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Abstract

This paper considers edge interval estimation between two regions of a Synthetic

Aperture Radar (SAR) image which differ in texture. This is a difficult task because SAR

images are contaminated with speckle noise. Different point estimation strategies un-

der multiplicative noise are discussed in the literature. It is important to assess the

quality of such point estimates and to also perform inference under a given confidence

level. This can be achieved through interval parameter estimation. To that end, we

propose bootstrap-based edge confidence interval. The relative merits of the different

inference strategies are compared using Monte Carlo simulation. The results show that

interval edge estimation can be used to assess the accuracy of an edge point estimate.

They also show that interval estimates can be quite accurate and that they can indicate

the absence of an edge. In order to illustrate interval edge estimation, we also analyze

a real dataset.

Keywords: Synthetic aperture radar (SAR), edge detection, confidence interval, boot-

strap.

1 Introduction

Imagery obtained through the use of coherent illumination suffers from a noise known as

speckle. This is the case, for instance, of synthetic aperture radar (SAR) images [1]. The

noise is usually modeled in a multiplicative fashion and different inference strategies are

used in order to extract useful information from data subject to such speckle noise. Such

sensors are particularly useful because they do not require external sources of illumination

and their wavelength is not affected by weather conditions.

There are different types of texture for a given region of a SAR image. Textures range

from homogeneous (i.e., surfaces with little texture such as lakes, deforestation areas, crop

fields, deserts and areas covered by snow), to extremely heterogeneous (i.e., areas that have

very intense texture, such as urban areas) with heterogeneous targets, as forests, in between.

Such a classification depends on several factors: signal frequency, polarization, and angle

of incidence, among others (see [1], section 13.2.3).

One of the most important image processing tools is edge detection, which allows one

to detect the position of the edge between two regions. Many edge detection strategies

that have been proposed in the literature yield edge point estimates. Our main goal in this
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sitária, Recife/PE, 50740–540, Brazil.
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paper is to consider interval edge estimation. We introduce different strategies that can

be used to produce a confidence interval for an edge that separates two regions of a SAR

image with different textures. The interval estimators are obtained by setting the desired

confidence level and their lengths are indicative of how certain one can be that the edge

has been located. Interval edge estimation yields important information since point edge

estimation can be a difficult task due to speckle noise and since it can signal the absence of

an edge, as we shall see.

Approaches of several kinds for detecting an edge between neighboring regions with

different textures have been proposed in the literature. Nascimento et al. [2] used stochas-

tic entropies and distances as a criterion for locating edges. Baselice and Ferraioli [3] car-

ried out edge detection based on the ground properties of urban areas using Markov chains

to jointly model the amplitudes and interferometric phases of two SAR complex images.

Fu et al. [4] proposed an edge detector which uses ‘square successive differences of aver-

ages’ as an indicator of ‘edge strength’. Singhal and Singh [5] locate edges by removing of

speckle noise using mathematical morphology. Alonso et al. [6] use a robust and unsu-

pervised edge enhancement algorithm based on a combination of wavelet coefficients at

different scales. Frery et al. [7] consider polarimetric SAR image region boundary detection

based on B-spline active contours. Oliver et al. [8] propose a maximum likelihood method

that can be used to detect an edge within a window and determine its location. Touzi et

al. [9] provide a constant-false-alarm-rate (CFAR) edge detector based on the ratio between

pixel values. Fjørtoft et al. [10] propose a step-edge detector which is optimal in the min-

imum mean square error under a stochastic multiedge model. Melgar et al. [11] evaluate

and compare different edge-detection algorithms developed for high-speckle SAR images.

Baselice et al. [12] provide an approach based on the exploitation of real and imaginary parts

of single-look complex acquired data. Their technique is developed exploiting Markov ran-

dom fields. Qian at al. [13] propose an automatic local thresholding algorithm (ALTA) to

determines threshold and improve ratio-typical synthetic aperture radar (SAR) edge detec-

tor.

Gambini et al. [14,15] proposed a parametric point estimator (i.e., detector) for the edge

location using an objective function that is maximal at the transition points that lie on strip

of pixels. Nonparametric detectors have also been proposed. Bovik et al. [16] used nonpara-

metric methods to detect edges under additive Gaussian noise. Beauchemin et al. [17] used

an alternative approach based on the Wilcoxon-Mann-Whitney statistic to detect changes

in adjacent sets of pixels. Lim and Jang [18] used two sample tests to detect edges in images

subject to noise. Girón et al. [19], following the main ideas in [14], introduced detectors

based on the Mann-Whitney, squared ranks to variances, Kruskal-Wallis and empirical dis-

tribution nonparametric test statistics. The authors used Monte Carlo simulation to com-

pare the small sample performances of their detectors to that of Gambini’s estimator. Their

numerical evidence shows that the Kruskal-Wallis and Gambini’s detectors behave simi-

larly, the former however being considerably less costly from a computational viewpoint.

Indeed, their numerical results show that edge detection using the Kruskal-Wallis detector

is approximately one thousand times faster than that based on Gambini’s maximum likeli-

hood detector.

We chose to construct confidence intervals based on the Kruskal-Wallis point estimator

because the available numerical evidence shows that it performs as well as the maximum
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likelihood detector (Gambini’s detector) at a much lower computational cost. We use boot-

strap resampling in order to obtain an estimate of its distribution, which is unknown. The

bootstrap methods usually delivers accurate estimates [20]. We also consider different boot-

strap interval estimators: basic bootstrap, percentile and two variants percentile-t method

that we propose. For details on bootstrap interval estimation, the reader is referred to Efron

and Tibishirani [21].

