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Abstract 

The advance of remote sensing technology has been capable of providing abundant spatial and 

contextual information for object detection in optical satellite or aerial imagery, which facilitates 

subsequent automatic analysis and interpretation of the optical remotes sensing images (RSIs). Most 

existing object detection approaches suffer from two limitations. First, the feature representation used is 

insufficiently powerful to capture the spatial and structural patterns of objects and the background 

regions. Second, a large number of training data with manual annotation of object bounding boxes is 

required in the supervised learning techniques adopted while the annotation process is generally too 

expensive and sometimes even unreliable. To tackle these two limitations, a novel and effective 

geospatial object detection framework is proposed by combining the weakly supervised learning (WSL) 

and high-level feature learning. First, we employ an unsupervised feature learning approach via Deep 

Boltzmann Machine (DBM) to infer the spatial and structural information encoded in the low-level and 

middle-level features, which facilitates good semantic preserving ability for effective describing objects 

in optical RSIs. Then, we present a novel WSL approach to object detection in optical RSIs where the 

training sets require only binary labels indicating whether an image contains the target object or not. 

Based on the learnt high-level features, it jointly integrates saliency, intra-class compactness, and 

inter-class separability in a Bayesian framework to initialize a set of training examples from weakly 

labeled images and start iterative learning of the object detector. A novel evaluation criterion is also 

developed to detect model drift and cease the iterative learning. Comprehensive experiments on three 

optical RSI datasets with large variations in terms of spatial resolution, and types of objects have 

demonstrated the efficacy of the proposed approach in benchmarking with several state-of-the-art 

supervised learning based object detection approaches.  

Keywords: Weakly supervised learning, Bayesian framework, Object detection, Unsupervised feature 

learning, Deep Boltzmann Machine.  

 

1. Introduction 

The rapid development of remote sensing technologies has rendered many satellite and aerial 

sensors to provide optical imagery with high spatial resolution, facilitating a wide range of applications 

such as disaster control, land planning, unban monitoring, and traffic planning [1-4]. In these 

applications, automatic detection of natural or man-made objects is a fundamental task and has received 

increasing research interests. The abundant spatial information and detailed structural information of 
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objects contained in optical RSIs has offered us the new opportunity to address this challenging task.  

Early attempts [1, 4, 5] detected objects in optical RSIs in an unsupervised manner which often 

started from generating region of interest (ROI) by grouping pixels into clusters and then detected 

objects of interest based on the shape and spectral information. Afterward, many supervised learning 

methods have been adopted to learn the object model effectively with the help of prior information 

obtained from training examples [2, 6-8]. By heavily relying on the human labelled training examples 

which are statistically representatives of the classification problem to solve, the supervised learning 

methods can achieve more promising performance than the unsupervised approaches. Therefore, 

overwhelming object detection systems are usually based on the supervised learning techniques. 

The recent advance of remote sensing technology has led to the explosive growth of satellite and 

aerial images in both quantity and quality. It brings about two increasingly serious problems for the 

object detection task in optical RSIs. First, supervised learning based object detection approaches often 

require a large number of training data with manual annotation of labeling a bounding box around each 

object to be detected. However, manual annotation of objects in large image sets is generally expensive 

and sometimes even unreliable. For example, for the natural objects such as landslide, the proper 

manual annotation generally requires considerable expertise. In addition, manual annotation is also 

difficult for the man-made objects such as airplane and car, where the coverage of target object appears 

to be very small, especially when complex textures are contained in the image background. As a result, 

it is difficult to achieve accurate annotation on such small regions. Moreover, the manual annotations 

may tend to be less accurate and unreliable when the targets are occluded or camouflaged. As a result, it 

is a great interest in training object detectors with weak supervision for large-scale optical satellite and 

aerial image datasets. 

The second problem is that the rich information contained in the optical RSIs with high spatial 

resolution has more details of objects whereas feature descriptors used by existing object detectors are 

still insufficiently powerful to characterize the structural information of the objects. The limited 

understanding of the spatial and structural patterns of objects in optical RSIs leads to a tremendous 

semantic gap for the object detection task. It can be observed that man-made facilities, such as airplanes, 

vehicles and airports, always have intrinsic structural property with specific semantic concepts, which 

has obvious difference from the background areas in optical RSIs. Consequently, building of the 

high-level structural and semantic features is a promising way for the interpretation of the optical RSIs 

and object detection task.  

In this paper, we tackle the manual annotation problem for object detection in optical RSIs by 

proposing a weakly supervised learning (WSL) framework. As one of the most cost-effective learning 

approach, WSL only requires a weak label for the training images to specify whether the image contains 

the object of interest or not. To this end, unlike conventional supervised learning approaches which rely 

on manually labeled bounding boxes for training object detector, accurate locations and sizes of the 

target objects are not needed in the WSL framework. Object detection using WSL tends to solve 

localization of the objects of interest in each positive training image (automatic annotation) and object 

detector training using automatic annotations (detector learning) simultaneously. In practice, WSL is 

implemented as follows. Given the weak label only indicating whether a certain category of object is 

contained in an image or not, an initial annotation is firstly obtained automatically, based on which, a 

detector is trained. The trained detector is then used as the annotator to refine the annotation, whereas 

the detector is iteratively trained using refined annotations until the model drift is detected. In this paper, 

we propose a Bayesian framework by jointly exploring saliency, intra-class compactness, and inter-class 

separability to initialize a training examples set. Afterwards, we propose a novel detector evaluation 

method which is able to cease the iterative learning process when the detector starts to drift to bad 
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results and thus we can obtain final object detector with satisfactory performance. 

To tackle the problem of insufficiently powerful feature descriptors, we explore the spatial and 

structural information within image patches via high-level feature learning. Unlike existing works to 

extract structural features solely based on human design [9, 10], the proposed approach derives 

high-level features by applying unsupervised representation learning approach, where spatial and 

structural patterns from the low-level and middle-level features can be automatically captured. Here we 

adopt Deep Boltzmann Machines (DBM) to learn high-level feature because it has been demonstrated to 

have the potential of learning useful distributed feature representations and become a promising way in 

solving object and speech recognition problems [11-13].  

