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Abstract

An Observing System Simulation Experiment for the Aquarius/SAC-D mission has been developed for assessing

the accuracy of soil moisture retrievals from passive L-band remote sensing. The implementation of the OSSE is

based on: a 1-km land surface model over the Red-Arkansas River Basin, a forward microwave emission model to

simulate the radiometer observations, a realistic orbital and sensor model to resample the measurements mimicking

Aquarius operation, and an inverse soil moisture retrieval model. The simulation implements a zero-order radiative

transfer model. Retrieval is done by direct inversion of the forward model. The Aquarius OSSE attempts to capture

the influence of different error sources: land surface heterogeneity, instrument noise and retrieval ancillary parameter

uncertainty on the accuracy of Aquarius surface soil moisture retrievals. In order to assess the impact of these error

sources on the estimated volumetric soil moisture, a quantitative error analysis is performed via the comparison

of footprint-scale synthetic soil moisture with ’true’ soil moisture fields obtained from the direct aggregation of

the original 1-km soil moisture field fed into the forward model. Results show that, in heavily vegetated areas,

soil moisture retrievals present a positive bias that can be suppressed with an alternative aggregation strategy for

ancillary parameter vegetation water content (VWC). Retrieval accuracy was also evaluated when adding errors on

1-km VWC (which are intended to account for errors in VWC derived from remote sensing data). For soil moisture

retrieval RMSE of the order of 0.05%vol/vol, relative error bias on VWC should be less than 12%.
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I. INTRODUCTION

AN Observing System Simulation Experiment (OSSE) is a simulation designed to mimic as closely

as possible a given satellite mission, in order to study one or several characteristics of its

operation. In general, OSSEs are developed to study final product characteristics as a function of system

characteristics. In the past, OSSEs have been carried out to study the impact of land surface heterogeneity

[1], instrument error and parameter uncertainty on soil moisture products [2] for the AMSR-E and Hydros

missions. In these studies it was shown that OSSEs are a useful tool to analyze the error budget of a

given sensor from a system theory point of view, in order to identify areas where the error is large and

can be reduced by relatively inexpensive means.

In this paper, a similar analysis is performed using an OSSE developed for the Aquarius/SAC-D mission.

The mission is a collaboration between NASA and the Space Agency of Argentina (Comisión Nacional

de Actividades Espaciales). Aquarius main scientific objective is to provide global measurements of sea

surface salinity. Therefore, some simulation work have been developed to study sea surface salinity product

[3]. However, measurements of the L-band radiometer on board the satellite are also capable to generate

soil moisture global maps.

Unlike previous OSSE works cited, the OSSE described here incorporates Aquarius unique sensor

characteristics (e.g. antenna footprints, radiometer measurement procedure, soil moisture composite) and

a detailed error analysis on ancillary parameter VWC.

This OSSE includes four elements: 1) a land surface model (LSM) to generate 1-km resolution

geophysical data fields; 2) a microwave emission model (MEM) to simulate soil surface brightness

temperature (Tb) from soil properties at 1 km; 3) a system and orbital model (SOM) to simulate Aquarius

measurements at 100 km (which includes instrument and acquisitions strategy artifacts); and 4) a retrieval

model (RM) to estimate soil moisture from Aquarius measurements at 100 km and aggregated ancillary

data.

Fig. 1 illustrates the key components included in the observing system simulation experiment and the

data flow.

Generally speaking, there are four different types of errors captured by the OSSE:

1) Heterogeneity effects - sampling and nonlinearity effects associated with land surface heterogeneity

and running the retrieval model at a coarser spatial resolution than forward model. These errors include

the impact of non linearities in the MEM and RM and gridding effects associated with the gain function.
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2) Observation noise effects - errors that arise when adding synthetic noise to the footprint-scale Tb.

These errors correspond to system measurement errors.

3) Retrieval parameter error effects - errors that arise when adding synthetic noise to the footprint-

average retrieval parameters. These errors are related to uncertainties on the ancillary parameters needed

in the RM.

4) Forward/retrieval model incompatibilities - errors that arise when the retrieval model is structurally

inadequate [4].

