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Abstract

In blind hyperspectral unmixing (HU), the pure-pixel assumption is well-known to be pow-
erful in enabling simple and effective blind HU solutions. However, the pure-pixel assumption is
not always satisfied in an exact sense, especially for scenarios where pixels are heavily mixed. In
the no pure-pixel case, a good blind HU approach to consider is the minimum volume enclosing
simplex (MVES). Empirical experience has suggested that MVES algorithms can perform well
without pure pixels, although it was not totally clear why this is true from a theoretical view-
point. This paper aims to address the latter issue. We develop an analysis framework wherein
the perfect endmember identifiability of MVES is studied under the noiseless case. We prove
that MVES is indeed robust against lack of pure pixels, as long as the pixels do not get too
heavily mixed and too asymmetrically spread. The theoretical results are verified by numerical
simulations.

1 Introduction

Signal, image and data processing for hyperspectral imaging has recently received enormous atten-
tion in remote sensing [1,2], having numerous applications such as environmental monitoring, land
mapping and classification, and object detection. Such developments are made possible by exploit-
ing the unique features of hyperspectral images, most notably, their high spectral resolutions. In
this scope, blind hyperspectral unmixing (HU) is one of the topics that has aroused much interest
not only from remote sensing [3], but also from other communities recently [4–7]. Simply speaking,
the problem of blind HU is to solve a problem reminiscent of blind source separation in signal pro-
cessing, and the desired outcome is to unambiguously separate the endmember spectral signatures
and their corresponding abundance maps from the observed hyperspectal scene, with no or little
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prior information of the mixing system. Being given little information to solve the problem, blind
HU is a challenging—but also fundamentally intriguing—problem with many possibilities. Readers
are referred to some recent articles for overview of blind HU [3,4], and here we shall not review the
numerous possible ways to perform blind HU. The focus, as well as the contribution, of this paper
lie in addressing a fundamental question arising from one important blind HU approach, namely,
the minimum volume enclosing simplex (MVES) approach.

Also called simplex volume minimization or minimum volume simplex analysis (MVSA) [8], the
MVES approach adopts a criterion that exploits the convex geometry structures of the observed
hyperspectral data to blindly identify the endmember spectral signatures. In the HU context the
MVES concepts were first advocated by Craig back in the 1990’s [9], although it is interesting
to note an earlier work in mathematical geology [10] which also described the MVES intuitions;
see also [4] for a historical note of convex geometry, and the references therein. In particular,
Craig’s work proposes the use of simplex volume as a metric for blind HU, which is later used in
some other blind HU approaches such as simplex volume maximization [11–13] and non-negative
matrix factorization [14]. The MVES criterion is to minimize the volume of a simplex, subject to
constraints that the simplex encloses all hyperspectral data points. This amounts to a nonconvex
optimization problem, and unlike the simplex volume maximization approach we do not seem to
have a simple (closed-form) scheme for tackling the MVES problem. However, recent advances
in optimization have enabled us to handle MVES implementations efficiently. The works in [8]
and [6] independently developed practical MVES optimization algorithms based on iterative linear
approximation and alternating linear programming, respectively. The GPU-implementation of the
former is also considered very recently [15]. In addition, some recent MVES algorithm designs
deal with noise and outlier sensitivity issues by robust formulations, such as the soft constraint
formulation in SISAL [16] and the chance-constrained formulation in [17]; the pixel elimination
method in [18] should also be noted. We should further mention that MVES also finds application in
analytical chemistry [19], and that fundamentally MVES has a strong link to stochastic maximum-
likelihood estimation [20].

What makes MVES special is that it seems to perform well even in the absence of pure pixels,
i.e., pixels that are solely contributed by a single endmember. To be more accurate, extensive
simulations found that MVES may estimate the ground-truth endmembers quite accurately in
the noiseless case and without the pure-pixel assumption; see, e.g., [6, 20, 21]. At this point we
should mention that while the pure-pixel assumption is elegant and has been exploited by some
other approaches, such as simplex volume maximization (also [7] for a more recent work on near-
separable non-negative matrix factorization), to arrive at remarkably simple blind HU algorithms,
it is also an arguably restrictive assumption in general. In the HU context it has been suspected
that MVES should be resistant to lack of pure pixels, but it is not known to what extent MVES can
guarantee perfect endmember identifiability under no pure pixels. Hence, we depart from existing
MVES works, wherein improved algorithm designs are usually the theme, and ask the following
questions: can the endmember identifiability of the MVES criterion in the no pure-pixel case be
theoretically pinned down? If yes, how bad (in terms of how heavy the data are mixed) can MVES
withstand and where is the limit?

The contribution of this paper is theoretical. We aim to address the aforementioned questions
through analysis. Previously, identifiability analysis for MVES was done only for the pure-pixel
case in [6], and for the three endmember case in the preliminary version of this paper [22]. This
paper considers the no pure-pixel case for any number of endmembers. We prove that MVES can
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indeed guarantee exact and unique recovery of the endmembers. The key condition for attaining
such exact identifiability is that some measures concerning the pixels’ purity and geometry (to
be defined in Section 3.1) have to be above a certain limit. The condition mentioned above is
equivalent to the pure-pixel assumption for the case of two endmembers, and is much milder than
the pure-pixel assumption for the case of three endmembers or more. Numerical experiments will
be conducted to verify the above claims.

This paper is organized as follows. The problem statement is described in Section 2. The MVES
identifiability analysis results and the associated proofs are given in Sections 3 and 4, respectively.
Numerical results are provided in Section 5 to verify our theoretical claims, and we conclude the
paper in Section 6.

Notations: R
n and R

m×n denote the sets of all real-valued n-dimensional vectors and m-by-n
matrices, respectively (resp.); ‖·‖ denotes the Euclidean norm of a vector; xT denotes the transpose
of x and the same applies to matrices; given a set A ⊆ R

n, we denote affA and convA as the affine
hull and convex hull of A, resp. (see [23]), intA and bdA as the interior and boundary of A, resp.,
and volA as the volume of A; the dimension of a set A ⊆ R

n is defined as the affine dimension
of affA; x ≥ 0 means that x is elementwise non-negative; I and 1 denote an identity matrix and
all-one vector of appropriate dimension, resp.; ei denotes a unit vector whose ith element is [ei]i = 1
and jth element is [ei]j = 0 for all j 6= i.

2 Problem Statement

In this section we review the background of the MVES identifiability analysis challenge.

2.1 Preliminaries

Before describing the problem, some basic facts about simplex should be mentioned. A convex hull

conv{b1, . . . , bN} =

{

x =

N
∑

i=1

θibi

∣

∣

∣

∣

θ ≥ 0,1Tθ = 1

}

,

where b1, . . . , bN ∈ R
M , M ≥ N − 1, is called an (N − 1)-dimensional simplex if b1, . . . , bN are

affinely independent. The volume of a simplex can be determined by [24]

vol(conv{b1, . . . , bN}) = 1

(N − 1)!

√

det(B̄T B̄), (1)

where B̄ = [ b1 − bN , b2 − bN , . . . , bN−1 − bN ] ∈ R
M×(N−1). A simplex is called regular if the

distances between any two vertices are the same.

2.2 Blind HU Problem Setup

We adopt a standard blind HU problem formulation (readers are referred to the literature, e.g., [3,4],
for coverage of the underlying modeling aspects). Concisely, consider a hyperspectral scene wherein
the observed pixels can be modeled as linear mixtures of endmember spectral signatures

xn = Asn, n = 1, . . . , L, (2)
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where xn ∈ R
M denotes the nth pixel vector of the observed hyperspectral image, with M being

the number of spectral bands; A = [ a1, . . . ,aN ] ∈ R
M×N is the endmember signature matrix,

with N being the number of endmembers; sn ∈ R
M is the abundance vector of the nth pixel; L is

the number of pixels. The problem is to identify the unknown A from the observations x1, . . . ,xL,
thereby allowing us to unmix the abundances (also unknown) blindly. To facilitate the subsequent
problem description, the noiseless case is assumed. The following assumptions are standard in the
blind HU context and will be assumed throughout the paper: (i) every abundance vector satisfies
sn ≥ 0 and 1Tsn = 1 (i.e., the abundance non-negativity and sum-to-one constraints); (ii) A has
full column rank; (iii) [ s1, . . . sL ] has full row rank; (iv) N is known.

