
1

Analysis of reconstructions obtained solving

lp�penalized minimization problems
Flavia Lenti, Student Member, IEEE, Ferdinando Nunziata, Senior Member, IEEE, Claudio Estatico and

Maurizio Migliaccio, Senior Member, IEEE

Abstract

Most of the inverse problems arising in applied electromagnetics come from an underdetermined direct problem,

this is the case, for instance, of spatial resolution enhancement. This implies that no unique inverse operator exists;

therefore, additional constraints must be imposed on the sought solution. When dealing with microwave remote sens-

ing, among the possible choices, the minimum p�norm constraint, with 1 < p  2, allows obtaining reconstructions

in Hilbert (p = 2) and Banach (1 < p < 2) subspaces. Recently, it has been experimentally proven that reconstructions

in Banach subspaces mitigate the oversmoothing and the Gibbs oscillations that typically characterize reconstructions

in Hilbert subspaces. However, no fair intercomparison among the different reconstructions has been done.

In this study, a mathematical framework to analyze reconstructions in Hilbert and Banach subspaces is provided. The

reconstruction problem is formulated as the solution of a p�norm constrained minimization problem. Two signals

are considered that model abrupt and spot-like discontinuities. The study, undertaken in both the noise-free and the

noisy case, demonstrates that lp reconstructions for 1 < p < 2 significantly outperform the l2 ones when spot-like

discontinuities are considered; when dealing with abrupt discontinuities, l2 and lp reconstructions are characterized by

similar performance; however, lp reconstructions exhibit oscillations when the background is not properly accounted

for.

Index Terms

Microwave radiometry, inverse problem.

I. INTRODUCTION

A broad class of problems arising in physics or engineering consists of finding a function f such that a known

operator L transforms f into a given function b. Basically, L is the so-called forward operator, which represents
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the known mathematical model, b is the known data and f is the unknown to retrieve. These problems usually

belong to the class of inverse problems, such as identification, synthesis, reconstruction, inverse scattering, image

restoration, etc., when practical applications, e.g. remote sensing, probing of media, pattern recognition etc. [1]-[21],

are considered.

The basic inverse problem arising in microwave applications can be formulated according to a linear integral

equation that describes the relationship between the t-th measurement b
t

and the unknown function f :

b

t

=

Z

⌦
G

t

(z)f(z)dz, (1)

where z is the integration variable. In particular eq.(1) is a Fredholm equation of the first kind with a smooth kernel

G

t

. When a microwave device is considered, G
t

is the low-pass system aperture function and, hence, the problem

of solving (1), with respect to unknown f , is an ill-posed inverse problem [2]. This implies that even small errors

in the data, b
t

can produce very large errors in the result, f . Hence, the problem has to be regularized to obtain

reasonable approximations of the sought solution.

If the kernel G
t

is bandlimited, (1) in discrete setting reads as:

b

t

= A

T

t

x, (2)

where A

t

is the sampled version of the kernel G
t

(·) and x is the corresponding sampled version of f(·). To estimate

x from m measurements b = (b1, ..., bm), the following linear system is to be solved:

b = Ax, (3)

where A = (A1, ...,A

m

)T . The matrix A is a mapping from X to Y where X ✓ Rn is the domain of A and

Y ✓ Rm is the codomain. The identification problem, i.e. reconstructing x from the aperture-filtered samples b,

relies on a proper inversion of the mapping A. The mapping is invertible if and only if it is bijective and this

property can be satisfied according to the structure of the system that can be full-determined, over-determined and

under-determined. For the purpose of this study, the under-determined case will be discussed since it typically

applies when dealing with spatial resolution enhancement of microwave remotely sensed measurements, where

coarse but partially correlated measurements are exploited to reconstruct the signal on a finer resolution grid. The

under-determined system implies that no inverse matrix exists since the mapping is not injective: two elements

belonging to X may be mapped in the same element b 2 Y . To make the mapping invertible, two subspaces X

s

and Y

s

must be considered for X and Y, respectively. This allows defining the mapping A

s : Y
s

! X

s

such

that A

s(Ax) = x 8 x 2 X

s

. It must be explicitly pointed out that the functional A

s may be even non-linear.

Choosing X

s

and Y

s

corresponds to select one of the infinite solutions that satisfy the under-determined system. The

reconstructed signal lies in X

s

; however, this may not be the case for the original signal. Therefore, the reconstructed

signal in X

s

may not be the closest one to the original one. Choosing X

s

and Y

s

is equivalent to impose a constraint

on the signal to be reconstructed. Since there are different constraints that can be imposed to define the mapping
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A

s

, there are also different mappings that can produce different reconstructions from the same data. In the frame

of spatial resolution enhancement of microwave data, different choices are possible [7]-[21]. Among the possible

choices, the minimum p�norm, with 1 < p  2 results in reconstructions spanning from Hilbert (p = 2) to Banach

(1 < p < 2) subspaces. When p = 2, the well-known l

2� norm is achieved, which can be physically interpreted

as energy. In literature, some methods have been proposed to enhance the spatial resolution of microwave probes

based on the minimum l

2� norm constraint. The classical Backus-Gilbert [2], [7] inversion technique is used in [8]

as a deconvolution method to enhance low frequency SSM/I measurements. The algebraic reconstruction technique

(ART) [2], [9] is used in [10] to enhance the spatial resolution of ERS-2 and SEAWINDS scatterometer data. The

truncated singular value decomposition (TSVD) [2] is used in [11] to deal with spatial resolution enhancement

of SSM/I one-dimensional data. This technique is extended to actual two-dimensional SSM/I data in [12]. The

Landweber method [2] is used in [14] to enhance the spatial resolution of simulated microwave radiometer data. In

addition, a faster-convergence Landweber method is proposed that is contrasted with the conventional Landweber

and with the ART. The Tikhonov [2] method is used in [13] to enhance the spatial resolution of one-dimensional

radiometer measurements.