Of course, real retrievals are degraded by all four effects. Nevertheless, using OSSEs outputs it is

possible to isolate the impact of all four error sources. Here, we focus on OSSE simulations corresponding

to land surface heterogeneity effects (1), observation noise effects (2) and retrieval parameter error effects

(3). Simulations are presented for all the cases, and a description of how errors evolve from case-to-case

is also offered.

II. METHODOLOGY

A. Land Surface Model

High resolution geophysical variables used as the reference ’true’ fields needed for the simulation were

generated via a land surface model (LSM) at 1-km spatial resolution within 250, 000km2 Red-Arkansas

River Basin (south-central US) for 4 months in summer of 1994. The static dataset used for the nature

run include a land cover and soil texture database, a digital elevation model and a NDVI database, all at

1 km resolution. The LSM used for the simulations is the TOPLATS hydrological model [5]. The three

LSM predictions are: 0 to 5 cm integrated surface soil moisture in volumetric (m3/m3) units, surface

’skin’ temperature and 5-cm soil temperature. Outputs were generated at 6 p.m. local time in the Central

US, corresponding to Aquarius ascending overpass time. Therefore, only ascending results were simulated

and analyzed.

B. Microwave Emission Model

Radiometer observations were simulated at Aquarius frequencies (1.413 GHz), polarization (h and v)

and incidence angles (28.7°, 37.8°and 45.6°for inner, middle and outer beam) at 1 km spatial resolution.

Radiometer brightness temperature was computed based on a zero-order radiative transfer model that
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includes vegetation and soil components as [6]

Tbp =Ts(1− rp)exp
(
− τ

cosθ

)
+ Tc(1− ω)

×
(
1− exp

(
− τ

cosθ

))(
1 + rpexp

(
− τ

cosθ

))
(1)

where p refers to polarization, Ts is 5-cm soil temperature and Tc is surface skin temperature (both

derived from the LSM), rp is the soil reflectivity, θ is the look angle, τ is the nadir vegetation opacity, ω

is the vegetation single scattering albedo. Vegetation opacity is assumed to be unpolarized and is defined

as τ = b VWC, where b is a land cover depending coefficient and VWC is vegetation water content

(kg/m2).

The surface roughness effect over the modeled brightness temperature was approximated as rp =

rspexp(−h) where h is related to the root mean square surface height and rsp is the reflectivity of the

equivalent smooth soil surface. Values for these land cover depending ancillary parameters were obtained

from [1].

Finally, dielectric constant is obtained from soil moisture and soil type using semiempirical dielectric

mixing model proposed by Dobson et al. [7].

High resolution inland water pixels were not considered for the analysis.

C. Sensor and Orbital Model

The SOM is based on a Matlab routine that implements SGP4 orbit propagation. Aquarius orbital

parameters considered in the SOM were: 98.0126 degree inclination, 0.0012 eccentricity, 18:00 mean

local mean time of ascending node, 7028.871 km mean semi-major axis, 90 degree mean argument of

perigee and 657 km satellite height.

The synthetic 1-km Tb are weighted by a sinc2 function, a theoretical approximation of the Aquarius

antenna patterns with matching -3 dB footprints. The ground projected axis of the footprints are: 74 km

along track x 94 km cross track for the inner beam, 84x120 km for the middle beam and 96x156 km for

the outer beam yielding a total cross track of 390 km [8]. For each of the three beams, 1 km resolution

gain patterns were projected on the ground as in [9]. Patterns were rotated and located to move along

with the satellite motion. Geolocation of observations was associated to the latitude and longitude of the

center of the footprint. Spatially independent Gaussian noise with standard deviation of 1K for brightness

temperature was added to measurements at this stage when accounting for radiometer instrumental noise
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effect. The chosen measurement error is high considering the 0.38 K error expected per observation

described in [10]. Observations were then averaged to a time step of 1.44 s (i.e. 12 Tb samples), to match

the temporal resolution of Aquarius Level 2 [11] and Aquarius measurement procedure [8].

D. Retrieval Model

The OSSE implements the single channel retrieval algorithm (SCA) [12] to estimate soil moisture from

simulated brightness temperature. This is accomplished by directly inverting the implemented forward

model. Soil moisture was achieved from reflectivity coefficient via Fresnel equations and the dielectric

mixing model used in MEM. Auxiliary data for estimating soil moisture are the ancillary parameters at

footprint scale. These values are derived by linear averaging 1-km emission parameters used as inputs to

the simulation.