2.3 Minimum-Volume Enclosing Simplex

This paper concentrates on the MVES approach for blind HU. MVES was inspired by the following
intuition [9]: if we can find a simplex that circumscribes the data points x1, . . . ,xL and yields
the minimum volume, then the vertices of such a simplex should be identical to, or close to,
the true endmember spectral signatures a1, . . . ,aN themselves. Figure 1 shows an illustration to
support why the aforementioned intuition may be true. Mathematically, the MVES criterion can
be formulated as an optimization problem

min
b1,...,bN∈RM

vol(conv{b1, . . . , bN})

s.t. xn ∈ conv{b1, . . . , bN}, n = 1, . . . , L,
(3)

wherein the solution of problem (3) is used as an estimate of A. Problem (3) is NP-hard in gen-
eral [25]; this means that the optimal MVES solution is unlikely to be computationally tractable for
any arbitrarily given {xn}Ln=1. Notwithstanding, it was found that carefully designed algorithms for
handling problem (3), though being generally suboptimal in view of the NP-hardness of problem (3),
can practically yield satisfactory endmember identification performance; see, e.g., [6,8,19,20], and
also [14, 16–18] for the noisy case. In this paper, we do not consider MVES algorithm design.
Instead, we study the following fundamental, and very important, question: When will the MVES
problem (3) provide an optimal solution that is exactly and uniquely given by the true endmember
matrix A (up to a permutation)?

It is known that MVES uniquely identifies A if the pure-pixel assumption holds [6], that is, if,
for each i ∈ {1, . . . , N}, there exists an abundance vector sn such that sn = ei. However, empirical
evidence has suggested that even when the pure-pixel assumption does not hold, MVES (more
precisely, approximate MVES by the existing algorithms) may still be able to uniquely identify A.
In this paper, we aim at analyzing the endmember identifiability of MVES in the no pure-pixel
case.

3 Main Results

This section describes the main results of our MVES identifiability analysis. As will be seen soon,
MVES identifiability in the no pure-pixel case depends much on the level of “pixel purity” of the
observed data set. To this end, we need to precisely quantify what “pixel purity” is. The first
subsection will introduce two pixel purity measures. The second subsection will then present the
main results, and the third subsection will discuss their practical implications.
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a1

a2

a3

T1 T2

Ta

Figure 1: A geometrical illustration of MVES. The dots are the data points {xn}, the number of
endmembers is N = 3, and T1, T2 and Ta are data-enclosing simplices. In particular, Ta is actually
given by Ta = conv{a1,a2,a3}. Visually, it can be seen that Ta has a smaller volume than T1 and
T2.

3.1 Pixel Purity Measures

A natural way to quantify pixel purity is to use the following measure

ρ = max
n=1,...,L

‖sn‖. (4)

Eq. (4) will be called the best pixel purity level in the sequel. A large ρ implies that there exist
abundance vectors whose purity is high, while a small ρ indicates more heavily mixed data. To
see it, observe that ‖s‖ ≤ 1 for any s ≥ 0, 1T s = 1, and equality holds if and only if s = ek for
any k; that is, a pure pixel. Moreover, it can be shown that 1√

N
≤ ‖s‖ for any s ≥ 0, 1Ts = 1,

and equality holds if and only if s = 1
N
1; that is, a heavily mixed pixel. Without loss of generality

(w.l.o.g.), we may assume
1√
N

< ρ ≤ 1,

where we rule out ρ = 1√
N
, which implies s1 = . . . = sL = 1

N
1 and leads to a pathological case.

The previously defined pixel purity level reflects the best abundance purity among all the
pixels, but says little on how the pixels are spread geometrically with respect to (w.r.t.) the various
endmembers. We will also require another measure, defined as follows

γ = sup{r ≤ 1 | R(r) ⊆ conv{s1, . . . , sL}}, (5)

where

R(r) = {s ∈ conv{e1, . . . ,eN} | ‖s‖ ≤ r}
= {s ∈ R

N | ‖s‖ ≤ r} ∩ conv{e1, . . . ,eN}. (6)

We call (5) the uniform pixel purity level; the reason for this will be illustrated soon. It can be
shown that

1√
N

≤ γ ≤ ρ.
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Also, if γ = 1, then the pure-pixel assumption is shown to hold.
To understand the differences between the pixel purity measures in (4) and (5), we first illustrate

how R(r) looks like in Figure 2. As can be seen (and as will be shown), R(r) is a ball on the affine
hull aff{e1, . . . ,eN} if r ≤ 1/

√
N − 1. Otherwise, R(r) takes a shape like a vertices-cropped version

of the unit simplex conv{e1, . . . ,eN}. In addition, it can be shown that (4) equals

ρ = inf{r | conv{s1, . . . , sL} ⊆ R(r)}.

In Figure 3, we give several examples with the abundances. From the figures, an interesting ob-
servation is that R(ρ) serves as a smallest R(r) that circumscribes the abundance convex hull
conv{s1, . . . , sL}, while R(γ) serves as a largest R(r) that is inscribed in conv{s1, . . . , sL}. More-
over, we see that if the abundances are spread in a relatively symmetric manner w.r.t. all the
endmembers, then ρ and γ are similar; this is the case with Figures 3(a)-3(c). However, ρ and γ
can be quite different if the abundances are asymmetrically spread; this is the case with Figure 3(d)
where some endmembers have pixels of high purity but some do not. Hence, the uniform pixel pu-
rity level γ quantifies a pixel purity level that applies uniformly to all the endmembers, not just to
the best.

e1

e3 e2

R(r)

(r ≤ 1/
√
2)

(a)

e1

e3 e2

R(r)

(r > 1/
√
2)

(b)

Figure 2: A geometrical illustration of R(r) in (6) for N = 3. We view R(r) by adjusting the
viewpoint to be perpendicular to the affine hull of {e1,e2,e3}.

3.2 Provable MVES Identifiability

Our provable MVES identifiability results are described as follows. To facilitate our analysis,
consider the following definition.

Definition 1 (minimum volume enclosing simplex) Given an m-dimensional set U ⊆ R
n,

the notation MVES(U) denotes the set that collects all m-dimensional minimum volume simplices
that enclose U and lie in affU .
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e1

e2e3

R(ρ)

R(γ)

conv{s1, . . . , sL}

(a) γ < 1/
√
2, ρ < 1/

√
2

e1

e2e3

R(ρ)

R(γ) conv{s1, . . . , sL}

(b) γ > 1/
√
2, ρ > 1/

√
2

e1

e2e3

conv{s1, . . . , sL}
= R(ρ) = R(γ)

(c) γ = ρ = 1

e1

e2e3

R(ρ)

R(γ)

conv{s1, . . . , sL}

(d) γ < 1/
√
2, ρ > 1/

√
2

Figure 3: Examples with the abundance distributions and the corresponding best and uniform pixel
purity levels.
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Now, let

Te = conv{e1, . . . ,eN} ⊆ R
N ,

Ta = conv{a1, . . . ,aN} ⊆ R
M ,

denote the (N − 1)-dimensional unit simplex and the endmembers’ simplex, respectively. Also, for
convenience, let

XL = {x1, . . .xL}, SL = {s1, . . . sL},
denote the sets of all the observed hyperspectral pixels and abundance vectors, resp., and note
their dependence xn = Asn as described in (2). Under the above definition, the exact and unique
identifiability problem of the MVES criterion in (3) can be posed as a problem of finding conditions
under which

MVES(XL) = {Ta}.
Our first result reveals that the MVES perfect identifiability does not depend on A (as far as

A has full column rank):

Proposition 1 MVES(XL) = {Ta} if and only if MVES(SL) = {Te}.
The proof of Proposition 1, as well as those of the theorems to be presented, will be provided in
the next section. Proposition 1 suggests that to analyze the perfect MVES identifiability w.r.t.
the observed pixel vectors, it is equivalent to analyze the perfect MVES identifiability w.r.t. the
abundance vectors. One may expect that perfect identifiability cannot be achieved for too heavily
mixed pixels. We prove that this is indeed true.

Theorem 1 Assume N ≥ 3. If MVES(SL) = {Te}, then the best pixel purity level must satisfy
ρ > 1√

N−1
.

To get some idea, consider the example in Figure 3(a). Since Figure 3(a) does not satisfy the
condition in Theorem 1, it fails to provide exact recovery of the true endmembers. Theorem 1 is
only a necessary perfect identifiability condition. We also prove a sufficient perfect identifiability
condition, described as follows:

Theorem 2 Assume N ≥ 3. If the uniform pixel purity level satisfies γ > 1√
N−1

, then MVES(SL) =

{Te}.
Among the four examples in Figure 3, Figure 3(b) and Figure 3(c) are cases that satisfy the
condition in Theorem 2 and achieve exact and unique recovery of the true endmembers.

