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NASA Team 2 Sea Ice Concentration Algorithm
Retrieval Uncertainty

Ludovic Brucker, Donald J. Cavalieri, Thorsten Markus, and Alvaro Ivanoff

Abstract—Satellite microwave radiometers are widely used to
estimate sea ice cover properties (concentration, extent, and area)
through the use of sea ice concentration (IC) algorithms. Rare
are the algorithms providing associated IC uncertainty estimates.
Algorithm uncertainty estimates are needed to assess accurately
global and regional trends in IC (and thus extent and area), and to
improve sea ice predictions on seasonal to interannual timescales
using data assimilation approaches. This paper presents a method
to provide relative IC uncertainty estimates using the enhanced
NASA Team (NT2) IC algorithm. The proposed approach takes
advantage of the NT2 calculations and solely relies on the bright-
ness temperatures (TBs) used as input. NT2 IC and its associ-
ated relative uncertainty are obtained for both the Northern and
Southern Hemispheres using the Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E) TB. NT2
IC relative uncertainties estimated on a footprint-by-footprint
swath-by-swath basis were averaged daily over each 12.5-km grid
cell of the polar stereographic grid. For both hemispheres and
throughout the year, the NT2 relative uncertainty is <5%. In the
Southern Hemisphere, it is low in the interior ice pack, and it
increases in the marginal ice zone up to 5%. In the Northern Hemi-
sphere, areas with high uncertainties are also found in the high IC
area of the Central Arctic. Retrieval uncertainties are greater in
areas corresponding to NT2 ice types associated with deep snow
and new ice. Seasonal variations in uncertainty show larger values
in summer as a result of melt conditions and greater atmospheric
contributions. Our analysis also includes an evaluation of the NT2
algorithm sensitivity to AMSR-E sensor noise. There is a 60%
probability that the IC does not change (to within the computed
retrieval precision of 1%) due to sensor noise, and the cumulated
probability shows that there is a 90% chance that the IC varies
by less than ±3%. We also examined the daily IC variability,
which is dominated by sea ice drift and ice formation/melt. Daily
IC variability is the highest, year round, in the MIZ (often up to
20%, locally 30%). The temporal and spatial distributions of the
retrieval uncertainties and the daily IC variability is expected to be
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useful for algorithm intercomparisons, climate trend assessments,
and possibly IC assimilation in models.

Index Terms—Measurement uncertainty, passive microwave re-
mote sensing, sea ice.

I. INTRODUCTION

S EA ice plays a major role in the Earth’s climate system
and is an important indicator of its changes. The sharp

and dramatic reduction in Arctic sea ice extent over the last
decades has made sea ice one of the most visible and well-
known indicators of climate change. The polar sea ice cover
has several important characteristics such as its extent, con-
centration, thickness, drift, and freeze-up/melt-onset dates. Our
knowledge of many of these sea ice characteristics as well as
the seasonal, regional, and long-term changes of the global sea
ice cover itself has been obtained through the use of satellite
microwave imaging radiometers.
In 2002, NASA launched the Aqua satellite with the Ad-

vanced Microwave Scanning Radiometer for the Earth Observ-
ing System (AMSR-E), which is built by the JAXA. AMSR-E
had a higher spatial resolution than any of the previous space-
borne imaging radiometers. The 3-dB AMSR-E footprint di-
mensions vary from 27.4 km× 15.7 km at 18.7 GHz, 31.5 km×
18.1 km at 23.8 GHz, and 14 km × 8 km at 36.5 GHz, to
5.9 km × 3.5 km at 89 GHz [1]. These spatial resolutions,
up to ∼2.5 times finer than that from the Special Sensor
Microwave/Imager, enable sea ice products to be gridded at a
grid cell resolution of 12.5 km (versus 25 km before). Since
May 2012, the JAXA Global Change Observation Mission 1st-
Water/AMSR2 operates with a finer spatial resolution than
AMSR-E, enabling sea ice products to be produced at a grid
cell resolution of 10 km or less.
While all of the aforementioned sea ice characteristics are

needed to understand and to quantify the observed climate
changes at high latitudes, this study focuses on sea ice concen-
tration (IC) uncertainties obtained with the NT2 IC algorithm
[2], [3]. The NT2 algorithm provided operational daily IC
for AMSR-E and has been selected as a research algorithm
for AMSR2. The AMSR-E sea ice products are distributed
and archived by the U.S. National Snow and Ice Data Center
(NSIDC). NT2 is also used operationally by the U.S. National
Ice Center, and by NOAA’s Marine Modeling and Analysis
Branch of the Environmental Modeling Center at the National
Centers for Environmental Prediction.
The utility of spaceborne IC retrievals depends on both their

precision and accuracy. Retrieval accuracy is assessed generally
from spaceborne, airborne, and in situ validation studies, which
are limited in both area and time. In contrast to the NT2
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IC validation studies previously undertaken in the Arctic [4],
[5] and the Antarctic [6], [7], this paper provides retrieval
uncertainty estimates corresponding to each IC retrieval on a
footprint-by-footprint basis.
Retrieval uncertainty estimates are needed for both opera-

