|i),k = f

(

~̂
X(i−1|i−1),k

)

+ (Q(i−1),k + FestB(i−1|i−1),k

F
T
est)H

T
est(Hest(Q(i−1),k + FestB(i−1|i−1),kF

T
est)

H
T
est +Ri,k)

−1
(

yi,k − h

(

f

(

~̂
X(i−1|i−1),k

)))

.

(18)

The transition functionf and measurement functionh are
assumed to be known. The observationyi,k is supplied by the
real system. The only variables left within equation (18) are

the: (1) previous state-space vector’s estimate~̂
X(i−1|i−1),k, (2)

process noise’s covariance matrixQ(i−1),k, (3) previous esti-
mate of covariance matrixB(i−1|i−1),k, and (4) observation
noise’s covariance matrixRi,k.

The previous estimation of the covariance matrix
B(i−1|i−1),k will be briefly explored as it is part of
equation (18). The covariance matrixB(i−1|i−1),k is updated
with

B(i−1|i−1),k = B(i−1|i−2),k−K(i−1),kS(i−1),kK
T
(i−1),k. (19)

The Kalman gain given in equation (10), the innovation
term given in equation (11) and the predicted covariance
matrix B(i−1|i−2),k given in equation (8) are substituted into
equation (19), to yield

B(i−1|i−1),k = (Q(i−2),k + FestB(i−2|i−2),kF
T
est)−

((Q(i−2),k + FestB(i−2|i−2),kF
T
est)H

T
est

(Hest(Q(i−2),k + FestB(i−2|i−2),kF
T
est)

H
T
est +R(i−1),k)

−1)(Hest(Q(i−2),k +

FestB(i−2|i−2),kF
T
est)H

T
est +R(i−1),k)

((Q(i−2),k + FestB(i−2|i−2),kF
T
est)H

T
est

(Hest(Q(i−2),k + FestB(i−2|i−2),kF
T
est)

H
T
est +R(i−1),k)

−1)T. (20)

Equation (18) is computed for every newly obtained obser-

vation. The state-space vector’s estimate~̂X(i|i),k requires the
results from equation (20) to compute the current estimates.
The transition functionFest and measurement functionHest

are known, then the only variables left to compute in equa-
tion (20) are: (1) initial covariance matrixB(0|0),k, (2) process
noise covariance matrixQ(i−1),k, and (3) observation noise’s
covariance matrixRi,k. The conclusion from equation (18)
and equation (20) is the initial parameters which are of
importance are:

1) Initial state-space vector’s estimate~̂X(0|0),k,
2) Initial covariance matrix estimateB(0|0),k,
3) Process noise covariance matrixQ(i−1),k,
4) Observation noise covariance matrixRi,k.

The initial state-space vector’s estimate~̂X(0|0),k is initialised
using equation (14). Even if an incorrect estimate is used,

the state-space vector~̂X(i|i),k should converge to the correct
vector asi → ∞. The same is true about the initial covariance
matrix B(0|0),k. As i → ∞, the covariance matrixB(i|i),k

should tend to converge to the correct matrix. Usual operation
of the EKF sets the initial covariance matrixB(0|0),k equal to
the identity matrix.

The initial covariance matrixB(0|0),k will stabilise as
equation (8) is a discrete Riccati equation, and under certain
circumstances will converge which results in equation (20)
converging to a stable state [15], [16]. The conditions for
convergences of the discrete Riccati equation are:

1) the process noise covariance matrixQ(i−1),k is a posi-
tive definite matrix,

2) the observation noise covariance matrixRi, k is a pos-
itive definite matrix,

3) the pair (Fest, z(i−1),k) is controllable,
4) the pair (Fest,Hest) is observable.

Under the conditions set above, the predicted covariance
matrixB(i|i−1),k converges to a stable matrix and is expressed
as

lim
i→∞

B(i|i−1),k = Bstable, (21)

whereBstable is a symmetric positive definite matrix.Bstable

is a unique positive definite solution of the discrete Riccati
equation andBstable is independent of the initial distribution

of initial state-space vector’s estimate~̂X(0|0),k.

The values of ~̂X(0|0),k andB(0|0),k can also be estimated



using an offline training phase. Offline refers to observations
which are stored and are used recursively for estimation.
The process noise covariance matrixQ(i−1),k and observation
noise covariance matrixRi,k are assumed to be constant
throughout the recursive estimation of the observation. This is
usually manually set by a system analyst in an offline training
phase through successive adjustments. The initial settingof
the EKF is thus defined as setting the following:

1) Initial state-space vector~̂X(0|0),k is estimated offline,
2) Initial covariance matrixB(0|0),k is estimated offline,
3) Process noise covariance matrixQ(i−1),k is set to a fixed

matrix,
4) Observation noise covariance matrixRi,k is set to a

fixed matrix.

The EKF will track the observations with minimum residual
and have a stable internal state-space vector if all initial
parameters are properly set.

C. Estimation of the noise covariance matrices

From the previous section it was shown that the initial
parameters that need to be set are:

1) Initial state-space vector~̂X(0|0),k,
2) Initial covariance matrixB(0|0),k,
3) Process noise covariance matrixQ(i−1),k,
4) Observation noise covariance matrixRi,k.

The setting of the initial parameters requires reliable infor-
mation about the system. The practical implementation of the
EKF is usually done in the absence of this information and the
initial parameters are set in an ad-hoc method by an operator
to obtain reasonable performance.

Several different approaches have been formulated to solve
the estimation of the initial parameters [17], [18], [19]. The
Autocovariance Least Squares (ALS) method was presented by
Odelsonet. al [20], where the correlation within the innovation
data was explored to form a least squares problem to determine
the noise covariances for the disturbances. A motivation for
using this method is that it avoids a complicated non-linear
estimation approach used by methods that employ a maximum
likelihood estimation approach [21]. The drawback was that
all these methods assumed that the noise-shaping matrix in
the transition equation is known, where this information is
usually not available. In the absence of information about the
noise-shaping matrix the linear dynamic model is modelled as
a Gaussian noise vector. Rajamani and Rawlings [9] described
a method which estimates the structure of the noise-shaping
matrix in an iterative approach. The ALS method assumes that:

1) both the measurement functionh and transition function
f are known,

2) enough observation vectors are available to ensure the
internal covariance matrixB(i|i),k becomes stable, and

3) the residuals at different time increments are uncorre-
lated.