It is worthwhile to emphasize that the sufficient identifiability condition in Theorem 2 is much
milder than the pure-pixel assumption (which is equivalent to γ = 1) for N ≥ 3. In fact, the
pixel purity requirement 1/

√
N − 1 diminishes as N increases—which seems to suggest that MVES

can handle more heavily mixed cases as the number of endmembers increases. Thus, Theorem 2
provides a theoretical justification on the robustness of MVES against lack of pure pixels.

One may be curious about how Theorem 2 is proven. Essentially, the idea lies in finding a
connection between the MVES identifiability conditions of SL and R(γ) [cf. (5)-(6)]. In particular,
it is shown that if MVES(R(γ)) = {Te}, then MVES(SL) = {Te}. Subsequently, the problem is to
pin down the MVES identifiability condition of R(r). This turns out to be the core part of our
analysis, and the result is as follows.
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Theorem 3 For any 1/
√
N − 1 < r ≤ 1, we have MVES(R(r)) = {Te}; i.e., there is only one

MVES of R(r) for 1/
√
N − 1 < r ≤ 1 and that MVES is always given by the unit simplex.

As an example, Fig. 2.(b) is an instance where Theorem 3 holds; by visual observation of Fig. 2.(b),
we may argue that the MVES of R(r) for N = 3 and r > 1/

√
2 should be the unit simplex. Also,

we should note that the geometric problem in Theorem 3 is interesting in its own right, and the
result could be of independent interest in other fields.

Before we finish this subsection, we should mention the case of N = 2. While the number of
endmembers in practical scenarios is often a lot more than two, it is still interesting to know the
identifiability for N = 2.

Proposition 2 Assume N = 2. We have MVES(SL) = {Te} if and only if the pure-pixel assump-
tion holds.

We should recall that the pure-pixel assumption corresponds to γ = 1.

3.3 Further Discussion

We have seen that the uniform pixel purity level γ provides a key quantification on when MVES
achieves perfect endmember identifiability. Nevertheless, one may have these further questions:
How γ is related to the abundance pixel set SL exactly? Can the relationship be characterized in
an explicit and practically interpretable manner? For example, as can be observed in the three-
endmember illustrations in Fig. 3, satisfying the sufficient identifiability condition γ > 1/

√
N − 1

in Theorem 2 seems to require some abundance pixels to lie on the boundary of Te. However,
from the definition of γ in (5), it is not immediately clear how such a result can be deduced (e.g.,
how many pixels on the boundary, and which parts of the boundary?). Unfortunately, explicit
characterization of γ w.r.t. SL appears to be a difficult analysis problem. In fact, even computing
the value of γ for a given SL is generally an NP-hard problem1 [26].

Despite the aforementioned analysis bottleneck, our empirical experience suggests that if every
sn follows a continuous distribution that has a support covering R(r) for r > 1/

√
N − 1 (e.g.,

Dirichlet distributions), and the number of pixels L is large, there is a large probability for MVES
to achieve perfect identifiability. The numerical results in Section 5 will confirm this. Moreover,
we can study special, but still meaningful, cases. Herein we show one that uses the following
assumption:

Assumption 1 For every i, j ∈ {1, . . . , N}, i 6= j, there exists a pixel, whose index is denoted by
n(i, j), such that its abundance vector takes the form

sn(i,j) = αijei + (1− αij)ej , (7)

for some coefficient αij that satisfies 1
2 < αij ≤ 1.

Assumption 1 means that we can find pixels that are constituted by two endmembers, with one
dominating another as determined by the coefficient αij >

1
2 . Also, the pixels in (7) lie on the edges

of Te. Fig. 4 gives an illustration for N = 3. Note that Assumption 1 reduces to the pure-pixel
assumption if αij = 1 for all i, j. Hence, Assumption 1 may be seen as a more general assumption

1More accurately, verifying whether or not a convex body (R(r) here) belongs to a V-polytope (convSL here) has
been shown to be NP-hard [26].
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than the pure-pixel assumption. In the example of N = 3 in Fig. 4, we see that γ should increase
as αij’s increase. In fact, this can be proven to be true for any N ≥ 2.

Theorem 4 Under Assumption 1 and for N ≥ 2, the uniform pixel purity level satisfies

γ ≥
√

1

N

[

(Nα− 1)2

N − 1
+ 1

]

,

where
α = min

i,j∈{1,...,N}
i 6=j

αij

is the smallest value of αij ’s.

The proof of Theorem 4 is given in Section 4.6. Theorem 4 is useful in the following way. If we
compare Theorems 2 and 4, we see that the condition

√

1

N

[

(Nα− 1)2

N − 1
+ 1

]

>
1√

N − 1
,

implies exact unique identifiability of MVES. It is shown that the above equation is equivalent to

α >
2

N
,

for N ≥ 3. By also noting 1
2 < α ≤ 1 in Assumption 1, and the fact that 1

2 ≥ 2
N

for N ≥ 4, we
have the following conclusion.

Corollary 1 Suppose that Assumption 1 holds. For N = 3, the exact unique identifiability condi-
tion MVES(SL) = {Te} is achieved if αij > 2

3 for all i, j. For N ≥ 4, the condition MVES(SL) =
{Te} is always achieved (subject to 1

2 < αij ≤ 1 in Assumption 1).

The implication of Corollary 1 is particularly interesting for N ≥ 4—MVES for N ≥ 4 always
provides perfect identifiability under Assumption 1. However, we should also note that this result
is under the premise of Assumption 1. In particular, it is seen that to satisfy Assumption 1 for
general αij ’s, the number of pixels L should be no less than N(N − 1). This implies that we would
need more pixels to achieve perfect MVES identifiability as N increases.

We finish with mentioning some arising open problems. From the above discussion, it is natural
to further question whether (7) in Assumption 1 can be relaxed to combinations of three endmem-
bers, or more. Also, the whole work has so far assumed the noiseless case, and sensitivity in the
noisy case has not been touched. These challenges are left as future work.

4 Proof of The Main Results

This section provides the proof of the main results described in the previous section. Readers who
are more interested in numerical experiments may jump to Section 5.
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e1

e2e3
sn(2,3)sn(3,2)

sn(1,3)

sn(3,1)

sn(1,2)

sn(2,1)

R(1/
√
2)

Figure 4: Illustration of Assumption 1. N = 3, αij = 2/3 for all i, j.

4.1 Proof of Proposition 1

The following lemma will be used to prove Proposition 1:

Lemma 1 Let f(x) = Ax, where A ∈ R
M×N , M ≥ N , and suppose that A has full column rank.

(a) Let TG ⊂ R
N be an (N − 1)-dimensional simplex, and suppose TG ⊂ aff{e1, . . . ,eN}. We

have
vol(f(TG)) = α · vol(TG), (8)

where α =

√

det(ĀT Ā)
N

, and Ā = [ a1 − aN ,a2 − aN , . . . ,aN−1 − aN ]. Also, it holds true
that f(TG) ⊂ aff{a1, . . . ,aN}.

(b) Let TH ⊂ R
M be an (N − 1)-dimensional simplex, and suppose TH ⊂ aff{a1, . . . ,aN}. We

have

vol(f−1(TH)) =
1

α
· vol(TH), (9)

and f−1(TH) ⊂ aff{e1, . . . ,eN}.
The proof of Lemma 1 is relegated to Appendix A. Now, suppose that MVES(SL) = {Te}, but

MVES(XL) 6= {Ta}. Let TH be an MVES of XL. By the MVES definition (see Definition 1), we
have

XL ⊆ TH , TH ⊆ aff{x1, . . . ,xL},
vol(TH) ≤ vol(Ta).

(10)

Recall that [s1, . . . , sL ] is assumed to have full row rank and satisfy 1T sn = 1 for all n. From
these assumptions, one can prove that aff{s1, . . . , sL} = aff{e1, . . . ,eN}, and aff{x1, . . . ,xL} =
aff{a1, . . . ,aN}; see [27, Lemma 1] for example. Then, by applying Lemma 1.(b) to (10), we obtain

SL ⊆ f−1(TH), f−1(TH) ⊆ aff{e1, . . . ,eN},
vol(f−1(TH)) ≤ vol(f−1(Ta)) = vol(Te).