tional (marine and offshore activities) and scientific applica-
tions (e.g., heat flux calculations, sea ice volume estimations,
and climate trend assessments). Retrieval uncertainty estimates
are also needed to improve sea ice predictions on seasonal
to interannual timescales using data assimilation approaches.
While IC is a key component of sea ice modeling, the use
of satellite observations within the models has generally been
limited because of the lack of retrieval uncertainty estimates [8].
All data assimilation approaches (based on either deterministic
or ensemble schemes) require explicit estimates of observation
error (i.e., estimates of IC uncertainty) to derive the optimal ini-
tial state. Thus, IC retrieval uncertainty estimates from satellite
imaging microwave radiometers are crucial to perform higher
quality data assimilation.
Among the existing IC algorithms using microwave radiome-

ter observations as inputs, rare are the ones providing IC with an
associated uncertainty estimate. The Environment Canada’s Ice
Concentration Extractor provides IC retrievals in conjunction
with a confidence level [9]. The confidence level is a unitless
measure based on the mean absolute deviation of IC retrievals
for a set of 2000 built-in tie points. The European Organisation
for the Exploitation of Meteorological Satellites Ocean and
Sea Ice Satellite Application Facility provides IC retrieval
uncertainties. Specifications are described in the product user
manual [10]. The IC uncertainty results from a combination
of instrument errors, algorithm and tie-point uncertainties, and
a simulated representativeness error to deal with the different
frequency-dependent footprint sizes.
In response to the need for IC retrieval uncertainties, this

paper provides for the NT2 algorithm relative IC retrieval
uncertainty estimates calculated on a footprint-by-footprint ba-
sis for swath and daily averaged NT2 IC retrievals for both
the Northern and Southern Hemispheres using a statistical
approach. It also provides a measure of daily IC variability. In
Section II, we briefly discuss the NT2 IC algorithm. Our results
are presented in Section III, including the retrieval uncertainties
resulting from AMSR-E sensor noise, and algorithm retrieval
precision (Section III-A). The NT2 retrieval uncertainty esti-
mates are presented Section III-B. In Section III-C, we compare
these uncertainty estimates to some NT2 ice types. The daily IC
variability is detailed in Section III-D. In Section IV, we draw
our conclusions.

II. NT2 IC ALGORITHM

A detailed description of the NT2 basis was provided in [2]
and [3]. Therefore, only a summary of the operational version
of the algorithm is presented here, as needed to describe the
proposed method for deriving the NT2 IC retrieval uncertainty.

A. Algorithm Description

The NT2 IC algorithm uses both satellite observed and
simulated microwave brightness temperatures (TBs) to iterate

on a solution for IC. The simulated TBs were computed with
an atmospheric forward radiative transfer model [11] using
12 different winter and summer atmospheric temperature and
humidity profiles based on the Antarctic Georg von Neumayer
weather station climatology [12], together with different cloud
types from cirrus to cumulus congestus ([13, table I]). The NT2
algorithm implicitly assumes that the climatological range of
temperatures and atmospheric properties are similar in both
the Arctic and Antarctic, which may not fully characterize
the changing summer Arctic atmosphere (warmer and more
humid). The NT2 uses, in addition, surface microwave emis-
sivities taken from [14], with different assumed surface tem-
peratures: 271 K (open water), 268 K (summer sea ice), and
248 K (winter sea ice). These simulated TBs, for different
atmospheric profiles and surface emissivities and temperatures,
are used to build lookup tables. The NT2 radiometric variables
are ratios of TBs based on four AMSR-E frequencies at one of
two polarizations (vertical V or horizontal H): 18.7 V, 18.7 H,
23.8 V, 36.5 V, 89 V, and 89 H GHz. These ratios are the
gradient ratio (GR), defined by TBs at two frequencies f1
and f2 (f1 > f2) and the same polarization p [see (1)]; the
polarization ratio (PR), defined by TBs at the same frequency f
but different polarizations [see (2)]; andΔGR [see (3)]. In NT2,
the PRs are “rotated”, which means they are calculated using a
combination with GRV

36.5,18.7 [2]. The GR and PR values can
change with IC, and the properties of the snow cover (e.g., depth
and layering).

GRp
f1, f2

=
T p
Bf1

− T p
Bf2

T p
Bf1

+ T p
Bf2

(1)

PRf =
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Bf

− TH
Bf

TV
Bf
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Bf

(2)

ΔGR =GRH
89,18.7 − GRV

89,18.7. (3)

The algorithm permits the identification of the following ice
types: FY/MY ice, and ice type C. FY/MY indicates either
first-year ice or multiyear ice. In NT2, ice type C can refer
either to sea ice with radiometric properties characteristics of
a deep snow cover, or new ice [2]. A GRV

36.5,18.7 threshold
value of −0.01 decides between the use of TB lookup tables
for ice type C/deep snow, or ice type C/new ice. The rationale
of using a GRV

36.5,18.7 threshold may be found in [15], and its
value differentiates between areas of new and young ice types
typically found in seasonal sea ice zones, and areas of first-year
and multiyear ice types typically found in the central Arctic
and around Antarctica. Coastal polynyas (with a reasonable
size compared with the footprint dimensions) also satisfy the
GRV

36.5,18.7 threshold for new ice, if sea ice is present.
Using the atmospheric radiative transfer model, TBs are

simulated for ICs varying between 0% and 100% (providing
101 IC values in 1% steps). Simulated TBs are used to compute
the three radiometric quantities described above [see (1)–(3)],
which are stored in lookup tables. There are a total of 101 ×
101 × 12 (i.e., 112 211) combinations associated with two
different sea-ice types (FY/MY, and C), and the 12 atmospheric
profiles. Ratios calculated using simulated TBs are named
simulated ratios, and those calculated using observed TBs are
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named observed ratios. The difference between the observed
and simulated ratios is δR, calculated as follows:

δR =
(
PRobs

18.7 − PRsim
18.7

)2
+
(
PRobs

89 − PRsim
89

)2

+ (ΔGRobs −ΔGRsim)
2
. (4)

The lower δR, the better the agreement between the observed
and simulated ratios. The estimated NT2 IC is an integer
value between 0 and 100, and corresponds to the concentration
associated with the smallest δR [see (4)], named δRmin.