The ALS has the ability to provide unique solution to the
initial parameters if the measurement functionh is full rank,
which implies that the dimension of observation vector is
equal to the dimension of states [9]. In the case of this study,

the dimension of the observation vector is smaller than the
states, which leads to the condition where the ALS method
will produce multiple solutions to the estimation of the initial
parameters. The best performing covariance matrices produced
by the ALS method were used and were obtained by applying
the ALS method to various different initial estimates of the
covariance matrices.

D. Bias-Variance Equilibrium Point Criterion

The general approach to estimating and initialising the
state-space vectors, as well as the observation- and process
noise’s covariance matrices for the EKF, is usually for an
analyst to determine these offline using a training data set.
Proper estimation of the initial parameters through various
methods leads to good filter behaviour from the EKF, while
improper estimation could cause system instability which leads
to delayed tracking or abnormal system behaviour.

A novel BVEP criterion is proposed that will use temporal
and spatial information to design a parameter space where
desirable system behaviour is expected. This is accomplished
by first observing the dependencies between the initial pa-
rameters. The proposed criterion is used by an unsupervised
BVSA to iteratively adjust a BVS to determine proper initial
parameters for the EKF. The characteristics of the initial
parameters are first explored before describing the criterion.
The first parameter to investigate is the observation noise
covariance matrixRi,k. The observation noise covariance
matrixRi,k is defined here as only observing the diagonals of
the matrix and that only a single spectral band is evaluated as

Ri,k = E[(yi,k−E[yi,k])
2]. (22)

This expression holds as the spectral bands are assumed to
be uncorrelated and that the MODIS sensor only produces a
single reflectance value per pixel per spectral band. The second
parameter is the process noise covariance matrixQi,k and is
defined as

Qi,k = diag
{

E[(Xi,k,s−E[Xi,k,s])
2]
}

, ∀s. (23)

This expression holds as the state-space variables within the
state-space vector are assumed to be uncorrelated. The setting
of these initial parameters have a major effect on the overall
system performance. The initial state-space vector~X(0|0),k for
the first observationy0,k is optimised using equation (14). This
can either be done using a local search algorithm or applying
direct domain knowledge. The initial state-space vector inthis
work was set using the Fourier transform’s components as
proposed by Kleynhanset al. [8].

The initial estimated covariance matrixB(0|0),k is usually
set to the identity matrix as it is recursively estimated by the
EKF. This only leaves the estimation of the observation noise
covariance scalarRi,k and process noise covariance vector
Qi,k. Let the uncorrelated observation noise covariance ma-
trix’s diagonals be placed into a vector called the observation
candidate vectorΥR,i,k, whereΥR,i,k is selected from the
spaceυR, and it is expressed as

ΥR,i,k = 10 ζi,k/10, (24)



with

ζi,k = 10 log10
(

E[(yi,k−E[yi,k])
2]
)

. (25)

Let the uncorrelated process noise covariance matrix’s di-
agonals be placed into a vector called the process candidate
vectorΥQ,i,k, whereΥQ,i,k is selected from spaceυQ, which
is expressed as

ΥQ,i,k = 10[ςi,k,1 ... ςi,k,S ]/10 = 10~ςi,k/10, (26)

with

ςi,k,s = 10 log10
(

E[(Xi,k,s−E[Xi,k,s])
2]
)

. (27)

It should be noted that the EKF only recursively updates the
state-space vector~X(i|i),k, and the covariance matrixB(i|i),k.
The time index of the observation noise covariance matrix
Qi,k has been left inserted to emphasise the time effect in
a dynamic linear system. The EKF, however, does not alter
the observation noise covariance matrix at each time index
and is thus assumed constant for all time indices. This is
formally stated asQ=Qi, ∀i. The process noise covariance
matrix is also retained as a constant for all time indices and
is stated asR=Ri, ∀i. This concludes that the observation
noise covariance matrix and process noise covariance matrix
are time independent. This property allows the observation
candidate vector to be rewritten as

ΥR,k = 10 ζk/10 ∀k, (28)

and the process candidate vector rewritten as

ΥQ,k = 10[ςk,1 ... ςk,S ]/10 = 10~ςk/10 ∀k. (29)

It was stated earlier that the performance of the Kalman
filter is benchmarked by the residual error in tracking the
observations and the internal stability of the state-spacevector.
A parameter space is defined here to describe the system
behaviour.

The first desired behaviour is the tracking of the observation
with minimal residual. This desired behaviour is expressedas
the minimal achievable sum of absolute residualsσE which is
computed as

σE = min
ΥR,k∈υR,
ΥQ,k∈υQ

{

Kmax
∑

k=1

Imax
∑

i=1

∥

∥ŷi,k − yi,k
∥

∥

}

, (30)

then

[RσE
,QσE

] = argmin
ΥR,k∈υR,
ΥQ,k∈υQ

{

Kmax
∑

k=1

Imax
∑

i=1

∥

∥ŷi,k − yi,k
∥

∥

}

. (31)

The set [RσE
,QσE

] represents the parameters required to
achieve the minimal residual. The minimal residual is then
computed as

σE =

Kmax
∑

k=1

Imax
∑

i=1

∥

∥ŷi,k − yi,k
∥

∥

∣

∣

∣

∣

∣

R=RσE
,Q=QσE

. (32)

The second criterion is based on the internal stability of the
state-space vector. This can be measured as the variations in
each of the state-space variables. The second desired behaviour
is expressed as the minimal achievable absolute deviation in
state-space variables, which is computed as

σs = min
ΥR,k∈υR,
ΥQ,k∈υQ

{

Kmax
∑

k=1

Imax
∑

i=1

∥

∥Xi,k,s −E[Xi,k,s]
∥

∥

}

, ∀s, (33)

then

[Rσs
,Qσs

] = argmin
ΥR,k∈υR,
ΥQ,k∈υQ

{

Kmax
∑

k=1

Imax
∑

i=1

∥

∥Xi,k,s−E[Xi,k,s]
∥

∥

}

, ∀s.