The above equation implies that Te is not the only MVES of SL, which is a contradiction.
On the other hand, suppose that MVES(XL) = {Ta}, but MVES(SL) 6= {Te}. This statement

can be shown to be a contradiction, by the same proof as above (particularly, the incorporation of
Lemma 1.(a)). The proof of Proposition 1 is therefore complete.
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4.2 Proof of Theorem 1

The proof is done by contradiction. Suppose that MVES(SL) = {Te}, but ρ ≤ 1√
N−1

. Recall

R(r) = Te ∩ {s ∈ R
N | ‖s‖ ≤ r}. (11)

The proof is divided into four steps.
Step 1: We show that any V ∈ MVES(R(ρ)) is also an MVES of SL. To prove it, note that

SL ⊆ R(ρ). (12)

Eq. (12) implies that

vol(U) ≤ vol(V), for all U ∈ MVES(SL), V ∈ MVES(R(ρ)). (13)

Also, since Te encloses R(ρ), we have

vol(V) ≤ vol(Te), for all V ∈ MVES(R(ρ)). (14)

Since we assume MVES(SL) = {Te} in the beginning, we observe from (13) and (14) that vol(U) =
vol(V) for all U ∈ MVES(SL), V ∈ MVES(R(ρ)). The above equality, together with (12), implies
that any V ∈ MVES(R(ρ)) is an MVES of SL (or satisfies V ∈ MVES(SL)).

Step 2: We give an alternative representation of (N−1)-dimensional simplices on aff{e1, . . . ,eN},
which will facilitate the proof. The affine hull aff{e1, . . . ,eN} can be equivalently expressed as

aff{e1, . . . ,eN} = {s = Cθ + d | θ ∈ R
N−1}, (15)

where

d =
1

N

N
∑

i=1

ei =
1

N
1,

and C ∈ R
N×(N−1) is the first N − 1 principal left singular vectors of R = [ e1 − d, . . . ,eN − d ];

see [6, 27]. We note that

R = I − 1

N
11T ,

which, as a standard matrix result, its first N − 1 principal left singular vector can be shown to be
any C such that

U =

[

C,
1√
N

1

]

(16)

is a unitary matrix. Or, equivalently, C is any semi-unitary matrix such that CTd = 0.
Recall that an (N − 1)-dimensional simplex V ⊆ aff{e1, . . . ,eN} can be written as

V = conv{v1, . . . ,vN},

where vi ∈ aff{e1, . . . ,eN} for all i. By (15), each vi ∈ aff{e1, . . . ,eN} can be represented by
vi = Cwi + d for some wi ∈ R

N−1. Applying this result to conv{v1, . . . ,vN}, we obtain the
following equivalent representation of V

V = {s = Cθ + d | θ ∈ W}, (17)

12



where
W = conv{w1, . . . ,wN}. (18)

Also, by the simplex volume formula (1) and the semi-unitarity of C, the following relation is shown

vol(V) = vol(W). (19)

Step 3: We show that there are infinitely many MVES of R(ρ) for 1√
N

< ρ ≤ 1√
N−1

. Consider

the following lemma.

Lemma 2 Let

C(r) = aff{e1, . . . ,eN} ∩ {s ∈ R
N | ‖s‖ ≤ r}. (20)

denote a 2-norm ball on aff{e1, . . . ,eN}. If 1√
N

< r ≤ 1√
N−1

, then R(r) in (11) equals C(r).

Proof of Lemma 2: Note that R(r) ⊆ C(r). Hence, to prove Lemma 2, it suffices to show
that C(r) ⊆ R(r). By the equivalent affine hull representation in (15), we can write C(r) = {s =
Cθ + d | ‖s‖ ≤ r}. By substituting s = Cθ + d into ‖s‖ ≤ r, we get, for any s ∈ C(r),

‖s‖2 ≤ r2 ⇐⇒‖θ‖2 + ‖d‖2 ≤ r2 (21a)

⇐⇒‖θ‖2 ≤ r2 − 1

N
, (21b)

where (21a) is obtained by using the orthogonality in (16); (21b) is by ‖d‖2 = 1
N
. Hence, C(r) can

be rewritten as
C(r) = {s = Cθ + d | ‖θ‖2 ≤ r2 − 1/N}. (22)

Moreover, by letting ci and ui denote the ith rows of C and U respectively, we have

si = [ci]Tθ + di (23a)

≥ −‖ci‖‖θ‖+ 1

N
(23b)

≥ −
√

N − 1

N
·
√

1

(N − 1) ·N +
1

N
= 0, (23c)

where (23b) is due to the Cauchy-Schwartz inequality; (23c) is due to (21b), r ≤ 1√
N−1

, and the

fact that 1 = ‖ui‖2 = 1
N

+ ‖ci‖2 (see (16) and note its orthogonality). Eq. (23) suggests that
any s ∈ C(r) automatically satisfies s ≥ 0, and hence, s ∈ R(r). We therefore conclude that
C(r) = R(r). �

By Lemma 2, we can replace R(ρ) by C(ρ) and consider the MVES of the latter. Suppose that
V ∈ MVES(C(ρ)). Our argument is that a suitably rotated version of V is also an MVES of C(ρ).
To be precise, use the representation in (17)-(18) to describe V. Comparing (17)-(18) and (22), we
see that C(ρ) ⊆ V is equivalent to

{θ | ‖θ‖2 ≤ ρ2 − 1/N} ⊆ W. (24)

From W, let us construct another simplex

V ′ = {s = CQθ + d | θ ∈ W}, (25)

13



where Q ∈ R
(N−1)×(N−1) is a unitary matrix. Due to (24), V ′ can be verified to satisfy C(ρ) ⊆ V ′.

Also, by observing the semi-unitarity of CQ, the volume of V ′ is shown to equal

vol(V ′) = vol(W) = vol(V).

In other words, V ′ is also an MVES of C(ρ). In fact, the argument above holds for any unitary Q.
Since there are infinitely many unitary Q for N ≥ 3 (note that Q ∈ R

(N−1)×(N−1)), we also have
infinitely many MVESs of C(ρ) for N ≥ 3.

Step 4: We combine the results in the above steps to draw conclusion. Step 1 shows that any
V ∈ MVES(R(ρ)) is also an MVES of SL, while Step 3 shows that R(ρ) has infinitely many MVESs
for ρ ≤ 1√

N−1
, N ≥ 3. This contradicts the assumption that there is only one MVES of SL. The

proof of Theorem 1 is therefore complete.

4.3 Proof of Theorem 2

To facilitate our proof, let us introduce the following fact.

Fact 1 Let C,D ⊆ R
n be two sets of identical dimension, with C ⊆ D. If D ⊆ T for some

T ∈ MVES(C), then T ∈ MVES(D) and MVES(D) ⊆ MVES(C).

Proof of Fact 1: Note that C ⊆ D implies that any T ′ ∈ MVES(D) is a simplex enclosing C.
Since T is a minimum volume simplex among all the C-enclosing simplices, we have

vol(T ) ≤ vol(T ′) for all T ′ ∈ MVES(D). (26)

Moreover, the condition D ⊆ T implies that T is also a D-enclosing simplex, and, as a result,
equality in (26) holds. It also follows that any T ′ ∈ MVES(D) is also an MVES of C. �

Now we proceed with the main proof.
Step 1: We show that

Te ∈ MVES(R(r)), for any r ≥ 1√
N − 1

. (27)

Note from the definition of R(r) in (6) that

C
(

1√
N−1

)

= R
(

1√
N−1

)

⊆ R(r) ⊆ Te, (28)

for any r ∈ [1/
√
N − 1, 1], where the first equality is by Lemma 2. We prove that

Lemma 3 The unit simplex Te is an MVES of C(1/
√
N − 1).

The proof of Lemma 3 is relegated to Appendix B. By applying Fact 1 and Lemma 3 to (28),
we obtain Te ∈ MVES(R(r)) for r ∈ [1/

√
N − 1, 1].

Step 2: We prove that

MVES(SL) ⊆ MVES(R(γ)), for γ ≥ 1√
N − 1

. (29)
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By the definition of γ in (5), we have

R(γ) ⊆ convSL ⊆ Te. (30)

Also, in Step 1, it has been identified that Te ∈ MVES(R(r)) for r ∈ [1/
√
N − 1, 1]. Hence, for

γ ≥ 1/
√
N − 1, we can apply Fact 1 to (30) to obtain

MVES(convSL) ⊆ MVES(R(γ)). (31)

Next, we use a straightforward fact in convex analysis: for a convex set T , the condition C ⊂ T is
the same as convC ⊂ T , and vice versa. In the context here, this implies that any MVES of convSL

also encloses SL, and the converse is also true. Hence, we have

MVES(convSL) = MVES(SL). (32)

By combining (31) and (32), Eq. (29) is obtained.
Step 3: We prove that

MVES(R(γ)) = {Te}, for γ >
1√

N − 1
. (33)

It has been shown in Step 1 that Te ∈ MVES(R(γ)). The question is whether there exists another
MVES T ′ ∈ MVES(R(γ)), with T ′ 6= Te. By Theorem 3, such a T ′ does not exist. Thus, (33) is
obtained.

