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Knowledge-Based Multi-Target Tracking via
UKF-JPDA Variable Structure IMM Estimator In

HF Surface Wave Radar Systems

Gemine Vivone, Paolo Braca, and Jochen Horstmann

Abstract

These last decades spawned a great interest towards low-poweiHighency (HF) Surface-Wave (SW) radars for ocean
remote sensing [1]-[4]. These sensors are also effectivenegsrdage early-warning tools in maritime situational awareness
applications providing an additional source of information for ship detecdiod tracking, by virtue of their over-the-horizon
coverage capability and continuous-time mode of operation [5]. Unfatély, they exhibit many shortcomings that need to be
taken into account, and proper algorithms need to be exploited to fulfill kmiations [6].

In this paper, we develop a Knowledge-Based (KB) multi-target trackieghodology, which takes advantage afpriori
information about the ship traffic [7]. This prior information is given by tbhip sea lanes and by their related motion models,
that constitute the basic building blocks of the Variable Structure Interabtivéiple Model (VS-IMM) procedure [8]. Finally,
the KB tracking deals with false alarms and miss detections by using the Joioatlistic Data Association (JPDA) rule [9],
[10] and with the non-linearities by using the Unscented Kalman Filter (UKE). [

The KB-tracking procedure is validated using real data of the expetatien conducted by the NATO Science and Technology
Organization - Centre for Maritime Research and Experimentation (SWB&E) during the Battlespace Preparatizf09 (BP09)
HF-radar campaign in the Ligurian Sea (Mediterranean Sea). Theieque setup included two HFSW radar systems, located
in the Palmaria island (gulf of La Spezia) and S. Rossore (close to Pisa).

The system performance is defined in terms of Time-on-Target (Tedlse Alarm Rate (FAR), track fragmentation, and
accuracy. A full statistical characterization is provided using one mohtiata. A significant improvement of the KB-tracking
procedure, in terms of system performance, is demonstrated in csmpavith the standard approach recently presented in [6].
The main result is that there is an increment of the time-on-target fofiaeg value of the false alarm rate. The increment is

quite sensible in the region of low false alarm rate where can be 30%/&rfor both the Palmaria and S. Rossore systems. The
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KB-tracking exhibits on the average a reduction of the track fragmentatoout20% and13% for the system in Palmaria and

S. Rossore, respectively.

Index Terms

High-frequency surface-wave radar, target detection, targetimgcknowledge-based tracking, maritime surveillance.

I. INTRODUCTION

The oceans connect nations globally through an interdeggnmetwork of economic, financial, social and politicabtiin-
ships. The main statistics are compellin®% of the Earth is covered in wateg0% of the world’s population lives within
100 miles of the coast)0% of the world’s commerce is seaborne dfids of that trade passes through a few, vulnerable, canals
and international straits. The maritime environment idekitrade routes, choke points, ports, and other infrasteisuch as
pipelines, oil and natural gas platforms and trans-ocei@hécommunications cables [12]. Consequently, the magitsecurity
environment is one of the most important operative scesaend surveillance activities are the crux of these am#itShip
traffic monitoring represents one of the biggest challer{gesin terms of law enforcement, search and rescue, envirorahent
protection and resource management) and, in the last yiédras led to an intensive research activities in order tdaiixp
existing sensor systems in support of maritime surveitanc

In this domain several monitoring assets can be exploited) fadar technologies to satellite positioning systenwvéver,
it is important to take into consideration that many of thésalitional solutions suffer from physical limitationsndgaonly
a smart integration of these different and often complemrgnsystems can guarantee satisfiable performance. Fanaoest
while standard microwave radars operate only within lifisight (LoS) propagation, with a maximum range of some deze
of kilometers, satellite sensors.. synthetic aperture radars [13]) cannot grant a continueogpbral coverage of the region
of interest with an adequate level of real-time surveilanc

HFSW radar systems can be convincing cost-effective tamleycoming many of these limitations. They can provide
additional information on the vessel traffic, by virtue okithcapability of detecting targets Over-The-Horizon (QTkheir
continuous-time coverage and direct target velocity esiion through the Doppler data [5]. Another important cheeastic
is that very low-power is required to operate a single radary about35 W on average, and low electromagnetic pollution is
generated.

HFSW radars work in th& — 30 MHz band, with wavelengths betwedi0 m and 10 m, respectively. In this interval,
vertically polarized radio waves have also the ability togagate as surface waves. Low-power HFSW radar systems have

been mainly developed for ocean remote sensing applict®g. surface currents and sea state mapping, wind extraction,



wave spectra analysis and, recently, tsunami early-wgrdection [14]. There are many commercial systesrgsthe Coastal
Ocean Dynamics Applications Radar (CODAR), developed aANQ1], and the Wellen Radar (WERA), developed at the
University of Hamburg [15]. These systems can be found mapkrating from the coast, while only a few experiments have
been conducted with shipborne installations.

The idea is to take advantage of the growing number of ocegapb@g HFSW radars along the coasts also for maritime-
surveillance applications. Hence, ship detection andstste- sensing become two complementary problems [5]. Ity fae
presence of clutter is unwelcome as far as we are interest&up detection, while the presence of ships can limit theaekion
of oceanographic parameters [3]. For this reason, in thé yssms much interest has been focused to develop new dpectra
models for modeling the return from the sea, with the ultengdals of both enhancing target detection via clutter-saggion
techniques [16], and ocean sensing [2], [4].

Since the system is set up for oceanic parameter estim@samgnfiguration is not optimal for target detection. Thapmresents
a further problem, since the signal environment alreadyuites external noise, different types of clutter and irenfice,
which can significantly degrade the detection performaRo®r range and azimuth resolution compared to microwavarsad
high non-linearity in the state/measurement space, signififalse alarm rate, due to both sea clutter and man-restdedh
interference, and the crowding of the HF-spectrum [15] dirprablems to cope with.

Attempts to mitigate these problems have been made by appbtiate-of-the-art algorithme.g, see [6], [17]-[22]. In
particular in [6] it is shown how the surveillance perforroarcan be enhanced by combining data from multiple raddostat
by using a proper algorithmic strategy. The signal procgsshain has been divided in three main blocks: Detecti@tking
and fusion. The detection stage is performed using a 3D ¢azgnuth-Doppler) Ordered Statistics (OS) Constantd-als
Alarm Rate (CFAR) algorithm [23] developed at the Universif Hamburg. The tracking part is based on the popular Joint
Probabilistic Data Association (JPDA) rule [9], [10] in cbmation with the Unscented Kalman Filter (UKF) [11]. Thetala
fusion strategy is developed thanks to the Track-to-Traskogiation and Fusion (T2T-A/F) paradigm [10].

Analyzing some of the results in [6], [19], notwithstanditige good overall performances assessed, the phenomenba of t
track fragmentation is evident. It is mainly due to the ladkarget contacts for some periods of time. Possible reasfns
this problem are given by the radar synchronization turrdffgand targets sailing in the Bragg scattering regions egated
by those ocean waves of half the radar wavelength and tiayettwards and away from the radar site [15]. The presence of
this intense scattering enforces a lower sensibility ofdatector in such areas that causes an increase of the ¢higasity
at the expense of the target capacity detections.

In the present work we show how it is possible to take advantdgprior information about the ship traffic, demonstrating



that the tracking stage can be enhanced by combining ordét@ from the HFSW radar and ship traffic information. This
information is expressed by a map of geographical ship seeslar routes. We propose a Variable Structure Interactive
Multiple Model (VS-IMM) tracking procedure, inspired byehground tracking literature [8]. See also [7] for an ovemwie
about knowledge-based techniques.

In order to reduce the track fragmentation we exploit antgssimilarity between the ground target tracking and thip s
tracking problems, for instance the target obscuratiompheenon. This is due to different causes: In the ground ingck
could be provoked from the presence of hills or tunnels, tvhicle the target from the sensors point of view. In the caskeiun
study, this effect is present when the radar is turned ofttdlocate operative HFSW frequencies, when there is a Ignasi
to clatter ratio €.g.in the Bragg scattering region), and when the target aspegle a&exhibits weak signal return. Needless
to say that the target obscuration needs to be taken intauat@o order to reduce the track fragmentation and improee th
performances.