In summary, the main contributions of this paper are threefold.  

1) We propose a novel WSL framework based on Bayesian principles for detecting objects from 

optical RSIs, which extensively reduces human labors for annotating training data while 

achieving performance comparable to that of the fully supervised learning approaches; 

2) We propose unsupervised feature learning via DBM to build high-level feature representation 

for various geospatial objects. The learned high-level features capture the structural and spatial 

patterns of objects in an effective and robust fashion, which leads to further improvement of 

object detection performance; 

3) Extensive evaluations on three optical RSI datasets with different spatial resolutions and 

objects of interest are carried out to validate the effectiveness of the proposed methodology. 

The rest of the paper is organized as follows. Section 2 gives a brief review of the related work. 

Section 3 introduces the proposed framework. Section 4 proposes the unsupervised feature learning. 

Section 5 describes the WSL framework for object detection in optical RSIs. Experimental results are 

presented in Section 6. Finally, conclusions are drawn in Section 7. 

 

2. Related Work 

Object or target detection in optical RSIs has been extensively studied in the past decades. For 

example, Li et al. [4] developed an algorithm for straight road edge detection from optical RSIs based 

on the ridgelet transform with the revised parallel-beam Radon transform. Ge at el. [5] detected inshore 

ships in optical satellite images by using shape and context information that are extracted in the 

segmented image. Liu et al. [1] presented robust automatic vehicle detection in QuickBird satellite 

images by applying morphological filters for road line removing and histogram representation for 

separating vehicle targets from background. All these methods are performed in an unsupervised manner. 

They are effective for detecting the designed object category in simple scenario.  

With the advance of machine learning techniques, many approaches started to cast object detection 

as a classification problem. In these approaches, a set of features that can characterize the objects is 

extracted firstly. Then classification is performed using the extracted features and predefined classifiers. 

For example, Cheng et al. [2] detected landslide from RSI based on the bag-of-visual-words (BOW) 

representation in combination with the probabilistic latent semantic analysis (pLSA) model and the 

k-nearest neighbor (k-NN) classifier. Han et al. [3] proposed an efficient, simultaneous detection of 

multi-class geospatial objects based on visual saliency modeling and discriminative learning of sparse 

coding. Cheng et al. [6] extracted histogram of oriented gradients (HOG) feature of training examples 

and used latent Support Vector Machine (SVM) to train deformable part-based mixture models for each 

object category. Based on the prior information obtained from a large number of human labeled training 

examples, the supervised learning based approaches normally can achieve better performance. However, 

collection of large-scale training examples is often difficult and very time consuming.  
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A few efforts [14-17] have been performed to alleviate the work of human annotation. One 

interesting idea is to adopt semi-supervised learning model. Such methods apply a self-learning or 

active learning scheme where machine learning algorithms can automatically pick the most informative 

unlabeled examples based on a limited set of available labeled examples. Then, these picked unlabeled 

examples are combined with the initial labeled examples for the training of object detector or classifier. 

Specifically, Liao et al. [16] proposed a semi-supervised local discriminant analysis method for feature 

extraction in hypespectral RSI. Dópido et al. [15] adapted active learning methods to semi-supervised 

learning for hyperspectral image classification. Jun et al. [18] presented a semi-supervised spatially 

adaptive mixture model to identify land covers from hyperspectral images. 

Although semi-supervised learning methods can considerably reduce the labor of human 

annotation, they still inevitably require a number of precise and concrete labeled training examples 

where each object is manually labeled by a bounding box in positive training images. WSL is desirable 

to further reduce the human labor significantly, where the training set needs only binary labels 

indicating whether an image contains the object of interest. Although a few WSL approaches have been 

applied to natural scene image analysis [19-22], those existing methods cannot be directly used to the 

field of RSI analysis as they have insufficient capability to handle the challenges in RSIs which contain 

large-scale complex background and a number of target objects with arbitrary orientation. As an initial 

effort, in our previous work in Zhang et al. [23], WSL was adopted and heuristically combined with 

saliency-based self-adaptive segmentation, negative mining algorithm, and negative evaluation 

mechanism for target detection in RSIs. Although it introduced some new concepts for WSL based target 

detection, the work lacks a principled framework and ignores some important information, which thus 

can be largely improved. In this paper, we propose a novel principled WSL framework for detecting 

targets from RSIs. Compared with [23], our improvements in this paper lie in threefold: 1) we propose a 

powerful high-level feature learning using DBM; 2) we propose a probabilistic approach via the 

Bayesian rule to jointly integrate saliency, intra-class compactness, and inter-class separability to 

initialize the training examples; and 3) we propose a novel scheme for model drift detection using the 

information from both negative training images and positive training images. The experimental results 

reported in subsection 6.4 can fully demonstrate these improvements. 

 

3. Overview of the Proposed Method 

Given a training optical RSI set with weak label only indicating whether a certain category of 

object is contained in an image or not, the objective of the proposed work is to detect target objects of 

the same class within the testing images. Because these images generally have very large scale and 

contain multiple objects of interest, a straightforward way of processing is to decompose the images 

into small patches by sliding windows, and then predict whether each patch contains the object of 

interest. As suggested in [2, 3, 14], we adopt the multi-scale sliding window mechanism to handle the 

variational size of target objects.  

The proposed object detection framework consists of two major components: unsupervised feature 

learning and WSL based object detection. The flowchart of the feature learning component (Section 4) 

is shown in Fig. 1. In order to obtain more structural and semantic representation of the image patches, 

we extract a group of low-level and middle-level features to capture the spatial information, and then 

use DBM to learn the hidden patterns of the middle-level features, which can abstract more structural 

and semantic information and lead to the desired high-level feature.  
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Fig. 1. High-level feature representation of the image patch. 