In previous studies [13], it was shown that the most critical value in terms of soil moisture retrieval

errors is the VWC. To evaluate the effect of subfootprint-scale land surface heterogeneity, two methods of

aggregating VWC were evaluated. Linear averaging (AVE) of 1-km VWC and an alternative aggregation

scheme (AGG) for VWC, derived from theoretical considerations (see [14]), resulting as follows

VWCagg =

[
ln

(
n∑

i=1

AVWCi

)
− ln(n)

]
/ln(A) (2)

where A = exp(−2b/cosθ), with θ Aquarius incident angle and b the vegetation parameter that relate

vegetation opacity to VWC. Uncertainties in ancillary parameters were accounted for by adding noise to

some footprint-resolution parameters in some OSSE’s runs. Gaussian noise with zero mean and standard

deviation of: 1 K for Ts and Tc, 1% relative error for sand, clay and VWC, and 0.005 for b and h (cm).

E. Composite

To mimic Aquarius Level 3 processing, retrieved soil moisture at center of footprints location for

the three beams were mapped onto a fixed weekly soil moisture product of 1° grid. Composite pixels

may arise from observations of different beams and the resulting image will be the standard Aquarius

soil moisture product. In order to generate the composite, three sampling methods were implemented:

(1) nearest neighbour (NN), (2) a weighing function (WF) and (3) local quadratic polynomial fitting

(LP) with bandwidth 100 km [15]. In (2), each pixel value depends upon the spatial location of each

observation (distance from the sample to the center of the pixel, distance) as well as the soil moisture
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value (sample value) as follows,

Pixel value =

∑n
i=1 sample valuei/distancei∑n

i=1 1/distancei
(3)

Image pixel values derived for interpolation (1) and (2) were obtained binning soil moisture Level 2

product onto a 1° grid (Fig. 2).

III. RESULTS

Soil moisture runs from April 2nd to July 30th, 1994 were used in this analysis. Since Aquarius has a

7 days repeat pass, 17 weekly product images were obtained. Each 7-day retrieved soil moisture image

was obtained through composing observations from 7 different days.

A. Total Error Analysis

OSSE’s soil moisture was retrieved with the SCA for the two polarization channels, the three different

Aquarius beams, the two VWC aggregation strategies and the three different soil moisture composites.

For every run alternative, three outputs were obtained: (1) no noise case, (2) Tb with Gaussian noise case

(observation noise effects in Section II-C) and (3) Tb and ancillary parameters with Gaussian noise case

(observation noise and retrieval parameter error effects in Section II-D). For assessing the impact of these

different error sources and be able to quantify their influence over the final product (weekly soil moisture),

two error metrics were taken into consideration. For every output, correlation (ρ) between synthetic soil

moisture (sm0) and weekly-averaged ’true’ soil moisture degraded at coarse resolution (smg), as well as

root mean square error, RMSE, were computed.

RMSE =

√√√√1

n

n∑
i=1

(sm0 − smg)2 (4)

In Table I the error metrics for each case are displayed. The simulation were run for three composite

methods (NN, WF and LP), the two VWC aggregation methods (AVE and AGG), and three noise cases

(no noise (nn), instrumental noise (i) and instrumental noise and ancillary parameters uncertainties (i+p)).

In all the tested cases, estimation using the vertical polarization channel displays slightly higher estimation

accuracy than retrieval from horizontal channel. This result is controversial, since it does not agree with

field experiments nor theoretical results, which predicts a higher sensitivity of the H channel. In general,

SCA uses horizontal polarization to retrieve soil moisture because of its higher dynamic range on Tb.
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Moreover, horizontal channel is expected to have better performance since calibration bias of the Aquarius

radiometer is higher for the vertical polarization [16]. However, vertical polarization was also pinpointed

as the best channel option for SCA in [17] where it was established that this channel is least sensitive to

variable surface roughness and vegetation canopy.

With regards to VWC aggregation, applying alternative aggregation method proposed in [14] results in

an improvement on the estimation in all cases, as expected. Finally, the errors associated with composite

strategy were evaluated. The estimation performance slightly improves when using the weighing function

composite. Furthermore, this interpolation exhibits less sensitivity to instrumental noise and parameter

uncertainties.