The specification of a ship sea lane map can be tabulateddinglisea lane segments, visibility conditions, and infiial
points of sea lanes. Unlike an off-sea lane target, whiches fo move in any direction, the motion of an on-sea laneetarg
is highly constrained. To handle motion along the road, thecept of directionally dependent noise is introduced T8je
standard motion model assumes that the target can move idigagfion and, therefore, uses equal process noise vasganc
both thexz andy directions. This means that for off-sea lane, the motioretmainties in both directions are equal. For on-sea
lane targets, the constraint means more uncertainty almgoute than orthogonal to it. Thus the IMM module, repréagn
on-sea lane motion, consists of process noise componemig ahd orthogonal to the route, rather than alorssndy directions
as in the standard model. Extensive simulations were pagadr{8] that analyzed different algorithms in the contexgodund
tracking. The analysis shows that the best performance tairgd using VS-IMM, this was able to handle the on/off-road
transitions and the change from one road to another moretbigdban the fixed IMM by anticipating target dynamics. Also
once the target begins to move along a particular road, théMRS, which uses a model matched to the road, yields better
course estimate than the fixed IMM, which uses an open fieldetnddl

Starting from the work in [6], [19]-[22], we show, using sitated scenarios and real data of the experimentation coediuc
by the NATO Science and Technology Organization - CentréMaritime Research and Experimentation (STO-CMRE) during
the Battlespace Preparati@i09 (BP09) HF-radar campaign in the Ligurian Sea (Mediterranean,Segrovements in terms
of appropriated performance indexésthe pair Time-on-Target (ToT) and False Alarm Rate (FAR);Track fragmentation;
1i1) Root Mean Square Error (RMSE) of the target position andoigloTracks and detections are validated or labeled as

false using ship reports from the Automatic Identificatioyst8m (AlS), used as ground truth information. It is welblam



that there are vessels not cooperative, in the sense thatithaot provide any AIS report®(g.fishing boats, warships) and
consequently the FAR represents a kind of worst case, sedtasdiscussion in [6].

A significant improvement of the KB-tracking procedure, @inhs of system performance, is demonstrated in comparison
with the standard approach recently presented in [6]. Thim mesult is that there is an increment of the time-on-tafget
any fixed value of the false alarm rate. The increment is gséesible in the region of low false alarm rate where can be
over 30% for both the systems in Palmaria and S. Rossore. The KBitrgakxhibits on the average a reduction of the track
fragmentation, abou20% and 13% for the system in Palmaria and S. Rossore, respectively.

The outline is as follows. In Sec. Il we provide informatioboat the experiment. The proposed knowledge-based target
tracking methodology is presented in Sec. Ill. Experimergaults are reported in Sec. IV. In the end, conclusionsdaae/n

in Sec. V.

II. THE HFSW RADAR EXPERIMENT

In this section the description of the experiment is progida 2009 the staff of the NATO STO-CMRE installed two WERA
HFSW radar systems at the coast of the Ligurian Sea: One onaal Island 44° 2’ 30” N, 9° 50’ 36” E) and another at
San Rossore Parkg° 40’ 53" N, 10° 16’ 52” E). They were operated between May and Decembép and acquired data
on an operational basis to monitor ocean surface curredtsvames. The location and the two radars’ fields of view arevsho
in Fig. 1.

Both systems operated at a frequency=0fi2.4 MHz (corresponding to a wavelength af~ 24 m). Each WERA setup
consisted of a decoupled transmitting and receiving amtearmays. The transmit array consisted4oéintennas arranged in
a rectangular shape, whereas the receive array consisté@ afitennas along the line perpendicular to the look direction
Electronic control of the arrays was adopted to sweel2@ angular sector depending on the bandwidth, while Doppler
resolution is achieved using Continuous Wave (CW) signad$. [2

The system uses a Linearly Frequency-Modulated CW (LFMCWiickvis a linear chirp with about00 kHz bandwidth
yielding range resolution betwedén3 and 1.5 km. Surface propagation at sea is guaranteed by verticalpriped HF waves,
with frequency in the rang€, = 3 - 30 MHz, and thus a wavelength of = 10 - 100 m. The angles with respect to North
of the two array installations werg, = 296.2° and ¢, = 12.0°, respectively.

Data are recorded by each antenna element in complex sam@esll the range cells. The remaini2g6 s seconds are
used to select a new free HFSW channel (betwin90 and12.595 MHz) and the available bandwidth according to spectrum
crowding. The two systems use the same operating frequbatyhe modulating waveforms (sawtooth signal) are orthagjo

each other for avoiding coupling interferences.
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Fig. 1. Setup of the two WERA systems in the Ligurian Sea.

After recording, data from the antennas are beamformedefdeving azimuth information, then target detection if@ened
in the Fourier domain by th8D OS CFAR algorithm [23]. Detection is performed on azimuthiscél® separated) and the

detection statistics are evaluated in the range-DopplacespAn accurate description can be found in [23], [25].

A. The Range-Doppler Space

Taking a look at the HFSW radar spectrum we can observe somdigréties, seee.g.[5]. As far as ship detection is
concerned, the contribution of sea clutter is produced lgcifip spectral components of the surface-height wave-fiete
main features are due to the first-order Bragg scatteringy Tdorrespond to the advancing (positive frequency shift) a
receding (negative frequency shift) ground waves. Thisplreenon manifests in the range-Doppler spectrum by meatwgoof
lines extending along range, corresponding to the phdseities of these scattered ocean waves. However, thegadneies
often deviate from the theoretically known values in norvmg waters. In addition, second-order Bragg scatterimeggtes
side-band contributions in the range-Doppler spectrunt,doa well defined only in the proximity of the radar. Here sea
clutter level dominates both targets, noise and interfeenWhen a vessel is present in this regioga bas a radial velocity
compatible with the Bragg scattering frequency) then itighly likely to be undetected because of the large sea cligtel.
However, this obscuration phenomenon can be correctedn(we vessel is moving on a sea lane) using the KB tracking
procedure.

Beyond the sea and land clutter, a variety of interferenceces, both natural and man-made, can degrade the reception



ship echoes. The former type usually consists of large mst(inorizontal lines), which cover a large portion of the Plap
space. These interferences are mainly due to unwantedgatipa modes through the ionosphere and/or meteor traileesc
The second type is instead represented by Radio Frequetayehence (RFI). These returns manifest as vertical lingbe

range-Doppler spectrum, and can mask both sea clutter apdshoes.

IIl. KB T RACKING METHODOLOGY

This section is devoted to the description of the KB trackprgcedure applied to the HFSW radar for maritime traffic
surveillance. This procedure is an enhanced version of BH2AJUKF rule [6], [19]-[22] which integrates the VS-IMM
mechanism able to take advantage of the prior informati@utathe historical ship traffic. The exploitation of thisanmation
in the tracking algorithm is a key ingredient of this work aadbrief description of the ship traffic information is progdin

the following section.

A. Ship Traffic Information

Ships and vessels exceeding a given gross tortregeequipped with AIS transponders for position-reportagjestablished
by the SOLAS Convention [26]. Ships repeatedly broadcasit thame, position and other details for automatic display o
nearby ships. While this allows ships to be aware and keeg thother ships in their immediate vicinity, coastal staik
also be able to receive, plot and log the data by means of liasens along the coast. AIS reports contain both dynamic
information €.g. latitude, longitude, Course-Over-Ground (COG), Speed+c@round (SOG), time) and static information
(e.g.vessel type, dimensions information). While this systerovedl ships to be aware and keep track of other ships in their
immediate vicinity, coastal states will also be able to regeplot and log the data by means of base stations alongahst.c

Considering the historical AIS contacts of the area undedysi(see gray lines in Fig. 5), we note that there are some
geographical regions where the traffic shows a certain agiggland the main maritime traffic is mostly concentratedréh
These are the sea lanes or routes. The proposed KB trackatggst is aimed to exploit this kind of information to mittga
the problem of the target fragmentation. Similar cond#i@me present in the case of the ground tracking, in whictethes
on-road targets following predetermined trajectories affedoad targets moving freely in the region. Analogouslyyessel
can follow a route or can move more irregularly (for instadceing fishing operations).