 

Based on the obtained high-level features, the component of WSL based object detection shown in 

Fig. 2 (Section 5) contains two stages: training and testing. The objective of the training stage is to 

learn an object detector. In the testing stage, the learned object detector is applied to detect objects in a 

given testing image. The training stage includes two major steps: training example initialization 

(Subsection 5.1) and iterative object detector training (Subsection 5.2). For the first step, a Bayesian 

approach is proposed to integrate three kinds of important information of saliency, intra-class 

compactness, and inter-class separability, which estimates the probability of an image patch being the 

object of interest. After initializing the training examples, we are inspired by the bootstrapping method 

[24] to train the object detector in an iterative process. In each iteration, the detector is utilized as an 

annotator to refine the positive training set, which is then used to re-train the object detector. Thus both 

the training examples and object detector could be gradually updated to be more precise and strong. 

Afterwards, a novel detector evaluation method is proposed to detect the model drift and stop the 

iterative process automatically for obtaining the final object detector. 

 

 

Fig. 2. The flowchart of WSL based object detection. 
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4. High-level Feature Representation 

Feature description plays an important role in the task of object detection in optical RSIs. However, 

the performance of the existing feature descriptions in RSI analysis is still far from satisfactory. The 

main issue lies in the insufficiency in extracting features using only the pixel-based spectral information, 

which ignores the contextual spatial information and thus fails to capture the more important structural 

pattern of the object. With the advance of the remote sensing technology, optical satellite and aerial 

imagery with high spatial resolution makes capturing spatial and structural information possible. 

Nowadays, accurate interpretation of optical RSI relies on effective spatial feature representation to 

capture the most structural and informative property of the regions in each image. A number of such 

approaches have started to explore the spatial information by applying some low-level descriptors (such 

as SIFT, HOG and GLCM in [6, 25, 26]) or middle-level features (such as BOW and PLSA in [2, 26]) 

to represent image patches. Although to some extent these human designed features can improve the 

classification and detection accuracies in optical RSIs, they still suffer from several problems. 

Specifically, these low-level descriptors only catch limited local spatial geometric characteristics, which 

cannot be directly used to describe the structural contents of image patches. The middle-level features 

are usually extracted based on the statistic property of the low-level descriptors in an image patch to 

capture the structural information of the spatial region. However, it cannot provide enough strong 

description and generalization ability for object detection in complex backgrounds.    

To tackle these problems, we build high-level feature representation via DBM to capture the spatial 

and structural patterns encoded in the low-level and middle-level features. DBM is one type of neural 

networks with deep architecture that learns feature representation in an unsupervised manner and has 

been demonstrated to be promising for building high-level feature descriptors [11, 12]. We therefore use 

it to map the middle-level features to the high-level representation that is highly accurate in 

characterizing different scenes or objects in optical RSIs. Specifically, the extraction of high-level 

feature representation (shown in Fig. 1) is carried out in three main stages: (1) Low-level feature 

descriptor extraction: a collection of low-level local descriptors are calculated by using scale-invariant 

feature transform (SIFT) [27]. (2) Middle-level feature generation: low-level descriptor of each image 

patch is coded by Locality-constrained Linear Coding (LLC) model [28]. (3) High-level feature learning: 

DBM [13] is adopted to learn more powerful representation from the middle-level feature.  

 

4.1 Low-level descriptor extraction   

We use low-level features to characterize the local region of each key point in image patches. Due 

to its ability to handle variations in terms of intensity, rotation, scale, and affine projection, the SIFT 

descriptor [27] is adopted in the proposed algorithm as the low-level descriptor to detect and describe 

the key points. According to existing work [2, 14, 29], the SIFT descriptor has been demonstrated to 

outperform a set of existing descriptors and widely used in analyzing RSIs. 

 

4.2 Middle-level feature generation 

To alleviate the unrecoverable loss of discriminative information, we apply the 

Locality-constrained Linear Coding (LLC) model [28] to encode the local descriptors into image patch 

representation. Specifically, all the extracted low-level descriptors are first clustered to generate a 

codebook by using the K-means method. Let 1 2[ , , , ]D d d dN  denotes a set of N  extracted 

low-level descriptors in one image patch. Given a codebook 1 2[ , , , ]CB cb cb cbM  with M  entries, 
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LLC converts each descriptor into a M -dimensional code to generate the final image representation by 

the following three steps. 1) For each input low-level descriptor dn , [1, ]n N , its five nearest 

neighbors in CB  are used as the local bases nLB , [1, ]n N  to form a local coordinate system [28]; 

2) The local code cn  is obtained by solving an objective function 

2

1 1

|| || . 1min d c LB    c
N N

n n n n

n n

st
 

                          (1) 

Then the full code cn  is generated, which is an 1M   vector with five non-zero elements whose 

values correspond to cn . 3) The final middle-level image patch representation is yielded by max pooling 

all the generated codes within the patch. 

 

4.3 High-level feature learning 

A DBM [13] is a neural network with deep structure constructed by stacking multiple Restrict 

Boltzmann Machine (RBM). In our framework, a three-layered DBM is adopted to capture structural 

and spatial patterns from middle-level features and learn high-level representations in an unsupervised 

manner. It contains a visible layer {0,1}v M  and two layers of hidden units 11 {0,1}h
H

 , 22 {0,1}h
H . 

Here, 1H  and 2H  indicate the numbers of units of the first hidden layer and the second hidden layer, 

respectively. The energy of the state 
1 2{ , , }v h h  is defined as 

1 2 T 1 1 1T 2 2( , , ; )v h h v W h h W hE                            (2) 

where 
1 2{ , }W W  are the model parameters, representing visible-to-hidden and hidden-to-hidden 

symmetric interaction terms. The probability that the model assigns to a visible vector v  is given by 

the Boltzmann distribution: 

1 2

1 2

,

1
Pr( ; ) exp( ( , , ; ))

( ) h h

v v h hE
Z

   

                      (3) 

where 1 2

1 2

,
( ) exp( ( , , ; ))

v h h
= v h hZ E     is the partition function. 

The conditional distributions over the visible units and the two sets of hidden units are given by: 

2

1 2 1 2 2

1 1

Pr( 1| , ) ( )
= =

v h
HM

i mi m ij m

m j

h sigm W v W h                       (4) 

1

2 1 2 1

1

Pr( 1| ) ( )h
H

j mj i

i

h sigm W h


                            (5) 
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1

1 1 1

1

Pr( 1| ) ( )h
H

m mi i

i

v sigm W h


                            (6) 

where ( )sigm   is a sigmoid function. 