B. Analysis of δRmin

For a given set of TBs, the NT2 ICs corresponding to the
100 smallest δR, as well as their values, are shown in Fig. 1 for
three different Arctic regions: the Central Arctic, Lincoln Sea,
and Baffin Bay. These regions have different sea ice properties
(e.g., multiyear ice and ice from the MIZ) with different ICs.
ICs are represented as a stairstep graph for consistency with
the NT2 IC retrieval precision of 1%. The δRN values range in
magnitude from 10−6 to 10−4. In high IC areas, ICs estimates
for N ≤ 20 are within 1% [see Fig. 1(a) and (b)]. In contrast,
in the MIZ, where concentrations are lower, IC values for the
20 smallest δR are more variable, within ±4% [see Fig. 1(c)].
IC retrieval in the MIZ is challenging because the sea ice cover
is fractured, discontinuous, and often composed by a mixture
of ice types (e.g., new ice, nilas, pancakes). Moreover, the
emissivity of these ice types is low, increasing the atmospheric
contributions. Therefore, because of the high variability of sea
ice characteristics in MIZs (and thus microwave emissivity), it
is not surprising to find more variable NT2 IC retrievals for the
20 smallest δR.
An intuitive approach to characterize the uncertainty of the

NT2 IC retrievals would be to analyze the δRmin values.
However, δR [see (4)] is a sum of the differences of vari-
ous radiometric quantities and is not directly associated with
specific sea ice properties. Additionally, δRmin values are not
higher in the MIZ where larger uncertainties than in high IC
areas, are expected in the NT2 IC retrievals than in high IC
areas (see Fig. 2). In this paper, δRmin values are not used
to quantify the NT2 IC retrieval uncertainties. Nonetheless,
the spatial distribution of δRmin (see Fig. 2) provides us with
some guidance for future algorithm improvements. The spatial
distribution of δRmin in the Arctic and Antarctic (see Fig. 2)
shows that there are areas better represented by the simulated
NT2 lookup tables than others. Overall, δRmin is small. The
δRmin is the highest over Antarctic sea ice during the summer
months, particularly in the Weddell Sea (East of the Peninsula).
In the Arctic, the highest δRmin values are located over the
multiyear ice from June to September; however, they are up to
four times smaller than over Antarctic sea ice most of the year.
Some of the high δRmin values are likely related to atmo-

spheric effects and may reflect limitations of the atmospheric
climatological values used in the model. The atmospheric con-
tribution is larger over low emissivity surfaces (e.g., multiyear
ice and sea ice with melt ponds) than high emissivity surfaces
(e.g., seasonal and first-year ice). The atmospheric contribution
is also larger in summer than in winter due to a substantially
larger cloud liquid water content [16], [17]. Other high δRmin

Fig. 1. NT2 ICs (black stairstep plot with values on the left ordinate axis)
corresponding to the 100 smallest δR (gray dashed curve with values on
the right ordinate axis), on January 15, 2010. The abscissa represents N .
The vertical axis scales were optimized in each panel, which corresponds
to different Arctic regions. (a) Central Arctic (E). (b) Lincoln Sea (D).
(c) Baffin Bay (A). [see Fig. 3(b) for the localization].

values appear to be ice-type dependent and may reflect limi-
tations of the specific ice-type emissitivites used in the model.
This could be investigated in a future study using scatterometer
observations (e.g., QuikSCAT/SeaWinds during the AMSR-E
era and OceanSat-2/OSCAT during the AMSR2 era) and addi-
tional satellite sea ice products.
Note that the δRmin values are low in the MIZs year round in

both hemispheres. Therefore, the set of simulated ratios closely
match the observed ratios in the MIZ. Since it is expected
that the IC uncertainty retrievals are larger in the MIZs, the
use of δRmin as a measure of uncertainty is not possible yet.
Further work is needed to relate the δRmin value to geophysical
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Fig. 2. δRmin (×105) on March 15 and September 15, 2010. (a) and (b)
Northern Hemisphere. (c) and (d) Southern Hemisphere. Maps (b) and (c) also
illustrate the approximate locations of Seas and Straits mentioned in this paper.
Anadyr Strait is between the continent and St. Lawrence Island.

properties characterizing the ice cover, or the state of the
atmosphere. The approach selected to provide a measure of
the NT2 IC uncertainty, which is presented hereafter, is thus
independent of δRmin.

