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Abstract

Better estimation of land surface microwave emissivity promises to improve over-land 

precipitation retrievals in the GPM era. Forward models of land microwave emissivity are 

available but have suffered from poor parameter specification and limited testing. Here, forward 

models are calibrated and the accompanying change in predictive power is evaluated. With inputs 

(e.g., soil moisture) from the Noah land surface model and applying MODIS LAI data, two 

microwave emissivity models are tested, the Community Radiative Transfer Model (CRTM) and 

Community Microwave Emission Model (CMEM). The calibration is conducted with the NASA 

Land Information System (LIS) parameter estimation subsystem using AMSR-E based emissivity 

retrievals for the calibration dataset. The extent of agreement between the modeled and retrieved 

estimates is evaluated using the AMSR-E retrievals for a separate 7-year validation period. Results 

indicate that calibration can significantly improve the agreement, simulating emissivity with an 

across-channel average root-mean-square-difference (RMSD) of about 0.013, or about 20% lower 

than if relying on daily estimates based on climatology. The results also indicate that calibration of 

the microwave emissivity model alone, as was done in prior studies, results in as much as 12% 

higher across-channel average RMSD, as compared to joint calibration of the land surface and 

microwave emissivity models. It remains as future work to assess the extent to which the 

improvements in emissivity estimation translate into improvements in precipitation retrieval 

accuracy.
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Introduction

Better characterization of the dynamics of land surface microwave emissivity (MWE) holds 

promise for improving precipitation retrievals in the Global Precipitation Measurement 

(GPM) era [1], in which coverage extends to higher latitudes (68°). This study concerns the 

forward model simulation of MWE, which consists of the coupling of a land surface model 

(LSM), forced by meteorological data, to a microwave emissivity model (MEM). The work 

presented builds off of the study of Ringerud et al. [2] that assessed the potential of forward 

model simulation of MWE for GPM. The study is distinguished from Ringerud et al. [2] in 

that here the parameters of the forward models are tuned to improve predictive power. We 

compare calibrated forward models against un-calibrated forward models in their ability to 

simulate MWE, using MWE retrievals as a benchmark. Here, the analysis is limited to 

MWE, leaving evaluation of the impact to precipitation retrievals to future work.

The land surface microwave emission is important as it obscures the signal of the 

precipitation retrieval [3]. MWE can vary widely given its sensitivity to soil moisture and 

vegetation. Bare soil MWE responds to soil moisture changes due to the large dielectric 

constant of water, with MWE decreasing with increasing soil moisture. Vegetative cover 

absorbs and scatters the underlying soil MWE signal, and very dense vegetation can 

completely obscure the soil MWE signal. If very dense, the signal is that of the vegetation, 

which is very high.

Like Ringerud et al. [2], we focus on the MWE dynamics in the U.S. Southern Great Plains 

(SGP; 34°N:39°N, 100°W:95°W) as the SGP exhibits a large MWE variation, both spatially 

and temporally, attributable to the pronounced soil moisture and vegetation dynamics. The 

SGP is characterized by abundant cropland but also has representation of other land covers, 

and a range of soils classes. Unlike Ringerud et al. [2], we restrict the focus of the study to 

the MWE simulation of the soil-vegetation system as snow, frozen ground, and distinct land 

types (e.g., deserts, wetlands), which also strongly impact MWE, present distinctly different 

modeling challenges.

For the GPM radiometer precipitation retrievals, forward models can supply the MWE 

estimates that are required for full forward model simulation of top-of-atmosphere 

brightness temperatures, which is needed for construction of the physical database. This 

database, which is searchable by the retrieval algorithm, relates a set of geophysical 

parameters with brightness temperatures at all relevant frequencies and polarizations [4–6]. 

Forward modeling also can provide a supporting role by helping to determine a sufficient set 

of emissivity-related globally available geophysical quantities (e.g., LAI, soil moisture, 

surface temperature, total precipitable water (TPW) by which to index into the precipitation 

retrieval database. Current work is ongoing assessing the level of accuracy required for these 

fields at the algorithm level. Alternatives to forward modeling address MWE more 

indirectly, and include the identification of “surface-blind” pseudo-channels [7, 8], indexing 

by similarity classes based on monthly MWE climatology [9], empirical approaches to 

account for recent precipitation [10, 11], and hybrid approaches that combine both modeling 

and statistical approaches [12, 13]. As it underpins the similarity class [9] method, a 

climatological approach to MWE estimation is also evaluated (in which daily estimates are 

Harrison et al. Page 2

IEEE Trans Geosci Remote Sens. Author manuscript; available in PMC 2018 May 22.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



interpolated from monthly means). This provides a point of reference for assessing the value 

of capturing MWE dynamics with forward models.