AIS historical data, if properly mined and represented, heayl to the statistical description of the area of intenegerms

of expected trajectory patterns and motion that consstthie knowledge inferred from the history of the traffic ovee firea

1The AIS is required for all the ships exceediB@0 gross tonnage and engaged on international voyages, fea@b ships 0500 gross tonnage, not

engaged on international voyages, and all passenger shipaverage, a gross weight 890 tons corresponds to a length of ab@at m.



of interest. The characterization of the routes is out ofstepe of the present work. The literature on the subjectlisddnt,
and in the interests of brevity we cite only [27]-[30].
The KB tracking procedure, adopted here, integrates thwerrdtion about the ship traffic represented as a set of gebigia

sea lanes, we associate at each of them a specific dynamid,raedermalized in the following sections.

B. On/Off-sea lane Dynamic Models

The target dynamic is defined in Cartesian coordinates [10]
xXp = fp(xp_1, W), 1)

wherefj(-) is a non-linear function at timé, x;, is the target motion state vector amd, is the so-called process noise.

Given the common motion behavior of large vessels, the aohsilocity model is adopted [10]
xg = Frpxp_1 + Tgv, 2

wherexy = [k, Vs, » Yk, vyk]T, xr, yr, are the position components alongy directions,, , vy, are the corresponding velocity

components ) ) ) )
1 T, 0 0 T2/2 0
01 0 0 Ty 0
Fk = 7rk = ;
0 0 1 Ty 0 T?Z/2
0 0 0 1 0 Ty

Ty, is the current sampling timey;, takes into account the target acceleration and the unnobdisleamics, and is assumed
to be Gaussian with zero-mean and covariance m&ix According to the motion of the ship (off-sea lane/on-ses)jawe
can define two different matriceQy.

We handle the motion along a sea lane with the concept of Ctilineal process noise”, see also [8]. The standard motion
models assume that the target can move in any direction hackfore, use equal process noise variances in bottxtiaad
Y directions of the Cartesian system. This means that fosedflane targets the motion uncertainties in both direstame
equal. For on-sea lane targets, the sea lane constraintsnnearg uncertainty along the sea lane than orthogonal. Thes,
IMM module representing on-sea lane motion consists of ggemoise components along and orthogonal to the sea lane,

rather than in theX andY directions as in the standard motion model.



In the latter case, the motion model is matched with the toecof the sea lane). From different sea lanes we have
different values ofy and therefore different models. In the off-sea lane targetion model, process noise components along
X andY directions are given by, andwv,, respectively. Variances of the noise components in theesponding directions
are given byo? andaj Similarly, for the on-sea lane target motion model, thecpes noise component and its variance along
the direction of the sea lane are given y and o2, respectively. The corresponding values orthogonal tostree lane are
given byw, andco2. Due to the higher motion uncertainty along the sea lane thitirogonal, we assume, >> o,. This is
a key element that is in contrast with the typical assumptigr= o, used for the off-sea lane motion model, ses, [6].

Starting from Eq. (2), we can have two categories of modelsHmosing different covariances of the Gaussian proces&noi

at timek, i.e. Q. The first one is:

Qr = , ©))

with o2 = o7 used for the off-sea lane targets.
In the second case, since the state estimation is carrieh thee X -Y coordinate system, the variances of the process noise
components along and orthogonal to the sea lane need to bertamhinto the covariance matrix. Thus, we have [8]
—costy  siny a2 0 —cosy  siny
Qr = ; (4)
siny  cosvy 0 o? siny  cosvy
wherev is the direction of the considered sea lane.
In Sec. IlI-D we establish the method selecting the propetianodynamic based on the on-line data gathered from the

radar.

C. Observation Model

Assuming a radar located at the origin of the spherical doatds, the target-originated measurement equation can be
expressed as

z = h(xy) +ny, )



10

the radar measures the target range, bearing (azimuthyaage rate, then Eq. (5) can be recast as follows

AT
Zy = [Z;,Z,Z,Zﬂ ,
T
n, = [np,ng,np]
h(xy) = [he(Xk), ho(xk), hi(x)]

h'r(xk) = \/ in +y]%a

hy(xx) = arctan (yk),

Tk
TV, + YkUy,

hi(xk) = —Fg=—— (6)

Vil +ug

where 27, 2%, 27 are radar measurements of the target range, bearing, agd rate. The measurement noise veaigris

assumed to be Gaussian with zero-mean and covariance matrgiven by

Uf 0 poyo;
R =
k 0 o O
poroyr 0O O’%

Note that in literature [10], [31h], nin; are all assumed to be statistically independent, exceptfoand nj, which are

correlated with a correlation coefficieptestimated as in [32].

D. VS-IMM Estimator

In this section we focus on the VS-IMM Estimator in the caseaajenericr target. Let us indicate witls] the set of
dynamic modes for the target at time k. The possible modes are given by all the on/off-sea lane rdigsadescribed in
Sec. llI-B. Clearly, we have as on-sea lane modes all thetiféeh maritime routes.

It is assumed that the true target state evolves accordingdmf the modes ;. Let us indicate Witmir the probability
that modej, € S}, is used by the targetduring the above scan, and with. ; [S;_,, ;] the transition probability from mode
s, at timek — 1 to modey, at time k, which depends on the set§_, and S;. The mode-conditioned state estimate and the
associated covariance of the filter modyjec S; are denoted bycfg and Pfg respectively. Starting from these definitions,

the steps of the VS-IMM estimator are the following.
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1) Step 1 (Mode Set UpdateRased on the state estimate at tike 1 and the a prior information about the geographical

region exploited by the historical AIS data, the mode sethef MM estimator is updated
Sp = {jr € 8U1Sh_1, R, 2V} = {Gr € SUSh_1, RAX 1, Py, 5 € Shi ), (7)

whereZ?, is the cumulative set of measurements from timeup to timen including target-originated measurements (5) and
false alarmsS? is the set of all the possible dependent motion modes/angithe map of sea lanes obtained by the historical
AIS data. In Sec. llI-E1 we will defined how to adaptively smléhe IMM filter modules.

2) Step 2 (Mode Interaction/Mixing)The mode-conditioned state estimates of the filter modutes the previous iteration
(time k& — 1) are used to obtain the initial condition for the mode-mattfilters at timek. The same is carried out for the
covariance matrix.

The initial estimate for filter moduleg. € S, is evaluated using

Xop_1 = Z X" 1:“27 ljlrv 8
sr€S;_,
where
s, [Sh—1> Seli :
= Rl s € St €SF )
> DL Sho 1 SEI
€S, _,

are the mixing probabilities. The covariance matrix assted with the above initial condition is given by:
Py, = Z /‘erli P Ry — X)Ly — %G y) ] g € S (10)
sr€S)

3) Step 3 (Mode-Conditioned Filtering)Jsing the initial conditions evaluated Btep 2 that is,xJ,_, andP}, ., j. € Si

we can obtaink]” andPJ", j,. € Sy, respectively, see Sec. lll-F. In addition to the estimaté the covariance, the likelihood
of each filter module/\i", Jr € §;, which quantifies the goodness of the corresponding motiodeh is also evaluated. For
more details, in the case of Multiple Model JPDA, see SeeFll|

4) Step 4 (Mode Probability Update)Starting from the likelihood, obtained at the previous stiye probability that the

modej, is in effect at timek, denoted byufj, is updated via:

Aljc > Pl Shors SZ]#?JA
iy = =k €S (11)
k S Iy ' JT k-
> AZ > plv‘ysr[Sz—lﬂsg]uk—l
s.€S]  1,.€8]_,

5) Step 5 (State Combination}inally, the mode-conditioned estimates and covariancescambined to find the overall

estimate and covariance:

X = Z /dgxfc’, (12)
Jr€S]
Pp= > pul [Py + & — %) (K —%x)"]. (13)

Jr€SE
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E. Adaptive Filter Module Selection

1) Entry/Exit Conditions:When an off-sea lane target enters the vicinity of a sea langguld become an on-sea lane
target. Similarly, a target on a sea lane may leave it. Urdikeoff-sea lane target, which is free to move in any directtbn
motion of an on-sea lane target is highly directional aldmgdea lane. In view of the highly directional motion of om-$zne
targets, when it is determined that an off-sea lane targettise vicinity of a sea lane, a new mode, representing mationg
that sea lane, is added to the mode set. Similarly, a decisiorade as to whether the considered target leaves thetyicihi
a sea lane, in the case the related mode is removed.