C. Relationship Between IC Relative Uncertainty and N

The NT2 algorithm calculates 112 211 δR, and uses the
smallest one to determine the retrieved IC. By its design,
NT2 enables us to investigate the IC retrieval uncertainty by
analyzing the ICs associated with the N smallest δRs. In this
paper, retrieval uncertainty is defined as the standard deviation
of the N ICs corresponding to the N smallest δRs. The choice
of N is arbitrary, and different values of N are now considered
to establish a measure of the NT2 uncertainty. This statistical
approach provides a useful measure of uncertainty inherent to
the algorithm, but it provides neither a measure of precision nor
of accuracy. Several previous studies assessed the accuracy of
NT2 retrievals [4], [7], and an estimate of precision is carried
out in Section III-A.
Fig. 3(a) shows the standard deviation of IC retrievals (σN )

for different values ofN for five different regions, with different
sea ice types. In every region, σN tends to increase withN . The
increase in σN as a function of N is steeper in the MIZ (gray
curves) than in regions north of Greenland (black curves). The
fact that the MIZ is characterized by a variety of sea ice types,
and strong surface and atmospheric heterogeneities, including
cloud liquid water gradients, all of which may be found at
scales smaller than the 3-dB AMSR-E footprint, may explain
the steep increase in σN for N ranging between 1 and 100. For
the two areas north of Greenland, σN values are small (≤ 1%),

Fig. 3. (a) Standard deviation of the IC (σN ) corresponding to theN smallest
δR calculated with one-footprint TB observations recorded in five different
regions indicated in the Fig. 3(b) map. (b) Map of σ50 − σ20 for January 15,
2010, with the locations of the five different regions (white).

whereas σN is between about 0.5%–3.7% for the three MIZ
areas. In all of these regions, (usingN up to 10 000, not shown)
there is no characteristic evolution of σN as a function of
N (e.g., plateau and step function), which could be used for
identifying a threshold for N . As noted earlier, the selection of
N is arbitrary, providing a relative IC uncertainty.
Fig. 3(b) shows the spatial distribution of σ50 − σ20. Overall,

the differences are small (0.1%–1.5%) across the Arctic basin.
Therefore, the choice ofN is not critical for a relative algorithm
uncertainty. In the following, we provide a quantitative analysis
of the influence of N . For conditions typical of winter and
summer (melting snow and sea ice), and autumn (new ice
formation), the following three dates were considered: March
15, June 15, and October 15, 2010; representing a total of
205 939 grid cells. For each of these dates, daily gridded σN

was calculated for the entire Northern Hemisphere sea ice using
N equal to 20, 35, 50, and 100. Table I presents the mode, and
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TABLE I
MODE, MEAN X , AND STANDARD DEVIATION OF THE RATIO σN/σ20, WITH N = 35, 50, AND 100, FOR THE 15TH OF MARCH,

JUNE, AND OCTOBER OVER THE NORTHERN HEMISPHERE SEA ICE

mean ratio of σN/σ20, with N = 35, 50, and 100. The modes
increase as N increases, and are 1.3, 1.5, and 2.2, respectively.
They are independent of the dates and therefore are likely inde-
pendent of the ice conditions. The mean and ranges of the ratios
are also fairly independent of the ice conditions. The ranges
increase as N increases, from 1%–1.85% and 1%–2.25%, to
1%–3%. The statistics of these ratio values can be used to
obtain an estimate of the relative NT2 IC retrieval uncertainty
for another N . While the relative NT2 IC retrieval uncertainty
depends on N , our analysis confirms that the precise value of
N is not critical in obtaining a useful measure of uncertainty.
However, N cannot be too large since high N corresponds
to high δR and therefore to a weak agreement between the
observed and simulated radiometric ratios. In this paper,N was
set to 20, and hereafter σ20 is used as our definition of the NT2
relative IC uncertainty. This uncertainty is relative to N (i.e.,
not absolute). Furthermore, a consistent value of N enables an
easy comparison among regions, days, and hemispheres.

III. RESULTS

Here, we discuss some of the uncertainties associated with
the NT2 daily averaged IC product. These include uncertainties
associated with the AMSR-E sensor noise, algorithm retrieval
precision, and uncertainties inherent to the NT2 algorithm
itself. We also examine the daily IC variation by presenting the
standard deviation of all of the IC estimates at the footprint level
within each grid cell. This paper is specific to the NT2 algo-
rithm; thus, we do not address gridding uncertainties, which are
common to every gridded product.

A. Retrieval Uncertainties Resulting From AMSR-E Sensor
Noise and Algorithm Retrieval Precision

The AMSR-E channels used in the NT2 algorithm are 18.7 V/
H, 23.8 V, 36.5 V, and 89 V/H. The corresponding noise
equivalent ΔT (NEΔT) values for these channels are < 0.7 K
at 18.7 V/H and 36.5 V, < 0.6 K at 23.8 V, and < 1.4 K for
the horn B at 89 V/H [18]. To quantify the effect of AMSR-E
noise on the estimated ICs, NT2 was run several times using:
1) AMSR-E/Aqua Level 2 A (L2A) Global Swath Spatially
Resampled TBs [19] for the reference simulation; and 2) these
L2A TBs with the extremum NEΔT values of ±0.7 K at 18.7
and 36.5 GHz, ±0.6 K at 23.8 GHz, and ±1.4 K at 89 GHz.
The L2A TBs, whose footprint observations are matched to the
same antenna pattern using Backus–Gilbert interpolation, were
extracted from one swath recorded on January 15, 2010. In the
Northern Hemisphere, there were a total of 47 981 footprint