Usually, the choice of the l

2-norm gives rise to smooth (and sometimes over-smooth) solutions and Gibbs-related

oscillations where abrupt discontinuities are present. This is a key problem, for instance, on the boundary between

land and ocean both for scatterometer and radiometer measurements. Indeed, the actual raw measurements blur the

land/ocean boundary give rise to biased measurements along the coast. This blurring effect is even more noticeable

when small islands are present. In fact, due to their small size, the measurements are smeared not only along the

coastline but throughout the interiors as well [8].

Recently, to overcome the drawbacks related to the l

2-norm, the resolution enhancement problem has been cast

in the Banach subspaces [16]. The rationale relies on the fact that when p�norm, with 1 < p < 2 is used, the

oversmoothness and the Gibbs oscillations related to the energy norm are reduced. Experiments, performed on

both simulated and actual microwave radiometer data, confirm the soundness of the proposed rationale. In addition,

some drawbacks have been pointed out. Among them, the non-linearity of the inverse operator and the key role

played by the background in the reconstructions are the most important. Moreover, a fair intercomparison among

reconstructions obtained in different subspaces is not straightforward since their performance strongly rely on the

specific parameters that characterize the reconstruction algorithm.

In this study, the reconstruction problem is formulated as the solution of a minimum p�norm constrained minimiza-

tion problem in order to let the solution independent on the specific algorithm and to allow a fair intercomparison

among the reconstructions obtained in Hilbert and Banach subspaces. To discuss the reconstruction performance, two

one-dimensional signal models are considered that emulate abrupt and spot discontinuities and a set of qualitative

parameters is introduced both in the spatial and in the Fourier transformed domain.
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The study, undertaken in both noise-free and the noisy cases, demonstrates that lp reconstructions for 1 < p < 2

significantly outperform the l

2 ones when spot-like discontinuities are considered; when dealing with abrupt

discontinuities, l

2 and l

p reconstructions are characterized by similar performance; however, l

p reconstructions

exhibit oscillations when the background is not properly accounted for.

The remainder of the paper is organized as follows. In Section II the theoretical framework is reviewed both in

the noise-free and noisy case, in Section III the reconstruction performance is discussed, while the conclusions are

drawn in Section IV.

II. THEORETICAL BACKGROUND

In this section, the mathematical background to analyze the properties of the signal reconstructed from an

underdetermined system is provided. To make the analysis independent of the specific algorithm, the inverse

mapping is formulated as a l

p constrained minimization problem. Two subspaces are considered: the first one

that corresponds to choosing the solution resulting in minimum energy, i.e. the l

2�norm is considered; the second

one that corresponds to choosing the solution resulting in the minimum l

p norm, with 1 < p < 2. In addition,

noise-free and noisy data are discussed.

A. Noise-free case

In this subsection, the computation in the noise-free case is described.

When the l

2�norm is considered, the following minimization problem is solved:

min k x k22 subject to Ax = b. (4)

Since the functional k x k22 is convex it can be demonstrated that x̄ is a global minimum for (4) if and only if there

exists ⌫̄ 2 Rm such that (x̄, ⌫̄) satisfies the (m+ n)⇥ (m+ n) linear system:
8
<

:
Ax̄ = b

rF (x̄)�A

⇤⌫̄ = 0.
(5)

where F (x̄) =k x̄ k22 so that rF (x̄) = x̄. Solving the equality constrained convex minimization (5) is equivalent to

find the solution of the Kerush-Kuhn-Tucker system (5) (KKT) [22], whose solution is:
8
<

:
⌫̄ = (AA⇤)�1

b

x̄ = A

⇤(AA⇤)�1
b.

(6)

Note that A⇤(AA

⇤)�1 = A

† is known as Moore-Penrose pseudo-inverse for an underdetermined system and it is

a linear inverse functional.

When the l

p�norm is considered, the following problem is to be solved:

min k x kp
p

subject to Ax = b. (7)
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where k x kp
p

=
P

n

i=1 |xi

|p. The p-norm is the discrete version of the norm of the space L

p, which is the space

of the p-power integrable functions. Despite of the l

2 space, the l

p space, for p 6= 2, is not a Hilbert space, but is

only a Banach space. The latter is a complete normed linear space that is not equipped with any scalar product.

This means that in Banach spaces the “angle” between two elements is not defined.

Even in this case, the functional k x kp
p

is convex, therefore a minimization problem can be considered again,

which leads to the corresponding KKT system (5) with F (x̄) =k x̄ kp
p

so that rF (x̄) = J

p

(x̄) where J

p

(x̄) =

(J1, J2, ..., Jn) whose components are J

i

= |x
i

|p�1
sign(x

i

) with sign(x
i

) is the sign-function. Therefore, differing

from the l

2� norm case, a non-linear system is obtained that does not admit a closed form solution. To solve the

KKT non-linear system, an extension of the Newton’s method that includes equality constraint is used [22], [23].

A b�dependent solution is obtained that, unlike the l

2�case, does not allow defining explicitly the pseudo-inverse

operator.