The remainder of the article unfolds as follows. Section 2 introduces the statistical model

we shall use to model SAR data. Section 3 presents the Gambini [14, 15] and Kruskal-Wallis

detectors. Section 4 considers edge bootstrap interval estimation. Section 5 presents Monte

Carlo evidence. Section 6 contains an application that uses real (not simulated) data. Fi-

nally, Section 7 offers some concluding remarks.

2 The SAR image model

The multiplicative statistical model is widely used in SAR image data analyses. According

to this model, the data are described by a random variable Z which can be viewed as the

product of the independent random variables X and Y , where X models the properties of

the imaged area (backscatter) and Y models the multiplicative noise (speckle) introduced

by the use of coherent illumination which degrades the image quality.

According to the model proposed by Frery et al. [22], the speckle noise is gamma dis-

tributed, denoted by Y ∼ Γ(L,L), and the backscatter can be modeled using the inverse

gamma distribution, X ∼ Γ
−1(α,γ). Thus, Z = X Y is distributed as G

0
I

, Z ∼ G
0
I

(α,γ,L),

whose density function is

fZ (z)=
LL

Γ(L−α)

γαΓ(L)Γ(−α)

zL−1

(γ+Lz)L−α
, L ≥ 1,−α,γ, z > 0. (1)

Images represented in the intensity format can be described by the distribution G
0
I

,

denoted by Z ∼ G
0
I

. The parameters that index such a distribution are: (i) the number of

looks L ≥ 1, which is a measure of the signal-to-noise ratio, (ii) the scale parameter γ > 0,

which is related to the relative strength between the incident and reflected signals, and (iii)

the roughness parameter α< 0, which relates to the land type texture. The larger the value

of α, the more heterogeneous the area: when α < −10 the area is very homogeneous (e.g.,

pastures), when −10 <α<−4 the area is heterogeneous (e.g., forests) and when −4 <α< 0

the area is extremely heterogeneous (e.g., urban areas). In what follows we shall assume

that the number of looks is known.

Using (1), it can be easily shown that the r th noncentral moment is

E [Z r ] =
(γ

L

)r Γ(−α− r )Γ(L+ r )

Γ(−α)Γ(L)
, (2)

if −α> r , and ∞ otherwise. Notice that the value of γ that corresponds to E [Z ]= 1 is

γ=
Γ(−α)Γ(L)L

Γ(−α−1)Γ(L+1)
. (3)

Gambini’s edge detection method requires estimation of α and γ. Several estimators for

these parameters are available in the literature. For instance, [23] and [24] consider robust
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paramater estimation, and [25–27] propose bias-corrected estimators. The work [28] nu-

merically evaluate the accuracy of parameter estimation in small samples. We shall use a

Kruskal-Wallis nonparametric detector which requires no distribution assumption and also

no parameter estimation.

3 Edge detection in SAR imagery

3.1 The Gambini parametric detector.

The Gambini algorithm is based on the fact that if a point belongs to the edge, then a sam-

ple taken from its neighborhood is expected to exhibit a noticeable change in the parameter

values which are used to describe the pixel distribution on either side of the edge. Let s be a

line segment (detection line) such that, in principle, one point that belongs to s also belongs

to the edge that separates two regions. The interest lies in determining which point detec-

tion line is a transition boundary. The segment s = (z1, . . . , zN ) is a strip of pixels obtained

by discretization of a straight line on the image. Assume that there is a nonnull intersection

between the edge and the detection line and let z j be a point such that (z1, . . . , z j ) comes

from a G
0
I

distribution with parameters (αℓ,γℓ) and (z j+1, . . . , zN ) comes from another G
0
I

distribution with parameters (αr ,γr ). Then, the value of j indicates the edge location. Be L

the number of looks. To find the transition point at s, consider the likelihood function given

by

1L = 1L(αℓ,γℓ,αr ,γr ) =
j∏

k=1

Pr (zk ;αℓ,γℓ) (4)

×
N∏

k= j+1

Pr (zk ;αr ,γr ). (5)

The log-likelihood function

L = ln1L =

j∑

k=1

ln f
G

0
I

(zk ;αℓ,γℓ)+
N∑

k= j+1

ln f
G

0
I

(zk ;αr ,γr ),

where j ∈ {1, . . . , N −1}, is maximized when the index j is the edge. Using Equation (1), it

follows that

L =

j∑

k=1

ln
LL

Γ(L− α̂ℓ)zL−1
k

γ̂
α̂ℓ

ℓ
Γ(L)Γ(−α̂ℓ)(γ̂ℓ+Lzk )L−α̂ℓ

+
N∑

k= j+1

ln
LL

Γ(L− α̂r )zL−1
k

γ̂
α̂r
r Γ(L)Γ(−α̂r )(γ̂r +Lzk )L−α̂r

. (6)

Thus, the estimated transition point at s is given by

̂GE = argmax
j

L . (7)

Edge detection using the Gambini estimator uses information on the pixels that lie in a

neighborhood of a rectangular region (detection window) around detection line. Figure 1
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(αℓ,γℓ)

(αr ,γr )

detection
line

detection window

Figure 1: Using pixels in a detection window (yellow), one can, using the Gambini estimator,

locate the edge between two distinct regions along a detection line (blue).

shows a simulated SAR image that contains two distinct regions and also a detection win-

dow and an inner detection line.