One of the major issue in adding or deleting modes to handiseanlane/off-sea lane motion is deciding when to add or
delete,i.e, how to determine that a target enters or leaves the vicofity sea lane which allows entry or exit.

Thus, at timek, for each established track a decision is made about which sea lanes the target carwfollbis is
carried out by testing whether the predicted location lighiw a certain neighbourhood ellipsoid of any sea lane ifistance,
neighbourhood ellipsoids for the real cases can be seergirbli A problem of the above decision process is that thestarg
has several modes at timie— 1 with their own predicted states and covariances and coesglguthere is not a unique
state/covariance prediction. A possible solution is that least one of these predicted states lies inside theseltipthen we
add the related sea lane mode. At each time interval a seankigkbourhood test is carried out for each track againghall
sea lanes defined. Modes corresponding to sea lanes naatealidre removed from the mode set. Using the above validatio
strategy, entry into or exit from sea lanes is handled by gtenator.

2) Obscuration ConditionsAssume that a target follows a given sea lane and, for sonmsomea(such as, the first order
Bragg scattering or radar synchronization), it is not \l&sifno detections are associated). Then, some prior inflmmaeeds
to be exploited in order to obtain the target state estinitgezovariance and the filter-calculated likelihood. The RJ&tate
estimate and the VS-IMM equations do not take into accouattéinget visibility,i.e., they assume that the target is always
visible. When an active track follows the sea lane mode ancthre no associated observations then the estimator iedefin
as follows.

The filter module corresponding to that sea lane is repladéd av‘hidden target” model that modifies the filter estimates
and likelihoods accordingly using the information that tiaeget detection probability is zero. The hidden-targetdeids
similar to the “dead-target” model [10] that is commonly diger track termination. The hidden target model accountstie
event that the target has become unobservable. For thisintbdestate estimate of the targeunder the mode of thg™ sea

lane at timek, i.e., xﬁj and the associated covarianB%T, are given by:

X=X (14)
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Py = P?\k—l’ (15)

wherefcfjlkf1 and Pﬁ,ﬁl are the predicted estimate and its covariance under the ghotlthe target- at timek as classically
defined in the UKF prediction equations (see [11], [19] fortHier details).

Since the measurement is not used in the state estimatelargimodification is required in evaluating the filter-cdeted
likelihood, which quantifies, in the VS-IMM Estimator, thdtdrs confidence in the measurement. The following expoesisi

used for the likelihood of the hidden targeunder the mode of thg!" sea lane at timé:

; 1
A7 d;f 16
k V7 ( )
whereV is the filter gate volume given by
V="V, (S|, (17)

andV,,, is the volume of the unit hypersphere of dimension n is the cardinality of the measurementi.e. 3 in this case),
~ is the gate size used for the measurement validation (equgland Si is the innovation covariance of the targetinder
the modej, at time k. For radar measurements with range, azimuth and rangeWates- 47” [10]. For the “hidden target”
model, which treats the measurement as a spuriousioné,is the filter-calculated clutter density in its validatioate.

The “hidden target” model is removed from the mode set if ohe¢he following conditions become trug) the target

becomes visible againij) the corresponding sea lane segment is no longer validated.

F. Data Association: The Multiple Model JPDA

The VS-IMM equations, presented in the previous subsegtiaasume that a measurement is always available to update
the estimates of a track. In the case the single receivedurezasnt is used to update the single active track. Howemer, i
multi-target tracking scenarios in presence of target miétsctions and false alarms, it is necessary to decide vamielof the
received measurements should be used to update a partiadir It is required a data association mechanism (meamsue

to-track association). In this section the Multiple ModBIDA algorithm,e.g.see [33], is exploited to deal with this issue.

The following notations will be used. L&Y = [Z,, ..., Z;] be the set of all measurements up to titneshere the generic
setZy = [z},...,z%,...,z}"] represents the measurements at timeet T}, the set of targets at timé with cardinality
Ny = |Tyl.

We now focus our attention on the tiniefor a particular target € T. Assume that for the targetat time k there is a
set of allowed modes} c M, whereM,, is the set of all possible modes. LetM;" denote the event that the mogeis

in effect at timek for the targetr.
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First of all, in order to reduce the computation burden of dlgorithm a measurement validation, often referred asgati
is performed [10]. Starting from the measuremeftsat time k, a subsetY,, = [y,...,y%, .., ¥y, m < m, is generated
containing only validated measuremerits, the gating condition [6] is verified for at least one mode ch@ét. The cumulative
set up to timek is indicated asy’¥.

A marginal association eveft, is said to be effective at time when thei"" validated measuremegrt;’C is associated with
targetr (r =0, ..., N wherer = 0 means that the measurement is caused by clutter). Assuhmbghiere are no unresolved
measurements, a joint association ev@nis effective when a set of marginal everd;,.} holds true simultaneously. That is,

© =N, 0;. wherer is the target index associatedjz@. Define the validation matrix:
Q:[wiT]ai:17"'7m7T:07"'5Nk7 (18)

wherew;,. = 1 if the measurement lies in the validation gate of the target else it is zero. A joint association eveé is

represented by the event matrix

QO) =0 ()], i=1,....,m, r=0,..., Ng, (29)

wherew;, = 1if §,, C ©® andw;,, = 0 otherwise. A feasible association event can have only oasdtarget or clutter),e. for

eachi, N’“)&Jir(@) = 1, and where at most one measurement can be originated bye, ta&gs,(©) = S (@) <1

r=(

forr =1,..., N;. The above joint event® are mutually exclusive and exhaustive. Define the binarysunesnent association
indicator 7;(©) = Zfi’“l @ir(©), i =1,...,m, to indicate whether the validated measurements associated with a target

in event®. Further, the number of false (unassociated) measurenteregent® is ¢(©) = S [1 — 7;(®)]. One can

evaluate the likelihood that the targeis in modej,. at timek as

: de : _
A ST plygle, M Y PO} (20)
®

The first term in Eqg. (20) for the law of total probability cae twritten as [33]

NESE  jroa€8Th jeni€SITT iy, eSpk

pIYR|©, M MY M M MY Y (1)
P{M*, . MU M MO, M Y
The second term (a prior joint association probabiliti@sEQ. (20) turns out to Be
(AV)2(©) AL ©) 5o
P{®} = exp (-AV) - = [[ 1Py (1 = Pp) =] (22)

s=1

°Note that here we use the parametric model of the clutter geimsitead of the nonparametric one used in [33].
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where Pp, is the detection probability (assumed to be the same foagjkts) )\ is the spatial density of the false measurements
andV is the volume of the validation region. We assume that theestaf the targets (including the modes) conditioned on

the past observations are mutually independent. Then thtetdirm on the right hand side of Eq. (21) can be written as [33]

pIY© M M M M M Y & [yl M Y, 6, C ©, (23)
1=1

where the conditional probability density function of thalidated measuremet. given its origin and target mode, is given
by
7: ok N(yii#y,8y), if 7(@) =1,
pb’kleirka Y] ]: (24)
1/V, if (@) =0,
where N'(x; 1, X) is the multivariate Gaussian with meanand covarianceZ, the termsz,” and SI" are the measurement
prediction and the innovation matrix, respectively, obta by the target under the mode, using UKF (see [11], [19] for
details) because of the non-linearity in the state-to-mmegment relationship. The second term on the right hand cfideg.
(21) is given by:
Ny

P{MJ, MY M MY e M YR = T (25)
s=1,s#r

The probability of the joint association eve® given that modej,. is effective for the target from time k£ — 1 throughk is
. 1 )
P{®|M]" Y 1Y} = — p[Ys|©, M]", Y} P{O}, (26)
C

where the first term can be calculated from Eq. (21) and E&3.-(25), the second term from Eq. (22), anit a normalization

constant. Then the probability of the marginal associatieent is given by:

i,j. de i — o -
B lef P{0; | M7, Y51 Y, ) = Z P{O|M]", Y1 Y, }. (27)
©:60,.CO

The following updates are done for each targeCaIcuIateAf;‘ via Egs. (20) - (25). Calculaté,i’jr via Egs. (21) - (27).