B. Noisy-case

In this subsection, the rationale followed to address the reconstruction in the noisy-case, is described.

The system (3), when noisy measurements are available, becomes:

Ax = b

n

, (8)

where b

n

= b + n with n 2 Rm whose components are related to the additive white Gaussian noise (AWGN).

This problem represents the discretized version of eq. (1) and, therefore, the matrix A is ill-conditioned. This implies

that, to avoid noise amplification, regularization methods must be applied.

Hence, according to the discrepancy principle [2], the constraint that characterizes eq. (4) and (7) must be replaced

by the following one:

k Ax � b

n

k22 c · ", (9)

where " is an estimate of the 2-norm of the error , i.e. k n k22= " and c � 1 rules the trade-off between regularization

and noise amplification.

Accordingly, when (9) is used, eq. (4) and (7) become:

min k x k22 subject to k Ax � b

n

k22 c · ", (10)

and

min k x kp
p

subject to k Ax � b

n

k22 c · ", (11)

respectively. Note that to allow a fair intercomparison, the constraint (9) is used in both Hilbert (10) and Banach

(11) subspaces. The problems (10) and (11) are inequality constrained convex problems whose solutions can be
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obtained by solving the KKT system [22]:
8
>>>>>><

>>>>>>:

rf(x̄) + µrg(x̄) = 0

g(x̄)  0

µ � 0

µg(x̄) = 0,

(12)

where f(x) =k x k22 and f(x) =k x kp
p

when (10) and (11) is adopted, respectively, and g(x) =k Ax�b

n

k22 �c · ".

In our approach, to solve the KKT system, the interior-point method, that applies the Newton’s method to a sequence

of equality constrained problems, is used [22], [23].

III. ANALYSIS OF RECONSTRUCTIONS IN HILBERT AND BANACH SUBSPACES

In this study, the performance of the reconstructions is analyzed in Hilbert and Banach subspaces and in both

the noise-free and noisy cases with reference to an underdetermined system resulting from a spatial resolution

enhancement problem.

To fully characterize the problem (3), the A 2 Rm⇥n matrix and the measurements vector b 2 Rm are needed.

A realistic one-dimensional microwave remote sensing system that performs m = 64 uniformly spaced and partially

overlapped measurements is considered, see “grid 1” in Fig.1. The system aperture function is given by a shift-

invariant Gaussian-shaped function, G(·), whose 3 dB width is equal to 69 samples.

To perform spatial resolution enhancement, the unknown function is to be reconstructed using a finer grid. In this

study, n = 1400 uniformly spaced samples are considered, see “grid 2” in Fig.1. Hence, the i�th row of the A

matrix is given by the sampled and shifted version of the aperture function:

G(z � ir), (13)

where y = (z � ir) 2 [1 : 1400] and r = n

m

.

To obtain the measurements vector b, eq.(3) is used where x is obtained sampling a reference signal model. Since,

in this study, we want to model abrupt and spot discontinuities, a rect signal model is considered:

f(y) = a rect
✓
y � y1

�

◆
, (14)

where a = 100 and rect(t) =

8
<

:
1 |t| < 1

0 |t| > 1
.

The two signal models are:

• f1(y) =

8
<

:
y1 = 500

� = 300
,

• f2(y) =

8
<

:
y1 = 410

� = 10
.

January 16, 2015 DRAFT



7

Those signal models represent abrupt discontinuities (f1(y)), e.g. the land-sea interface observed by a microwave

radiometer/scatterometer, and spot discontinuities (f2(y)), e.g. small islands and lakes observed by a microwave

radiometer/scatterometer.

To discuss the experiments in a more quantitative way, five key parameters (co, h

n

, �1, �2, W ) are introduced to

analyze the performance of the reconstructions.

co is the correlation coefficient between the reference signal and the reconstructed one. h
n

deals with the performance

in reconstructing correctly the amplitude level and it is given by the ratio between the mean value of the non-zero

signal level and the signal amplitude a. �1 and �2 deal with the broadening of the reconstructed signal with respect

to the reference one. In particular, �1 is the angle between S1S2 and S1S3, see Fig.2, where S1 is the intersection

between the leading edge of the reference signal and measurements; S2 is the first point (i, b
i

) such that b
i

= a;

S3 = (y1 ��, a). �2 is the angle between S1S4 and S1S5, see Fig.2, where S4 is the last point (i, b
i

) such that

b

i

= 0 and i < y1 � �; S5 = (y1 ��, 0) . W is a parameter that relates the widths of the Fourier transformed

reference and measured signals. This parameter will be fully described in the subsequent experiments.

To clarify the expected behavior of the parameters, two extremes must be identified. The first one is obtained

when the reference signal is considered. In this case, the reference values are achieved for the five parameters, i.e.

co = 1, h

n

= 1, �1 = �2 = 0 and W = 1. The second one is obtained when the measured signal (to obtain the

same size of the reference signal, the approach proposed in [20] is used, i.e. the value of the nearest measurements is

assigned to each pixel) is considered. In this case, the low-pass nature of the kernel that describes the measurement

system, results in a measured signal: a) broader that the reference one, i.e. �1 > 0 and �2 > 0 is expected; b)

characterized by an amplitude level attenuated with respect to the reference signal, i.e. h
n

< 1 is expected. As a

matter of fact, co < 1 and W > 1 are also to be expected.