Total error as a function of beam number was also evaluated. Differences on retrieval performance

between beams is expected since the three Aquarius beams have different incidence angle and footprint

dimensions. Since error analysis is performed after composing, beam performance differentiation cannot be

directly assessed. Though, simulations for Level 2 product showed that middle beam exhibits the highest

accuracy and the outer beam the lowest. As an example, in the case where neither instrumental noise nor

ancillary parameter uncertainties are added and alternative aggregation of VWC is applied, inner beam

has ρh=0.969, RMSEh=0.023, ρv=0.976 and RMSEv=0.020, middle beam ρh=0.984, RMSEh=0.017,

ρv=0.986 andRMSEv=0.016 and the outer beam ρh=0.959,RMSEh=0.027, ρv=0.960 andRMSEv=0.027.

Nevertheless, since the composite is constructed using all the three beams, these effects are not relevant

to the L3 product.

B. Parameter VWC

1) VWC Aggregation: Resolution degradation of VWC was obtained through two different aggregation

approaches: AVE and AGG (see Eq. (2)) over high resolution VWC to degrade to final product spatial

resolution. An error analysis was performed to derive the accuracy of synthetic soil moisture retrieved

with both schemes (Fig. 3(a) and 3(b)). Results suggest that linear aggregation of vegetation water content

produced overestimation of soil moisture for heavily vegetated surfaces. The alternative aggregation

strategy gives rise to lower VWC, which turns over lower retrieved soil moisture. Therefore, this method

resulted on an improvement on soil moisture estimation accuracy.

To understand the errors that arise from the two different approaches, comparison between aggregated

and averaged VWC against the corresponding effective VWC values was performed following the

methodology in [14] over the 17 weeks simulation period. Effective VWC values are defined as the
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ones that minimize RMSE in soil moisture retrievals for a given condition. Results are illustrated in Fig.

4 (the value of the b parameters needed for the alternative aggregation approach was obtained through

linear average of high resolution b). As seen, aggregated VWC presents better agreement with effective

VWC. These results agree with the outputs obtained from the OSSE: averaged VWC displays a positive

bias in VWC which increases as vegetation becomes denser and produce a positive bias in estimated soil

moisture. On the contrary, retrieved soil moisture with the alternative aggregation approach shows a better

agreement with ground soil moisture.

An important feature that is observed in Fig. 4 is an horizontal stripes pattern. This artifact is produced

because, for a given pixel, VWC and b parameters remain constant over the simulation period but the

effective VWC changes through time. Effective VWC changes imply that the VWC value which will lead

to the minimum error in soil moisture estimation changes over time. This change should be related to

the variables that change over time in the OSSE, which are: soil moisture, soil temperature and canopy

temperature. Thus, the change in the effective VWC value is presumably related to the aggregation method

of these parameters. Although these errors are small compared with VWC ones, the aggregation strategy

of these parameters should be taken into account in any real retrieval scheme.

2) Errors on VWC: Since VWC was already pointed out as the main responsible of soil moisture

errors [13], it is relevant to study which are the maximum error tolerable in this parameter in order to

keep soil moisture error below a give value. To this end, error was added to high resolution ancillary

parameter VWC before aggregation. In order to simulate both a systematic bias and variance in the VWC

layer, errors were added as Gaussian noise N (0, σ2) with higher standard deviation for areas with denser

vegetation and a bias to account for nonlinearity between VWC and its satellite-derived proxy (i.e. NDVI,

NDWI). Coarse resolution noisy VWC is then used in the soil moisture retrieval and the synthetic product

performance is assessed. Results are summarized in Table II.

As expected, linear average of VWC exhibits strong sensitivity to biases on high resolution VWC. On

the other hand, the performance of alternative aggregation method remains moderately constant when bias

on VWC is added. Furthermore, for high bias cases (more than 25%), applying the alternative aggregation

rule yields high accuracy on soil moisture retrieval in comparison with linear averaging. Both aggregation

methods exhibits low sensitivity to Gaussian noise on high resolution VWC. This results is expected

since random error (i.e. non-bias based) added was spatially independent in neighboring 1-km pixels. As

a result, it can be effectively eliminated by spatial averaging. In summary, although accuracy decreases
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when VWC error increases (both bias and variance), the retrieval model proves to be quite robust even

when using low quality VWC data.

