Loading [MathJax]/extensions/MathMenu.js
Direction-of-Arrival Estimation for Radar Ice Sounding Surface Clutter Suppression | IEEE Journals & Magazine | IEEE Xplore

Direction-of-Arrival Estimation for Radar Ice Sounding Surface Clutter Suppression


Abstract:

Ice sounding radars are able to measure ice sheets by profiling their glaciological features from the surface to the bedrock. The current airborne and, in particular, fut...Show More

Abstract:

Ice sounding radars are able to measure ice sheets by profiling their glaciological features from the surface to the bedrock. The current airborne and, in particular, future space-based systems are suffering from off-nadir surface clutter, which can mask the depth signal of interest. The most recent surface clutter suppression techniques are based on multi-phase-center systems combined with sophisticated coherent postprocessing. The performance of the techniques can be improved by accurate direction-of-arrival (DOA) estimates of the surface clutter. This paper deals with data-driven DOA estimation for surface clutter signals, which includes a formulation of the mathematical foundation of spatial aliasing. DOA estimation is applied to data acquired with the P-band POLarimetric Airborne Radar Ice Sounder at the Jutulstraumen Glacier, Antarctica. The effects of spatial aliasing related to a large phase center spacing are analyzed, and an unwrapping procedure is presented and applied to the data. Finally, DOA estimation of full-scene data is analyzed and used to show an along-track and incidence (off-nadir) angle dependent variation of the effective scattering center of the surface return, which is caused by a varying penetration depth.
Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 53, Issue: 9, September 2015)
Page(s): 5170 - 5179
Date of Publication: 23 April 2015

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.