(34)

The set [Rσs
,Qσs

] represents the parameters required to
achieve the minimal absolute deviation in the state-space
variable s. The minimal absolute deviation for state-space
variables is computed as

σs =

Kmax
∑

k=1

Imax
∑

i=1

∥

∥Xi,k,s − E[Xi,k,s]
∥

∥

∣

∣

∣

∣

∣

R=Rσs ,Q=Qσs

. (35)

The spatial information is included through the use of a set
of time series all located in a specific geographical area. The
set ofKmax time series for a geographical area is denoted by
{~yk} = {{yi,k}

i=Imax

i=1 }. Let qi,E denote the probability density
function derived at time indexi from the residuals given over
the set of observations{yi,k}

k=Kmax

k=1 such that

P [R1 ≤ E ≤ R2] =

∫ R2

R1

q(E ′,R,Q)dE ′ =

∫ R2

R1

qi,EdE
′.

(36)

Let qi,s denote the probability density function for the state-
space variables derived at time indexi from the deviations
given over the set of state-space vectors{Xi,k,s}

k=Kmax

k=1 such
that

P [R3 ≤ s ≤ R4] =

∫ R4

R3

q(s′,R,Q)ds′ =

∫ R4

R3

qi,sds
′.

(37)

A conditioned observation probability density functionq∗i,E
is defined as the probability density functionqi,E , given in
equation (36), which uses the set[RσE

,QσE
] to satisfy the

condition given in equation (32) as

P [R5 ≤ E ≤ R6] =

∫ R6

R5

q(E ′,RσE
,QσE

)dE ′ =

∫ R6

R5

q∗i,EdE
′.

(38)

A conditioned process probability density functionq∗i,s is
defined as the probability density functionqi,s, given in
equation (37), which uses the set[Rσs

,Qσs
] to satisfy the

condition given in equation (35) as
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direction

(a) In the initial iteration it is determined that the amplitude parameter
is the least satisfied parameter and second the mean parameter.

(b) After the first iteration it is determined that the amplitude
parameter and the mean parameter can be better satisfied.

(c) After the second iteration it is determined that the amplitude
parameter and the mean parameter can be better satisfied.

(d) After the third iteration it is determined that the observation
vectors need to be tracked better.

(e) After the fourth iteration it is determined that the mean parameter
can be better satisfied

(f) Through the decaying variableγι the search algorithm terminates.

Fig. 3. An visual example of the operations of the unsupervised search algorithm attempting to satisfy the BVEP criterion.



P [R7 ≤ s ≤ R8] =

∫ R8

R7

q(s′,Rσs
,Qσs

)ds′ =

∫ R8

R7

q∗i,sds
′.

(39)
The performance of the current estimateΥR,k and ΥQ,k is
defined by a criterion that evaluates how well the conditions
stated in equation (30) and equation (33) are satisfied. The
current estimates are recursively updated and are denoted by
Υ̂ι

R,k and Υ̂ι
Q,k, where ι denotes the iteration number. The

current estimateŝΥι
R,k andΥ̂ι

Q,k are used to derive the set of
probability density functions{q̂ιi,E}, ∀i, and{q̂ιi,s}, ∀i.

A f-divergent distance known as the Hellinger distance [22]
is used to measure the similarity between the probability den-
sity functionsq̂ιi,E and q∗i,E . The modified Hellinger distance
Hi,E , Hi,E ∈ [0, 1], is computed as

Hi,E = 1−

√

√

√

√1−

√

∫ ∞

−∞

q̂ιi,E q
∗
i,EdE

′, (40)

where a value ofHi,E → 1 means high similarity between̂qιi,E
andq∗i,E , while Hi,E → 0 means low similarity. The modified
Hellinger distance is also used to measure the similarity for the
state-space variables. The modified Hellinger distanceHi,s,
Hi,s ∈ [0, 1], is computed as

Hi,s = 1−

√

√

√

√1−

√

∫ ∞

−∞

q̂ιi,s q
∗
i,sds

′, (41)

where a value ofHi,s → 1 means high similarity between̂qιi,s
and q∗i,s, while Hi,s → 0 means low similarity. The BVS is
defined to encapsulates all the similarity metrics as

Γi = min
(

{Hi,s}
s=S
s=1 ∪ {Hi,E}

)

. (42)

Finding optimal estimates for̂Υι
R,k and Υ̂ι

Q,k requires a
stable covariance matrixB(i|i),k. Equation (21) states that
the predicted covariance matrixB(i|i),k should converge to
a stable matrix under certain prerequisite conditions. LetIT
denote the number of time steps which are required to ensure
the predicted covariance matrixB(IT |IT−1),k converges to
ensure a stable covariance matrixB(IT |IT ),k. The BVS is
deemed accurate atIT which is defined as

ΓIT
= min

(

{HIT ,s}
s=S
s=1 ∪ {HIT ,E}

)

. (43)

The BVEP criterion is defined as the BVS which optimally
maximises the conditions. The BVEP criterion is thus formally
defined as

Γ∗
IT

= max
Υι

R,k
∈υR,Υι

Q,k
∈υQ

{ΓIT
}. (44)

If the reflectance values of the spectral bands are correlated,
then the BVS is expanded to compensate for this as

ΓIT
= min

(

{

{HIT ,b,s}
s=S
s=1

}b=B

b=1
∪ {HIT ,b,E}

b=B
b=1

)

. (45)

E. Bias-Variance Search algorithm

The Bias-Variance Search Algorithm is proposed that will
attempt to estimatêΥι

R,k and Υ̂ι
Q,k to satisfy the BVEP

criterion using the BVS given in equation (43). The BVSA
starts by creating ideal operating conditions for each parameter
in the EKF to computeq∗i,E andq∗i,s; followed by using a hill-
climbing algorithm approach to search for a set ofΥ̂ι

R,k and
Υ̂ι

Q,k that will satisfy at best the ideal operating conditions
for all the parameters in the EKF.