Step 4: We combine the results in Steps 2 and 3. Specifically, by (29) and (33), we get
MVES(SL) ⊆ {Te}. As SL is enclosed by Te, we further deduce MVES(SL) = {Te}. Theorem 2 is
therefore proven.

4.4 Proof of Theorem 3

Let T ′ ∈ MVES(R(r)) be an arbitrary MVES of R(r) for 1/
√
N − 1 < r ≤ 1. We prove Theorem 3

by showing that T ′ = Te is always true. The proof is divided into three steps.
Step 1: We show that

T ′ ∈ MVES(R(1/
√
N − 1)).

To prove this, note that R(1/
√
N − 1) ⊆ R(r) for all 1/

√
N − 1 ≤ r ≤ 1. Also, it has been shown

in (27) that Te ∈ MVES(R(r)) for all 1/
√
N − 1 ≤ r ≤ 1. Applying Fact 1 to the above two results

yields
MVES(R(r)) ⊆ MVES(R(1/

√
N − 1)),

for all 1/
√
N − 1 ≤ r ≤ 1. Since T ′ ∈ MVES(R(r)) for 1/

√
N − 1 < r ≤ 1, it follows that

T ′ ∈ MVES(R(1/
√
N − 1)) is also true.

Step 2: To proceed further, we apply the equivalent representation in (17)-(18) to rewrite Te
as

Te = {s = Cθ + d | θ ∈ We} (34)

for some (N − 1)-dimensional simplex We ⊆ R
N−1. Similarly, we can characterize T ′ by

T ′ = {s = Cθ + d | θ ∈ W ′} (35)
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for some (N−1)-dimensional simplex W ′ ⊆ R
N−1. Also, by noting R(r) = Te∩C(r), the expression

of C(r) in (22), and R(r) = C(r) for r = 1/
√
N − 1 (see Lemma 2), R(r) can be expressed as

R(r) =

{

{s = Cθ + d | θ ∈ B(
√

r2 − 1/N)}, r = 1√
N−1

{s = Cθ + d | θ ∈ We ∩ B(
√

r2 − 1/N )}, r > 1√
N−1

(36)

where
B(r) = {θ ∈ R

N−1 | ‖θ‖ ≤ r}. (37)

Now, by comparing (35)-(36), the following result can be proven:

T ′ ∈ MVES(R(r)) ⇐⇒ W ′ ∈







MVES

(

B(
√

r2 − 1/N )
)

, r = 1√
N−1

MVES

(

We ∩ B(
√

r2 − 1/N )
)

, r > 1√
N−1

(38)

The proof of (38) is analogous to that of Proposition 1, and will not be repeated here.
Step 3: From the equivalent representation (38), we further deduce the following results: i)

We,W ′ ∈ MVES(B(
√

r2 − 1/N )) for r = 1/
√
N − 1, which is due to Step 1 and (27); ii) We ∩

B(
√

r2 − 1/N ) ⊆ W ′ for all r > 1/
√
N − 1, which is due to the underlying assumption that

T ′ ∈ MVES(R(r)) for 1/
√
N − 1 < r ≤ 1. Consider the following lemma:

Lemma 4 Suppose that W,W ′ ∈ MVES(B(r)), where B(r) is defined in (37). Also, suppose that
R = W ∩ B(r̄) ⊆ W ′ for some r̄ > r > 0. Then we have W = W ′.

The proof of Lemma 4 is relegated to Appendix C. By Lemma 4, we obtain We = W ′, and
consequently, Te = T ′.

4.5 Proof of Proposition 2

Assume N = 2, and let conv{b1, b2} be an MVES of SL, where b1, b2 ∈ aff{e1,e2} ⊆ R
2. Using

the simple fact aff{e1,e2} = {s ∈ R
2 | s1 + s2 = 1}, we can write

b1 =

[

β1
1− β1

]

, b2 =

[

β2
1− β2

]

,

for some coefficients β1, β2 ∈ R. By the same spirit, every abundance vector sn (for N = 2) can be
written as

sn =

[

αn

1− αn

]

, n = 1, . . . , L,

where 0 ≤ αn ≤ 1. From the above expressions, it is easy to show that the MVES enclosing
property sn ∈ conv{b1, b2} is equivalent to

β2 ≤ αn ≤ β1, n = 1, . . . , L, (39)

where we assume β1 ≥ β2 w.l.o.g. Moreover, from the simplex volume formula in (1), the volume
of conv{b1, b2} is

vol(conv{b1, b2}) = β1 − β2. (40)
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From (39)-(40), it is immediate that conv{b1, b2} is a minimum volume simplex enclosing SL if and
only if

β2 = min
n=1,...,L

αn, β1 = max
n=1,...,L

αn. (41)

Now, consider perfect identifiability {b1, b2} = {e1,e2}, which is equivalent to β1 = 1, β2 = 0.
Putting the above conditions into (41), we see that perfect identifiability is achieved if and only
if the pure-pixel assumption holds; i.e., there exist two pixels, indexed by n1 and n2, such that
sn1

= e1 and sn2
= e2 (or αn1

= 1, αn2
= 0), resp.

4.6 Proof of Theorem 4

Let
pij = αei + (1− α)ej , (42)

for i, j ∈ {1, . . . , N}, i 6= j, and recall α = mini 6=j αij . It can be verified that each pij is a convex
combination of sn(i,j) and sn(j,i) in (7). Thus, every pij satisfies pij ∈ convSL. For notational
convenience, let

P = {pij}i,j∈{1,...,N}, i 6=j

denote the set that collects all the pij ’s. By the result pij ∈ convSL, we have convP ⊆ convSL,
and consequently,

R(r) ⊆ convSL ⇐= R(r) ⊆ convP.

Applying the above implication to γ in (5) yields

γ ≥ sup{r≤ 1 | R(r) ⊆ convP} (43)

Eq. (43) has an explicit expression. To show it, let us first consider the following lemma.

Lemma 5 For any α ∈ (0.5, 1], convP is equivalent to

convP = {s ∈ Te | si ≤ α, i = 1, . . . , N}. (44)

The proof of Lemma 5 is relegated to Appendix E. By using Lemma 5, and observing the expressions
of R(r) in (5) and convP in (44), we see the following equivalence

R(r) ⊆ convP ⇐⇒ max
i=1,...,N

si ≤ α for all s ∈ R(r)

⇐⇒ sup
s∈R(r)

max
i=1,...,N

si ≤ α, (45)

for 1√
N

≤ r ≤ 1 (note that R(r) = ∅ for r < 1√
N
). Next, we solve the maximization problem in

(45). The result is summarized in the following lemma.

Lemma 6 Let
α⋆(r) = sup

s∈R(r)
max

i=1,...,N
si,

where N ≥ 2 and 1√
N

≤ r ≤ 1. The optimal value α⋆(r) has a closed-form expression

α⋆(r) =
1 +

√

(N − 1)(Nr2 − 1)

N
.
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The proof of Lemma 6 is shown in Appendix F. Now, by applying Lemma 6 and (45) to (43), we
get

γ ≥ sup{r ∈ [1/
√
N, 1] | α⋆(r) ≤ α}. (46)

By noting that α⋆(r) is an increasing function of r ∈ [1/
√
N, 1], we see that if there exists an

r ∈ [1/
√
N, 1] such that α⋆(r) = α, then that r attains the supremum in (46). It can be verified

that the solution to α⋆(r) = α is

r =

√

1

N

[

(Nα− 1)2

N − 1
+ 1

]

,

and the above r satisfies r ∈ [1/
√
N, 1] for 0.5 < α ≤ 1, N ≥ 2. Putting the above solution into

(46), we obtain the desired result in Theorem 4.

5 Numerical Experiments

In this section, we provide numerical simulation results that aim to verify the theoretical MVES
identifiability results proven in the previous section. The signals are generated by the following
way. The observed data set {x1, . . . ,xL} follows the basic model in (2). The endmember signature
vectors a1, . . . ,aN are selected from the U.S. geological survey (USGS) library [28], and the number
of spectral bands is M = 224. The generation of the abundance vectors is similar to that in
[6]. Specifically, we generate a large pool of random vectors following a Dirichlet distribution
with parameter µ = 1

N
1, and then select a number of L such random vectors as the abundance

set {s1, . . . , sL}. During the selection, we do not choose vectors whose 2-norm exceeds a given
parameter r; the reason of doing so is to allow us to control the pixel purity level of {s1, . . . , sL} at
or below r in the simulations. Note that if the number of pixels L is large, then one should expect
that r be close to the best pixel purity level ρ and uniform pixel purity level γ. In the simulations,
we set L = 1, 000.