The forward model configuration is similar to Ringerud et al. [2], consisting of the Noah 

LSM (v.3.3) coupled to the land MEM of the Community Radiative Transfer Model 

(CRTM) developed by the Joint Center for Satellite Data Assimilation (JCSDA). Here, we 

also test a coupling of Noah to the Community Microwave Emission Model (CMEM) 

developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both 

MEMs are used in globally run operational satellite data assimilation systems. We use as a 

benchmark the same set of cloud-cleared MWE retrievals developed by Ringerud et al. [2] 

but, with our focus here on the soil-vegetation system, clearing for snow and frozen-ground 

conditions, and reserving a portion, a single warm season (2008 April-September), for 

calibration.

The first motivating factor for calibration is the finding of large simulation errors of forward 

models and their LSM and MEM constituents. In LSM inter-comparison studies focused on 

soil moisture, including in the SGP area [14], while LSMs have been shown to have some 

skill in simulating anomalies, large root-mean-square-errors and biases are reported. The 

story is similar for MEMs. Weng et al. [15], who ran CRTM over bare soil and short grass at 

five microwave frequencies (4.9–94 GHz), while noting agreement in broad features, 

including MWE spectra, variability, and polarization, reported sizeable biases. Uncertainty 

propagation and sensitivity studies involving CMEM have also indicated large forward 

modeling MWE simulation errors [16, 17]. Ringerud et al. [2], also finding large errors, 

concluded that forward models were not yet suitable for precipitation retrievals. The GPM 

passive microwave algorithm team has estimated that an accuracy of 1% or better is required 

for the coupling of emissivity to the physical atmosphere retrieval, and separation of 

dynamic surface emission from emission by hydrometeors in the atmosphere [2]. An 

accuracy of 3% emissivity, while sufficient for retrievals of heavy rain, would be insufficient 

for discriminating rain/no rain events and retrievals of lighter precipitation [3].

The second motivating factor for calibration is the poor specification of LSM and MEM 

parameters, which likely contributes a great amount of error. On the LSM side, many 

parameters are specified via tables indexed by variables such as soil texture and land cover. 

The limitations of lookup tables are well documented for soil moisture modeling [18, 19], 

and relate to the representativeness of the underlying soils databases [19–21] and the 

accuracy of the inputs (i.e., soil texture maps) themselves [22]. On the MEM side, 

parameters similarly are poorly specified. Weng et al. [15] attributed much of the bias in 

CRTM predictions to the “arbitrary” specification of many important parameters, including 

land surface roughness, leaf thickness, and canopy gravimetric water content, due to the lack 

of available data.

Given the poor specification of both LSM and MEM parameters, here we jointly calibrate 

the LSM and MEM. This is a significant departure from prior related studies calibrating to 

remote sensing data. In one set of studies [18, 21, 23–26], LSMs are calibrated to remote 

sensing data products (e.g., soil moisture, soil temperature), the generation of which relies 

on radiative transfer modeling that itself suffers from parameter misspecification. In the 
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other batch of studies [27–30], MEMs were calibrated to brightness temperature data 

products, taking inputs from un-calibrated LSMs. (In some cases, the LSM was not 

simultaneously calibrated as this would upset model climatology [28, 29].) The approach of 

jointly estimating the LSM and MEM is further motivated by prior studies specifically 

attributing errors in forward modeled MWE to errors in soil moisture dynamic range [27, 

30]. Given this departure from previous studies, we compare also the benefits, if any, of joint 

calibration over the independent calibration of the LSM or MEM.

The forward modeling is conducted using NASA Goddard Space Flight Center’s (GSFC) 

Land Information System (LIS), with the calibration done using the LIS optimization and 

uncertainty estimation subsystem (LIS OPT/UE) [31, 32]. As in several recent studies [28–

30], the MEM parameters are “locally” estimated, i.e., optimal parameter sets are sought for 

each grid cell, and a stochastic search algorithm is applied. This approach is distinct from 

other studies (e.g., [27]) in which an ad-hoc search was applied to identify a single best 

“global” parameter set.