The Gambini’s estimator ̂GE requires the estimation of (αℓ,γℓ) and (αr ,γr ) for all pos-

sible values of j ∈ {1, . . . , N −1}. Such estimations are carried out using rectangular windows

in which the detection line coincides with the major axis of the window. Note that for ex-

treme values of j estimation is performed using a small sample, and as a consequence the

resulting estimate can be poor. The papers [25] and [27] present estimation approaches that

can yield more accurate inferences.

3.2 Nonparametric edge detection.

Edge detection using nonparametric methods as alternative to the Gambini’s estimator was

proposed by Girón et al. [19]. In what follows we shall use their best performing estimator,

namely: Kruskal-Wallis.

Consider k independent random samples (with possibly different sizes) from k identical

populations or from k populations such that at least one of them tends to produce obser-

vations with larger values, the i th sample containing n observations. Let N =
∑k

i=1
ni be the

total number of observations. The Kruskal-Wallis statistic was developed to test the null hy-

pothesis that the k-samples come from the same population. If the null hypothesis is false,

then at least one of the k samples will tend to produce observations with larger values. In

order to compute the Kruskal-Wallis statistic we have to consider N observations and assign

ranks to them. Let R(zi j ) be the rank of zi j , the j th observation of the i th sample, and let

Ri =
∑ni

j=1
R(zi j ) be the sum of ranks to the i th sample. The test statistic is given by

T =
1

S2

(
k∑

i=1

R2
i

ni
−

N (N +1)2

4

)

,

where

S2
=

1

N −1

(
k∑

i=1

ni∑

j=1

R(zi j )−
N (N +1)2

4

)

.
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If the number of ties is sufficiently small (or null), it can be shown that the statistic T can

be expressed as

TK W =
12

N (N +1)

k∑

i=1

R2
i

ni
−3(N +1). (8)

Edge estimation using TK W is straightforward. Consider a strip of pixels s = (z1, . . . , zN )

and assume that the j th element is the edge. The edge thus splits the data into two samples,

(z1, . . . , z j ) and (z j+1, . . . , zN ), whose sample sizes are n1 = j and n2 = N − j , respectively,

where j ∈ {1, . . . , N −1}. We conclude that the two samples come from different populations

when TK W is large, the corresponding edge estimator being

̂K W = arg max
j

TK W . (9)

This edge estimator is computationally less costly than Gambini’s parametric estimator.

4 Bootstrap-based edge confidence intervals

It is important for practitioners to be able to compute not only edge point estimates but

also edge interval estimates, that is, confidence intervals for SAR image edges. We note

that the distribution of KW point estimator is unknown and hence the usual corresponding

confidence intervals cannot be obtained. An alternative is to use bootstrap resampling to

construct interval estimates [20,21,29]. The main idea is to use data resampling to construct

pseudo-samples, to compute the point estimate using each artificial sample and then to use

all point estimates to produce a confidence interval.

In what follows we shall consider bootstrap edge interval estimation. In particular, the

following bootstrap interval estimators shall be considered: bootstrap basic method (BBM),

percentile (PERC), and Studentized (or percentile-t , bootstrap-t ) (ST). Given the high com-

putational burden of the percentile-t method, we propose two new variants of such a con-

fidence interval that are much less computer-intensive.

Consider again a strip of pixels s = (z1, . . . , zN ), with an edge between two regions lo-

cated at j ∈ {1, . . . , N }. Let ̂kw be the KW edge estimate. Using the estimate ̂kw we can

obtain pseudo-samples s∗ = (z∗
1 , . . . , z∗

N ), where (z∗
1 , . . . , z∗

̂kw
) is obtained by randomly sam-

pling with replacement from (z1, . . . , z ̂kw
). Similarly, (z∗

̂kw+1
, . . . , z∗

N ) is obtained by randomy

sampling with replacement from (z ̂kw+1, . . . , zN ). Let ̂∗ be the edge estimate obtained by

resampling a strip of pixels s∗. After executing this scheme B times, we obtain B edge es-

timates ( ̂∗1 , . . . , ̂∗B ). This subsampling process is known as nonparametric bootstrap. Let

̂∗(1), . . . , ̂∗(B ) the ordered values of ̂∗1 , . . . , ̂∗B . The empirical distribution of ̂K W is given by

F̂∗
B ( j ′) =

#{ ̂∗
(b)

≤ j ′}

B
, b ∈ {1, . . . ,B }. (10)

It can be used for constructing confidence intervals for the true edge location.

Assuming that ̂K W is a consistent estimator of the edge and given that the true dis-

tribution of ̂K W is unknown, one can construct an edge confidence interval based on the

bootstrap approximation to the distribution of ̂K W − j . Here, the quantiles are obtained
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by using the ordered values of ̂∗K W − ̂kw . The 100(1−a)% basic bootstrap method (BBM)

confidence interval [20] is

[
̂∗a/2, ̂∗1−a/2

]
BB M

=
[
̂kw − ( ̂∗(B (1−a/2)) − ̂kw ), ̂kw − ( ̂∗(B (a/2)) − ̂kw )

]
. (11)

An alternative bootstrap confidence interval is the Percentile interval. The 100(1−a)%

percentile interval [20] is given by

[
̂∗a/2, ̂∗1−a/2]PERC = [ ̂∗(B (a/2)), ̂

∗
(B (1−a/2))

]
. (12)

It is noteworthy that this interval may be asymmetric and only contains proper values of the

edge.