Given a set of training data, learning of DBM is a process to determine the related model 

parameters 
1 2{ , }W W  in Eq. (2). Although exact maximum likelihood estimation of these 

parameters is intractable, efficient approximate learning of DBMs can be carried out by using 

mean-field inference together with the Markov Chain Monte Carlo algorithms [13]. Furthermore, the 

entire model can be efficiently pre-trained in a greedy layer-by-layer unsupervised manner by 

minimizing the energy function in each individual RBM model (shown in Fig. 3 (a)). Composing the 

RBM models afterwards forms a unified DBM model (shown in Fig. 3 (b)), which can be used to 

extract high-level feature representation.  

 

 

Fig. 3. Learning processes for DBM. 

 

In the proposed algorithm, all the middle-level features extracted from the image patches in 

training images are used as the input data to train DBM where the second hidden layer is used to build 

the final high-level feature representation for each image patch.  

 

5. WSL based Object Detection 

5.1 Training example initialization 

By applying sliding windows as pre-processing, the training images are divided into many patches. 

Thus, the patch-level training data 
+ ={ | [1, ]}pX x p P   and ={ | [1, ]}qX x q Q    can be generated from 

the positive training images and negative training images, respectively. Our first task is to select 

potential target object patches from +X  to generate the initial positive training set 
+

0X . Typically, 

three different information cues, saliency, intra-class compactness, and inter-class separability [21, 22] 

are used to initialize the positive training examples. Based on the assumption that the object to be 

detected is one kind of foreground objects in the image, saliency information ensures that the selected 

positive example is a foreground region. It may acquire generic knowledge about the sizes and locations 
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of foreground objects. The intra-class compactness enforces the selected positive examples to be 

visually similar to each other, whilst the inter-class separability ensures that all selected positive 

examples are different from negative examples. In this paper, a novel Bayesian framework is proposed 

to combine these three types of information simultaneously to initialize the positive example training set 

as follows.  

Let a binary random variable py
 denote whether or not an image patch px

 belongs to one 

specified object. According to Bayes’ rule: 

Pr( | 1)Pr( 1)
Pr( 1| )

Pr( )

p p p

p p

p

x y y
y x

x

  

 



 
                          (7) 

Pr( | 0) Pr( 0)
Pr( 1| ) 1 Pr( 0 | ) 1

Pr( )

p p p

p p p p

p

x y y
y x y x

x

  

   



 
                 (8) 

After adding the above two equations and omitting the constant term, we have  

      (9) 

 In the information theory, log Pr( )px , which is the log form of 1 Pr( )px
, is known as the 

self-information of the random variable px
 [7, 30]. Self-information increases when the probability of 

a patch decreases. In other words, patches that are discriminative from surrounds are more informative 

and thus more likely to be the foreground object. Therefore, the term of 1 Pr( )px
 in Eq. (9) is 

associated with the saliency information. The term Pr( | 1)p px y    indicates the likelihood that favors 

image patches sharing the similar characteristic with the class of objects of interest. Hence it can be 

considered as the metric of intra-class compactness. Similarly, the term Pr( | 0)p px y    reflects the 

distinctness of image patches in positive images and negative images, thus it corresponds to the metric 

of inter-class separability. Finally, the remaining two prior probabilities Pr( 1)py   and Pr( 0)py   are 

treated as the weights of intra-class metric and inter-class metric, respectively.  

 

5.1.1 Saliency  

As we assume that objects to be detected are normally one kind of foreground objects, our 

objective then becomes to quantify how likely each image patch is a foreground object. Foreground 

objects are generally informative and salient from the surrounding background as shown in Fig. 4. In 

computer vision, saliency detection technique can be used to estimate the saliency for each image patch. 

In recent years, it is also employed for the analysis in the domain of remote sensing [31, 32]. Inspired 

by [31, 33], we adopt sparse coding theory to calculate saliency based on the raw pixels to reveal the 

structural difference between an image patch and its surrounding. For each image patch 
px  (the patch 

indicated by red frame in Fig. 4), it is sparsely coded with its adjacent half-overlapped surrounding 
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patches (patches indicated by green frames in Fig. 4) by: 

 χ Dic αp p p                                   (10) 

where χ p  is the raw pixels within 
px , while Dic p  and α p  indicate the dictionary constructed by all 

surrounding patches and the sparse codes, respectively.  

 

 
Fig. 4. An illustration of saliency calculation. 

 

The rationale behind Eq. (10) is to represent χ p  approximately by its surrounding patches. 

According to [31, 33], the coding sparseness 0||α ||p  and the coding residual r =χ Dic αp p p p  indicates 

the saliency of the image patch 
px  with respect to its surrounding. Therefore, we estimate the saliency 

by: 

 0 11 Pr( )=||α ||  ||r ||p p px                                (11) 

5.1.2 Intra-class compactness 

The intra-class compactness metric termed as Pr( | 1)p px y    in our framework aims to constrain 

the similarity between positive examples. As positive examples of a specific object category should be 

visually similar, we can use a Gaussian Mixture Model (GMM) to estimate the probability distribution 

of all positive examples. Then, Pr( | 1)p px y    measures how likely each image patch is a positive 

example. Image patches with large Pr( | 1)p px y    may be selected as positive examples. We use the 

high-level feature f p


 (described in Section 4) to represent each image patch px

 as this feature can 

handle the variations in scale and orientation and capture the spatial and structural patterns of each 

image patch. As patterns learned using DBM are approximately independent, the joint probability is 

simplified to the product of probability of each hidden unit’s response: 
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2

1

Pr( | 1) Pr([ ] | 1)= f
H

p p p j p

j

x y y   



                           (12) 

where [ ]f p j


 indicates the -thj  dimensional value of f p


 and 2H  indicates the dimensionality of 

f p


 as defined in Section 4. The distribution of each hidden unit’s response is estimated using GMM 

with adaptive component 
21,

+

j HK   by: 

2

1

Pr([ ] | 1) ([ ] | , )+ + +
f = f

jK

p j p jk p j jk jk

k

y N  



  



                        (13) 

where 
+

jk , 
+

jk , 
2+

jk  are parameters of the GMM in the -thk  component for the -thj  dimensional 

feature. All parameters are inferred based on object candidates in 
+X  by using the 

expectation-maximization (EM) algorithm and Bayesian inference [34]. Here, 
+X  denotes the set of 

object candidates and will be described in subsection 5.1.5. 