observations with IC retrievals. For each footprint and each
channel, three noise values were considered to cover the range
of possibilities (−NEΔT, 0, and +NEΔT). Since the NT2
algorithm uses six channels, a total of 36 (= 729) NT2 runs
were done per footprint (i.e., a total of 34.97× 106 iterations).
The result, obtained using the Northern Hemisphere winter-

time swath with IC mostly over 95%, shows that, for 60% of the
iterations, the NT2 IC estimates remain the same (see Fig. 4).
The probability of an absolute IC change of 1% (3%) is 15%
(8%), and the cumulated probability [Fig. 4(b)] shows there
is a 75% (and 90%) chance that the IC varies by less than
±1% (and ±3%) due to sensor noise. The standard deviation
of the distribution of probabilities [see Fig. 4(a)] is 2.2%. If no
noise is considered for the 89-GHz channels, which have the
largest NEΔT, the distribution of probabilities is narrower, and
the standard deviations drops to 1.6%. To span the entire range
of TBs and ICs, a similar experiment was performed using the
summer-time TBs of the Southern Hemisphere collected during
the same swath. ICs ranged between 30% and 100%. Very
similar contributions from the sensor noise were obtained using
these TBs. The standard deviation of the distribution of prob-
abilities was, however, slightly larger (3.5%), but no changes
appeared on the range of IC differences. These simulations,
carried out on an entire swath including both the Northern and
Southern Hemispheres, highlight the moderate probability that
the AMSR-E NEΔT significantly affects the NT2 IC retrievals.
Next, the footprint-to-footprint variability in terms of both

TBs and IC estimates are analyzed. To this end, we take
advantage of the fact that the Aqua polar orbiting spacecraft
makes multiple orbits per day, and that the AMSR-E scanning
sensor is able to monitor a given area at high latitudes several
times per day. AMSR-E records observations every 10.1/9 km
along/across track at frequencies lower than 89 GHz, and every
4.1/4.5 km along/across track at 89 GHz [18]. Within the same
scan, the longest time elapsed between one footprint observa-
tions and the next (i.e., across-track) is 2.6 ms. With a nominal
rotation speed of 40 r/min, the time elapsed from one scan to the
next (i.e., along track) is ∼1.5 s. Thus, the temporal variability
of sea ice can be neglected when using adjacent footprint
observations over a limited area, both along and across track
for a given swath. This allows us to quantify the NT2 retrieval
precision by examining IC estimates footprint-by-footprint in
areas with a homogeneous sea ice cover. Here, the approach is
quite similar to the retrieval uncertainties resulting from sensor
noise, but using observed TBs.
The area selected to assess the NT2 retrieval precision is

in the Kara Sea, because it displayed a minimum spatial het-
erogeneity and had a sufficiently large number of footprint
observations. The area was covered by seven AMSR-E swaths
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Fig. 4. (a) Distribution of probabilities that the NT2 IC retrievals change due
to the AMSR-E sensor noise (NEΔT) on the TBs. (b) Probabilities associated to
an absolute value of IC change (left ordinate axis, black curve), along with the
cumulated probability (right ordinate axis, black curve). L2A TB observations
recorded over the Northern Hemisphere during the ascending orbit on January
15, 2010 (starting at 23:43) were used.

on March 15, 2010, and the number of footprints per swath
within the area ranged from 42 to 85. Table II provides for each
swath the minimum, maximum, mean, and standard deviation
of the following parameters: IC and TBs at 18.7 V/H, 36.5 V,
and 89 V/H. The IC standard deviations for the seven swaths are
extremely low, varying from 0% to 0.4% (see Table II). These
results demonstrate that, over a uniform sea ice cover, the NT2
algorithm retrievals have high precision. Although there is at
least some geophysical footprint-to-footprint spatial variability,
these results represent our best estimate of retrieval precision.
As noted previously, the operational version of the NT2 algo-

rithm is based on a comparison between observed and simulated
TB ratios; thus, the solutions are constrained to values between
0% and 100%. In [20], the algorithm was modified to evaluate
the effect of these constraints. It is possible that some combi-
nation of TBs would result in IC greater than 100% given the
algorithms specific set of simulated TB ratios. Ice concentra-
tions greater than 100% would manifest itself as an area of high

TABLE II
MINIMUM, MAXIMUM, MEAN AND STANDARD DEVIATION OF IC VALUES
FOR EACH SWATH COVERING AN AREA IN THE KARA SEA ON MARCH 15,
2010. THE SWATH ID AND THE NUMBER OF FOOTPRINTS CONSIDERED
ARE INDICATED IN THE FIRST COLUMN. THIS PARTICULAR AREA IS
COVERED BY A TOTAL OF SEVEN SWATHS DURING THE 24-h PERIOD.
THE STANDARD DEVIATION FOR EACH SWATH (LAST COLUMN) IS A
MEASURE OF THE SPATIAL VARIABILITY FOR THIS AREA. IC VALUES

ARE EXPRESSED IN PERCENTAGE, AND TB IN KELVIN
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δRmin in regions where sea ice is generally highly consolidated
such as in the high Arctic [see Fig. 2(a)]. It is thus possible
that the precision value established here is underestimated. That
being said, by comparing the IC standard deviations in Table II
(≤ 0.4%) with the standard deviation of the distribution of
probabilities resulting from sensor noise (2.2%), it is very likely
that the NT2 precision is limited by the sensor noise.