Define the target and mode-conditioned innovations for eatidated measurement=1,...,m as
v Dy -, (28)

Using the predicted state estima\tiﬁk‘k,_1 and its covariancé?{;‘k_1 obtained by the Unscented Kalman Filter [11], [19]
starting from the estimates calculated in the Interadhifixihg step Sec. IlI-D by means of the models in Sec. IlI-B,eon
computes the partial updaﬁ“ and its covariancé?‘f;‘ according to the standard PDAF [10]. Defining the targetedelent

combined mode-conditioned innovation:

Vi}. _ ZB;‘CJT Vlic:jrr» (29)
i=1
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we have:
Xy =R+ W (30)
Pl =Py - (Z@i’”) WESEWE)T + W | S A )~ )| )T @
=1 =1

where W7 is the Kalman Gain [11], [19].
After calculatingfcﬁ, P{j and Aﬁj for eachj, € S, one can use them in Step 4 and Step 5 of the VS-IMM Estimator
(described in Sec. IlI-D) for the™ target. In Algorithm 1 a summary of the VS-IMM JPDA algorithior the " target at

time &k is shown.

Algorithm 1 VS-IMM JPDA for a targetr at time k
&), PI, wl, jr € SiY, %k, Pi] = VS —IMM JPDA[{X{" |, P, 571, s, € Sh_ 1}, Y4

- Define a mode se8;, as in Sec. lll-D1.
if there is no validated measurement foin Y, and r follows the on-sea lane modg then
- Add the “hidden target” model defined by Eqgs. (14)-(16)Si
- Remove the modg, in S;.
end if
for j, €S do
- Calculatex);, and PJ; starting from{x;" |, P{" |, ui7 |, s, € Si_,} as in Egs. (8)-(10).
- Calculate the predicted state estimatiofy, , and its covarianc®;;, _, starting fromsy; and Pg; using UKF [11],
[19].
- CalculateA]”, %;” and Py starting fromx;, _,, P}, _, andY} using Eq. (20), Egs. (30)-(31), respectively.
- Calculatey]” using Eq. (11).

end for

- Combine{xJ", PJ", ul’, j. € S} to obtainx, and Py, for the target- by Egs. (12)-(13).

G. Track Management

1) Track Formation: The M-of-N rule is used for the track initiation, see detail§10]. If the requirement is satisfied, then
the measurement sequence is accepted as a valid track.

The following logic that assumes target position measurgsis considered

« Every unassociated measurement idratiator, i.e. it yields atentative track
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« At the sampling time following the detection of an initiatargate is set up based on theassumed maximum (minimum)
target dynamicji) the measurement noise intensities, if there is a target that gave rise to the initiator, the pussi
measurement originated from it in this second scan willifalthe gate with high probability. Following a detectionisth
track becomes areliminary track If there is no detection, this tentative track is droppedc8 a preliminary track has
two measurements, the UKF can be initialized and used topset gate for the next sampling time.

« Starting from the third scan a logic dff detections out ofV scans is used for the subsequent gates.

« If at the end (scamV + 2) the logic requirement is satisfied, the track becomesrdirmed track Otherwise it is dropped.
« A confirmed track is sai®n-sea lane confirmed tradk the target that is generating the track follows the sames@am
lane mode for a period timd.€. it has as main mode an on-sea lane one at least for a certaibemurh scansiV’)

otherwise it is definedff-sea lane confirmed track

2) Track Termination:An on-sea lane confirmed track is terminated if one of theofalhg event occurs:

« The likelihood in Eg. (16) goes down a given thresho|d

« The counter that takes into account the number of consecatians in which the target is not visible exceeds a given
value NNT,, a0z,

« The target'’s track uncertainty (state covariance matra9 rown beyond a certain threshold;

o The target has reached an unfeasible maximum velagity; .

An off-sea lane confirmed track is terminated if one of théofsing event occurs:

« No detection has been validated for the p&t out of N* most recent sampling times;

o The target’s track uncertainty (state covariance matra9 grown beyond a certain threshold;

o The target has reached an unfeasible maximum velagity; .

IV. EXPERIMENTAL RESULTS

In this section a comparison between the proposed VS-IMMAIRDd the standard JPDA is provided by using both
simulated and real data of HFSW radar systems. As alreadyopeal in [6], we use as ground truth for tracking assessment
the AIS static/kinematic reports. AIS ship reports are &edcin order to remove possible outliers, missing positieports
and unreliable data, then, the following key assumptioesnaade:

« Ships carrying an AlS-transponder are the only ones prdgetiite region of interest (in some cases this could be not

true, indeed, reliable tracks, not corresponding to any #s$rt, are observed);

o The AIS messages exchanged by ships are reliable and nofptedrby any sort of errors.
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This section is organized as follows. The association mhoeebetween the tracks provided by the tracking algoritanms$
the ground-truth based on AIS contacts is presented in Se&. Performance metrics are introduced in Sec. IV-B. Hipal

experimental results are presented and discussed in Sebsahd IV-E.

A. Association Procedure

In this section we report the association procedure betwessr and AlS contacts, already proposed in [6]. Considarttie
time intervals between the AIS reports and the radar timgssaare not aligned, then we have to interpolate the kinerdd8
reports in the HFSW radar timestamps. We deflijeas the set of the AIS tracks at timewith x;, = [Zx, Vs, , Uk, Uy, |” € X,
wherezy, y;, are the positions in the Cartesian coordinates@ndv,, are the corresponding velocities. In order to cope with
possible unwanted artefacts after this pre-processingepivee added a flag index that allows us to decide whether thentu
transmission is reliable or not. Longitude/latitude andude-Over-Ground (COG)/ Speed-Over-Ground (SOG) inftioma
are converted to obtain the current Cartesian vector.

The set of tracks at timé estimated by the KB tracking algorithm is indicated &y and a single contact is defined as:
P PN N~ T
Xk = [l’mvwk»yhvyk] ) (32)

wherezy, g are the positions in the Cartesian coordinates of a geranget at timet: andv,, , 9,, are the relative velocities.
Let us start describing the association procedure. To edhcAntactx at timek (with ¢ = 1,...,C}) belonging toXy,
a single WERA track contact} (with n =1,..., N;) belonging toX},, can be associated to it.
The association is carried out by searching the nearest g@m@ibthe radar tracks falling the performance validatiogioa
centred on the AIS contact:

(XF — X§) : d(x}!, %7) = min{d(X}, %})}, (33)

wheret = 1,...,Ng, j = 1,...,Cy, andd(-,-) is a distance metric. If the curret} has a validated track contagf,
we define this occurrence as a correct detection and we diblese points from the association procedure, otherwise it i

considered a false alarm.

B. Performance Metrics

The performance metrics, already introduced in [6], areflyridescribed in this section.

« Normalized Time-on-Targeti{oT): It is defined as the ratio between the length of an activekt(aorrectly associated

to the AIS) and the AIS track length. Thus, we have:

1L
ToT = N;T (34)
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whereN represents the number of ships in the area under styaydi,, are the AIS and radar track lengths, respectively,
for the n'" ship. The ideal value of th&oT index is 100%, i.e., when Zn = [,, for all the tracks in the scenario under
test.

o False Alarm Rate { AR): It is defined as the number of false track contacts, nomedlwith the recording interval and
the area of the surveyed region. A false alarm is defined amtaciothat does not belong to anyone AIS report. The

F AR can be evaluated as following:

Ni¢q

FAR =217

(39)

where Ny, is the number of false alarms} is the area of the surveyed region (measurefhifi) and AT is the whole
time of the record (measured [g). The ideal value of thé"AR is 0 (no false alarm).