When dealing with reconstructed signals, intermediate values are expected. The closer are the values to the reference

ones, the better is the reconstruction.

To characterize the errors inherently related to the reconstructions two additional parameters are introduced (d1 and

d2). Both the parameters, which will be fully described in the subsequent experiments, measure the oscillations

that characterize the reconstructed signals.

A. Noise-free case

The first experiment consists of analyzing the signal x1 (see Fig.2) reconstructed at enhanced spatial resolution

both in Hilbert (l2) and Banach (lp with 1 < p < 2) subspaces. In this study, following the theoretical and

experimental rationale developed in [16], the Banach subspaces defined by p = 1.8, 1.5 and 1.2 are considered.

The measurements, see cyan points in Fig.2, are a smoothed version of the reference signal. The values of co, h
n

, �1

and �2 are equal to 0.97, 1, 49o and 30o, respectively, see Table I.

The signal, reconstructed at enhanced resolution in the l

2 subspace, is shown in Fig.3(a), see red x-mark. Note
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also that, to better analyze the reconstructions, only the range [0, 500] samples is shown. The reconstructed signal

well fits the reference one and the abrupt discontinuity is well reconstructed. In fact, h
n

is close to 1 and the �1 and

�2 angles are equal to 19.3o and 14.1o, respectively (see Table I). Hence, they are significantly reduced with respect

to the ones related to the measurements of Fig.2. It can be noted that Gibbs oscillations are present. The maximum

amplitude of these oscillations, as expected, occurs near the upper and the bottom part of the discontinuity and its

value, normalized to a and evaluated at the upper (d1) and lower (d2) part of the discontinuity, is equal to 8% and

8%, respectively, (see Table I). Note that, as expected, similar numbers apply for the discontinuity on the right-hand

side of the Fig.3 (not shown to save space).

The correlation coefficient is equal to 0.99 and demonstrates that a high-quality reconstruction is obtained. To

analyze reconstruction performance in the Fourier domain, the reference signal and the l

2 reconstructed one are

Fourier transformed in Fig.3(b). The Fourier signals are shown in the range [924, 1124] and are properly scaled

to allow an easier comparison. It can be noted that the reconstructed signal is equal to the reference one over the

range labeled as R1 while differences are exhibited at higher frequencies over the range R2. The Fourier transform

of the reconstructed signal becomes negligible over the range R3; this justifies Gibbs oscillations that characterize

the reconstructed signal in Fig.3(a).

To quantify the enhancement of the spatial resolution of the reconstructed signal, the relationship between the

reference and the reconstructed signal is needed. One can consider x and x

rec

as the input and the output of an

equivalent system given by the cascade of two systems. The first one is a linear operator that rules the transformation

of the reference signal into the measurements (Ax = b). The second one is a linear operator that rules the

transformation of the measurements into the reconstructed signal (x
rec

= A

†
b), see Fig.4. Hence, for the signal x1,

x

rec

is given by:

x

rec

= A

†
Ax1 = Cx1, (15)

where C is a n ⇥ n matrix whose i � th row represents the point spreading function (PSF) of the i � th point.

To quantify the obtained spatial resolution, the 3 dB width of the i � th PSF is measured. The spatial resolution

varies between 24 and 27 samples and the minimum is reached when approaching points of “grid 1”, see Fig.2.

The signals reconstructed at enhanced resolution in the l

p subspaces with p = 1.8, 1.5 and 1.2 are shown in

Fig.3(a). Note that in all the subsequent experiments, we denote Hilbert and Banach subspaces with “l2” and “lp”,

respectively. The reconstructed signals fit well the reference signal and the abrupt discontinuity is well reconstructed.

To compare the reconstruction accuracy, h
n

, �1, �2, co, d1 and d2 are reported in Table I. The angles �1 and �2

measured in l

p are always smaller than the correspondent l

2 ones (19.3o, 14.1o). This shows that the Banach

subspaces allow a better reconstruction of the abrupt discontinuity with respect to the l

2 subspace. Moreover, the

reconstruction accuracy increases for decreasing p and it achieves the best performance (11.7o, 9.3o) at p = 1.2.

A different behavior is obtained for d1 and d2. The latter one, see Table I and Fig.3(a), is always smaller than the
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correspondent p = 2 one (8%) and it decreases for decreasing p, showing that negligible oscillations are obtained

at p = 1.2 (0.5%). An opposite behavior characterizes d1, which is always larger than the correspondent p = 2

one (8%) and it increases for decreasing p. The maximum amplitude of the oscillations is exhibited at p = 1.2

(14%). This behavior shows that the background level plays a key role when reconstruction is addressed in Banach

subspaces. In fact, in Banach subspaces with small parameter p a lower penalty term k x k
p

is associated to elements

with large but few components and a higher penalty is associated to elements with many but small components.

This justifies the smallest (largest) oscillations resulting from the l

1.2 reconstruction when the background is 0

(100). It can be noted that even in Banach subspaces, a high-quality reconstruction is obtained (co = 0.99).

The Fourier transforms of the l

p reconstructed signals are shown in Fig.3(b). As far as for the l

2 case, even in l

p

the reconstructed signals are equal to the reference one in R1 while showing some differences in R2. The difference

between l

2 and l

p is observed in R2 where l

p subspaces allow reconstructing the signal even in R2. This justifies

the reduction of Gibbs oscillations obtained for decreasing p. However, the transformed reconstructed signals do

not well fit x1 in R2. Note that in R3 all the transformed signals vanish.