B. NT2 Algorithm Retrieval Uncertainty

We now examine the NT2 IC retrieval uncertainties defined
in Section II as the standard deviation of the IC values corre-
sponding to the 20 smallest δR. To analyze the regional and
seasonal variations of the NT2 IC retrievals and correspond-
ing uncertainties, we present daily averaged values based on
averaged footprint-by-footprint swath-by-swath retrievals for
the 15th of each month in 2010. Results are presented on a
12.5-km polar stereographic grid. Due to the 3-dB foot-
print size, IC retrievals along the coast require land-to-ocean
spillover correction (see for instance [3, Sec. 4.2]). Radiometric
properties of ice-free oceans with high cloud liquid water
content lead to ambiguity in the IC retrievals. To eliminate these
weather effects over ice-free ocean, weather filters based on the
spectral GR are usually used [2], [21]. IC retrievals presented
here were calculated without land spillover correction, and
AMSR-E Level 3 TB were used to eliminate the weather effects
over ice-free ocean. The daily gridded IC and its associated un-
certainty are presented for the Northern Hemisphere in Figs. 5
and 6 and for the Southern Hemisphere in Figs. 7 and 8. Since,
the seasonal, regional, and interannual variabilities of IC and
extent have been extensively studied using more than three
decades of passive microwave satellite observations [22]–[24],
this paper focuses on the NT2 algorithm uncertainty values (and
the daily IC variability in Section III-D).
Figs. 5 and 6 shows the typical seasonal variation of the Arc-

tic sea ice cover that reaches a maximum extent in March, and
a minimum extent in September. Beginning in June and extend-
ing through the months of July, August, and September, there
are large areas of the central Arctic that have reduced ICs. In
October, there is an increase in the extent of the sea ice cover,
and this increase continues until the following March. The
daily averaged IC retrieval uncertainty maps (see Fig. 5 and 6)
corresponding to each of the IC maps show that, from January
through June, the central Arctic has a broad range of retrieval
uncertainties (0.4%–3.8%), whereas the MIZ systematically
has the largest uncertainties (up to 5%). With the beginning of
the melting period, there are larger areas of greater uncertainty
often, but not always, corresponding to the areas of reduced
ICs. The relationship between NT2 IC uncertainty and ice type
is discussed in Section III-C. The NT2 IC uncertainties remain
high until October, when a consolidated ice cover is formed.
Locally, areas of lower IC uncertainties exist and correspond
to 100% IC.
Figs. 7 and 8 shows the daily IC and corresponding retrieval

uncertainty maps for the Antarctic for the 15th of each month in
2010. In the Southern Hemisphere, the month of minimum sea
ice extent is February, whereas the month of maximum extent
is October. In general, the Antarctic sea ice cover exhibits faster

seasonal IC variations than those in the Northern Hemisphere.
Over Antarctic sea ice, the areas of high retrieval uncertainty
are mostly found in the MIZ (e.g., on December 15, 2010 in
the Ross and Amundsen seas where uncertainties of up to 7%
are possible [see Fig. 8(a)]). During winter, IC uncertainties
in the interior pack generally appear smaller in the Southern
Hemisphere than the Northern Hemisphere. Although, as in the
Arctic, areas of high retrieval uncertainty can be found in areas
of lower IC in the interior ice pack [see Figs. 7 and 8]. For
instance, in the interior pack of the Weddell Sea on June 15,
2010 [see Fig. 7(a)] IC uncertainties of up to 3.5% are centered
over an area of 90%–99% IC.
There are several reasons for the more extensive areas of

higher retrieval uncertainty during the summer months in both
hemispheres. The properties of the summer sea ice cover are
more complex than in winter. The sea ice snow cover very likely
has undergone several freeze–melt cycles creating ice layers. In
the Arctic, the snow cover can completely melt, and either drain
into the ocean or contribute to the formation of melt ponds.
In the Antarctic, sea ice itself may have been flooded. Finally,
the atmospheric contribution to retrieval uncertainties is greater
during summer because of lower sea ice emissivities, and
greater atmospheric water vapor and cloud liquid water content.

C. Relationship Between IC Uncertainty and NT2 Ice Types

We now show an association between retrieval uncertainty
and specific NT2 sea ice types, namely, FY/MY ice, ice type
C/deep snow, and ice type C/new ice. Based on published NT2
IC validation studies, there is an association between retrieval
accuracy and these ice types. For example, a comparison of IC
derived from Aqua/AMSR-E and Landsat 7/ETM + imagery
obtained in March 2003 showed good overall agreement with
AMSR-E minus Landsat IC of ∼1% for areas of young and
first-year ice [4]. However, for all ice types combined and for
the full range of ICs, the difference ranged from 0% to 3%, and
the RMSE ranged from 1% to 8%, depending on the region.
For first-year ice in the Chukchi Sea, an IC difference of less
than 1% and an RMSE of 1.6% were obtained. In [4], negative
difference (i.e., higher Landsat IC than AMSR-E) of ∼5%
in areas of new ice production with an associated RMSE of
8% was also found. Finally, in [4], areas of deep snow in the
Bering Sea resulted in an underestimate (∼10%) of IC. While
a direct comparison of these validation results and the NT2
IC relative uncertainties cannot be made at this point, we note
that, at a similar time of the year in 2010, the NT2 IC relative
uncertainties over ice in the Chukchi Sea is 0.5% (see Table III).
The NT2 IC uncertainties found in the St. Lawrence Island and
Anadyr Strait polynyas is 2% (see Table III).
Fig. 9 shows the IC and uncertainty for March 15 in the