 

 5.1.3 Inter-class separability  

Inter-class separability metric is to enforce the selected positive examples are dissimilar to negative 

examples. In WSL, the most confident information comes from the negative training images because 

they definitely do not contain the target. It is also reasonable to believe that the positive examples 

containing target objects should be different from the negative image patches in the negative images. 

Consequently, we can collect a large number of negative image patches to estimate the probability 

distribution of negative examples via a GMM. Then, we formulate the inter-class metric as the 

likelihood term Pr( | 0)p px y   , which reflects the probability of a certain image patch appearing in 

negative training images. The high probability of the appearance in negative images would lead to low 

inter-class difference and separability. Similar to Pr( | 1)p px y   , Pr( | 0)p px y    can be decided based 

on the high-level feature by: 

2

1

Pr( | 0) Pr([ ] | 0)= f
H

p p p j p

j

x y y   



                         (14) 

2

1

Pr([ ] | 0) ([ ] | , )f = f
jK

p j p jk p j jk jk

k

y N  



     



                     (15) 

where parameters jk 
, jk 

, 
2

jk 
 and 

jK   are inferred by GMM based on all the negative image 

patches in X  .  
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 5.1.4 Prior probability 

Pr( 1)py   and Pr( 0)py   are two prior terms in the proposed Bayesian framework. According to 

[34], Bayesian methods would result in poor performance when inappropriate choices of prior are 

applied without any prior belief. Therefore, inspired by [35] we define the prior terms to reflect the 

prior belief. Our prior belief is that Pr( 0)py   should be high when the content of certain image patch 

px
 has small distance to the negative image patches in X  , and Pr( 1)py   should become high 

when the content of px
 is close to the object candidates in 

+X . Hence, we simply adopt the 

Nearest-Neighbor (NN) distance [36] to estimate these prior probabilities as:  

1Pr( 0) exp{ Nn( ) }= || ||p p py x x                             (16) 

1Pr( 1) exp{ Np( ) }= || ||p p py x x                             (17) 

where 1|| ||  is the 1L  norm. Same as in [21, 36], Nn( )px
 and Np( )px

 refer to the nearest-neighbor 

of px
 in X   and 

+X  (in terms of the high-level feature described in Section 4), respectively. 

Finally, these two prior terms are used as the weights of the inter-class and intra-class metrics in order 

to reflect the prior probability that an image patch belongs to the positive and negative training 

example, respectively. 

 

 5.1.5 Implementation details 

In terms of Eq. (9), the post probability Pr( 1| )p py x   are estimated by integrating the saliency, 

intra-class and inter-class metrics. Note that before calculating the intra-class compactness metric, 
+X  

needs to be available. The work [22] proposed an exhaustive searching strategy to generate one object 

candidate for each image. However, it is lack of accuracy and efficiency for the large-scale RSIs 

especially when it contains multiple target objects locating at quite scattered positions. To tackle this 

challenging problem, we in practice implement our work in two stages. 

In the first stage, we calculate the post probability Pr( 1| )p py x   approximately by only using the 

saliency and inter-class separability metrics to generate 
+X . As initially Pr( | 1)p px y    and 

Pr( 0)py   are unknown, we omit them by following [7, 30], which is equivalent to assuming a 

uniform likelihood distribution for the unspecified object category. The overall formulation reduces to:   

1
Pr( 1| ) [1 Pr( | 0)Pr( 0)]

Pr( )
p p p p p

p

y x x y y
x

    


                   (18) 

Hence 
+X  can be further determined by choosing a probability threshold  :  
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+ ={ | Pr( 1| ) }p p pX x y x                                (19) 

Once 
+X  is obtained, we fully implement the proposed Bayesian framework in the second stage, 

where all the three types of information are explored and integrated for calculating Pr( 1| )p py x   by 

Eq. (9). Similar to the first stage, a threshold   is chosen to determine the label of each image patch 

and thus generate the initial positive training set 
+

0X  by: 

+

0 ={ | Pr( 1| ) }p p pX x y x                               (20) 

By considering the fact that imbalanced positive and negative training data may reduce the 

performance of the object detector, we follow the previous work of [24] to generate the initial negative 

training set 0X 
 by randomly under-sampling of X   to the same size as 

+

0X . Some examples in the 

initial training set are shown in Fig. 5. 

 

 

Fig. 5. Some examples in initial positive and negative training set. 

 

5.2 Iterative detector training 

After obtaining the initial training examples, the object detector is trained iteratively in the 

proposed framework (shown in Fig. 2). In each iteration, the training set generated by the previous 

iteration is used to train the current object detector, which in turn updates the training examples for the 

next iteration. The iteration process stops when a model drift is detected by a novel detector evaluation 

method. Then the object detector obtained before model drift is regarded as the final object detector. 

 

5.2.1 Training example and object detector update 

As can be seen in Fig. 5, although most of the examples in the initial positive training set generated 

by the proposed work are the objects of interest, it still contains several noise examples. Consequently, 

promising object detector cannot be obtained by directly using the initial training data. Inspired by [20, 

22], we train the object detector in an iterative process, which can update the training set and the object 

detector iteratively. Linear SVM is adopted in the proposed algorithm because it has very low training 

costs and has been demonstrated to be both efficient and effective in RSI analysis [3, 37]. Based on the 
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SVM formulation, we use the below score function for object annotation and detection. 

1 1( ) w fp pScore x b                                   (21) 

where the variables 1w  and 1b  are defined as the SVM decision plane and its bias, which are learnt 

from the initial training data. With the score function, binary class label py
 are assigned to the image 

patch px
 based on the sign of the function.  