To analyze the resolution enhancement capability obtained in the l

p subspaces, the approach followed in l

2 cannot

be adopted since the functional As is now not linear, i.e. depends on the input signal. Hence, the PSF cannot be

defined straightforwardly for a non-linear system. We consider that the latter, when linearized around a point, is

slowly variant. Therefore, given a certain input/output relationship that characterizes the non-linear system, one can

found an equivalent linear and shift-invariant system whose input/output relationship approximates the non-linear

one [21]. Hence, the Fourier transform of the equivalent transfer function (F (ETF )) of the non-linear system is

given, for |F (x1)| 6= 0:

F (ETF ) =
F (x

rec

)

F (x1)
, (16)

where F stands for Fourier transform. A measure of the spatial resolution is given by the width of the absolute

value of the correlation function, R, measured as the inverse Fourier transform of the spectrum [21]:

R = |F�1 (F (ETF )F (ETF )⇤) |, (17)

where | · | stands for absolute value and F

�1 is the inverse Fourier transform. Note that when the reconstructed

signal tends to the reference one, the R function tends to a Dirac delta function.

To allow a fair comparison of the spatial resolution enhancement achieved in Banach and in Hilbert subspaces,

the above-mentioned approach is applied also for p = 2 and for the measurements. The R function is shown for

p = 1.2, 1.5, 1.8, 2 in Fig.5. It can be noted that, for decreasing p, the height of the R functions increases while

its width decreases witnessing that the spatial resolution gets finer for decreasing p.

To quantify the spatial resolution enhancement, the parameter W, given by the 3 dB width of the R function, is

evaluated. In this case, W = 38, 37, 36 and 32 for p = 2, 1.8, 1.5 and 1.2, respectively and W = 67 for
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the measurements (see Table I). This confirms that the spatial resolution is enhanced. A finer spatial resolution is

achieved for decreasing p and the best performance, i.e. the finest spatial resolution, is achieved at p = 1.2.

For sake of completeness p < 1.2 is also considered. In particular, the reconstruction performance relevant to

the cases p = 1.1 and p = 1.05 is discussed in Table I. It can be noted that the trend observed in the previously

discussed Banach spaces is confirmed. Hence, as far as for the previous cases, all the parameters improve but d1.

It must be explicitly noted that, although reconstruction performance improves at descending p, given that p > 1,

this is contrasted by algorithm instability. Hence, the best compromise is achieved at p = 1.2 [16]. The limit case

of Banach space corresponding to p = 1 dramatically fails in the reconstruction, since the reference signal is not

sparse enough.

The second experiment consists of analyzing the signal x2 (see Fig.6) reconstructed at enhanced resolution in

Hilbert and Banach subspaces. The measurements, see cyan points in Fig.6, are a smoothed version of the original

signal x2. Note that, in this case, the original signal can hardly be visually recognized from its smoothed version.

This smoothing can be quantitatively measured by the objective parameters defined in the previous experiment.

Note that, since in this experiment the reference signal is significantly smoothed by the measurements system, �1

is re-defined using a different point S2. In fact, S2 is given by the coordinates of the maximum of b. In detail,

�1, �2, h

n

and co are equal to 80o, 16.3o, 0.26, and 0.54 respectively (see Table II). This witnesses that this

experiment is by far more challenging than the previous one. The values of the parameters show that here the

measured signal is significantly different from the reference one, see the small co value (0.54) in Table II, which

shows that there is a low correlation between the reference signal and the measurements. Moreover, in this case,

measurements are slightly shifted with respect to the reference signal, see Fig.6.

The signal reconstructed at enhanced resolution in the l

2 subspace is shown in Fig.7(a), see red x-mark. The

reconstructed signal fits enough the reference signal. In fact, the co parameter is equal to 0.79. The abrupt

discontinuity is recovered, as it is shown by the �1 and �2 angles that are equal to 45.0o and 15.3o, respectively

(see Table II). Hence, they are significantly reduced with respect to the ones related to the measurements of Fig.6.

The h

n

value witnesses that the reconstructed signal amplitude is about 65% of the original one; moreover, Gibbs

oscillations are present that result in d2 value equal to 11%, see Table II. Note that the parameter d1 is not

measured.

The reference signal and the l

2 reconstructed one are Fourier transformed, see Fig.7(b). To better visualize the

output, transformed signals are restricted to the range [724, 1324]. It can be noted that, also in this case, the Fourier

transform of the reconstructed signal is equal to the Fourier transform of the reference one over the range labeled as

R1 in Fig.7(b). Differences apply at higher frequencies over the range R2, see Fig.7(b). The Fourier transform of the

reconstructed signal vanishes over the range R3; this justifies Gibbs oscillations that characterize the reconstructed

signal in Fig.7(a) and the failure in reconstructing correctly the signal level.
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The signal reconstructed at enhanced resolution in the l

p subspaces with p = 1.8, 1.5 and 1.2 is shown in

Fig.7(a). The reconstructed signals well fit the reference signal and the abrupt discontinuity is well reconstructed.

To quantify the reconstruction accuracy, �1, �2, h
n

, d2 and co are measured, see Table II. Even in this case, as far

as for the previous experiment, the Banach subspaces provide a better reconstruction of the abrupt discontinuity.