C. Composite

Results for the different implemented composites are shown in Fig. 3: nearest neighbor 3(a), weighing

function 3(c) and local polynomial fitting 3(d). Since only ascending passes were considered in the

simulation, composed soil moisture does not precisely represent the Level 3 processing (in fact the

interpolation methods (1) and (2) led to some ’holes’ in the soil moisture imagery). Nevertheless, several

conclusions can still be extracted from the analysis. Interpolations (1) and (2) display the most similar

results. However, nearest neighbor composite is more sensitive to noise on radiometer observations.

Moreover, with this configuration, local polynomial fitting displays the lowest accuracy. However, further

analysis should be carried out to reach the optimal bandwidth for the local polynomial compound and

improve the estimation.

IV. DISCUSSION & CONCLUSIONS

Using an OSSE for Aquarius, this study evaluated the accuracy of retrieving soil moisture from

radiometer observations and the potential impact of different error sources over the final product. Product

performance depends on interpretation of OSSEs results and error analysis, and different error metrics,

as well as different objectives on the characteristics of the obtained imagery, will lead to different soil

moisture maps. These latter should agree with users expectations.

After evaluating error metrics (correlation and RMSE), it has been showed that the single channel

algorithm for retrieving soil moisture from brightness temperature observations displays high sensitivity

to optical depth and vegetation water content aggregation technique [13]. Moreover, results exhibited a

bias on highly vegetated areas for synthetic soil moisture retrieved from passive microwaves when linear

averaging is used to aggregate VWC. Aggregation of vegetation water content impact is stronger at denser

vegetation.

OSSE simulations were also used to evaluate and compare three different composing methods to obtain

L3 product imagery. Results suggest that choosing an optimal soil moisture composite has a lesser impact

of retrieval accuracy than improvement that can be achieved by implementing proper ancillary parameter

aggregation methods.
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Finally, both parameter uncertainty and instrumental errors were considered. Despite the low errors

considered in the auxillary parameter, the retrieval was found to be more sensitive to ancillary parameter

errors than to added footprint-scale noise over observations. Moreover, using OSSE outputs, both

systematic and random errors in VWC data were studied for two different aggregation techniques (average

and Zhan [14]). For large values of VWC, an overestimation of soil moisture is observed when averaging

to degrade VWC. Regarding vegetation effects, an overestimation in soil moisture is related to an

overestimation of VWC. Indeed, for a given value of measured TbH , the retrieval model will assign

a higher soil moisture value to the most heavily vegetated areas. Therefore, the overestimation in soil

moisture observed when averaging should be related to an overall overestimation of VWC for the areas

characterized with large VWC values (> 2Kg/m2). This was observed by Zhan [14], who proposed his

own aggregation technique in order to solve this issue.

From previous studies [13] and the results of this paper, we established that, at first order, VWC is

the parameter that controls estimated soil moisture error. Therefore, its absolute error and aggregation

strategy should be comprehensively studied. In this paper, two sources of VWC error were studied: a

zero mean Gaussian noise and a systematic bias (Table II). As expected, an increase in VWC errors

degrades soil moisture estimation. Linear aggregation scheme is sensitive to biases on VWC. As already

noted, Zhan aggregation errors remain more constant when bias on VWC is added. In general, although

accuracy decreases when VWC error increases, the retrieval model presents a robust estimation even for

large errors on VWC. Nevertheless, based on these simulations, maximum values for VWC errors (bias

and std) can be defined. As a conservative estimation, for the dataset and configuration using in this

OSSE, VWCbiasmax . 12%.

It is interesting to contrast these values with the values available in the literature. VWC data used for

passive microwave soil moisture retrieval is generally estimated using one or a combination of these remote

sensing proxies: NDVI [18], NDWI [19] and microwave polarization indexes [20]. All these methods are

landcover-dependent (i.e. the equations that relate the proxy value to VWC depends on assumptions about

landcover). Nevertheless, not all this VWC estimation strategies are well validated, and only a few presents

error estimations. As an example, [21] informs an RMS error ∼0.6 kg/m2 for the estimation of VWC from

NDWI (for corn and soybean), which accounts for ∼ 10% of the observed VWC range for these crops.