An alternative approach is to construct a bootstrap studentized confidence interval: the

percentile-t or bootstrap-t interval. To that end, in each bootstrap replication we compute

the quantity

Z∗
b =

̂∗
b
− ̂kw

v̂∗1/2
b

, (13)

where v̂∗1/2
b

is the standard error ̂∗ obtained in the bth bootstrap replication. The ath sam-

ple quantile, t̂(a), is obtained as follows:

#{Z∗
b
≤ t̂(a)}

B
= a,

b ∈ {1, . . . B }. The 100(1−a)% studentized bootstrap confidence interval [20] is then given by

[
̂∗a/2, ̂∗1−a/2]ST = [ ̂kw − v̂ 1/2 t̂(B (1−a/2)), ̂kw − v̂ 1/2 t̂(B (a/2))

]
. (14)

The sample variance v∗
b

can be computed by using a sub-bootstrap (i.e., a second level

bootstrap) with B ′ replications, where B ′ = 50 is the minimum number of resamples that

yields reasonable estimates. Efron and Tibshirani [21] recommend using B ′ = 200. However,

they also recommend using B = 1000. This implies that estimation of v∗
b

using a second level

bootstrap adds considerable computational burden, even when one uses B ′ = 50.

In what follows we shall propose two alternative approximate bootstrap-t interval esti-

mators, denoted ST1 and ST2. By using them one can compute v∗
b

without having to resort

to a second level bootstrap.

The idea behind out ST1 bootstrap method is to estimate v∗
b

using a subset of size B ′

from the replications ̂∗1 , . . . , ̂∗B imposing the restriction that the sample variance is posi-

tive. Let ̂∗
′

= { ̂∗
′

1 , . . . , ̂∗
′

B ′} be the randomly selected subset of B bootstrap estimates. Our

algorithm can be outlined as follows:

It is noteworthy that Algorithm 1 must be executed for each b ∈ {1, . . . ,B }. This algorithm

is considerably less computationally intensive than the standard bootstrap-t algorithm in

which a second level bootstrapping scheme is used for variance estimation.

At Algorithm 2 is introduced a second approximation to the bootstrap-t method.

Notice that ST1 is less computationally expensive that the ST2 and that they are both

less computationally costly than the standard bootstrap-t , in which a second level (inner)

bootstrap is carried out for variance estimation.
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Algorithm 1 ST1 Method

1: if ̂∗
b
= ̂kw then

2: Z∗
b
← 0

3: else

4: if Var( ̂∗1 , . . . , ̂∗B ) 6= 0 then

5: Obtain ̂∗
′

= { ̂∗
′

1 , . . . , ̂∗
′

B ′} by drawing with replacement from { ̂∗1 , . . . , ̂∗B }.

6: v̂∗
b
← Var ( ̂∗

′

)

7: if v̂∗
b
= 0 then

8: Go back to line 5 (do this at most B ′′ > 0 times).

9: end if

10: if line 8 was repeated B ′′ times then

11: v̂∗
b
← Var ( ̂∗1 , . . . , ̂∗B )

12: end if

13: else

14: repeat

15: Obtain ̂∗
′

∗ by estimating the edge using a new bootstrap replication of pixels

strip s.

16: until ̂∗
′

∗ 6= ̂∗1 (do this at most B ′′ > 0 times)

17: if ̂∗
′

∗ = ̂∗1 then

18: ̂∗
′

∗ ← ̂∗1 +1

19: v̂∗
b
← Var ( ̂∗1 , . . . , ̂∗

B ′−1
, ̂∗

′

∗ )

20: end if

21: end if

22: end if

5 Numerical results and discussion

In what follows we shall report the results of several Monte Carlo simulations which were

performed to assess the finite sample merits of different edge interval estimates in SAR im-

ages. All simulations were carried out using OX matrix programming language [30]. The

hardware used was an Intel(R) Core(TM)2 Quad CPU Q6600 2.40GHz computer running on

Ubuntu Linux. Graphics were produced using R programming environment [31].

The simulated data have been generated according to the statistical distribution G
0
I

given in (1) and random number generation can be easily performed. It suffices to use

the fact if W ∼ Γ
−1(k ,θ) then 1/W ∼ Γ(k ,1/θ). Thus, in order to generate a pseudo-random

number from G
0
I

we only need to generate a pseudo-random number from Γ(L,L) and then

divide it by a pseudo-random number obtained from Γ(−α,1/γ). For instance, the following

Ox [30] function can be used for G
0
I

random number generation:

// A - texture parameter

// G - scale parameter

g0i_generation (const A, const G)

{

decl x = rangamma(rowss, cols, -A, 1/G);

decl y = rangamma(rowss, cols, L, L);

return y./x;

}
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Algorithm 2 ST2 Method

1: Obtain estimates ̂∗x ← { ̂∗B+1, . . . , ̂∗B+Bx
} of the edge based on Bx new resamples from the

pixels strip s.