In fact, �1 and �2 are always smaller than the correspondent l

2 ones (45.0o and 15.3o). Their value decreases

for decreasing p and the minimum value (10.6o and 6.9o) is achieved at p = 1.2. d2 decreases for decreasing p

becoming negligible at p = 1.2 (1%). In addition, one can note that, unlike the l

2 case, in the l

p subspaces the

signal level is better reconstructed, see h

n

in Table II. In fact, h
n

is always larger that the correspondent l2 one

and gets closer to one for decreasing p. The best performance is obtained at p = 1.2 (h
n

= 1.04), witnessing that

at p = 1.2 the signal level is well-reconstructed. With respect to the correlation coefficient, it can be noted that

even in this case Banach subspaces allow the best reconstruction performance, see co in Table II. However, unlike

the previous experiment where all the Banach subspaces resulted in the same co value, here co value increases for

decreasing p, reaching the maximum (co = 0.94) at p = 1.2. This analysis confirms that the best reconstruction

performance is achieved at p = 1.2.

The Fourier transform of the l

p reconstructed signals is shown in Fig.7(b). As far as for the l

2 case, even in l

p the

transformed reconstructed signals are equal to the transformed reference one in R1 while showing some differences

in R2. The difference between l

2 and l

p is observed in R3 where the l

p subspaces allow reconstructing the signal

even in R2 leading to a reduction of Gibbs oscillations for decreasing p. Note that, even in this case, all the

transformed signals vanish in R3.

Moreover, it can be noted that for decreasing p, the Fourier transform of the reconstructed signals better fits the

main lobe of F (x2). This justifies the best reconstruction of the reference signal provided by l

1.2
.

The R function (17) is shown in Fig.8 for both Hilbert and Banach subspaces. As far as for the previous exper-

iment, for decreasing p, the height of R increases and its width decreases. To quantify the resolution enhancement

capability, the same approach, used in the previous experiment, is adopted. In this case, W is equal to 38, 36, 22

and 14 for p = 2, 1.8, 1.5 and 1.2, respectively. Hence, the spatial resolution gets finer for decreasing p. It can

be noted that, due to the linearity of the l

2 functional, both in the previous and in this experiment the same spatial

resolution is achieved, i.e. W = 38. Moreover, in the previous experiment W decreased from 37 down to 32 for

p = 1.8 down to p = 1.2. In this experiment, a stronger reduction is obtained since W decreases from 36 down to

14 for p = 1.8 down to p = 1.2. This implies that when spot signals are considered the reconstruction undertaken

in Banach subspaces significantly outperforms the Hilbert one.

Even in this case, the Banach spaces p = 1.1 and p = 1.05 are discussed in Table II. It can be noted that the

reconstruction performance is similar to the one obtained using p = 1.2 but for the parameters h

n

and d2. The

former one is significantly larger than the p = 1.2 one, witnessing that the signal amplitude is badly reconstructed.
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d2 is smaller than the p = 1.2 one, witnessing that practically negligible Gibbs oscillations are present.

Even in this case the reconstruction fails in the Banach space p = 1, since the signal model is only almost sparse

[15]. According to [15], when an almost sparse signal is considered, p > 1 performs better than p = 1.

B. Noisy-case

To analyze reconstruction performance in the noisy case, Monte Carlo simulation is used that consists of applying

several noise realizations to the measurements resulting from the two reference signals.

The noise follows a zero-mean Gaussian distribution whose standard deviation is 10%. Note that this is a real-

istic noise level that, for instance, is typically used when analyzing microwave radiometer [16]. For each noisy

measurement, the signal is reconstructed both in Hilbert (10) and in Banach (11) subspaces. Finally, the mean and

the standard deviation of the parameters, introduced in the noise-free case, are evaluated. In addition, to analyze

the trade-off between regularization and noise amplification, two c values (c = 1 and c = 2) are considered in

the discrepancy principle (9). The former corresponds to use the estimate of the 2-norm of the error; while c = 2

implies that more regularization is introduced.

After the previous noise-free experiments, now the third experiment addresses reconstruction performance in Hilbert

and Banach subspaces using noisy measurements related to the signal x1 (see Fig. 2). The mean and the standard

deviation of the parameters evaluated for both the measurements and the reconstructed signals are listed in Table

III, for both c = 1 and c = 2.

It can be noted that noise affects the measurements that result in a non-zero value of both d1 and d2. The parameters

evaluated considering the reconstructions in Hilbert and Banach subspaces demonstrate that the reconstructions are

robust with respect to the noise, since they exhibit a trend similar to the noise-free cases.

Even in this noisy case, �1 and �2 decrease for decreasing p; while d1 (d2) increases (decreases) for decreasing

p. In addition, the achieved spatial resolution gets finer for decreasing p, indeed the parameter W, when c = 2 is

used, is equal to 51, 50, 45 and 37 for p = 2, 1.8, 1.5 and 1.2, respectively. The significant reduction of the W

parameter at p = 1.2 comes at a cost in terms of reconstructed signal noise level.

It can be noted that the standard deviation of all the parameters increases for decreasing p. It means that, for smaller

p, the result is more dependent on the noise realization. A large co value applies both in Hilbert and in Banach

subspaces witnessing that a high-quality reconstruction is obtained.

Results, obtained using c = 2 (see Table III), show that, when this signal model is considered, the difference

between c = 1 and c = 2 is negligible.

With respect to the reconstructions obtained using p < 1.2 (not shown), it a trend similar to the noise-free cases is

obtained. Hence, hereinafter those cases are not furthered.