« Number of radar track&/ " associated with a single target: It is an index that meastedrack Fragmentation (TF).
An ideal system would hav&/"F = 1, i.e. the radar system is able to follow the whole track withoutrigsit. We
typically obtain values ofV”*" larger than 1.

o Root Mean Square Error (RMSE): The error committed by thektrey algorithm has been evaluated. Given the true and
the estimated state vectors at titaglenoted byk; andxy, respectively, we can define the RMSE in position and velocit

as:

b =/ (&r — Zx)% + (O — Ur)?, (36)

GZCZ = \/(ﬁwk — Vg, )2 + (@Uk - @yk)2- (37)

The relative overall indexes are obtained by averagffi§ and e} along the timestamps. These averaged quantities will

be indicated with the symbokd** and e”?, respectively. The ideal values abefor both the indexes.

C. Parameter Settings

Some parameters of the algorithms should be properly setlgr do obtain acceptable performances. This section istddv
to summarize the selection of these parameters. We carediki&n in the following groups:
« IMM - The main parameters are related to the transition prababiamong modes in the VS-IMM estimator. In particular,
the probability to switch from the off-sea lane to an on-se@elmode and vice versa (05;
» Model- For the dynamic models, the sampling peribdis about16.64/33.28 [g]. The standard deviation process noise
parameters for the off-sea lane mode age= o, = 0.01 [m/s?*] while for an on-sea lane mode asg = 0.001 [m/s?]

for the component in the sea lane orthogonal direction @ne= 0.01 [m/s?] for the component in the along sea lane
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direction. The process noises related to the observatiatehare the same for all the modes. The standard deviation in
range 6,.) is 150 [m], in azimuth 6;) is 1.5° and in range rateot.) is 0.1 [m/g;

« Hidden- The likelihood threshold is set t00.001, the maximum number of scans for which the target can be @nadlsle
NNTq. is set t025. In order to add the “hidden target” model, the humber of sd&hin which an on-sea lane mode
must be the most likely is set g

« Logic - The maximum target velocity,,... is set to20 [m/g]. Furthermore M is chosen to be equal while N is 6.
Furthermore, we choosk/* = N* in the off-sea lane track termination logid* will be specified for each test case;

« Detection- The detection probability’s is set t00.35 and the clutter density is 10~2 [m~2].

D. Simulated Results

42 — — —

40'|
38‘|

43°N |
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34'|
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30 q g U .
9 9%F 15 18’ 21
12.00
Longitude [deg.]

Fig. 2. Simulated scenario: True target contacts of an orleseaship (red), HFSW radar observations (black).

We start presenting simulated radar scenarios. Fig. 2 shovexample of a simulated case with a high clutter environmen
(the clutter density is about- 10~° [m~2]). We show the true target track (red) and the simulated HFS¥dmrobservations
(black dots). The ship is following a sea lane reported in Big

The first analysis is related to the behaviour of the VS-IMMDAPand the standard JPDA varying the paraméeter. The
results are obtained by averagin@® Monte Carlo (MC) trials. Half of the simulated target trajmies follows the sea lane
and are generated accordingly to the directional noise rdi;yanodel described in Sec. 1lI-B. The others do not followe th
sea lane and are generated accordingly to the off-sea lamamdy model, see Sec. IlI-B. Then, the radar plot is gendrate
in a uniform cluttered environment with a detection prokighiP, = 0.6. We report the relationship between the7 and

FAR in Fig. 3 for the VS-IMM JPDA and the standard JPDA. It is wavttile to note that when the paramet&r grows,
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Fig. 3. ToT Vs. FAR varying N* using a number of MC run03.

TABLE |

MEANS AND STANDARD DEVIATIONS OF€P®S AND €¥¢! USING A NUMBER OF MC RUNS 103.

o [m] cvel [m/s]
VS-IMM JPDA | JPDA | VS-IMM JPDA | JPDA
mean 379.1 438.2 0.96 1.05
st. dev. 331.7 446.1 0.45 0.58

the FAR and theT'oT increase. We have that the VS-IMM outperforms the standBfAJin terms ofT'oT/F AR. In other
words, for each value of th&'AR, we obtain that thé'oT" of the VS-IMM is higher than the one of the standard JPDA.
Furthermore, we point out that in the region where héR is small, that represents most important region form anatjver

point of view, the performance gap between the two appraah&arger.
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Fig. 4. Average value of (a?°* and (b)e¥¢ using a number of MC runs03.

In Figs. 4(a) and 4(b), averaged errors over MC trigl$ and<'¢ are shown, respectively. In addition with respect to the
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previous scenario a fragmentation of the track is simulétedtarget-originated detections) between timestahtiisand 120.
A better accuracy of the VS-IMM is exhibited, see also Tabhkeve the mean and the standard deviation of the two algasithm
on the whole scenario is reported. The gain in terms of perdnice is sensible in the regions where the target-originate

measurements are missed. This is a key element of the pubpdBdracking methodology: The sea lane knowledge can

properly guide the algorithm when no target-originatedestations are available.

E. Real Data Performance Assessment

Latitude [deg.]

30 3 3 3
30 9°E 30 10°E 30 11°E
Longitude [deg.]

Fig. 5. Real case scenario: In red and cyan the S. Rossoreadmaufa radar fields of view. Magenta ellipsoids indicateghkected areas for the S. Rossore

dataset, while, in blue the ones for the Palmaria datasey IBres represent the historical AIS trajectories.

The proposed KB-tracking has been tested on whole datasetipd by the NURC BB9 experiment starting from May,
2009 to June4, 2009. Data from the Palmaria and S. Rossore WERA radar systems(R@aimariaandS. Rossorelatasets)
have been separately processed usingGRAR algorithm developed at the University of Hamburg. The dites are then
provided to the KB-tracking and to the standard JPDA [6].

Fig. 5 depicts the selected areas for the comparison betthee¥S-IMM and the standard JPDA.

In Fig. 6 an example of the two approaches under test is reghoifiracks generated from both the JPDA and VS-IMM

JPDA are depicted in black, while the tracks generated onlthb VS-IMM JPDA are depicted in red. No track is generated
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Fig. 6. Graphical representation of the VS-IMM JPDA fragnagioh reduction with respect to JPDA using the same track nemagt parameters. Tracks

generated from both the JPDA and VS-IMM JPDA are depictedack) while the tracks generated only by the VS-IMM JPDA aepidted in red.

only by the standard JPDA. The results are obtained by usiagparameter setting detailed in Sec. IV-C wittf = 5. It is
worthwhile to remark that thanks to the correct identificatof the on-sea lane target dynamic, the KB-tracking is édble
visibly reduce theN”* and increase th&oT by properly propagating the track when no target-origidaibservations are

received.
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Fig. 7. (a) Off-sea lane ltalian cruise (MMSI 247817000) and (b) on-sea lane Norwegian cargo (MMSR58981000) tracks on May10, 2009. The

arrows indicate the directions followed by the vessels.
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Fig. 9. (a) Off-sea lane and (b) on-sea lane target postpriabilities.
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The capability of the KB-tracking methodology to properigteict on-sea and off-sea lane targets is corroboratedmnpirege

two different real cases. The first one shows an off-sea lahian cruise, specifically the vessel is manoeuvring to tbe sea

lane later on. The second case is related to the behaviour afi-gea lane Norwegian cargo, see Fig. 7. The exploitedndigna

models are: The constant velocity with equal standard tlewis, which characterizes off-sea lane target dynamicd, the

directional noise model which takes into account the infation related to the on-sea lane targets. Likelihoods estichby

Eq. (20) and the related posterior probability values, Wated as in Sec. 1lI-D4, are reported in Figs. 8 and 9, regby

We observe that the estimated likelihoods (which drive tteeg@ss to have higher posterior probabilities) are cotievéh the

nature of the true target motions. The system is able to rezeghe ship motion and to correctly adopt the model prongoti

a greater weight. Furthermore, because of the difficultyrefljgting the correct target state when this is quickly neamving,
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lower values of likelihoods can be observed, for instaneefg. 8(a) betwees00 [s] and 1000 [s].