The focus here is on assessing calibration’s impact on the forward models’ predictive ability, 

and not on evaluation of the physical consistency of the resultant parameter values. The 

hydrological literature is replete with examples, even in field or finer-scale studies [18, 23, 

33–35], of calibration of more physically complete models leading to significant and 

important improvements in simulation but resulting in parameter values inconsistent with in 
situ measurement. There are several theoretical reasons for this seeming dissonance, 

including parameter distortions introduced from the necessary model simplifications [36], 

the incompleteness of the error models employed [36–40], and inability to access and tune 

hard-coded parameters [41], and an active area of research exists exploring these issues [18, 

40, 42–49]. An additional problem is the lack of in situ data of a spatial sampling density 

sufficient for comparison to model-scale (here, 0.25°) estimates [19]. For these reasons, land 

surface property retrieval is considered beyond the scope of this study.

An important caveat of the study is that retrievals of MWE are themselves subject to 

considerable error. Inter-comparisons [3, 50, 51] of MWE retrieval products generated by a 

range of research groups using different, and in some cases even the same, instruments 

(SSM/I, TMI, and AMSR-E) have revealed significant differences. Even for relatively 

homogeneous scenes such as desert or rainforest, mean emissivity at GPM-relevant 

frequencies can vary up to 0.04 or higher across products [50, 51]. Likely error sources at 

lower frequencies include the surface skin temperature not being representative of that of the 

emitting soil layer [52–57], and at higher frequencies, errors in atmospheric profile data 

[57]. As such, the error statistics reported here should be viewed more as a test of whether it 

is viable to bring the model predictions and retrievals into better agreement through the 

calibration process than as a confirmatory statement on the value of the calibrated forward 

models. We therefore report root-mean-square-difference (RMSD) rather than RMSE. A 

MWE benchmark dataset, based on in situ measurement, is needed to fully validate the 

forward models along with the retrievals.
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The RMSD of MWE forward model estimation at the time of AMSR-E overpasses, 

approximately 2 P.M. and 1 A.M. local time in the SGP, is evaluated for the following 

approaches to MWE estimation:

1. Forward modeling without calibration

2. Forward modeling with calibration

3. 1) and 2), after bias-correction

4. Daily climatology (based on MWE retrievals)

These results are further broken down by land cover class. Finally, to evaluate the worth of 

the joint LSM-MEM calibration, the percent change in RMSD is reported for LSM-only 

calibration and MEM-only calibration.

Methods and Data

LIS facilitates studies of the land surface and coupled systems through an object-oriented, 

interoperable high performance-computing software architecture [31, 32]. The object-

oriented design enables the interchange of physical models, meteorological and model 

parameter datasets, and data assimilation methods. In addition, it supports the coupling of 

LSMs to a range of models. For example, LSMs can be coupled to meteorological models 

(e.g., the Weather and Research Forecasting (WRF) system), routing models, radiative 

transfer models (RTMs) and, the focus here, MEMs. Important to this study, LIS also 

includes an optimization and uncertainty estimation subsystem (LIS-OPT/UE) [18, 58], used 

here for the joint LSM-MEM calibration. LIS can be run at a user-designated spatial and 

temporal resolution. Here, the forward models are run hourly at 0.25°×0.25° over the SGP.

The overall forward modeling and calibration approach, as implemented within LIS, is 

depicted in Figure 1. Each solid box (e.g., “LSM”, “MEM”) refers to a software abstraction; 

implementation of the required interfaces associated with an abstraction defines a new 

instance (e.g., “Noah”, “CRTM”). The arrows indicate the passing of information between 

these abstractions. Below, we describe the methods and data in relation to Figure 1, starting 

with the Forward model.

LSMs simulate surface energy and water fluxes and budgets. Here, for consistency with 

previous land MWE studies [2, 3], Noah [59–61] version 3.3 was selected. The Noah LSM 

was originally developed from the land component of the Oregon State University 1-D 

planetary boundary layer model [62]. It is currently employed as the land surface scheme in 

NCEP’s global and regional operational models, including the Global Forecasting System 

(GFS), and the NCEP Weather Research and Forecasting Nonhydrostatic Mesoscale Model 

(WRF-NMM). The modeling of soil moisture in the Noah LSM, which has been extensively 

evaluated [14, 63], is handled by a formulation of the Richards’ equation governed by the 

Campbell [64] functions, with the soil profile discretized into 4 layers in the standard 

configuration, with a top layer of 10 cm.