The fourth experiment addresses reconstruction performance in Hilbert and in Banach subspaces using noisy

measurements related to the spot signal x2 (see Fig.6).
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The mean and the standard deviation of the parameters evaluated for both the measurements and the reconstructed

signals are listed in Table IV for both c = 1 and c = 2.

It can be noted that the noise affects the measurements that result in a non-zero d2. The parameters, evaluated con-

sidering the reconstructions in Hilbert and in Banach subspaces, demonstrate that, also in this case, reconstructions

are robust with respect to the noise, since again they exhibit a trend similar to the noise-free ones. The parameters

�1 and �2 show that, even in this case, a remarkable reconstruction of the abrupt discontinuities is achieved when

decreasing p. In fact, �1 and �2 values related to the l

p reconstructions are always smaller than the l

2 ones. The

best performance is obtained at p = 1.2 (27.5o and 12.3o). These numbers, although larger than the correspondent

noise-free ones (see Table II), demonstrate that the l

1.2 subspace provides the best reconstruction even in the noisy

case. Similar comments apply for d2 that shows that negligible oscillations are obtained for p = 1.2. Note also

that d2 values are significantly smaller than the noise-free ones; this is due to the fact that regularization leads to

smooth solution. The co values demonstrate that valuable reconstruction performance is obtained in all the cases.

W decreases for decreasing p, witnessing that the finest spatial resolution is obtained when p = 1.2.

It is important to remark that, as far as for the noise-free case, when spot-like discontinuities are considered, the

reconstruction undertaken in the l

1.2 significantly outperforms the reconstructions obtained in all the other subspaces.

IV. CONCLUSIONS

In this study, the properties of the signal reconstructed in Hilbert and Banach subspaces are analyzed. A common

theoretical framework is used to address the reconstruction as a constraint minimization problem and, therefore,

to allow a fair intercomparison of the reconstructions performance independently of the specific reconstruction

algorithm.

A measurement system that mimics an actual microwave remote sensing probe is used and two reference signal

models, which account for abrupt and spot-like discontinuities, are considered to analyze the reconstruction perfor-

mance in the two subspaces and both in the noise-free and noisy cases. The main outcomes of this study can be

summarized as follows:

• When the noise-free case is considered:

– All the l

p reconstructions with 1 < p  2 result in good performance.

– When the abrupt discontinuity is considered, the reconstruction performance slightly improves at descend-

ing p, given that p > 1. However, reconstructions undertaken in Banach subspaces exhibit additional

oscillations when the background is not properly accounted for.

– When the spot-like discontinuity is considered, the reconstructions obtained in Banach subspaces are

significantly better than the correspondent Hilbert one.

• When the noisy case is considered:
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– The reconstruction performance degrades in all the subspaces.

– When the abrupt discontinuity is considered, the reconstruction performance slightly improves at descend-

ing p, given that p > 1. The significant reduction of the W parameter at p  1.2 is fictitious since it

accounts for noise and oscillations too.

– When the spot-like discontinuity is considered, the reconstruction performance significantly improves at

descending p, given that p > 1.

• Although reconstructions performance improves when 1 < p < 1.2, this is contrasted by algorithm instability.

Hence, the best compromise is achieved at p = 1.2.

• The Banach space p = 1 dramatically fails in the reconstructions since both the reference signals are not sparse

enough.
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TABLE I

PARAMETERS RELATED TO THE FIRST EXPERIMENT.

measurements x

rec

in l

2
x

rec

in l

1.8
x

rec

in l

1.5
x

rec

in l

1.2
x

rec

in l

1.1
x

rec

in l

1.05

h

n

1 1.0014 1.0016 1.0017 1.002 1.001 1.001

�1 49o 19.3o 17.6o 14.6o 11.7o 10.7o 8.8o

�2 30o 14.1o 12.4o 10.9o 9.3o 8.8o 7.4o

d1 0% 8% 9% 11% 14% 16% 17%

d2 0% 8% 6% 3% 0.5% 0.2% 0.08%

co 0.97 0.99 0.99 0.99 0.99 0.99 0.99

W 67 38 37 36 32 30 28

Fig. 1. Sketch of the two sampling grids used in this study (restricted to the range 650-750 samples). “grid 1” is the sampling grid used to

simulate the measurement system, which performs m = 64 measurements, see magenta vertical lines. “grid 2” is the n = 1400 samples grid

used to reconstruct the signal at finer spatial resolution, see blue vertical lines. Note that the reference antenna pattern G(z� ir), which in this

figure is centered in i = 32, is sampled using “grid 2” (see dotted red line).
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Fig. 2. Reference signal x1 (continuous black line) and simulated measurements (dotted cyan line).

TABLE II

PARAMETERS RELATED TO THE SECOND EXPERIMENT.

measurements x

rec

in l

2
x

rec

in l

1.8
x

rec

in l

1.5
x

rec

in l

1.2
x

rec

in l

1.1
x

rec

in l

1.05

h

n

0.26 0.65 0.69 0.81 1.04 1.32 1.34

�1 80o 45.0o 37.2o 23.6o 10.6o 10.5o 10.4o

�2 16.3o 15.3o 14.1o 10.0o 6.9o 6.6o 6.4o

d1 � � � � � � �

d2 0% 11% 9% 5% 1% 0.5% 0.3%

co 0.54 0.79 0.83 0.89 0.94 0.93 0.93

W 67 38 36 22 14 14 14
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Fig. 3. (a) Reference signal (black line) and reconstructed signal in l