The first ideal condition is a system that employs perfect
tracking of the observations. This ideal condition is used to
create the probability density functionq∗i,E , which is obtained
by

q∗i,E =
{

qi,E : {ζk} → −∞; {ςk,s} → ∞, ∀ s
}

. (46)

Under perfect condition the probability density functionq∗i,E
should tend to be an impulse of unity power situated around
the zero position, meaning zero error residual is measured.
The second ideal condition is a system that employs a stable
state-space variable. This ideal condition is used to create the
probability density functionq∗i,s. This is obtained by

q∗i,s =
{

qi,s : {ζk} → ∞; {ςk,{s′}s′=S
s′=1

\s} → ∞; {ςk,s} → −∞
}

.

(47)
This condition creates an environment which attempts to track
the state-space variables with the smallest variation. After
the ideal observation conditions’ probability density functions
q∗i,E andq∗i,s are computed, a hill-climbing search algorithm is
applied to find a set of initial parameters that will best satisfy
all these ideal conditions. The BVSA iteratively searches
the parameter space and is shortly described below in the
following steps (a flow diagram is also provided in figure 4):

1) The BVSA starts with the initial parameters set asζ0k =
0dB, ∀ k, andς0k,s = 0dB, ∀ k, s.

2) Compute the state-space vector~X(IT |IT ),k at time IT
using the samêΥι

R,k = ζιk and Υ̂ι
Q,k = {ζιk}

s=S
s=1 for

every time series in the set{~yk}
k=Kmax

k=1 .
3) Obtain the probability density function of the residual

errors qιIT ,E over theKmax time series at time index
IT .

4) Obtain the probability density function of the variable
distribution qιIT ,s of the state-space variables over the
Kmax time series at time indexIT .

5) Compute the modified Hellinger distanceHIT ,E as
shown in equation (40).

6) Compute the modified Hellinger distanceHIT ,s ∀s as
shown in equation (41).

7) Determine the best performing conditionHbest as

Hbest = max
{

{HIT ,E} ∪ {HIT ,s}
s=S
s=1

}

. (48)

8) Determine the worst performing conditionHworst as

Hworst = min
{

{HIT ,E} ∪ {HIT ,s}
s=S
s=1

}

. (49)

9) Adjust the newζιk according to its relative position to the
best and worst performing parameters using a threshold
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Fig. 4. A flow diagram that describes the various steps of the unsupervised search algorithm.

ρH, ρH ∈ [0, 1], ρH ∈ R. The adjustment is made as

ζι+1
k =







ζιk + γι if
(

HIT ,E−Hworst

Hbest−Hworst

> ρH

)

ζιk − γι if
(

HIT ,E−Hworst

Hbest−Hworst

≤ ρH

) . (50)

The variableγι is a decreasing scalar measured in
decibels and is a non-negative real number.

10) Adjust the newςιk according to its relative position to the
best and worst performing parameters using a threshold
ρH, ρH ∈ [0, 1], ρH ∈ R. The adjustment is made as

ςι+1
k,s =







ςιk,s + γι if
(

HIT ,s−Hworst

Hbest−Hworst

> ρH

)

ςιk,s − γι if
(

HIT ,s−Hworst

Hbest−Hworst

≤ ρH

) .

(51)
The variableγι is a decreasing scalar measured in
decibels and is a non-negative real number.

Repeat steps 2–10 until one of the parametersζk or ςk,s

stabilises, or a stopping criterion is satisfied. This process of
adapting the state parametersΥ̂ι

R,k andΥ̂ι
Q,k are illustrated in

a visual example in figure 3. It should be noted that figure 3
is a visual example and not a mathematical description of the
unsupervised search algorithm. In this illustrative example the
search algorithm converges after a set number of iterations.
After the search algorithm converges, the estimatesΥ̂ι

R,k and
Υ̂ι

Q,k are used to initialise the EKF.

IV. EXPERIMENTAL RESULTS

A. Optimizing using the BVEP criterion

In this section the results obtained by using the BVSA are
discussed. The BVSA is an iterative algorithm that moves the
BVS through a defined parameter space. In each epoch the
algorithm attempts to minimise the standard deviation of all
the state-space variables while simultaneously minimising the
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Fig. 5. The expected standard deviation of the mean parameter computed over all the time series for the second MODIS spectral band on the Gauteng
province study area as a function of epoch.
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Fig. 6. The expected standard deviation of the amplitude parameter computed over all the time series for the second MODIS spectral band on the Gauteng
province study area as a function of epoch.
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Fig. 7. The expected residuals computed over all the time series for the second MODIS spectral band on the Gauteng province study area as a function
epoch.



observation error. The experiments were conducted on labelled
time series extracted from the Gauteng province.

In figure 5, the standard deviationσµ of the mean parameter
obtained by fitting the cosine model to the second MODIS
spectral band is illustrated as a function of epoch in the BVSA.
The standard deviation reported here is the average standard
deviation found over all the time series extracted from the
Gauteng province study area. It is clear from the graph that
the standard deviation decreases as more epochs are processed,
which implies that the mean parameter appears to become
more stable with each iteration.

The standard deviationσα of the amplitude parameter that
is used to fit the second MODIS spectral band is illustrated
as a function of epoch of the BVSA in figure 6. The standard
deviation reported here is the average standard deviation found
over all the time series extracted from the Gauteng province
study area. It is clear from the graph that the standard deviation
decreases as more epochs are processed, implying increasing
stability with further iterations.

In figure 7, the mean residualσE over all the time series’
difference between the actual observations and EKF output
is illustrated as a function of epoch in the BVSA. It is
observed that the residual decreased significantly after the 15th

epoch. Overfitting appears towards the end of the optimisation
process. This overfit can occur on any metric and in this
experiment the overfit is observed on theσE metric after the
25th epoch. This overfit defines the end of the search and is
used as an early stopping criterion.