Before starting the quantitative analysis, we discuss aralyae a further problem. Only some of the target trajeetori
which intersect the ellipsoids in Fig. 5, follow the sea lalypamic models. Now, given the huge amount of data, an automa
procedure, able to properly split the on-sea and off-sea ound-truth trajectories, needs to be adopted. Thusyearli
regression applied on each AIS target that crosses thesaillip is performed. Th&? index, provided by the regression, is
computed in order to determinate the linearity of the whaa kne. If this index is larger than a certain threshold ¢fite@

0.8), the angular coefficient is computed and compared with tleeaharacterizing the sea lane model to determine the nature

of each AIS track.

o ‘ ‘ ‘ — VS—IM‘M JPD‘A o ‘ ‘ ‘ — VS—IM‘M JPDA
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Fig. 10. Daily bar diagram for th&oT evaluated on the (a) Palmaria and (b) S. Rossore datasetssloase,N* is equal to5.

The first quantitative analysis is performed to show the owpments in terms of Time-on-TargefdT"). In Fig. 10, the
daily ToT index is reported and obtained by averaging the data of ellofrsea lane targets on each day. The advantage
of using the VS-IMM JPDA is clear. We have largé&ioT for all the days on both the datasets. Generally speakirgy, th
lower the probability to detect a target is, the greater &ithprovement in terms df'oT. Thus, the improvement in terms
of performance is more evident whéWi* decreases (see Tab. Il). Another remark is related to tlereifces between the
Palmaria and S. Rossore datasets. Th& exhibited by S. Rossore is generally lower than the one orPtimaria dataset
(see, again, Tab. Il), as already discussed in [6].

The previous analysis lacks the contribute of HdR. It is possible that when th& AR increases th& 0T increases as
well. In order to have a fair comparison, we compare Thd" for both the approaches at fixddAR values. This curve is
obtained by varying the parametar*.

In Fig. 11, four scatter plots, which represent the relati@tween thel'oT and F AR indexes varyingN*, are shown.
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Fig. 11. Scatter plots represented the daily values of thuplesToT and F AR by varying N*.
TABLE Il
MEANS ON BOTH THE DATASETS FORI'0T AND F"AR INDEXES.
(a) Palmaria (b) S. Rossore
JPDA VS-IMM JPDA JPDA VS-IMM JPDA

N* *
ToT% | FAR[I/(sm®)] | ToT% | FAR [l/(sm?)] ToT% | FAR[l/(sm?)] | ToT% | FAR [I/(sm?)]
1 36.04 0.656-10~ 11 63.03 1.401-10~11 1 28.24 | 0.2262-10—11 55.92 | 0.4169-10—11
5 52.84 1.266-10~11 68.11 1.769-10~ 11 5 42.65 0.4735.10~11 58.62 0.5985-10—11
10 61.62 1.681-10~ 11 69.55 1.997-10~11 10 52.79 0.6563-10~ 11 60.58 0.7445.10— 11

The daily values are reported and the related means areatediavith full markers (see also Tab

. 11). It is easy to notat th

when the VS-IMM reaches the sant&A R of the standard JPDA exhibits also a highig¥T". An improvement ofl0% on the

average is observed. In order to have a clearer plot, in FAgvd report the convex hull of daily couple8dT,F AR).

Fig. 12 shows that the performance advantages are morenéviciae low false alarm region. Furthermore, the improvetse
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Fig. 12. ToT Vs. FAR varying N* in the case of (a) Palmaria and (b) S. Rossore. Black and téldiuares indicate the daily values for the standard
JPDA and the VS-IMM JPDA, respectively.
TABLE Il

DAILY MEANS AND STANDARD DEVIATIONS OF NTF INDEX FOR BOTH THE DATASETS

(a) Palmaria (b) S. Rossore
Date JPDA VS-IMM JPDA Date JPDA VS-IMM JPDA
(1.0) (.0) (1.0) (u.0)
07/05 | (1.18,0.40) |  (1.29,0.49) 07/05 | (1.13,0.35)|  (1.13,0.35)
08/05 | (1.62,0.83)|  (1.40,0.65) 08/05 | (1.67,0.99)| (1.37,0.56)
09/05 | (1.67,1.17)|  (1.36,0.49) 09/05 | (1.82,1.33)| (1.41,0.80)
10/05 | (1.86,1.28)|  (1.45,0.89) 10/05 | (1.31,0.60)| (1.12,0.34)
11/05 | (1.67,1.24)| (1.60,1.12) 11/05 | (1.38,0.87)| (1.23,0.83)
12/05 | (1.65,0.71)|  (1.43,0.60) 12/05 | (1.64,1.15)| (1.36,0.63)
13/05 | (1.89,1.19)|  (1.59,0.89) 13/05 | (1.62,0.96)| (1.31,0.60)
14/05 | (1.56,0.93)| (1.16,0.47) 14/05 | (1.60,0.83)| (1.43,0.65)
15/05 | (1.52,0.82)| (1.17,0.39) 15/05 | (2.11,1.76)| (1.32,0.58)
16/05 | (1.77,1.41)|  (1.39,0.79) 16/05 | (1.78,1.44)|  (1.58,0.84)
17/05 | (1.52,1.29)| (1.16,0.50) 17/05 | (1.48,0.59)| (1.35,0.57)
18/05 | (1.42,0.69)| (1.29,0.69) 18/05 | (1.13,0.35)|  (1.00,0.00)
19/05 | (1.66,0.94)| (1.23,0.53) 19/05 | (1.27,0.46)| (1.07,0.26)
20/05 | (1.33,0.82)| (1.50,0.58) 20/05 | (1.00,0.00)|  (1.00,0.00)
21/05 | (1.43,0.77)|  (1.00,0.00) 21/05 | (1.62,0.51)| (1.33,0.49)
22/05 | (1.69,1.16)| (1.14,0.36) 22/05 | (1.69,0.87)| (1.35,0.61)
23/05 | (1.96,1.51)| (1.46,0.90) 23/05 | (1.79,0.80)|  (1.64,0.74)
24/05 | (1.57,0.79)| (1.26,0.45) 24/05 | (1.44,0.63)| (1.50,0.65)
25/05 | (1.75,1.07)| (1.39,0.70) 25/05 | (1.72,1.07)|  (1.50,1.03)
26/05 | (1.62,0.95)| (1.27,0.56) 26/05 | (2.56,1.98) | (2.24,1.82)
27/05 | (1.75,1.36)|  (1.50,0.88) 27/05 | (1.87,1.54)| (1.56,0.96)
28/05 | (1.62,1.01)| (1.27,0.46) 28/05 | (1.47,0.64)| (1.20,0.41)
29/05 | (1.50,1.05)| (1.37,0.88) 29/05 | (1.65,1.11)| (1.35,0.79)
30/05 | (1.83,1.62)| (1.33,0.96) 30/05 | (1.50,0.89)| (1.44,0.63)
31/05 | (1.61,1.46)| (1.24,0.56) 31/05 | (1.56,0.73)| (1.37,0.52)
01/06 | (1.45,0.94)| (1.13,0.35) 01/06 | (1.40,0.52)|  (1.30,0.48)
02/06 | (1.65,1.23)| (1.18,0.39) 02/06 | (1.83,1.15)| (1.78,1.11)
03/06 | (1.90,1.72)|  (1.28,0.70) 03/06 | (1.24,0.75)|  (1.19,0.54)
04/06 | (1.75,1.29)|  (1.37,0.56) 04/06 | (1.86,1.46) |  (1.50,0.94)

for the case of S. Rossore, are better than the ones for RajJrbacause of a worse capability of the radar in S. Rossore to
detect the vessels, see also [6].
A further analysis is performed by exploiting the fragmdiota index (V7). In Tab. IlI, the daily values of the means

and the standard deviations of th&’ ©' calculated for each day with all the on-sea lane tracks asaishThe overall means
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TABLE IV