Noah, and LSMs generally, are driven by near-surface atmospheric forcings (e.g., 

temperature, humidity, wind speed, precipitation). Here, downward shortwave and longwave 
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radiation, air temperature, specific humidity, wind speed and surface pressure are obtained 

from the North American Land Data Assimilation System (NLDAS2). NLDAS2 is generally 

regarded as a high quality forcings dataset for the continental United States (CONUS) as it 

incorporates data and analysis that are not available in real-time (e.g., gauge observations of 

precipitation, adjustments for topographical influences on precipitation, further quality 

control checks, downscaling)[65]. As a result, NLDAS2 can be expected to be of relatively 

higher quality than forcings datasets with global coverage.

LSM simulations depend on a wide range of parameters, including radiative parameters 

(e.g., albedo, emissivity), vegetation parameters (e.g., vegetation fraction, minimum stomatal 

resistance, leaf area index), thermal properties (e.g., quartz content), and soil hydraulic 

properties (e.g., porosity, hydraulic conductivity). Monthly, climatologically-derived values 

of albedo from NCEP are applied. While monthly climatological estimates of green 

vegetation fraction (gvf; the Noah variable SHDFAC) are typically used, given the 

importance of vegetation to the modeling of MWE, the 8-day Leaf Area Index (LAI) product 

from MODIS Collection 5 (MCD15A2.005)[66] is applied, with the raw 1km data gridded 

to the 0.25° running resolution. The product is only nominally 8-day as persistent cloud 

cover can result in interpolation between observations further than 8 days apart. To obtain 

gvf, we apply the conversion of Niu [67]:

gvf = 1 − e
−klai2vgf ∗ LAI

(1)

where klai2vgf is 0.52.

As noted in the introduction, most parameters in Noah (and other LSMs) are typically 

specified via lookup tables based on soil texture or land cover. Soil texture and vegetative 

land cover dominant at the 0.25°×0.25° running resolution is shown for the SGP (34°N:

39°N, 100°W:95°W) in Figure 2. The soil texture, as well as the underlying sand, clay, and 

silt fractions that serve as the direct inputs to the models, is drawn from the State Soil 

Geographic Database (STATSGO) maps [68]. Loams are the major soil texture type: Silt 
Loam (41% of pixels), Sandy loam (21%), followed by Loam (13%), Silty clay loam (13%), 

and Clay loam (5%). Other less represented soils include Sand (6%), Clay (1%) and Silty 
Clay (0.25%).

There is considerable variation in dominant land cover in the SGP (Figure 2; bottom). Of the 

thirteen land cover types in the Hansen et al. [69] classification, nine are represented. 

Cropland, defined as crops occupying more than 80% of the landscape, is the most prevalent 

(43% of pixels). As MWE has been shown to be sensitive to crop type [70, 71], we note that 

winter wheat represents approximately a third of all harvested (cultivated and non-

cultivated) crops in the SGP according to the 2007 Census of Agriculture; west of 97W, by 

acreage it is the predominant crop. Corn, soybeans, and sorghum together represent an 

additional third, and Hay, which is harvested nearly uniformly in all but the northwestern 

corner of the SGP, represents the final third. Even where Grassland (22% of pixels) and 

Wooded Grassland (21%) dominate, Cropland is typically the second dominant land cover 

class in these areas, including the majority of the Grassland pixels shown in Figure 2, and, 
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north of 37°N, most of the Wooded Grassland pixels. The remaining land cover in the SGP 

is Woodland (6%) and Closed Shrubland (5%), and less than 2% each of Evergreen 
Needleleaf Forest, Deciduous Broadleaf Forest, Mixed forest, and Urban and Built areas. 

The two Urban and Built pixels correspond to the cities of Wichita, Kansas and Tulsa, 

Oklahoma.

The LSM-MEM interface (see Figure 1) specifies the mapping of the outputs of the LSM to 

the inputs of the MEM. At each of the hourly time steps, the LSM passes through or 

computes the variables needed by the MEM. For example, sand and clay fraction, and LAI, 

are passed through to the MEM. Soil moisture and soil temperature and other state variables 

are computed. The MEM then takes these inputs and generates estimates of MWE for 

different frequencies and polarizations (SIM in Figure 1) using parameterizations that 

capture the sensitivity of MWE to soil moisture, the effects of surface roughness, and the 

scattering effects and emission of vegetation (and snow).