Northern Hemisphere, and the ice type C/deep snow and ice
type C/new IC. Visually, it is apparent that there is a relationship
between the NT2 IC uncertainty and the presence of ice type C.
The linear correlation (r2 = 0.87) is the strongest for ice type
C/deep snow IC, where its concentration is less than 30% [see
Fig. 10(a)]. Using the 15th day of each month in 2010, r2 values
are higher than 0.85 during the winter dates, higher than 0.70
during the spring and fall, but was only 0.31 on August 15. The
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Fig. 5. Daily averaged IC (a)–(c), (g)–(i) and retrieval uncertainty (d)–(f), (j)–(l) for the 15th of each month from January through June 2010 in the Northern
Hemisphere. Both quantities are expressed in percentage.
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Fig. 6. Same as Fig. 5 from July through December 2010.
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Fig. 7. Same as Fig. 5 for the Southern Hemisphere. Ice shelves are in white, similarly to open water areas.
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Fig. 8. Same as Fig. 7 from July through December 2010.
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TABLE III
AVERAGE IC AND IC UNCERTAINTY IN FOUR SELECTED

AREAS IN THE ARCTIC ON MARCH 15, 2010

Fig. 9. Daily (a) IC, (b) ice type C/deep snow concentration, (c) ice type C/
new IC, and (d) IC retrieval uncertainty in the Northern Hemisphere for
March 15, 2010.

apparent association between the NT2 IC retrieval uncertainty
and ice type C/deep snow may in fact result from unresolved
sea ice conditions, which appear as ice type C/deep snow high
IC. Although the presence of ice type C/new ice is spatially
correlated with IC uncertainties, there is no linear correlation
between their values [see Fig. 10(b)]; however, a correlation
between retrieval uncertainty and total IC exists. In the South-
ern Hemisphere, a relationship between the NT2 IC uncertainty
and the presence of ice type C (see Fig. 11, for the month of
September) is not as obvious as in the Northern Hemisphere.
The correlation identified in the Northern Hemisphere be-

tween the NT2 IC uncertainty and the presence of ice type C
illustrates the difficulties of identifying any single source of IC
uncertainty. Further work is needed to evaluate the sources of
uncertainty by ice types, regions, and seasons.

D. Daily Variability

One of the daily averaged gridded (level 3) sea ice products
archived at NSIDC is the daily AMSR-E NT2 IC. This product
contains the mean daily IC at grid resolutions of 12.5 and
25 km. The daily IC results from an average of all the IC
retrievals within a given grid cell. Since a given grid cell may

Fig. 10. Scatterplot of the NT2 IC uncertainty as a function of the NT2 IC for
the retrievals on March 15, 2010 in the Northern Hemisphere where grid cells
have (a) NT2 ice type C/deep snow and (b) NT2 ice type C/new ice.

contain several footprint observations per swath, and several
swaths per day, all of these observations/retrievals are used
to compute the daily average. Of note, the number of obser-
vations/retrievals per grid cell is neither uniform nor constant
(see Fig. 12). It depends on the orbit of the day, and typically
ranges from 5 to 34 for each 12.5-km grid cell. Therefore, daily
variability values based on a small number of footprints should
be used with caution.
Here, we examine daily IC variabilities by calculating the

standard deviations of the retrieved ICs for each 12.5-km grid
cell for the 15th of each month through 2010. The results
are shown in Figs. 13 and 14 for the Northern and Southern
Hemisphere, respectively.
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Fig. 11. Daily (a) IC, (b) ice type C/deep snow concentration, (c) ice type C/
new IC, and (d) IC retrieval uncertainty in the Southern Hemisphere for
September 15, 2010.

Fig. 12. Number of NT2 IC retrievals (i.e., of AMSR-E footprint observations
where sea ice is present) per 12.5-km grid cell of the polar stereographic grid
for (a) and (c) April 15 and (b) and (d) October 15 in the Northern and Southern
Hemispheres.

In the Northern Hemisphere, most of the daily variability is
found in the MIZs (see Fig. 13), which are areas more likely
subject to subdaily forcing by atmosphere and ocean. During
the winter months, the central Arctic exhibits a weak daily IC
variability (0%–4%). In contrast, values up to ∼10% can exist

in summer in the interior ice pack. Beginning in June, there are
larger areas of greater daily variability as a result of a number
of factors, including divergence and convergence of sea ice,
diurnal freeze–thawcycles, and the formation ofmelt ponds. The
latter two change the microwave emissivity of the sea ice cover.
The extent of high daily IC variability (often up to 20%,

locally 30%) matches the extent of the MIZ, with larger areas
in summer than winter. Large areas of variability are also seen
at the start of freeze-up in October, which may result from the
rapid formation of sea ice from nilas to new ice and thicker ice
types, all with different microwave emissivities, and from the
greater atmospheric contribution over low emissive new and
thin ice. Other areas having large daily variability (5%–15%)
in winter are coastal polynyas driven by winds. The cycle of
polynyas opening by wind forcing and then the rapid refreeze of
the polynya results in large daily variations of IC. This is clearly
visible in the coastal polynyas in the Bering Sea, and in the
North Water polynya (which lies along the northern Greenland
coast in Baffin Bay).
The IC daily variability for the Southern Hemisphere (see