The simulation settings are as follows. MVES is implemented by the alternating linear pro-
gramming method in [6]. We measure its identification performance by using the root-mean-square
(RMS) angle error

φ = min
π∈ΠN

√

√

√

√

1

N

N
∑

i=1

[

arccos

(

aT
i âπi

‖ai‖ · ‖âπi
‖

)]2

,

where {â1, . . . , âN} denotes the MVES estimate of the endmembers, and ΠN denotes the set of all
permutations of {1, . . . , N}. A number of 50 randomly generated realizations were run to evaluate
the means and standard deviations of φ.

The obtained RMS angle error results are shown in Figure 5. We see that zero RMS angle error,
or equivalently, perfect identifiability, is attained when r > 1/

√
N − 1 — which is a good match

with the sufficient MVES identifiability result in Theorem 2. Also, we observe non-zero errors for
r ≤ 1/

√
N − 1, which verifies the necessary MVES identifiability result in Theorem 1.

Before closing this experiment section, we should mention that previous papers, such as [6, 15,
17–21], have together provided a nice and rather complete coverage on MVES’s performance under
both synthetic and real-data experiments. Hence, readers are referred to such papers for more
experimental results. The results reported therein also indicate that MVES-based algorithms are
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Figure 5: MVES performance with respect to the numerically control pixel purity level r.
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robust against lack of pure pixels. The numerical (and also theoretical) results above further show
the limit of robustness—1/

√
N − 1 with the uniform pixel purity level.

6 Conclusion

In this paper, a theoretical analysis for the identifiablility of MVES in blind HU was performed.
The results suggest that under some mild assumptions which are considerably more relaxed than
those for the pure-pixel case, MVES exhibits robustness against lack of pure pixels. Hence, our
study provides a theoretical explanation on why numerical studies usually found that MVES can
recover the endmembers accurately in the no pure-pixel case.

Appendix

A Proof of Lemma 1

Let us first prove Lemma 1.(a). The set TG can be explicitly represented by

TG = conv{g1, . . . ,gN},

where gi ∈ R
N for all i. Also, by letting hi = Agi for all i, one can easily show that

f(TG) = conv{h1, . . . ,hN}.

Since TG ⊂ aff{e1, . . . ,eN}, we have gi ∈ aff{e1, . . . ,eN} for all i. This means that each gi satisfies
1Tgi = 1, or equivalently, gi,N = 1−∑N−1

j=1 gi,j. Using the above fact, we can write

gi = Cθi + eN ,

where θi = [gi]1:(N−1), and

C =

[

I

−1T

]

∈ R
N×(N−1).

Let Ḡ = [ g1 − gN , . . . ,gN−1 − gN ]. We get

Ḡ = CΘ̄,

where Θ̄ = [ θ1 − θN , . . . ,θN−1 − θN ] ∈ R
(N−1)×(N−1). We therefore obtain

det(ḠT Ḡ) = det(Θ̄TCTCΘ̄) (47a)

= det(Θ̄) det(CTC) det(Θ̄) (47b)

= N · |det(Θ̄)|2, (47c)

where (47b) is due to det(AB) = det(A) det(B) for square A,B, and (47c) is due to the following
result

det(CTC) = det(I + 11T ) = N

(note that the matrix result det(I + qqT ) = ‖q‖2 + 1 has been used). Likewise, by letting H̄ =
[ h1 − hN , . . . ,hN−1 − hN ], we have

H̄ = AḠ = ACΘ̄ = ĀΘ̄,
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and
det(H̄T H̄) = det(ĀT Ā) · |det(Θ̄)|2. (48)

Now, by (1), (47) and (48), Eq. (8) is obtained. Also, the property f(TG) ⊂ aff{a1, . . . ,aN} can
be easily proven by the fact that H = AG and 1Tgi = 1 for all i.

Next, we prove Lemma 1.(b). The set TH can be written as

TH = conv{h1, . . . ,hN},

where hi ∈ R
M for all i. Since TH ⊂ aff{a1, . . . ,aN}, we have hi ∈ aff{a1, . . . ,aN} for all i. Hence,

each hi can be expressed as hi = Agi, where gi ∈ R
N , 1Tgi = 1. This leads to

f−1(TH) = { x | Ax ∈ conv{h1, . . . ,hN} } (49a)

= { x | Ax = Hθ, θ ≥ 0,1Tθ = 1 } (49b)

= { x | Ax = AGθ, θ ≥ 0,1Tθ = 1 } (49c)

= { x | x = Gθ, θ ≥ 0,1Tθ = 1 } (49d)

= conv{g1, . . . ,gN} (49e)

⊂ aff{e1, . . . ,eN}, (49f)

where (49d) is due to the full column rank condition of A, and (49f) uses the structure 1Tgi = 1.
The rest of the proof is the same as that of Lemma 1.(a).

B Proof of Lemma 3

Fix r = 1/
√
N − 1. From (22), C(r) can be re-expressed as

C(r) = {s = Cθ + d | θ ∈ B(µ)}, (50)

where µ =
√

r2 − 1/N = 1/
√

(N − 1)N , and

B(r′) = {θ ∈ R
N−1 | ‖θ‖ ≤ r′} (51)

is a ball on R
N−1. Also, recall from (17)-(18) that an MVES V ∈ MVES(C(r)) can be written as

V = {s = Cθ + d | θ ∈ W}, (52)

whereW = conv{w1, . . . ,wN} ⊆ R
N−1; and that vol(V) = vol(W) (see (19)). From the expressions

above, we can deduce the following result: W must be an MVES of B(µ) if V is an MVES of C(r),
and the converse is also true.

Next, we will use the following fact:

Fact 2 [29, Theorem 3.2] The volume of an (N − 1)-dimensional simplex W enclosing B(r′) in
(51) satisfies

vol(W) ≥ 1

(N − 1)!
N

N

2 (N − 1)
1

2
(N−1)(r′)N−1 (53)

with equality only for the regular simplex.
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Using Fact 2 and the result vol(V) = vol(W), we obtain

vol(V) = 1

(N − 1)!

√
N,

where we should note that the right-hand side of the above equation is obtained by putting r′ =
µ = 1/

√

(N − 1)N into (53). On the other hand, consider Te = conv{e1, . . . ,eN}, which encloses
C(r) (for r = 1/

√
N − 1). From the simplex volume formula (1), one can show that

vol(Te) =
1

(N − 1)!

√
N.

Since Te attains the same volume as V, Te is an MVES of C(r).

C Proof of Lemma 4

The following lemma will be required:

Lemma 7 Let B(r) = {θ ∈ R
N−1 | ‖θ‖ ≤ r}, where r > 0. For any W ∈ MVES(B(r)), the

boundaries of B(r) and W have exactly N intersecting points. Also, by letting {t1, . . . , tN} =
bdB(r) ∩ bdW be the set of those intersecting points, we have the following properties:

(a) The points t1, . . . , tN are affinely independent.

(b) The simplex W can be constructed from t1, . . . , tN via

W =
N
⋂

i=1

{

θ ∈ R
N−1 | r2 ≥ tTi θ

}

.

The proof of Lemma 7 is given in Appendix D. Let

{t1, . . . , tN} = bdB(r) ∩ bdW,

{t′1, . . . , t′N} = bdB(r) ∩ bdW ′,

which, by Lemma 7, always exist. Since B(r) ⊂ W and B(r) ⊂ W ′, the above two equations can
be equivalently expressed as

{t1, . . . , tN} = bdB(r) \ intW, (54)

{t′1, . . . , t′N} = bdB(r) \ intW ′. (55)

Also, by Lemma 7.(b), we have W = W ′ if {t1, . . . , tN} = {t′1, . . . , t′N}. In the following steps we
focus on proving {t1, . . . , tN} = {t′1, . . . , t′N}.

Step 1: We first prove

bd (W ∩B(r̄)) ⊆ bdW ∪ bdB(r̄) (56)

by contradiction. Suppose that (56) does not hold, namely, there exists an x ∈ R
N−1 satisfying

x ∈ bd (W ∩ B(r̄)) , but (57)

x /∈ bdW ∪ bdB(r̄). (58)
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Now, since W ∩B(r̄) is a closed set, (57) implies

x ∈ W ∩ B(r̄). (59)

Equations (58) and (59) imply that x ∈ intW and that x ∈ intB(r̄). Thus, we have x ∈ int(W ∩
B(r̄)) which contradicts (57). Hence, (56) must hold.