The process noise covariance vectorQ and observation
noise covariance scalarR used in the 25th epoch are then used
to initialise the Extended Kalman filter for the experiments.
The BVSA is applied independently to each of the seven
spectral bands and NDVI time series to obtain a process noise
covariance vectorQ and observation noise covariance scalar
R for each spectral band.

B. Parameter evaluation

In this section the measured parameters of three different
methods are compared, namely the least squares, the EKF us-
ing the ALS method and the BVEP criterion. The comparison
is based on the standard deviationσµ of the mean parameter,
the standard deviationσα of the amplitude parameter, and the
observation errorσE . A mean (amplitude) parameter with a
small standard deviation indicates a stable variable. A small
σE indicates a well-estimated output when compared to the
actual observations.

An analysis of the standard deviation of the parameter
evaluated from the Gauteng province’s data set is presented
in table III. The EKF using the ALS method is denoted by
EKFALS and the EKF using the BVEP criterion is denoted
by EKFBVEP. The EKFALS method increased its residuals in
spectral bands 2 and 5 to improve the parameters stability
when compared to the non-linear least squares method. In
spectral bands 1, 3, and 4 the mean parameter’s standard
deviationσµ was increased to improve the other two metrics.
In spectral bands 6 and 7, EKFALS performed better than
the non-linear least squares in all the metrics. In the NDVI

TABLE III
PARAMETERS EVALUATION OF ALL THREE METHODS FOR THEGAUTENG

PROVINCE STUDY AREA. THE MEASUREMENTS ARE MADE ON ALL SEVEN

MODIS SPECTRAL BANDS ANDNDVI.

Spectral Mode
Band Least EKFALS EKFBVEP

squares
NDVI σE 0.04 0.002 0.003

σµ 0.01 0.07 0.05
σα 0.01 0.06 0.01

Band 1 σE 96.6 90.8 44.8
σµ 17.7 21.3 0.01
σα 22.5 17.3 15.3

Band 2 σE 156.4 204.2 123.4
σµ 49.1 29.8 0.01
σα 54.9 25.5 0.5

Band 3 σE 55.1 46.7 38.5
σµ 10.2 14.9 0.03
σα 14.0 12.2 0.02

Band 4 σE 63.3 57.0 42.7
σµ 12.6 19.2 0.04
σα 14.7 14.5 0.03

Band 5 σE 153.2 162.9 105.3
σµ 47.4 26.6 0.01
σα 54.2 22.6 0.01

Band 6 σE 157.3 130.5 87.3
σµ 29.8 24.9 0.01
σα 34.8 22.2 0.01

Band 7 σE 158.0 151.9 71.9
σµ 27.8 23.0 0.02
σα 35.0 21.7 20.5

case, the EKFALS decreased its observation error at the cost
of parameter stability when compared to the non-linear least
squares.

The EKFBVEP performed better than all methods in all the
spectral band experiments, except for the NDVI experiments,
where the EKFBVEP improves its tracking by increasing the
variation in the mean parameters. A peculiar observation was
made for the EKFBVEP in spectral bands 1 and 7. For the
first spectral band, overfitting was observed in the amplitude
parameter early in the BVSA, which is used as a early stopping
criterion. For the seventh spectral band case the standard
deviationσα of the amplitude parameter slowly monotonically
decreased for each epoch of the BVSA until on overfit was
reported on the residualsσE at the 22nd epoch. If the overfit
did not occur, then the standard deviationσα of the amplitude
parameter would still have steadily decrease.

C. Classification

In this paper a Multilayer Perceptron (MLP) was used for
land cover classification. The MLP is a feedforward Artificial
Neural Network (ANN) model that uses multiple layers of
neurons to distinguish inputs that are not linearly separable.
The case for using the MLP for urban land use classification
rather than a maximum likelihood method was made in [23].
It was shown that the MLP learned the complex non-linear
interdependencies of the multi-dimensional time series data
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Fig. 8. An example of persistent change in land cover class label over a time period of several months.

TABLE IV
CLASSIFICATION ACCURACY OFMLP USING THREE REGRESSION METHODS. EACH ENTRY GIVES THE AVERAGE CLASSIFICATION ACCURACY FOR EACH

MODE, CALCULATED OVER 10 REPEATED INDEPENDENT EXPERIMENTS ALONG WITH THE CORRESPONDING STANDARD DEVIATION . THE AVERAGE

CLASSIFICATION ACCURACY IS GIVEN AS A PERCENTAGE FOR EACH OFTHE CLASSES OVER A NUMBER OF SPECTRAL BAND COMBINATIONS(NDVI,
FIRST 2 SPECTRAL BANDS(RED AND NEAR INFRARED SPECTRAL BANDS) AND ALL 7 SPECTRAL BANDS).

Province Spectral Band Class Mode
Least squares EKFALS EKFBVEP

Gauteng NDVI Vegetation 92.5± 4.9 89.3± 4.8 91.4± 5.7
Settlement 88.6± 6.4 72.1± 16.9 86.9± 9.1

2 Bands Vegetation 97.5± 1.8 90.6± 2.9 98.6± 1.0
Settlement 95.1± 2.6 87.6± 3.2 96.2± 1.5

7 Bands Vegetation 98.8± 0.4 95.3± 1.8 99.9± 0.1
Settlement 98.2± 0.5 94.8± 2.4 99.9± 0.1

derived from multiple spectral bands. Another example is the
implementation of a MLP using a sliding window to classify
informal settlement in a MODIS time series [24]. The method
employs an iteratively retrained MLP described in [24] to
capture all local patterns and to compensate for the time-
varying climate change in the geographical area.