2 subspace (red x-mark) and in l

p subspaces with p = 1.8 (blue star),

p = 1.5 (magenta square) and p = 1.2 (green circle), shown in the range [0, 500] samples. (b) Reference signal (black lines) and reconstructed

signal in l

2 subspace (red x-mark) and in l

p subspaces with p = 1.8 (blue star), p = 1.5 (magenta square) and p = 1.2 (green circle) in the

Fourier domain. Note that R1, R2 and R3 refer to the range [998 : 1024], [977 : 997] and [1 : 976], respectively.
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Fig. 4. Sketch of the linear system that rules the transformation of x into x

rec

. The system is given by the cascade of two sub-systems related

to direct (Ax = b) and the reconstruction(A†
b = x

rec

) problem

Fig. 5. The R function for p = 2 (red x-mark), p = 1.8 (blue star), 1.5 (magenta square) and 1.2 (green circle).
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Fig. 6. Reference signal x2 and simulated measurements.

TABLE III

MEAN (STANDARD DEVIATION) OF THE PARAMETERS RELATED TO THE THIRD EXPERIMENT.

c measurements x

rec

in l

2
x

rec

in l

1.8
x

rec

in l

1.5
x

rec

in l

1.2

h

n

c = 1
1.004 (0.000)

0.99 (0.001) 0.99 (0.002) 0.99 (0.003) 0.99 (0.005)

c = 2 0.99 (0.001) 0.99 (0.002) 0.99 (0.003) 0.99 (0.005)

�1

c = 1
49.2o (0.6o)

19.6o (1.8o) 17.9o (2.3o) 16.0o (2.2o) 12.4o (2.9o)

c = 2 19.6o (1.9o) 18.3o (2.0o) 16.0o (2.1o) 13.0o (2.5o)

�2

c = 1
30.0o (0.5o)

17.1o (1.3o) 16.8o (2.0o) 15.0o (2.1o) 11.8o (2.7o)

c = 2 17.6o (1.8o) 16.8o (2.0o) 15.0o (2.1o) 11.8o (2.7o)

d1
c = 1

1% (0.6%)
8% (2%) 8% (2%) 12% (2%) 18% (1%)

c = 2 7% (2%) 8% (2%) 11% (2%) 17% (1%)

d2
c = 1

1% (0.6%)
8% (1%) 6% (2%) 3% (2%) 1% (1%)

c = 2 8% (1%) 6% (2%) 3% (2%) 1% (1%)

co

c = 1
0.97 (0.001)

0.98 (0.002) 0.98 (0.002) 0.98 (0.002) 0.98 (0.003)

c = 2 0.98 (0.001) 0.98 (0.001) 0.98 (0.001) 0.98 (0.003)

W

c = 1
67

51 (4.1) 50 (4.1) 45 (4.2) 37 (6.9)

c = 2 52 (4.2) 51 (4.2) 45 (4.4) 39 (6.6)
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Fig. 7. (a) Reference signal (black line) and reconstructed signal in l

2 subspace (red x-mark) and in l

p subspaces with p = 1.8 (blue star),

p = 1.5 (magenta square) and p = 1.2 (green circle), shown in the range [200, 600]. (b) Reference signal (black line) and reconstructed signal

in l

2 subspace (red x-mark) and in l

p subspaces with p = 1.8 (blue star), p = 1.5 (magenta square) and p = 1.2 (green circle) in the Fourier

domain. Note that R1, R2 and R3 refer to the range [994 : 1054], [972 : 993] [ [1055 : 1076] and [1 : 971] [ [1077 : 2048], respectively.
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Fig. 8. The R function for p = 2 (red x-mark), p = 1.8 (blue star), 1.5 (magenta square) and 1.2 (green circle).
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TABLE IV

MEAN (STANDARD DEVIATION) OF THE PARAMETERS RELATED TO THE FOURTH EXPERIMENT.

c measurements x

rec

in l

2
x

rec

in l

1.8
x

rec

in l

1.5
x

rec

in l

1.2

h

n

c = 1
0.26 (0.01)

0.44 (0.04) 0.44 (0.04) 0.53 (0.06) 0.74 (0.11)

c = 2 0.37 (0.02) 0.37 (0.02) 0.43 (0.03) 0.60 (0.05)

�1

c = 1
80.0o (4.8o)

73.6o (4.6o) 68o (5.9o) 54.7o (8.7o) 27.5 (9.7o)

c = 2 78o (2.5o) 75o (3.25o) 65.1o (5o) 39.1 (7.6o)

�2

c = 1
44.2o (2.05o)

31.5o (3.5o) 27.8o (3.5o) 21.0o (3.5o) 12.3o (4.0o)

c = 2 36.5o (2.5o) 32.9o (2.6o) 26.07o (2.6o) 16.07o (2.4o)

d1
c = 1

�
� � � �

c = 2 � � � �

d2
c = 1

1% (0.5%)
6% (2%) 4% (2%) 3% (3%) 1% (3%)

c = 2 4% (1%) 3% (1%) 1% (0.8%) 0.6% (0.5%)

co

c = 1
0.53 (0.01)

0.65 (0.01) 0.69 (0.02) 0.76 (0.03) 0.87 (0.03)

c = 2 0.63 (0.01) 0.66 (0.01) 0.73 (0.02) 0.84 (0.02)

W

c = 1
67

51.6 (6.3) 51.4 (6.3) 46.4 (6.2) 27 (9.3)

c = 2 63 (4.3) 62 (5) 56 (5.2) 39 (5.0)
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