DAILY €P°5 AND €”¢! FOR BOTH THE DATASETS

(a) Palmaria (b) S. Rossore
o m) el m/g] o m] cvel [m/g
pate JPDA | VS-IMM JPDA | JPDA | VS-IMM JPDA Date JPDA | VS-IMM JPDA | JPDA | VS-IMM JPDA
07/05 | 736.3 751.4 0.70 0.68 07/05 | 1214.0 1155.4 1.74 1.66
08/05 | 617.1 623.4 112 0.91 08/05 | 886.7 880.9 1.07 0.87
09/05 | 670.1 688.9 0.98 0.91 09/05 | 929.6 987.9 0.92 0.70
10/05 | 518.6 568.4 1.04 0.98 10/05 | 1046.2 925.8 1.32 1.00
11/05 | 613.4 619.1 1.05 1.02 11/05 | 824.2 817.8 0.84 0.77
12/05 | 627.1 636.7 0.85 0.82 12/05 | 957.5 900.0 0.94 0.73
13/05 | 570.5 531.6 2.16 1.97 13/05 | 899.2 932.5 3.02 2.77
14/05 | 594.3 587.9 1.02 0.90 14/05 | 970.1 984.3 112 1.02
15/05 | 665.9 637.5 1.00 0.85 15/05 | 798.3 775.9 0.94 0.72
16/05 | 649.3 691.3 121 1.10 16/05 | 905.2 910.9 1.09 0.96
17/05 | 720.1 727.6 1.22 0.84 17/05 | 1208.5 1169.9 1.75 1.57
18/05 | 616.0 605.4 0.99 0.92 18/05 | 905.4 886.0 0.97 0.84
19/05 | 631.3 640.7 0.97 0.84 19/05 | 780.5 757.9 1.09 0.81
20/05 | 656.9 670.8 0.85 0.86 20/05 | 1257.3 1276.4 1.30 1.25
21/05 | 641.0 660.1 0.98 1.00 21/05 | 1024.2 1136.4 1.57 1.55
22/05 | 706.5 675.7 0.88 0.75 22/05 | 1103.5 1075.9 1.47 1.27
23/05 | 732.0 765.1 0.80 0.78 23/05 | 926.0 948.6 1.04 0.89
24/05 | 594.9 581.2 1.82 1.81 24/05 | 1102.6 1118.0 1.45 1.42
25/05 | 691.5 886.7 1.28 157 25/05 | 956.2 1001.5 1.34 1.12
26/05 | 713.5 734.2 1.16 1.10 26/05 | 892.7 816.2 1.00 0.79
27/05 | 492.1 513.2 1.18 0.93 27/05 | 1014.0 953.4 1.74 1.30
28/05 | 773.0 814.9 1.27 1.27 28/05 | 1006.8 1078.1 1.10 0.81
29/05 | 695.7 673.8 1.22 1.05 29/05 | 937.1 938.3 1.15 0.99
30/05 | 596.0 611.1 1.08 0.96 30/05 | 775.1 830.1 0.66 0.78
31/05 | 649.7 607.2 1.43 1.22 31/05 | 1146.9 990.4 1.44 0.90
01/06 | 624.9 687.9 1.18 1.27 01/06 | 1218.4 1238.0 141 1.22
02/06 | 792.5 801.1 1.02 0.96 02/06 | 1119.1 1079.3 191 1.74
03/06 | 618.2 575.6 121 0.86 03/06 | 732.9 809.0 1.72 1.90
04/06 | 707.3 672.4 1.38 1.15 04/06 | 1014.8 1002.9 1.08 0.86

for Palmaria arel.63 for JPDA and1.32 for the VS-IMM, and1.59 and 1.38, respectively for S. Rossore. These outcomes

confirm the capability of the KB-tracking to reduce the trdcgmentation.
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Fig. 13. (a)e?? and (b)eve! for an oil/chemical tanker with MMSI 247104500 on May 28, 2009 recorded in the Palmaria dataset.

The last analysis is related to the RMSE of position and vglotn Figs. 13 and 14, we repoe’®® and €’ indexes
over time, using the VS-IMM JPDA and the standard JPDA. Twenscios are shown in which an oil/chemical tanker and a

container ship are observed by Palmaria and S. Rossorectegby. We observe a sensible gain in terms of performdoice
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Fig. 14. (a)e?°® and (b)eve! for a container ship with MMSI 2305272000 on May 8, 2009 recorded in the S. Rossore dataset.
both position and velocity, see for instance betweérd9 and22:00 in Fig. 13 and from02:35 to the end in Fig. 14.

Another phenomenon, related to the position RMSE indexrésent. As already explained the standard JPDA exhibits a
larger TF' than the VS-IMM JPDA, thus it is likely that when there are féavget-originated detections the JPDA breaks
the track while the VS-IMM JPDA is still able to maintain itgimg the on-sea lane logic). However, in this case, while the
VS-IMM JPDA is maintaining the track an increasing error idibited (see Fig. 15(a) for the time interval frodd:35 to
04:46 and Fig. 15(c) betweet6:04 and06:16), with respect to the case in which there are several tanggirnated detections,
and consequently it could be possible to reach an averagedlamer than the standard JPDA. An opposite effect is miese
for the velocity. In this case, when a new track is initiatiz®r the standard JPDA, the velocity starts from a quite ynois
condition exhibiting, then, on the average a larger errdhwéspect to the VS-IMM JPDA can be observed (see, for iostan
Fig. 15(b) for the time interval frond5:10 to 05:41 and Fig. 15(d) betweef6:04 and 06:18). Consequently, the propagation
stage of the VS-IMM JPDA leads to an improvement of i€ index.

In Tab. IV we report the daily values af°* and e*!. The overall mean values on Palmariaef® are 652.3 [m] and
663.5 [m] for the JPDA and the VS-IMM, respectively, while, they &®1.6 [m] and978.5 [m], respectively, in the case of
S. Rossore. Practically, there is no appreciable advaritatgrms of positioning error. Instead, by taking a looke#t, the
means ard.14 [m/s and1.04 [m/g] for the standard JPDA and the VS-IMM, respectively, on then@sa dataset and.32
[m/s] and1.15 [m/g) on S. Rossore’s data. On the contrary, in this case, therpeafice advantages are evident (aroufgh)

for both the radars in Palmaria and S. Rossore.

V. CONCLUSIONS

Low-power/cost HFSW radars can be reliable long-range/ewalning tools for maritime situational awareness agpians.
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Fig. 15. €P°s andeve! for two fragmented tracks on Jurde 2009 recorded in the Palmaria dataset. (a) and (b) show the ewors passenger ship with

MMSI = 247002300 between04:24 and 05:50, while, (c) and (d) for an oil/chemical tanker with MMSI 247088700 between05:51 and06:18.

In this paper, a self-adapting VS-IMM approach combinechvetJPDA algorithm was presented for tracking ships with
on-sea lane constrained motion in a multi-target enviram&he targets can move on-sea lanes with a more constrained
motion model than that in off-sea lane. In greater detailtiomouncertainties due to on-sea lane/off-sea lane motimhsea
lane entry/exit conditions were handled using the abovetimeed estimator. Based on the sea lane map, obtained ige
historical information, and the predicted location of theget under track, the estimator mode sets were adjustedittime. In
addition to the sea lane constraints, obscuration of tlgetardue to the radar synchronization and first order Bragtjesing
reasons, was also handled within the VS-IMM framework.

Results on simulated and one-month real data (acquired loydifferent HFSW radars) collected during the NURC
BP09 experimentation were presented and discussed. The adeanta terms of, time-on-target and false alarm rate, track

fragmentation and estimation errors, of the proposed V&HIPDA with respect to the standard JPDA [6] were shown and
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validated using AIS data as ground-truth. A significant ioy@ment of the VS-IMM JPDA, in terms of system performance,
were demonstrated. We have shown that there is an increrhéme time-on-target for any fixed value of the false alarnerat
The increment is quite sensible in the region of low falsemaleate where can be ov80% for both the systems in Palmaria
and S. Rossore. On the average we also obtain a reductiore dfaitk fragmentation, abo@d% and 13% for Palmaria and

S. Rossore, respectively.
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