Step 2: We show that {t1, . . . , tN} = bdB(r)∩bdR. Let us first consider proving {t1, . . . , tN} ⊆
bdB(r) ∩ bdR. We observe from B(r) ⊆ B(r̄) and B(r) ⊆ W that

B(r) ⊆ B(r̄) ∩W = R. (60)

Subsequently, the following inequality chain can be derived:

{t1, . . . , tN} =bdB(r) \ intW (61a)

⊆bdB(r) \ (intW ∩ intB(r̄)) (61b)

=bdB(r) \ intR (61c)

=bdB(r) ∩ bdR, (61d)

where (61a) is by (54); (61c) is by int(W ∩ B(r̄)) = intW ∩ intB(r̄); (61d) is by (60).
Moreover, we have bdB(r) ∩ bdR ⊆ {t1, . . . , tN}, obtained from the following chain:

bdB(r) ∩ bdR =bdB(r) ∩ bd(W ∩ B(r̄)) (62a)

⊆bdB(r) ∩ (bdW ∪ bdB(r̄)) (62b)

= (bdB(r) ∩ bdW) ∪ (bdB(r) ∩ bdB(r̄)) (62c)

= (bdB(r) ∩ bdW) ∪ ∅ (62d)

=bdB(r) \ intW (62e)

={t1, . . . , tN}, (62f)

where (62b) is by (56); (62d) is by r̄ > r; (62e) is by bdB(r) ⊆ B(r) ⊆ W; (62f) is by (54).
Step 3: We prove {t1, . . . , tN} = {t′1, . . . , t′N}. In Step 2, it is shown that

{t1, . . . , tN} = bdB(r) ∩ bdR. (63)

By the fact that t′i ∈ B(r) and by (60), we have

t′i ∈ R. (64)

Moreover, from the assumption that R ⊆ W ′, we have bdW ′ ∩ intR = ∅. But from (55), we note
that t′i ∈ bdW ′. Thus we can conclude t′i /∈ int(R), which together with (64) yields

t′i ∈ bdR. (65)

Combining t′i ∈ bdB(r) (cf. (55)) with (63) and (65), we obtain t′i ∈ {t1, . . . , tN}. Since Property
(a) in Lemma 7 restricts t′1, . . . , t

′
N to be affinely independent, the only possible choice of t′1, . . . , t

′
N

is {t′1, . . . , t′N} = {t1, . . . , tN}. Lemma 4 is therefore proven.
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D Proof of Lemma 7

The proof of Lemma 7 requires several convex analysis results. To start with, consider the following
results:

Fact 3 Let W = conv{w1, . . . ,wN} ⊂ R
N−1 denote an (N − 1)-dimensional simplex. Also, let

P(g,H) = {θ ∈ R
N−1 | HTθ + g ≥ 0, − (H1)T θ + (1− 1Tg) ≥ 0} (66)

denote a polyhedron, where (g,H) ∈ R
N−1 × R

(N−1)×(N−1) is given.

(a) Any W can be equivalently represented by P(g,H) via setting

H = W̄−T , g = −W̄−TwN , (67)

where W̄ = [ w1 −wN , . . . ,wN−1 −wN ].

(b) Suppose that H has full rank. Under the above restriction, the set P(g,H) for any (g,H)
can be equivalently represented by W, whose vertices w1, . . . ,wN can be determined by solving
the inverse of (67). Also, the corresponding volume is

vol(P(g,H)) =
1

(N − 1)!
|det(H)|−1. (68)

The proof of Fact 3 has been shown in the literature [6, 23]. Also, (68) is determined by the
simplex volume formula (1) and the relation in (67). From Fact 3, we derive several convex analysis
properties for proving Lemma 7.

Fact 4 Let W be an (N − 1)-dimensional simplex on R
N−1, and consider the polyhedral represen-

tation of W in (66)-(67). Also, recall the definition B(r) = {θ ∈ R
N−1 | ‖θ‖ ≤ r}.

(a) If B(r) ⊆ W, then the following equations hold

−r‖hi‖+ gi ≥ 0, i = 1, . . . , N − 1, (69a)

−r‖H1‖+ (1− 1Tg) ≥ 0, (69b)

where hi and gi denote the ith column of H and ith element of g, resp. Conversely, if (69)
holds, then B(r) ⊆ W.

(b) Suppose B(r) ⊆ W. The boundaries of B(r) and W have at most N intersecting points.
Specifically, we have bdB(r) ∩ bdW ⊆ {t1, . . . , tN} where

ti = − r

‖hi‖
hi, i = 1, . . . , N − 1, (70a)

tN =
r

‖H1‖H1. (70b)

Also, if ti ∈ bdB(r) ∩ bdW, then
{

−r‖hi‖+ gi = 0, i ∈ {1, . . . , N − 1},
−r‖H1‖+ (1− 1Tg) = 0, i = N ;

(71)

otherwise
{

−r‖hi‖+ gi > 0, i ∈ {1, . . . , N − 1},
−r‖H1‖+ (1− 1Tg) > 0, i = N.

(72)
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Proof of Fact 4: The proof of Fact 4.(a) basically follows the development in [23, pp.148-149],
and is omitted here for conciseness. To prove Fact 4.(b), observe that a point θ̃ ∈ bdB(r) ∩ bdW
satisfies i) ‖θ̃‖ = r; and ii) either

hT
i θ̃ + gi = 0, (73)

for some i ∈ {1, . . . , N − 1}, or

− (H1)T θ̃ + (1− 1Tg) = 0. (74)

Suppose that θ̃ satisfies (73). Recall that the assumption B(r) ⊆ W implies

hT
i θ + gi ≥ 0, for all ‖θ‖ ≤ r, (75)

and that the left-hand side of (75) attains its minimum if and only if θ = −(r/‖hi‖)hi = ti. Thus,
if (73) is to be satisfied, then θ̃ must equal ti, and subsequently (73) becomes

− r‖hi‖+ gi = 0. (76)

Likewise, it is shown that if θ̃ satisfies (74), then θ̃ = (r/‖H1‖)H1 = tN is the only choice and
(74) becomes

− r‖H1‖+ (1− 1Tg) = 0. (77)

We therefore complete the proof that θ̃ ∈ bdB(r) ∩ bdW implies θ̃ ∈ {t1, . . . , tN}.
We should also mention (71)-(72). From the proof above, it is clear that ti ∈ bdB(r) ∩ bdW

holds if and only if (76) holds for i = 1, . . . , N − 1, and (77) holds for i = N , respectively. By
considering (69) as well, we obtain the conditions in (71)-(72). �

We are now ready to prove Lemma 7. Recall that W ∈ MVES(B(r)) is assumed. By Fact 3.(a),
we can write W = P(g,H) for some (g,H), with H being of full rank. Then, by Fact 4.(b), we
obtain bdB(r) ∩ bdW ⊆ {t1, . . . , tN}. We consider two cases.

Case 1: Suppose that ti /∈ bdB(r) ∩ bdW for some i ∈ {1, . . . , N − 1}. For simplicity but
w.l.o.g., assume i = 1. By Fact 4.(a)-(b), we have

−r‖h1‖+ g1 > 0, (78a)

−r‖hi‖+ gi ≥ 0, i = 2, . . . , N − 1, (78b)

−r‖H1‖ + (1− 1T g) ≥ 0. (78c)

Let us construct another polyhedron, denoted by P(g̃, H̃), where the 2-tuple (g̃, H̃) ∈ R
N−1 ×

R
(N−1)×(N−1) is chosen as

g̃1 = g1 −Nǫ, (79a)

g̃i = gi + ǫ, i = 2, . . . , N − 1, (79b)

H̃ =

(

r + δ

r

)

H, (79c)

where

ǫ =
−r‖h1‖+ g1

2N
> 0, (80)

δ =
ǫ

max{‖h1‖, . . . , ‖hN−1‖, ‖H1‖} > 0. (81)
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The polyhedron P(g̃, H̃) is also an (N−1)-dimensional simplex; this is shown by Fact 3.(b) and the
fact that the rank of H̃ is the same as that of H (which is full). Now, we claim that B(r) ⊆ P(g̃, H̃)
and vol(P(g̃, H̃)) < vol(P(g,H)) = vol(W). For the first claim, one can verify from (78)-(79) that

−r‖h̃1‖+ g̃1 ≥ (N − 1)ǫ ≥ 0,

−r‖h̃i‖+ g̃i ≥ 0, i = 2, . . . , N − 1,

−r‖H̃1‖+ (1− 1T g̃) ≥ ǫ ≥ 0,

where h̃i and g̃i denote the ith column of H̃ and ith element of g̃, resp. The above equations,
together with Fact 4.(a), implies that B(r) ⊆ P(g̃, H̃). The second claim follows from (68) in
Fact 3.(b) and (79c):

vol(P(g̃, H̃)) =
1

(N − 1)!