2: if Var( ̂∗x ) 6= 0 then

3: Obtain ̂∗
′

= { ̂∗
′

1 , . . . , ̂∗
′

B ′} (B ′ <Bx ) by drawing with replacement from ̂∗x .

4: v̂∗
b
← Var ( ̂∗

′

).

5: if v̂∗
b
= 0 then

6: Go back to line 3. This step is to be executed at most B ′′ times (0 <B ′′ <Bx ).

7: end if

8: if line 6 was repeated B ′′ times then

9: v̂∗
b
← Var ( ̂∗x ).

10: end if

11: else

12: repeat

13: Obtain ̂∗
′

∗ by estimating the edge using a new bootstrap replication of pixels strips

s.

14: until ̂∗
′

∗ 6= ̂∗B+1 (do this at most B ′′ > 0 times)

15: if ̂∗
′

∗ = ̂∗B+1 then

16: ̂∗
′

∗ ← ̂∗B+1 +1

17: end if

18: v̂∗
b
← Var ({ ̂∗B+1, . . . , ̂∗

B+B ′−1
, ̂∗

′

∗ })

19: end if

In all simulations, L = 1. Recall that this is the most challenging situation. All images

we generated are rectangular and contain 20× 100 pixels (N = 100) with an edge located

at j = 50. Thus, each image contains two distinct regions of equal size. In the region to

the left of the edge α = αℓ, and otherwise α = αr , with αℓ,αr ∈ {−2,−3, . . . ,−15}. For each

region, the scale parameter γ was chosen according to (3). The most challenging situation

as far as edge detection is concerned takes place when |αr −αℓ| = 1; the higher the absolute

difference between αr and αℓ, the easier it is to locate the edge. We notice that the case in

which |αr −αℓ| = 1 becomes particularly more challenging when the values αr and αℓ are

large (in absolute values) because we are then dealing with two very homogeneous regions.

Accordingly, [32] shows that when αℓ,αr →−∞ the stochastic distance between the two G
0
I

diminishes, even when |αr −αℓ| remains constant.

The number of Monte Carlo replications is R = 5000 and the number of bootstrap repli-

cations is B = 1000. For each configuration, we constructed 5000 confidence intervals using

the basic bootstrap method, the percentile method, and also the ST1 and ST2 methods. The

nominal coverage is 1− a = 0.95 (95%). The results for the ST1 and ST2 methods were ob-

tained using B ′ = 50, and B ′′ = 200, and for ST2 we used Bx = 200.

We computed the exact coverage (C̄ ) of each interval estimator corresponding to the

95% nominal level, which was done for each configuration (αℓ,αr ). The best performing

estimator is the one whose exact coverage is closest to the nominal coverage. Figure 2 plots

the distance D = |C̄ −0.95|×100% against αr (the roughness parameter value to the right of

the edge). The six panels in the figure correspond to αℓ ∈ {−2,−5,−8,−11,−13,−15}. Situa-
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tions in which αℓ =αr (i.e., there is no edge) are not considered.
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Figure 2: Distances between empirical and nominal coverages.

Visual inspection of Figure 2 reveals that all interval estimators perform equally well

when αℓ = −2 and αr ≤ −4; their coverages are 100%. We also notice that as |αℓ−αr | in-

creases the differences between the different coverages tend to decrease, i.e., the different

intervals display similar coverages. That happens because the distribution of ̂K W tends to

be more concentrated around of the true value j = 50 as |αℓ−αr | increases, i.e., the estima-

tor ̂K W is more accurate when the two regions have very distinct textures. Such a tendency

is not, however, uniform. Also, when the regions on both sides of the edge are very hetero-

geneous (for example, αℓ =−2, and αr =−3, or αℓ =−5 and αℓ =−4), the different intervals

behave similarly, but when the two regions of are very homogeneous (for example αℓ =−13,

and αr =−12), the percentile estimator outperforms all other interval estimators. Figure 2

shows that the percentile estimator is the best performing interval estimator in most situa-

tions. It is also noteworthy that the percentile estimator is the best performing estimator in

the most challenging situations, i.e., whenever the two regions are very homogeneous and

have similar textures.
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In Figure 3, a symbol indicates which is the best performing interval estimator for each

configuration (αℓ,αr ); the quantity bellow the symbol is

∆= Dpercentile −Dbest method,

which measures the method performance relative to the percentile method. The symbols

used in the figure are the same as the ones used in Figure 2, except for the symbol used

to represent BBM, which is now ⊗. The symbol ⊠ is used whenever all methods produced

the same coverage. We observe that in configurations in which the two absolute values of

roughness parameter are large and similar (the most challenging situations), the percentile

estimator is the best performer, closely followed by BBM.

⊗ BBM, © PERC, � ST1, N ST2, ⊠ ALL METHODS

−15 −10 −5

−
15

−
10

−
5

αl

α r

0.72

1.08

1.26

0.08

0.90

0.10

0.84

0.38

0.02

0.78

0.56

0.78

0.10

0.02

1.46

0.32

1.08

0.10

0.12

1.46

1.26

0.86

0.98

0.18

0.02

0.76

1.16

0.26

0.80

1.40

0.44

0.34

0.02

0.20

1.48

0.60

1.62

0.92

0.52

0.50

1.52

0.32

0.14

0.52

1.26

0.06

1.28

0.92

0.12

0.16

0.76

0.30

1.42

0.14

0.88

0.80

0.10

0.10

0.14

1.10

0.06

0.36

0.90

1.08

1.28

0.12

Figure 3: Best method and difference performance ∆ between the percentile and the best

performer.