Fig. 14) exhibits similar patterns, with high daily variability
in the MIZ year round, and increased variability during the
summer months. The extent of areas with high daily vari-
ability in summer is significantly larger than in the Northern
Hemisphere primarily because the Southern Ocean ice cover
is more divergent and, on average, thinner and hence more
dynamic than in the Arctic. Although as in the Arctic, coastal
polynyas exhibit large IC daily variability (up to 15%). The
largest recurring polynya in the Antarctic is the Ross Sea
polynya, visible during spring months (September–November,
Fig. 14). Many other smaller polynyas are observed along
the East Antarctic coast where glacier tongues are positioned
perpendicular to the prevailing circumpolar winds. The very
large areas of daily variability observed for November and
December probably result from the fact that the ice cover
breakup, unlike the Arctic, occurs more rapidly over vast areas
(see corresponding IC maps shown in Figs. 5 and 6). Moreover,
weather effects are in general more frequent than in the Arctic
throughout the year. Flooding of sea ice and snow-ice formation
are more common in the Antarctic. These processes change
emissivities within a day and thus lead to variability using the
NT2 algorithm. Another weather effect is the frequent change
between convergent and divergent conditions, which causes
frequent IC changes. However, using the NT2 IC algorithm, the
average daily IC changes due to this effect were less than ∼3%
in 2010 (see Fig. 14).
Finally, we compare the range of the daily IC variability with

the range of the NT2 IC uncertainty. The daily IC variability
values are of the same range as the IC uncertainty in winter [see
Fig. 15(a)], but are larger than that in summer [see Fig. 15(b)].
The daily IC variability may range up to 6% (15%) in January
(July), whereas the IC retrieval uncertainties are not higher than
∼4%–5% during these months.

IV. CONCLUSION

The NT2 IC retrievals are widely used in cryospheric re-
search, in model assessment, and for marine and offshore
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Fig. 13. Daily IC variability (in percentage) in the Northern Hemisphere retrieved for each grid cell for the 15th of each month for 2010.

activities. To further extend the utility of the NT2 IC retrievals,
and to respond to a need for satellite retrieval uncertainties, we
have proposed a method to estimate the associated NT2 relative
IC uncertainty. Uncertainty estimates are critically needed to as-
sess accurately global and regional trends, to quantify heat flux
and sea ice volume, and to improve sea ice data assimilation by
providing spatial distributions of uncertainties. In addition, we
presented maps of daily IC variability based on all footprint ob-

servations within each 12.5-km grid cell. Both the retrieved un-
certainty and daily variability are important when assessing the
satellite IC product with in situ, shipborne and airborne obser-
vations. Knowledge about daily IC variability is also extremely
important for off-shore and marine activities, particularly as
Arctic sea ice becomes thinner, and is thus more dynamic.
With the proposed approach, NT2 IC and uncertainty can be

retrieved simultaneously. A similar statistical approach may be
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Fig. 14. Same as Fig. 13 for the Southern Hemisphere. Ice shelves are in white, similarly to open water areas.

applied to other IC algorithms using a minimization procedure.
The retrieval uncertainty estimate is defined as the standard
deviation of the IC solutions corresponding to the 20 smallest
δRs. The same definition is used for all footprint observations,
which enables easy spatial and temporal comparisons in both
hemispheres. In this paper, we have presented the regional and
seasonal variations in the NT2 ICs, retrieval uncertainties, and

daily variabilities for both hemispheres for the 15th of each
month in 2010 at a spatial resolution of 12.5 km.
The uncertainties presented here are not absolute and still

need to be calibrated with independent sources of sea ICs.
Previous validation studies have been carried out to provide a
measure of retrieval accuracy but over very limited areas and
times. These same validation data sets may be also used to
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Fig. 15. Probability of occurrence of daily IC uncertainty (red) and variability
(blue) in the Northern Hemisphere for January 15, 2010 and July 15, 2010.

calibrate the uncertainties defined in this paper, thereby poten-
tially providing a quantitative measure of retrieval uncertainty
over a much greater spatial and temporal range. It may also
be possible to calibrate the relative uncertainty defined in this
paper by using new validation data sets (e.g., from Visible In-
frared Imager Radiometer Suite (VIIRS) and commercial very
high spatial resolution data from WorldView-2, GeoEye-1).
Based on daily retrieval uncertainty maps for the 15th of

each month in 2010 and for both Northern and Southern
Hemispheres, we found that the NT2 IC retrieval uncertainties
are: 1) higher in areas of new ice production (e.g., in MIZs,
and coastal polynyas); 2) higher in areas where ice type C
is present; and 3) higher at the onset of melting and during
the melting season. Thus, larger uncertainties exist in summer
than in winter. The uncertainty was strongly correlated with
the NT2 ice type C/deep snow IC. The spatial and seasonal

distributions of the NT2 daily IC retrieval uncertainty provide
a useful measure of relative uncertainty, and a direction for
further algorithm improvements. Future efforts should focus
on the relationship between NT2 IC uncertainties and sea ice
types as has been suggested in this paper, particularly the ones
employed by the NT2 algorithm. A better understanding of the
reasons behind high IC uncertainties will eventually provide
insight for improving satellite IC retrievals.
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