Therefore, these errors seem to be acceptable to use this estimated VWC as an input in a soil moisture

retrieval scheme. Nevertheless, the same work informs on plots which present strong discrepancies with
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the proposed VWC-NDVI model, and even nonlinear relationships between NDVI and VWC, which could

lead to bias in linear interpolations, are reported [22]. Finally, this kind of exhaustive analysis is not present

for all the landcovers, and therefore its is difficult to asses if current VWC estimations strategies are good

enough to be used as an input in Aquarius soil moisture retrieval scheme.
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Fig. 2. Weekly composite at 1° grid of soil moisture product derived from the three Aquarius beams. Composite location is marked with
’x’ and soil moisture product before gridding is marked with filled ’o’



16

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Estimated soil moisture [% Vol.]

G
ro

un
d 

so
il 

m
oi

st
ur

e 
[%

 V
ol

.]

 

 

ρ:0.94118

0.5

1

1.5

2

2.5

3

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Estimated soil moisture [% Vol.]

G
ro

un
d 

so
il 

m
oi

st
ur

e 
[%

 V
ol

.]

 

 

ρ:0.95321

0.5

1

1.5

2

2.5

3

(b)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Estimated soil moisture [% Vol.]

G
ro

un
d 

so
il 

m
oi

st
ur

e 
[%

 V
ol

.]

 

 

ρ:0.9471

0.5

1

1.5

2

2.5

3

(c)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Estimated soil moisture [% Vol.]

G
ro

un
d 

so
il 

m
oi

st
ur

e 
[%

 V
ol

.]

 

 

ρ:0.93549

0.5

1

1.5

2

2.5

3

(d)

Fig. 3. Ground soil moisture vs. estimated soil moisture from horizontal polarization channel for different VWC aggregation methods
and soil moisture composites: averaged VWC and nearest neighbour composite (a); aggregated VWC and nearest neighbour composite (b);
averaged VWC and weighing function (c); averaged VWC and local second order polynomial fitting (d). Color axes correspond to VWC
[kg/m2] values.

TABLE I
ERROR METRICS

NN WF LP
Tbh Tbv Tbh Tbv Tbh Tbv

ρ rmse ρ rmse ρ rmse ρ rmse ρ rmse ρ rmse

AV
nn 0.941 0.034 0.952 0.030 0.947 0.031 0.955 0.029 0.935 0.034 0.951 0.030

i 0.940 0.034 0.952 0.030 0.947 0.031 0.955 0.029 0.935 0.035 0.948 0.031

i+p 0.937 0.036 0.950 0.031 0.946 0.032 0.955 0.029 0.933 0.035 0.943 0.032

AGG
nn 0.953 0.028 0.957 0.027 0.957 0.027 0.959 0.026 0.948 0.029 0.952 0.028

i 0.953 0.028 0.957 0.027 0.957 0.027 0.959 0.026 0.939 0.032 0.950 0.029

i+p 0.951 0.028 0.956 0.027 0.956 0.027 0.959 0.026 0.931 0.033 0.941 0.031



17

TABLE II
ERRORS ON VWC

VWC Agg. No
Error

5%bias

+10%σ

5%bias

+15%σ

5%bias

+25%σ

8%bias

+15%σ

8%bias

+25%σ

12%bias

+15%σ

25%bias

+25%σ

AV

ρh 0.941 0.933 0.933 0.933 0.929 0.929 0.918 0.878

RMSEh 0.034 0.040 0.040 0.040 0.044 0.043 0.052 0.083

ρv 0.952 0.950 0.950 0.950 0.949 0.949 0.946 0.937

RMSEv 0.030 0.033 0.033 0.033 0.034 0.034 0.037 0.048

AGG

ρh 0.953 0.925 0.925 0.924 0.924 0.923 0.920 0.911

RMSEh 0.028 0.035 0.036 0.036 0.036 0.037 0.039 0.048

ρv 0.957 0.927 0.926 0.926 0.926 0.926 0.924 0.921

RMSEv 0.027 0.036 0.036 0.036 0.036 0.037 0.038 0.042
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Fig. 4. Comparison between averaged (AVE) and aggregated (AGG) VWC values and corresponding effective VWC values (EFF).Black
color corresponds to Aquarius inner footprint incidence angle, gray to the middle one and light gray to the outter one.