The two studentized estimators, ST1 and ST2, outperformed the competition whenever

|αℓ−αr | ≤ 5. In these situations, the values of ∆ are between 1% and 2%. Since these two

estimators behave similarly, we recommend the use of ST1, which is less computationally

intensive. It should be noted that in such situations the percentile estimator is quite com-

petitive with the studentized estimators.

All methods behave similarly when the absolute difference between αℓ and αr becomes

very large; see Figure 2.

When taken together, our numerical results show that the percentile estimator is either

the best performing estimator or quite competitive with the best performer. Therefore, we

conclude that the percentile edge estimator is to be preferred.

We have also carried out simulations in which there is no edge, i.e., αℓ = αr . Here, we

shall focus not on coverages but on the average lengths of the different confidence intervals.
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The estimated edge locations are expected to be randomly and uniformly distributed along

the detection line since there is no edge. We thus expect the average interval length to be

approximately equal to the detection line length. Figure 4 displays average interval lengths

(AIL).
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Figure 4: Average length for situations where there is not edge.

We notice that all methods produce similar average interval lengths, regardless of the

configuration (αℓ,αr ), as expected. The percentile and BBM interval estimators have the

same average length: approximately 93 pixels. Notice that an open circle is used to represent

the percentile method and a filled circle is used for the BBM method, therefore, only the

filled circle (BBM) is visible. The ST1 and ST2 estimators displayed similar average lengths

(approximately 95 pixels), the former always being slightly narrower. Overall, we notice

that all methods yield very wide intervals when there is no edge to be located. A very wide

confidence interval can then be taken as evidence that there is no edge.

Table 1 displays selected average interval lengths. Notice that when |αℓ−αr | is large, the

average lengths are null or very small. On the other hand, when |αℓ−αr | is small, the average

lengths tend to be large. percentile and BBM intervals yields the smallest average lengths

whenever the average lengths are not all the same. The largest average lengths correspond

to the studentized interval estimators, ST1 and ST2. The average lengths of the studentized

and percentile intervals are very close.

We have also considered the case in which the edge lies not in the middle of the detec-

tion window. In particular, we carried out simulations using j = 20. The number of looks

(L = 1) and the detection window size (20×100 pixels) were kept constant. The results cor-

responding to low contrast situations, which are the most challenging cases, are presented

in Table 2. Such results are in agreement with those previously reported; see Table 1 and

Figure 2.

The execution times of the different interval edge estimators for each Monte Carlo repli-

cation are given in Table 3. Since the computational cost does not depend on the parameter

configuration, we use (αℓ,αr ) = (−2,−3) in order to measure the different execution times.
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Table 1: Average interval lengths (AIL) for αℓ 6=αr (selected configurations).
αℓ =−3 αℓ =−8 αℓ =−13

αr BBM ST1 ST2 BBM ST1 ST2 BBM ST1 ST2

-2 1.04 1.07 1.10 0.00 0.00 0.00 0.00 0.00 0.00

-3 0.00 0.00 0.00 0.00 0.00 0.00

-4 3.40 3.77 3.84 0.05 0.04 0.04 0.00 0.00 0.00

-5 0.50 0.47 0.49 0.99 1.02 1.05 0.00 0.00 0.00

-6 0.04 0.03 0.03 3.96 4.35 4.40 0.02 0.02 0.02

-7 0.01 0.00 0.00 24.39 25.90 26.16 0.20 0.18 0.19

-8 0.00 0.00 0.00 0.96 0.99 1.03

-9 0.00 0.00 0.00 32.57 34.23 34.65 2.29 2.59 2.63

-10 0.00 0.00 0.00 7.28 7.89 8.00 5.09 5.54 5.62

-11 0.00 0.00 0.00 3.21 3.55 3.60 14.59 15.72 15.91

-12 0.00 0.00 0.00 1.79 2.00 2.05 62.06 63.61 64.14

-13 0.00 0.00 0.00 0.97 1.00 1.02

-14 0.00 0.00 0.00 0.45 0.43 0.45 67.00 68.57 69.14

-15 0.00 0.00 0.00 0.19 0.17 0.18 21.58 23.01 23.34

Table 2: Edge lies not in the middle of the detection window – Percentile Method (selected

configurations).

Texture αℓ αr AIL coverage (%)

Extremely Heterogeneous
-2 -3 1.18 96.40

-2 -4 0.04 99.68

Heterogeneous
-7 -8 33.70 94.74

-7 -9 6.00 94.90

Homogeneous
-13 -15 29.40 94.16

-14 -15 78.76 96.22

We report both the total time (in seconds) it takes to compute the interval estimator and that

relative to the bootstrap-t estimator (%). The bootstrap-t estimator was computed using 50

replications in the inner bootstrap, which is carried out for variance estimation. The results

show that the Bootstrap-t is approximately 50 times more computationally intensive than

all competing methods. Percentile and BBM methods have nearly the same computational

cost. ST1 and ST2 are slightly more costly, ST1 being less computationally intensive than

ST2. It should be noted that the percentile method is not only the best performer as far as

coverage is concerned, but it is also the least computationally intensive method.

Table 3: Computational cost and computational cost relative to bootstrap-t .