The MLP comprises an input layer, one hidden layer and
an output layer. All hidden and output nodes used a tangent
sigmoid activation function in each node. The input layer
accepts input vectors for classification, while the output layer
represents the likelihood that an input belongs to a specific
class. The MLP output was in the range (-1;1), where 1
represents a 100% certainty of class membership to natural
vegetation given the input vector, while a -1 represents a
100% certainty of settlement. For correct classification itwas
required that the MLP correctly classified the time series
according to a thresholdTh. This threshold was used to impose
a strict evaluation on the output class membership stream to
ensure that coherent classification was achieved. This means
that the MLPs tangent sigmoid activation function output was

classified as vegetation in the range [Th, 1], settlement in the
range [-1, -Th], and uncertain in the range (-Th, Th). The
weights in the training phase of the MLP were determined
using a steepest descent gradient optimization method, with
gradients estimated using backpropagation [25]. A validation
set was used for initial MLP architecture optimization by
testing the generalization error to identify overfitting ofthe
network for each study area. The retraining at each time
increment caused a small adaptation of the weights, and has
low complexity due to the small incremental MLP weight
changes over each 8 day increment. These small MLP weight
changes only required 300 epochs at each time increment for
network adaptation.

The combination of different spectral band’s state-space
vectors used as input vectors to the MLP were adopted from
the work presented in [24]. The NDVI, first two spectral
bands (Red and Near Infrared spectral bands) and all seven
land bands were investigated. In table IV, the classification
accuracies are reported for the three methods when the EKF
is used to extract the features. The average classification



Fig. 9. A classification/ change detection map of the entire Gauteng province (19676 km2).

accuracy is calculated with cross validation using 10 repeated
independent experiments [26].

From these results it was concluded that the EKFBVEP per-
formed better than any experiment conducted on the spectral
bands using the EKFALS and the least squares. This could
be owing to the fact that the BVEP criterion utilises spatial
information that is inherent in the set of time series. In the
case of the NDVI time series, the least squares method did
provide higher classification accuracies when compared to the
EKF initialize with either the BVEP or the ALS.

A general improvement trend was observed when using
more spectral bands in the experiments. The prospect of
acceptable land cover classification was confirmed as possible
by either using the NDVI time series or the first two spectral
bands time series of the MODIS data, as this was supported
by the results in [27]. The classification accuracies produced
by the MLP were however found to be the highest when using
all seven spectral bands.

D. Change detection

As stated in section III-A, a class label is assigned to each
pixel at each time index as shown in equation 5. Land cover
change is declared when a pixel’s time series has a persistent
change in class label as a function of time (equation (6)). This
type of change detection is grouped as a post-classification
change detection algorithm [6]. The MLP’s output was used
to monitor if any change was detected in the time series. Land
cover change is declared in this section when the majority
of the class labels in the first year (2001) is different when
compared to the majority of the class labels in the last

year (2011). In figure 8, an illustrative example is shown of
persistent change in class labels from natural vegetation to
human settlements.

The change detection accuracy is based on the performance
of the classification accuracy reported in table IV. The change
detection accuracies for the labelled data set is presented
in table V along with the false alarms in parentheses. The
best performing classification experiment was the EKFBVEP

and was benchmarked to the least squares experiment. The
EKFBVEP experiment’s results perform better than the least
squares in every spectral band combination.

A similar trend observed in the classification accuracies in
section IV-C is also observed in this section. An improvement
in the experimental results is reported when more spectral
bands are used.

TABLE V
THE LAND COVER CHANGE DETECTION ACCURACY ON THE LAND COVER

CHANGE DATA SET IN THE GAUTENG PROVINCE. EACH ENTRY GIVES THE

TRUE POSITIVES IN PERCENTAGE(FALSE POSITIVES IN PARENTHESES).
THE LAND COVER CHANGE DETECTION ACCURACY IS GIVEN AS A

PERCENTAGE OVER A NUMBER OF SPECTRAL BAND COMBINATIONS

(NDVI, FIRST 2 SPECTRAL BANDS(RED AND NEAR INFRARED SPECTRAL

BANDS) AND ALL 7 SPECTRAL BANDS).

Province Spectral Band Mode
Least squares EKFBVEP

Gauteng NDVI 80.0 (16.7) 83.4 (17.0)

2 Bands 87.7 (11.8) 92.1 (9.9)

7 Bands 94.3 (2.5) 95.5 (1.6)



(a) Land cover change detected in Nietgedacht (25
◦
59

′
15.58

′′S, 27◦55′46.46′′E). The Quickbird image on the
left was taken on 18 April 2004 and the right on 26 November 2009(Courtesy of GoogleTM Earth).

(b) Land cover change detected in Ga-Rankuwa (25
◦
34

′
21.91

′′S, 27◦58′48.96′′E). The Quickbird image on
the left was taken on 18 April 2004 and the right on 10 August 2006 (Courtesy of GoogleTM Earth).

(c) Land cover change detected in Devon (26
◦
20

′
53.34

′′S, 28◦46′29.50′′E). The Quickbird image on the left
was taken on 23 October 2004 and the right on 22 August 2011 (Courtesy of GoogleTM Earth).

Fig. 10. Example of three geographical areas where land coverchange was detected in the Gauteng province. The Quickbird imagery is overlayed with a
MODIS 500 meter coordinate grid.

TABLE VI
THE CLASSIFICATION AND CHANGE DETECTION RESULTS PRODUCED FOR THE ENTIREGAUTENG PROVINCE. THE RESULTS ARE PRESENTED IN

PERCENTAGE COVER OF TOTAL AREA IN THE PROVINCE.

Feature Algorithm Spectral Band Class allocation [%]
extraction Natural Human Land cover

vegetation settlement change
EKF MLP 7 Bands 76.97 21.86 1.17



V. REGIONAL EXPERIMENTS

In this section the optimized EKF was evaluated at a
regional scale using a MLP operating on all seven spectral
bands. Using all seven spectral bands was preferred based
on the classification accuracies presented in table IV and the
change detection accuracies presented in table V. The results
were produced by processing the entire Gauteng province into
three defined categories: natural vegetation, human settlement
and land cover change. The results for the experiments are
presented in table VI. An illustration of this experiment’s
output is shown in figure 9, which illustrates the entire Gauteng
province. The natural vegetation class covered 76.97% of the
province, while the human settlements covered 21.86%. This
result supports the concept that Gauteng is a heavily urbanised
province. The land cover that changed was flagged at 1.17%
of the total area in the province. This is a significant large area
that has changed in the study period, which equates to a total
land area of 230 km2.