                                  
1 ( ) 0

0 ( ) 0

 
=

 

p

p

p

S c o r e x
y

S c o r e x







 




，

，
                            (22) 

In order to obtain more precise object patches as the updated positive training examples, an adaptive 

threshold is used to determine image patches that have higher confidence to be the object of interest.  

1

1 1

{ | ( ) ( ) }
P P

p p p p p

p p

X x Score x y Score x y     

 

                  (23)   

where 1X 
 is the updated positive training set after the first iteration. Afterwards, the same number of 

negative examples randomly selected from X   are used to generate the new negative training set 1X 
. 

Alternating the update of object detector and training examples progressively improve their accuracy 

until the end of the iteration. Combination of these two stages in an iterative way is very similar to the 

bootstrapping [24] or active learning [14] strategy, which allows the proposed WSL based object 

detection in optical RSIs to achieve good performance that even superior than the traditional supervised 

learning methods in some cases.  

 

5.2.2 Detector evaluation 

Similar to the model drift phenomenon in adaptive object tracking, the performance of the trained 

object detector is improved in the first several iterations, continually, and then begins to degrade. 

Consequently, generating reasonable evaluation mechanism to detect the model drift is important. As 

the exact location of the objects of interest in each positive training image is unknown, thus it is 

impossible to measure directly whether a stronger object detector has been obtained after each iteration. 

It brings great challenge for evaluating the object model and detecting model drift in WSL.   

Firstly we use a negative example based evaluation mechanism to estimate the performance of the 

trained object detector in each iteration. In general, a good object detector is expected to obtain 

detection results with high true positives and low false positives. In the WSL, we can only obtain 

precise negative image patches which certainly contain no object of interest. As a result, the negative 

evaluation mechanism is adopted here to approximately evaluate the false positive rate for the object 

detector. Specifically, for each iteration, the trained object detector is applied to classify each image 

patch with the negative training images and then calculate the false positive rate FR  by:  

| | / | |falseFR X X                                    (24) 

{ | ( ) 0}false q qX x Score x                              (25) 
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where fq


 refers to high-level features of qx X   and | |  denotes the number of elements.  

Another evaluation mechanism is based on the estimation of the object detector’s performance in 

positive training images. Here we define 
+GMM  and GMM 

 as the distributions inferred by GMM 

based on the positive and negative examples, respectively. As the positive training examples are updated 

after each iteration, the distribution of the -thj  dimensional high-level feature is modified along the 

iteration as:  

2

1

( , )+ +
=

jK

j jk jk jk

k

GMM N  



 



                           (26) 

where jk 
, jk 

, 
2

jk 
 and jK 

 are inferred based on the updated positive training examples after 

each iteration. In contrast, GMM 
 is fixed as: 

2

1

( , )=
jK

j jk jk jk

k

GMM N  



   



                          (27) 

where jk 
, jk 

, 
2

jk 
 and 

jK   are inferred based on the constant negative image patches in X  . In 

the first iteration, the object detector trained on the initial training examples is not very accurate. Thus 

the trained object detector may work unsatisfiedly and the updated positive examples generate the 

+GMM distribution having amount of overlap with the GMM 
 distribution as shown in Fig. 6 (a). 

After several iterations, if the object detector is getting stronger, the overlap between the two 

distributions should become less as shown in Fig. 6 (b). Finally, when the detector starts to drift towards 

some noise patches without containing objects of interest, the overlap tends to large again as shown in 

Fig. 6 (c). Consequently, we evaluate the object detector and monitor the model drift by estimating the 

overlap between the two GMM distributions in each iteration. As the GMM 
 distribution is fixed, the 

distance between the expectations of the two distributions and the variance of 
+GMM  distribution are 

used to approximately predict the overlap area. Intuitively, the 
+GMM  distribution with expectation 

away from that of GMM 
 and small variance has small overlap with the distribution of the GMM 

 

and vice versa (shown in Fig. 6). According to [34], the expectation and variance of the 
+GMM  for the 

-thj  dimensional high-level feature are decided by: 

1

x( )
jK

j jk jk

k

GMM  



  



                              (28) 



16 
 

2 2 2

1

Var( ) ( ) x( )
jK

j jk jk jk j

k

GMM GMM  



    



                    (29) 

where jk 
, jk 

, 
2

jk 
 and jK 

 are inferred by the updated positive training examples after each 

iteration. Similarly, the expectation of the GMM 
 for the -thj  dimensional high-level feature is  

obtained by: 

1

Ex( )
jK

j jk jk

k

GMM  



  



                             (30) 

By combining the above-mentioned two evaluation mechanisms, the final detector evaluation 

measure ( DEM ) in WSL is determined as: 

2 2

2

1 1

( x( ) x( )) ( Var( ))
H H

j j j

j j

DEM GMM GMM FR GMM  

 

              (31) 

Based on DEM , we can evaluate the object detector trained in each iteration. Higher DEM  

indicates better performance of the current object detector and vice versa. Being consistent with the 

above analysis, the DEM  value of the object detector trained in the first iteration should be relative 

small. Then, it increases as the detector is gradually refined in the following iterations. When the 

DEM  value starts to decrease, the model drift is detected and the iteration process is terminated. The 

final object detector is determined as the one obtained before the model drift (as shown in Fig. 6 (d)).  

 

Fig. 6. Simple illustration of model drift on GMM distribution. In figure (a), (b) and (c), the distribution of positive GMM is 

in red color while the distribution of negative GMM is in blue color. Figure (d) shows how the DEM  value changes in each 

iteration. It is based on the iterative training of airport detector. See text for detailed explanation. 

 

6. Experiments 

Comprehensive experiments were conducted to evaluate the effectiveness of the proposed 

approach in three optical RSI datasets with various types of objects of interest. First, detailed 
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information about the testing datasets and the experiment setup are described. Then we evaluate the 

influence of two key parameters to the proposed algorithm. Next, the effectiveness of the Bayesian 

framework and the high-level feature built by DBM are validated, respectively. Finally, the object 

detector trained by the proposed WSL approach is tested to detect the object of interest in the three 

datasets.        