Method Execution time (s) Relative to bootstrap-t (%)

Bootstrap-t 81.422 100.00

BBM 1.578 1.94

ST1 1.630 2.00

ST2 2.191 2.69

PERC 1.565 1.92

The sample size affects the point estimates accuracy. Interval estimates constructed us-

ing smaller samples tend to be wider, thus reflecting the increased uncertainty. We observed

such a behavior in Monte Carlo simulations (results not included here for brevity).
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6 An application

In this section we apply the different edge interval estimators to a real image, i.e., to ob-

served (not simulated) data. An E-SAR single look image of Weß ling (Bayern, Germany)

was used [33]. This image is displayed in Figure 5.

Figure 5: E-SAR image with 1100×2400 pixels, and delimited regions.

It was obtained in L band, and it exhibits part of an airport, urban areas, and pastures. The

rectangles in the image are the regions chosen for edge detection. Rectangles (regions) 1,2

and 4 have 210× 100 pixels whereas rectangle (region) 3 has 100× 210 pixels. In the edge

detection process, we divided rectangle 3 in ten horizontal windows, each of 21×100 pixels,

the detection line being horizontal for each window and dividing the window in equal parts

of 10 × 100 pixels. Similarly, each of the other rectangles was divided in ten windows of

100×21 pixels, the detection line being vertical and dividing the window in equal parts of

100× 10 pixels. Therefore, for each rectangle we compute ten interval edge estimates. In

the figures that follow, we use green lines to connect the lower interval limits and also the

upper interval limits; red lines are used to connect the different edge point estimates. Each

detection window is delimited by yellow lines, the windows being numbered from left to

right or from top to bottom (for example, the first window in rectangle 1 corresponds to the

window located in the extreme left).

Figure 6 contains results relative to edge detection in rectangle 1.

We observe that the confidence intervals are quite narrow (the smallest interval length equals

3 pixels), except for the first two detection windows. In the second window there are less

pixels in light regions than in dark regions, in which there is more noise, hence the wider

confidence interval. This happens because edge detection becomes quite challenging un-

der complex, rich textures. We also note that the estimated edge is typically located in areas

in which the differences in texture are largest; see, e.g., the first window.

A challenging situation for edge detection can be seen in rectangle (region) 2 of Figure 5.

There we notice two fairly different textures, but it is not easy to identify where exactly lies

the frontier. The results of edge detection for this region are presents in Figure 7. Note

that, in all detection windows, the confidence intervals are fairly wide; the smallest interval

length is 5 pixels (last detection window) and the widest interval covers 26 pixels (next to

last detection window). In challenging situations such as this interval estimation becomes

quite useful since it signals that point edge detection may not be reliable.
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(a)

(b)

Figure 6: Results for interval detection in region 1. (a) Region 1 magnification. (b) Graphical

presentation of confidence intervals to edges in region 1. Green lines links interval limits

for each detection window. The windows are drawn by yellow lines. The red line links edge

point estimates for each detection window.

Edge detection in rectangle (region) 3 of Figure 5 is even more challenging than in rect-

angle (region) 2 because the edge divides the image in two regions with textures that are

visually very diffuse. The detection results are displayed in Figure 8.

We note that the interval lengths are nearly the same in all detection windows. None of

interval lengths exceeds 11 pixels. We conclude that, despite the aforementioned difficulty,

the KW detector yields accurate edge estimates.

A limitation of the point edge detection methods we consider is that an edge will be al-

ways located even when there is none. This happens because TK W in (8) always achieves a

maximum value. Interval estimation can, however, be used to assess whether an edge in-

deed exists. Such a situation is explored in rectangle (region) 4 of Figure 5. A confidence

interval that covers 94 pixels is obtained, thus suggesting that there is no edge. The results

of edge detection for this region are presents in Figure 9. In the last window detection, we

obtain a fairly wide interval (41 pixels) which can be taken as evidence that the point edge

estimate is not accurate. A similar situation takes place at the first detection window. Here,

however, the dark regions are most likely not the result of noise but reflect the terrain char-

acteristics.

Samples 2 and 3 are particularly interesting since they involve neighboring regions that

are very similar. The edge is thus difficult to be located and the lengths of the correspond-

ing interval estimates signal such uncertainty. They are wider in areas where the contrast

between the two regions is small.

In Figures 6, 7, 8 and 9 we connected the different confidence interval limits using
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(a)

(b)

Figure 7: Results for interval detection in region 2. (a) Region 2 magnification. (b) Graphical

presentation of confidence intervals to edges in region 2. Green lines links interval limits

for each detection window. The windows are drawn by yellow lines. The red line links edge

point estimates for each detection window.

straight lines. As noted by a referee, when using interval edge detection, the user can spec-

ify the kind of edge she is willing to retrieve. For instance, provided a wide enough interval,

she can choose between linear features and straight angles between them, as is the case of

many agricultural fields, or smoothly varying edges, as in shores. This is, we believe, a novel

feature of our approach. In particular, we note that smoothing methods, such as kernel and

splines smoothing [34–36], can be used for constructing the lower and upper curves. This

was done in Figure 10. We note that the user can choose the amount of smoothing she wants

to use.

In Figure 11 we compare the interval estimation approach proposed in this paper at the

95% confidence level (panels 11b, 11f and 11j) to the gPb estimator proposed in [38] (pan-

els 11c, 11g and 11k) and also to Sobel’s [39] approach after applying the speckle-reducing

filter proposed by Lee [40] (panels 11d, 11h and 11l). Our goal is to verify whether the dif-

ferent methods are able to locate an edge that separates two regions of similar textures.