(

r

r + δ

)N−1

|det(H)|−1

<
1

(N − 1)!
|det(H)|−1 = vol(W), (82)

for N ≥ 2 (note that N = 1 is meaningless). The above two claims contradicts the assumption
that W is an MVES of B(r).

Case 2: Suppose that tN /∈ bdB(r) ∩ bdW. The proof is similar to that of Case 1. Very
concisely, this case has −r‖H1‖ + (1 − 1Tg) > 0 and −r‖hi‖ + gi ≥ 0 for all i ∈ {1, . . . , N − 1}.
By constructing a polyhedron P(g̃, H̃) where

g̃ = g + ǫ1, H̃ =

(

r + δ

r

)

H,

ǫ =
−r‖H1‖+ (1− 1T g)

2N
,

and δ is the same as (81), we show that B(r) ⊆ P(g̃, H̃) and vol(P(g̃, H̃)) < vol(W). The above
two claims contradict the MVES assumption with W.

The above two cases imply that bdB(r)∩bdW = {t1, . . . , tN}, the desired result. In addition to
this, Property (a) in Lemma 7 is obvious since the expression of ti’s in (70), as well as (67), already
suggest the affine independence of t1, . . . , tN . As for Property (b) in Lemma 7, note that (71) are
all satisfied. It can be verified that by substituting (70) and (71) into (66), W can be rewritten as
W = ∩N

i=1

{

θ ∈ R
N−1 | r2 ≥ tTi θ

}

.

E Proof of Lemma 5

For notational convenience, denote

U(α) = {s ∈ Te | si ≤ α, i = 1, . . . , N},
and recall that the aim is to prove convP = U(α). The above identity is trivial for the case of
α = 1, since we have convP = Te ≡ U(1) for α = 1. Hence, we focus on 0.5 < α < 1. The proof is
split into three steps.

Step 1: We start with showing that s ∈ convP =⇒ s ∈ U(α). Note that any s ∈ convP can be
written as

s =
∑

j 6=i

θjipij ,
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for some {θji} satisfying
∑

j 6=i θji = 1 and θji ≥ 0 for all j, i, j 6= i. From the above equation and
the expression of pij in (42), one can verify that s ∈ Te, and that sk ≤ maxj 6=i[pij]k ≤ α for any k
(here [pij]k denotes the kth element of pij). Thus, any s ∈ convP also lies in U(α).

Step 2: We turn our attention to proving s ∈ U(α) =⇒ s ∈ convP. To proceed, suppose that
s ∈ U(α), and assume s1 ≥ s2 ≥ . . . ≥ sN w.l.o.g. From a given s, choose an index k by the
following way

k = max{i ∈ {1, . . . , N} | si ≥ δi}, (83)

where δ1 = 0, and

δi =
1− α−∑N

j=i+1 sj

i− 1
, i = 2, . . . , N. (84)

From (83)-(84), the following properties can be shown.

i) It holds true that
s1 ≥ δk,

...

sk ≥ δk,

sk+1 < δk+1,

...

sN < δN .

(85)

ii) Suppose that 2 ≤ k ≤ N − 1, and N ≥ 3. Then s satisfies
∑N

j=k+1 sj < 1− α.

iii) For any s ∈ U(α), the index k must satisfy k ≥ 2.

iv) α− δk > 0 for any 0.5 < α ≤ 1.

The proofs of the above properties are as follows. Property i) follows directly from the definition
of k and the ordering of s. Property ii) is obtained by induction. Observe that if k ≤ N − 1, the
last equation of (85) reads

sN < δN =
1− α

N − 1
≤ 1− α, (86)

and for k = N − 1 the proof is complete (trivially). For k < N − 1, we wish to show from (86) that
sN−1 + sN < 1−α, and then recursively,

∑N
j=i sj < 1−α from i = N − 2 to i = k+1. To put this

induction into context, suppose that

N
∑

j=i+1

sj < 1− α (87)
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for i ∈ {k + 1, . . . , N − 1}, and note that (87) already holds for i = N − 1 due to (86). The task is
to prove

∑N
j=i sj < 1− α. The proof is as follows:

N
∑

j=i

sj < δi +

N
∑

j=i+1

sj (88a)

=
1− α

i− 1
+

(

1− 1

i− 1

) N
∑

j=i+1

sj (88b)

< 1− α, (88c)

where (88a) is obtained by si < δi in Property i); (88b) by (84); (88c) by (87), and i − 1 ≥ k > 1
for k ≥ 2. Hence, we conclude by induction that Property ii) holds. To prove Property iii), note
that s satisfies 1T s = 1. Thus, s2 can be written as

s2 = 1− s1 −
N
∑

j=3

sj

Since every s ∈ U(α) satisfies si ≤ α for any i, we get

s2 ≥ 1− α−
N
∑

j=3

sj = δ2.

The above condition implies that k ≥ 2 must hold. To prove Property iv), observe the following
inequalities

α− δk ≥ α− 1− α

k − 1
≥ 2α− 1

k − 1
;

here, the first inequality is done by applying (84), and the second inequality by k ≥ 2. From the
above equation, we see that α− δk > 0 for α > 0.5.

With the above properties, we are ready to show that s ∈ U(α) lies in convP. First, for each
i ∈ {1, . . . , k}, we construct a vector

p̄i =
∑

j 6=i

θjipij,

where

θji =

{

c, 1 ≤ j ≤ k, j 6= i
sj

1− α
, k + 1 ≤ j ≤ N,N ≥ 3,

c =
1

k − 1

(

1−
∑N

j=k+1 sj

1− α

)

=
δk

1− α
.

It can be verified that θji ≥ 0,
∑

j 6=i θji = 1 (in particular, Property ii) is required to verify c > 0);
that is to say, every p̄i satisfies p̄i ∈ convP. Moreover, from the above equations, p̄i is shown to
take the structure

p̄i =

[

(α− δk)ei + δk1
sk+1:N

]

, (89)
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where sk+1:N = [ sk+1, . . . , sN ]T . Now, we claim that

s =

k
∑

i=1

βip̄i, (90)

where

βi =
si − δk
α− δk

, i = 1, . . . , k, (91)

and they satisfy
∑k

i=1 βi = 1, βi ≥ 0 for all i. The above claim is verified as follows. The property

βi ≥ 0 directly follows from Properties i) and iv). For the property
∑k

i=1 βi = 1, observe that

k
∑

i=1

βi =

∑k
i=1 si − kδk
α− δk

=
1−∑N

j=k+1 sj − kδk

α− δk

=
(k − 1)δk + α− kδk

α− δk
= 1,

where the second equality is by 1Ts = 1, and the third equality by (84). In addition, by substituting
(89) and (91) into the right-hand side of (90), and by using 1Ts = 1, one can show that (90) is true.
Eq. (90) and the associated properties with βi suggest that s ∈ conv{p̄1, . . . , p̄k}. This, together
with the fact that p̄i ∈ convP, implies s ∈ convP.

Step 3: By combining the results in Step 1 and Step 2, we get s ∈ convP ⇐⇒ s ∈ U(α).
Lemma 5 is therefore proven.

F Proof of Lemma 6

Recall R(r) = {s ∈ Te | ‖s‖ ≤ r}, and notice that Te can be rewritten as

Te = {s ∈ R
N | s ≥ 0,1T s = 1}.

Let s ∈ R(r), and assume s1 ≥ s2 ≥ . . . ≥ sN w.l.o.g. From the above assumption, it is easy to
verify that s1 ≥ 1

N
. Also, by denoting s2:N = [ s2, . . . , sN ]T , we have

r2 ≥ ‖s‖2 = s21 + ‖s2:N‖2

≥ s21 +
(1− s1)

2

N − 1
(92)

where the second inequality is owing to the norm inequality
∑n

i=1 |xi| ≤
√
n‖x‖ for any x ∈ R

n, and
the fact that s ≥ 0, 1Ts = 1. Moreover, equality in (92) holds if s takes the form s = [ s1,

1−s1
N−11

T ]T

(which lies in Te). Hence, α⋆(r) can be simplified to

α⋆(r) = sup s1 (93a)

s.t. s21 +
(1− s1)

2

N − 1
≤ r2 (93b)

1

N
≤ s1 ≤ 1. (93c)
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By the quadratic formula, the constraint in (93b) can be reexpressed as

(s1 − a) (s1 − b) ≤ 0, (94)

where

a =
1 +

√

(N − 1)(Nr2 − 1)

N
,

b =
1−

√

(N − 1)(Nr2 − 1)

N
.

From (93c) and (94), it can be shown that for 1√
N

≤ r ≤ 1,

b ≤ 1

N
≤ s1 ≤ a ≤ 1.

Hence, the optimal solution to problem (93) is simply s⋆1 = a, and the proof is complete.
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