 

6.1 Datasets and experimental setup 

Three optical RSI datasets with different spatial resolutions and various objects of interest were 

used in our experiments. The details of these datasets are shown in Table I. The first dataset consists of 

120 very high-resolution images from the publicly available Google Earth service. This dataset is 

adopted to train and test the airplane detector. 70 randomly selected images were weakly labeled and 

used as the training set (50 images containing airplanes as positive training images and 20 images not 

containing any airplanes as negative training images), and the remaining 50 images were used as the 

testing images. The second dataset called ISPRS data set is a very high-resolution aerial image dataset 

which contains 100 images of vehicle objects provided by the German Association of Photogrammetry 

and Remote Sensing (DGPF) [38]. We randomly selected 60 weakly labeled images as the training data 

(45 positive training images and 15 negative training images) to train vehicle detector. The remaining 40 

images were used as the testing data. The third dataset consists of 180 shortwave-infrared (SWIR) 

imageries from Landsat-7 satellite. 133 randomly selected images were weakly labeled (98 positive 

training images and 35 negative training images) and used as the training data to train the airport 

detector. The remaining 47 images were used as the testing data. For all the three datasets, we also 

manually labeled bounding box for each target object in both training data and testing data to form the 

ground truth for the following evaluations. Fig. 7 shows a number of examples for the images and 

targets of interest. As can be seen, the target objects in different datasets have different sizes, 

orientations, and colors. 

 

 

Fig. 7. Some samples from the three benchmark datasets. 

 

TABLE I.  INFORMATION ABOUT THE THREE EVALUATION DATABASES. 

Data 

 Set 

Scale  

(pixels) 

Spatial 

 Resolution 

Target Area 

(pixels) 

Google Earth about 1000 800  About 0.5m  700~25488 
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ISPRS 

Landsat 

about 900 700  

400 400  

8-15cm  

30m  

1150~11976 

1760~15570 

 

In the experiments, as suggested in [2, 3], we used square sliding windows with side lengths of 

{60,100,135}  for airplane detection, {60,80}  for vehicle detection, and {60,100,130}  for airport 

detection, respectively, where the sliding step-size was also set to be 1 3  of the window side length. 

When building the high-level feature representation for the image patches, we set the number of entries 

M  to 1024 empirically.   

In the test phase, the proposed object detector trained using our WSL framework was performed to 

classify each image patch in the test images generated by the multi-scale sliding window scheme. For 

sliding windows in different sizes, there may be significant overlap on detected targets. To solve this 

problem, we adopt a non-maximum suppression step as suggested in [3, 6, 14] to retain the sliding 

window with the highest score. 

 

6.2 Key parameter analysis 

In the implementation of training example initialization (subsection 5.1), several parameters may 

affect the performance and thus have to be set properly. These include the number of units 1 2,H H  in 

each hidden layer of DBM and the probability threshold   in Eqs. (19) and (20). To show how their 

values affect the performance of the proposed approach, we performed experiments on all the three 

datasets and evaluated the F1-measure by: 

2
F1-measure

PRE REC

PRE REC

 



                           (32) 

, =  
TP TP

PRE = REC
TP+ FP NP

                          (33) 

where TP , FP  and NP  denote the number of true positives (i.e. the number of correctly selected 

positive training examples), the number of false positives (i.e. the number of falsely selected training 

examples), and the number of total positives (i.e. the number of real targets in positive training images) 

under the threshold  . As suggested in [3, 6], an annotation or detection is marked as a true positive 

when its corresponding image patch can cover more than 50% of a ground truth. PRE  and REC  

indicate the precision and recall rate, respectively. As suggested in [38], equal number of units is used in 

each hidden layer ( 1 2 =H H H ) in our implementation and the experimental results are shown in Fig. 8. 

We empirically set 50=H  for all the datasets and  =0.45, 0.90, and 0.95 for the Google Earth dataset, 

the ISPRS dataset, and the Landsat dataset, respectively, based on which the best detection performance 

can be achieved. We used this set of parameter values in all subsequent experiments. 

 



19 
 

 
Fig. 8. Influence of key parameters to training example initialization. 

 

6.3 Evaluation of the Bayesian framework 

In this section, we evaluated the performance of the proposed Bayesian framework by comparing it 

with the baseline methods. Since the proposed Bayesian framework integrates the saliency, intra-class 

compactness, and inter-class separability information for the positive training example initialization 

(indicated by the bins in red in Fig. 9), we evaluated its performance on the training sets. Here, we treat 

the methods that initialize positive examples by using the saliency information only, the inter-class 

information only, the intra-class information only, fusing the saliency and inter-class information, and 

fusing the saliency and intra-class information as the baseline methods. Note that the last two baseline 

methods were also implemented by using the proposed Bayesian framework. Based on the criterion of 

F1-measure, the experimental results are shown in Fig. 9.  

 

 

Fig. 9. Evaluation of the proposed Bayesian framework. 

 

From Fig. 9, we can observe that: 1) the impact of the three single information on the initialization 



20 
 

results changes with the variation of the dataset and object of interest. For example, the saliency makes 

the biggest contribution for the initialization results on the Google Earth dataset whereas the intra-class 

information contributes mostly on the Landsat dataset; 2) in comparison to those using one of the three 

kinds of information, the performance of the fusion methods is more promising; and 3) fusion of all the 

three information always achieves the best results regardless to the variation of datasets and objects of 

interest. 

 

6.4 Evaluation of the high-level feature 

In order to demonstrate the effectiveness of the proposed high-level feature, we compared it with 

three state-of-the-art features, which include the bag-of-word (BOW) [26], the pyramid histograms of 

oriented gradients (pHOG) [6][39] and the LLC [28]. Specifically, the BOW feature characterizes each 

training data by using a histogram of visual words; the pHOG feature represents the shape property of 

the image patches by using histograms of orientation gradients while the LLC feature is described in 

subsection 4.2. For quantitative evaluation, we plot the precision-recall (PR) curve of the object 

detection results and calculated average precision (AP) value as shown in Fig. 10 for comparisons. 