We thus used simulated images. This was done so that we would have control over the

true parameters. The edge is located between regions of equal sizes and textures are (1)

extremely heterogeneous, α = −2 and α = −3 (panel 11a), (2) heterogeneous, α = −7 and

α=−8 (panel 11e) and (3) homogeneous, α=−14 and α=−15 (panel 11i). Here, L = 1 and

γ = −α− 1. Each image has 200× 400 pixels. In order to perform interval estimation, we

divided each image into 10 detection windows, each containing 20×400 pixels. In all situ-

ations, the point KW detector (red line) was able to locate the edge with high precision, if

not perfectly (see panels 11b, 11f and 11j). The interval lengths indicate that such detection
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(a) (b)

Figure 8: Results for interval detection in region 3. (a) Region 3 magnification. (b) Graphical

presentation of confidence intervals to edges in region 3. Green lines links interval limits

for each detection window. The windows are drawn by yellow lines. The red line links edge

point estimates for each detection window.

is reliable when the regions the regions are extremely heterogeneous or homogenous. The

confidence intervals obtained for heterogeneous regions are, however, wider and thus indi-

cate that point edge estimation based on the KW detector may not be as reliable. The gPb

detector yields a hierarchical representation for the edges in the image. Such representation

is called Ultrametric Contour Map (UCM). The UCM at level k yields a set of curves that are

the segmentation edges at scale k . The scale is related to the probability P(x) that a given

pixel x lies on the edge. The white lines in panels 11c, 11g and 11k are the pixels for which

P(x) ≥ k ; here, k = 0.07. In all cases, no line emerged when we used P(x) ≥ 0.09. Hence, each

pixel of all images lies on an edge with very low probability according to the gPb detector.

Additionally, none of the white lines fully agree with the true edge. Likewise, Sobel’s method

was not able to locate the edges; see panels 11d, 11h and 11l. We obtained results that are

similar to those obtained using Sobel’s filter (not presented here) by using the gradient fil-

ter [41] and also the method introduced by Touzi [9]. The gPb detector was computed using

the Matlab code available at http://www.eecs.berkeley.edu/Research/Projects/CS/

vision/grouping/resources.html. The Lee filter was computed using the code available

at Matlab Exchange (http://www.mathworks.com/matlabcentral/fileexchange). Fi-

nally, other threshold based edges were computed using the Monteverdi-Orfeo Toolbox

(http://www.orfeo-toolbox.org/otb/monteverdi.html).
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(a)

(b)

Figure 9: Results for interval detection in region 4. (a) Region 4 magnification. (b) Graphical

presentation of confidence intervals to edges in region 4. Green lines links interval limits

for each detection window. The windows are drawn by yellow lines. The red line links edge

point estimates for each detection window.

7 Concluding remarks

We addressed the issue of edge detection in SAR images. As pointed out in Section 1, the

distributions of point edge estimators are usually unknown and can be estimated using data

resampling. We used the bootstrap method to estimate the KW detector distribution. This

allowed us to obtain confidence intervals for the edge location. Several bootstrap-based

interval estimates were described and numerically evaluated. We addressed situations in

which there is an edge and also situations in which there is none. The case of multiple

edges will be addressed in future research.

Overall, the percentile confidence interval proved to be most reliable, especially in the

challenging situation in which the regions on both sides of the edge have similar textures.

The percentile interval typically displayed the best coverage but it is typically wider than

alternative intervals. There is thus a trade-off between coverage and length. Percentile and

basic bootstrap method delivered intervals with the smallest lengths.

We proposed two variants of the bootstrap-t method for edge interval estimation, de-

noted ST1 and ST2. They are less computationally costly than the standard Bootstrap-t

method. They tend to work equally well, ST1 being more computationally efficient.

We have considered situations in which edge detection is carried out in an image region

in which there is no edge. Point estimation will always locate an edge, even when there is

none. In such situations, the resulting interval estimates tend to be fairly wide, thus sig-

naling that the detected edge is not to be trusted. Very wide intervals can be taken as an
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(a) Gaussian kernel smoothing with bandwidth equal

to 23.

(b) Cubic Splines smoothing with degrees of freedom

equal to 8.

Figure 10: Smooth confidence bands, region 2. Point estimates are denoted by red dots and

the different confidence intervals are marked using green dots.

indication that most likely there is no edge in that region of the SAR image and we can use

this measure in an unsupervised system of edge detection. Real (not simulated) data were

analyzed. We performed edge detection in several regions of a SAR image.

It is important to remark that the edge interval estimators presented in this paper can be

used with other types of image. Edge location in SAR images is particularly challenging due

to the existence of speckled noise. Such noise can make the usual detection strategies to

take noise for edges. Interval estimation can add useful information to the task of locating

edges in such images. It can even signal that there is no edge in the region of the image

under scrutiny.

An interesting extension of the interval estimation methodologies considered in this pa-

per involves edge detection in polarimetric SAR images, which are complex-valued. That

would add important information to the edge point estimates that were proposed in the

literature; see, e.g., [37] and [7]. We shall address that in future research.
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Figure 11: Edge location comparison: the gPb method and the classical Sobel method cou-

pled with the Lee filter.
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