Three examples of where land cover change was identi-
fied is shown in figure 10. The first illustration in figure
10(a) shows 4 detected MODIS pixels that were subjected
to land cover change in the Nietgedacht area (25◦59′15.58′′S,
27◦55′46.46′′E). The second illustration in figure 10(b) shows
a large area of 11 detected MODIS pixels that were subjected
to land cover change in the Ga-Rankuwa area (25◦34′21.91′′S,
27◦58′48.96′′E). The last illustration in figure 10(c) shows
3 detected MODIS pixels that were subjected to land cover
change in the Devon area (26◦20′53.34′′S, 28◦46′29.50′′E).

VI. CONCLUSION

It was demonstrated in this paper that each of the seven
spectral bands could be successfully modelled with a triply
modulated cosine function for the study area located in the
Gauteng province, South Africa. The model was fitted using
an EKF, where the parameter derived could be used to separate
natural vegetation and human settlements (Table IV).

A novel BVEP criterion was proposed in this paper, which
is used to derive initial parameters for an EKF to ensure thatit
is operating in a desirable state. The EKF was defined as oper-
ating in a desirable state when it was tracking the observations
with minimum residual and have a stable internal state-space
vector. The criterion is used to compute the process noise
covariance matrix and observation noise covariance matrix
using spatial and temporal information with an unsupervised
search algorithm. The resulting parameters are then used to
initialize the EKF which is used as a feature extraction method.
It was shown that the criterion can be extended to include the
spectral information if the spectral bands are assumed to be
correlated.

The BVSA is also proposed in this paper, which is a
specifically designed unsupervised search algorithm used to
adjust the BVS in an attempt to satisfy the BVEP criterion.
The BVSA provides covariance matrices that could be used
for a variety of different applications.

The parameters extracted from the EKF were encapsulated
in an input vector and presented to a MLP for classification.
The classification accuracies in most of the experiments were

above 90% for the first two spectral band and all seven spectral
band combinations. From the results presented in section IV-C
it is clear that better classification accuracies were obtained
if all seven spectral bands of the MODIS sensor were used.
The feature extracted from the EKF can also be applied in
combination with a variety of other classifiers or machine
learning methods.

REFERENCES

[1] G. Daily and P. Ehrlich, “Population, sustainability, and Earth’s carrying
capacity,”Bioscience, vol. 42, no. 10, pp. 761–771, Nov. 1992.

[2] P. Vitousek, H. Mooney, J. Lubchenco, and J. Melillo, “Human domina-
tion of Earth’s ecosystems,”Science, vol. 277, pp. 494–499, July 1997.

[3] R. Lunetta, J. Knight, J. Ediriwickrema, J. Lyon, and L. Worthy, “Land-
cover change detection using multi-temporal MODIS NDVI data,”
Remote Sensing of Environment, vol. 105, no. 2, pp. 142–154, November
2006.

[4] R. DeFries and J. Chan, “Multiple criteria for evaluating machine
learning algorithms for land cover classification from satellite data,”
Remote Sensing of Environment, vol. 74, no. 3, pp. 503–515, December
2000.

[5] D. Lu and Q. Weng, “A survey of image classification methods and tech-
niques for improving classification performance,”International Journal
of Remote Sensing, vol. 28, no. 5, pp. 823–870, January 2007.

[6] P. Coppin, I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin,
“Digital change detection methods in ecosystem monitoring: areview,”
International Journal of Remote Sensing, vol. 25, no. 9, pp. 1565–1596,
May 2004.

[7] S. Lhermitteet al., “Hierachical image segmentation based on similarity
of NDVI time-series,”Remote Sensing of Environment, vol. 112, no. 2,
pp. 506–512, Feb. 2008.

[8] W. Kleynhans, J. Olivier, K. Wessels, F. van den Bergh, B.Salmon,
and K. Steenkamp, “Improving land cover class separation using an
Extended Kalman Filter on MODIS NDVI Time-Series Data,”IEEE
Geoscience and Remote Sensing Letters, vol. 7, no. 2, pp. 381–385,
Apr. 2010.

[9] M. Rajamani and J. Rawlings, “Estimation of the disturbance structure
from data using semidefinite programming and optimal weighting,”
Automatica, vol. 45, no. 1, pp. 142–148, January 2009.

[10] C. Schaafet al., “First operational BRDF, albedo nadir reflectance
product from MODIS,” Remote Sensing of Environment, vol. 83, no.
1/2, pp. 135–148, Nov. 2002.

[11] W. Wanner et al., “Global retrieval of bidirectional reflectance and
Albedo over land from EOS MODIS and MISR data: theory and
algorithm,” Journal of Geophyshical Research, vol. 102, no. D14, pp.
17 143–17 162, July 1997.

[12] M. Chen, S. Liu, L. Tieszen, and D. Hollinger, “An improved state-
parameter analysis of ecosystem models using data assimilation,” Eco-
logical Modelling, vol. 219, no. 3–4, pp. 317–326, December 2008.

[13] O. Samain, J. Roujean, and B. Geiger, “Use of a Kalman filterfor
the retrieval of surface BRDF coefficients with a time-evolving model
based on the ECOCLIMAP land cover classification,”Remote Sensing
of Environment, vol. 112, no. 4, pp. 1337–1346, April 2008.

[14] B. Ristic, S. Arulampalam, and N. Gordon,Beyond the Kalman filter:
Particle Filters for Tracking Applications, 1st ed. London: Artech
House, 2004.

[15] R. Nikoukhah, A. Willsky, and B. Levy, “Kalman filtering and Riccati
equations for descriptor systems,” Massachusetts Institute of Technology,
Laboratory for information and decision systems, Tech. Rep. 0704-0188,
January 1991.