Specifically, the PR curve is plotted based on the values of PRE  and REC  under different thresholds 

while the AP is calculated by the area under the PR curve [3, 14]. The four different features were 

compared using the proposed WSL framework and the same sets of training and testing data. As shown 

in Fig. 10, the proposed high-level feature always outperforms the other three state-of-the-art features. 

 

 

Fig. 10. Precision-recall curves for different types of feature on the three datasets. Here DBM indicates the high-level feature 

learned by the proposed work. 

 

6.5 Evaluation of the object detector 

We evaluated the performance of the proposed weakly supervised object detector by comparing it 
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with one existing WSL based method and several supervised learning based methods. Firstly, we 

compared the proposed approach with the WSL based method in [23]. For the fair comparison, in the 

experiment we utilized the same experimental settings including the same feature representation build 

by DBM, the same sliding window scheme, and the same testing image set. Fig. 11 gives the PR curves 

of the experiment results. The corresponding AP values are shown in Table Ⅱ.  

 

 

Fig. 11. Precision-recall curves for the comparisons with the weakly supervised learning method. 

 

We also compared the proposed WSL approach with several existing supervised learning based 

object detection methods including a baseline method from Xu [26], and Han’s method [3]. The baseline 

method was implemented by training object detector (linear SVM) based on the proposed high-level 

feature in a manner of fully supervised learning where the human annotations (manually labeled 

bounding box for each target in training images) are provided in the training images. The object detector 

trained by Xu’s method was based on the spectral and texture local feature descriptor and SVM with 

RBF kernel. Han's method trained object detector via discriminative sparse coding which has small 

within-class scatter and large between-class scatter. All comparison methods were evaluated using the 

same sets of training and testing data. Fig. 12 illustrates the PR curves of the experiment results. The 

corresponding AP values are shown in Table Ⅱ. 

 

 

Fig. 12. Precision-recall curves for the comparisons with the supervised learning methods.  

 

From Figs.11-12 and Table Ⅱ, we can observe that the proposed WSL approach can achieve 

much better performance than the state-of-the-art WSL based method and comparable performance 

with the state-of-the-art fully supervised learning based methods. Specifically, the object detection 

accuracy of the proposed WSL approach achieves about 97.13%, 92.34% and 92.89% of what the 

baseline approach does in the Google Earth dataset, the ISPRS dataset, and the Landsat dataset, 

respectively. It also improves the performance of the previous WSL based approach [23] significantly, 
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i.e., 0.088 (8.88%), 0.1499 (14.99%), and 0.024 (2.4%) in terms of AP in the Google Earth dataset, the 

ISPRS dataset, and the Landsat dataset, respectively. More encouragingly, the proposed WSL approach 

performs even better than other two state-of-the-art fully supervised methods in some cases. Specifically, 

for airplane detection in the Google earth dataset, it outperforms Xu’s method and Han’s method by 

0.0741 (7.41%) and 0.0595 (5.95%), respectively. In the ISPRS dataset, the proposed WSL approach 

outperforms Xu’s method and Han’s method by 0.0751 (7.51%) and 0.0706 (7.06%), respectively. From 

the overall results among the three datasets, it can be seen that due to the powerful high-level feature 

representation built by DBM, the supervised baseline method yields the best results on these datasets. 

Benefited by the Bayesian framework to generate accurate initial training examples and the iterative 

training scheme to gradually refine the object detector, the proposed WSL algorithm achieves detection 

performance that outperforms the previous WSL based target detection method [23] and approaches to 

the fully supervised baseline method. Furthermore, based on the combination of the high-level feature 

representation and the proposed WSL framework, the overall performance of weakly supervised 

detector apparently outperforms the other two existing state-of-the-art supervised methods.   

 

TABLE Ⅱ.  DETAILED TARGET DETECTION RESULTS IN TERMS OF THE METRIC OF AP. 

 

Objects of 

interest 

WSL based object detector (ratio to the 

supervised baseline approach)    

Supervised learning based 

 object detector 

OURS Zhang’s [23] Baseline Xu’s [26] Han’s [3] 

Airplane 

Vehicle 

Airport 

0.6016 (97.13%) 

0.5332 (92.34%) 

0.2679 (92.89%) 

0.5128 (82.79%) 

0.3833 (66.38%) 

0.2439 (84.57%) 

0.6194 

0.5774 

0.2884 

0.5275 

0.4581 

0.2710 

0.5421 

0.4626 

0.3257 

Overall 0.4676 (94.45%) 0.3801 (76.77%) 0.4951 0.4189 0.4435 

 

Finally, some experimental results from the proposed approach for airplane detection, vehicle 

detection and airport detection are shown in Figs. 13-15, respectively. In these figures, the red 

rectangles indicate the true-positive results, while the black and yellow rectangles denote the 

false-positive and miss alarm results, respectively. As can be seen, the object detector trained via the 

proposed WSL approach can effectively detect objects of interest from all the datasets with different 

spatial resolution and cluttered backgrounds. 

 

 

Fig. 13. Examples of airplane detection in the Google Earth dataset. 
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Fig. 14. Examples of vehicle detection in the ISPRS dataset. 

 

 
Fig. 15. Examples of airport detection in the Landsat dataset. 

7. Conclusions  

In this paper, we have proposed a novel framework to tackle the problem of object detection in 

optical RSIs. The novelties that distinguish the proposed work from previous works lie in two major 

aspects. First, instead of using traditional supervised or semi-supervised learning methodology, this 

paper developed a WSL framework that can substantially reduce the human labor of annotating training 

data while achieving the outstanding performance. Second, we developed a deep network to learn high 

level features in an unsupervised manner, which offers a more powerful descriptor to capture the 

structural information of objects in RSIs. It thus can improve the object detection performance further. 

Experiments on three different types of RSI datasets have demonstrated the effectiveness and robustness 

of the proposed work. 

Our future work will focus on two directions. First, the proposed work is designed to train the 

object detector for detecting objects of a single category. We will extend it to the joint learning of 

multiple categories of object detectors. Second, the proposed work only used the spatial information. 
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We will combine the rich spectral information provided by RSIs with spatial information for more 

accurate and robust object detection. 
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