[16] W. Arnold and A. Laub, “Generalized Eigenproblem algorithms and
software for algebraic Riccati equations,”Proceedings of the IEEE,
vol. 72, no. 12, pp. 1746–1754, December 1984.

[17] R. Mehra, “On the identification of variances and adaptive Kalman
filtering,” IEEE Transactions on Automatic Control, vol. 15, no. 12,
pp. 175–184, April 1970.

[18] B. Carew and P. Belanger, “Identification of optimum filter steady-state
gain for systems with unknown noise covariances,”IEEE Transactions
on Automatic Control, vol. 18, no. 6, pp. 582–587, December 1973.

[19] G. Noriega and S. Pasupathy, “Adaptive estimation of noise covariance
matrices in real-time preprocessing of geophysical data,”IEEE Trans-
actions on Geoscience Remote Sensing, vol. 35, no. 5, pp. 1146–1159,
September 1997.



[20] B. Odelson, M. Rajamani, and J. Rawlings, “A new autocovariance least-
squares method for estimating noise covariances,”Automatica, vol. 42,
no. 2, pp. 303–308, February 2006.

[21] R. Shumway and D. Stoffer, “An approach to time series smoothing and
forecasting using the EM algorithm,”Journal of Time Series Analysis,
vol. 3, no. 4, pp. 253–264, July 1982.

[22] M. Nikulin, N. Limnois, N. Balakrishnan, W. Kahle, and C.Huber-
Carol, Advances in degradation modeling: Applications to reliability,
survival analysis, and finance, 1st ed. 233 Spring street, New York,
USA: Springer, 2010.

[23] J. Paola and R. Schowengerdt, “Detailed comparison of backpropagation
neural network and maximum-likelihood classifiers for urban land use
classification,”IEEE Transactions on Geoscience and Remote Sensing,
vol. 33, no. 4, pp. 981–996, July 1995.

[24] B. Salmon, J. Olivier, W. Kleynhans, K. Wessels, F. van den Bergh, and
K. Steenkamp, “The use of a Multilayer Perceptron for detecting new
human settlements from a time series of MODIS images,”International
Journal of Applied Earth Observation and Geoinformation, vol. 13,
no. 6, pp. 873–883, December 2011.

[25] C. Bishop,Neural Networks for Pattern Recognition, 2nd ed. New
York, USA: Oxford University Press, 1995.

[26] S. Salzberg, “On comparing classifiers: Pitfalls to avoid and a recom-
mended approach,”Data mining and knowledge discovery, vol. 1, no. 3,
pp. 317–328, September 1997.

[27] M. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty,
A. Sibley, and X. Huang, “MODIS collection 5 global land cover:
algorithm refinement and characterization of new datasets,”Remote
Sensing of Environment, vol. 114, no. 1, pp. 168–182, January 2010.

B.P. Salmonreceived a M.Eng degree in electronic
engineering and a Ph.D. degree in electronic engi-
neering from the University of Pretoria, South Africa
in 2008 and 2012 respectively. He is presently a
senior researcher in the Remote Sensing Research
Unit at the Council for Scientific and Industrial
Research. He was the lead author of the paper
that won the IEEE Geoscience and Remote Sensing
Society 2012 Symposium prize paper award. His
research interests are information theory, coding
theory, machine learning and graph theory.

W. Kleynhans received a B.Eng., M.Eng. and Ph.D.
(Electronic Engineering) from the University of Pre-
toria, South Africa as well as an MBA from Heriot-
Watt University, Scotland. He is currently a senior
researcher with the Remote Sensing Research Unit
at the Council for Scientific and Industrial Research
in Pretoria, South Africa and is also affiliated with
the University of Pretoria. His research interests in-
clude remote sensing, time-series analysis, wireless
communications, statistical detection and estimation
theory as well as machine learning.

F. van den Bergh received the M.Sc. degree in
computer science (machine vision) and the Ph.D.
degree in computer science (particle swarm opti-
mization) from the University of Pretoria, Pretoria,
South Africa, in 2000 and 2002, respectively. He
is currently a principal researcher at the Council
for Scientific and Industrial Research. His research
interests include automated feature extraction from
high-resolution satellite images, as well as auto-
mated change detection. He maintains an active
interest in particle swarm optimization and machine

learning.

J.C. Olivier received the Ph.D. degree in 1990 from
the University of Pretoria in Electrical Engineering.
He is currently the head of the School of Engineering
at the University of Tasmania, Australia. He was
with Bell Northern Research (BNR) in Canada, and
with Nokia Research Center in the United States. His
research interests are in Estimation and Detection
theory, as well as applications of Machine Learning.
He serves as an Editor for the IEEE Trans. on
Wireless Communications.

W.J. Marais received the B.Eng in computer en-
gineering from the University of Pretoria, Pretoria,
South Africa in 2005. He is currently doing the
M.Sc. in electrical engineering at the University of
Wisconsin, Madison. His research interest include
signal processing in the domain of remote sensing.

T.L.Grobler received his B.Eng. and M.Eng. de-
grees from the University of Pretoria, South Africa,
in 2005 and 2008 respectively. He is currently a
Ph.D. student at the University of Pretoria, South
Africa. His research interests include remote sens-
ing, time-series analysis, wireless communications,
statistical detection and machine learning.

K.J. Wesselsreceived an M.Sc. in Landscape Ecol-
ogy and Conservation Planning from the University
of Pretoria (South Africa) in 1997 and a Ph.D. in
Geography from University of Maryland (US) in
2005. He was a research associate at NASA Goddard
Space Flight Center, Hydrospheric and Biospheric
Laboratory (2006-2006). He is presently a chief
researcher and leads the Remote Sensing Research
Unit within the CSIR Meraka Institute in Pretoria,
South Africa. His research interests include time-
series analysis of satellite data for monitoring envi-

ronmental change and the estimation ecosystem state variables and services
with remote sensing.