Both MEMs were designed for global operations. For computational tractability, and in 

recognition of data limitations, their development invoked lower-order approximations of the 

radiative transfer equations [72]. For example, over vegetated surfaces both adopt the “tau-

omega” model that is limited in its ability to capture multiple scattering and radiometrically 

important vegetation characteristics (e.g., leaf shape, size and orientation) [72–76]. Several 

[74, 77], however, have recognized that despite these simplifications, with adjustments to 

parameter values, the tau-omega model can often reasonably mimic more complete 

solutions, for example with the lowering of albedo to capture the darkening that results from 

multiple scattering. The identification of these “effective” parameter values has been 

achieved in two ways, either with tuning to a more complete radiative transfer solution [74] 

or, the approach taken here, with tuning to MWE observations [77].

CRTM is one component of a comprehensive, modular radiative transfer modeling system 

developed by the NOAA/NASA/DoD Joint Center for Satellite Data Assimilation (JCSDA). 

The version of CRTM used in this study is CRTM REL-2.0.2. CRTM is designed to simulate 

specific satellite-based sensors and, as such, is equipped to conduct radiative transfer 

calculations for a broad set of frequencies including infrared, visible, and microwave. Here, 

only that portion of CRTM that computes land surface MWE is invoked. The 

NESDIS_LandEM_Module developed at NOAA’s Environmental Satellite and Information 

Service (NESDIS), now referred to as the CRTM Surface Emissivity Model for Microwave 

(CSEM-MW)[78], is applied. Land MWE is simulated using a two-stream radiative 

approximation [15]. Reflection and emission occurring at the interfaces above and below the 

scattering layer (i.e., vegetation, snow) are incorporated. The cross polarization is expressed 

as a function of roughness height and frequency [79]. The input vegetation parameters are 

used to derive the absorption and scattering coefficients, which are then used in the tau-

omega model to simulate the effect of vegetation cover [80]. Inputs relevant to snow-free 

MWE calculation are the satellite zenith angle, MW frequency, soil moisture content, 

vegetation fraction, soil temperature, and land surface skin temperature. We refer to the 

forward model approach involving CRTM as Noah-CRTM to make the dependency of the 

simulated MWE on the LSM explicit.
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The second MEM used is CMEM [16, 17, 27], version 3.0. CMEM was designed to support 

radiative transfer calculation at lower microwave frequencies only (1 to 20 GHz). In this 

study we present results above 20 GHz but these should be considered “experimental” only. 

CMEM is similar to CRTM in that it contains modules for both surface MWE and 

atmospheric transfer calculations and relies essentially on the same physical principles for 

MWE calculation. In contrast, though, CMEM includes several optional modules for testing 

alternative empirical relationships and parameterization schemes, for example, for 

absorption and scattering [16, 17]. For this study, we have generally followed the choices 

made by Drusch [27]. As with CRTM, to reflect the dependency on the LSM, we refer to 

Noah-CMEM (rather than CMEM).

In this study, two choices related to the vegetation modeling are made that affect the MEM 

modeling. First, we introduce a simple coefficient, WATER_CONTENT_PER_LAI, that 

recognizes MODIS LAI as an, albeit limited [81], proxy measure of vegetation water 

content. Second, for the purposes of MWE estimation, each pixel is considered mixed in a 

two-component scene model, consisting of a bare ground and homogenously vegetated 

fraction. This strategy, which is similar to that used in the vegetation index/LAI literature 

[82, 83], recognizes the limitations of applying an average LAI value to a pixel due to the 

nonlinearities in the response of MWE to soil moisture and vegetation. Here, the bare 

ground fraction consists of a fixed, year-round bare ground fraction (bgffixed) and, using the 

Niu [67] relationship (Eq. 1), a variable bare ground fraction. The vegetated fraction is 

computed as earlier (Eq. 1), but applied only to the area that is not permanent bare ground, 

and therefore with an inflated LAI (factor: 1/(bgffixed)). At each time step, the MEM is run 

twice, once for the vegetated fraction and once for the bare ground fraction, with appropriate 

averaging. The motivation for this simplified approach over a more compute-intensive tiling 

approach, is general recognition of the significant limitations of the data and models, and 

indications that even at fine scales the mixed pixel problem is not avoided [84].

The calibration was conducted with LIS-OPT/UE [18, 58]. The LIS-OPT/UE subsystem 

provides a computational infrastructure that facilitates the application of parameter 

estimation and uncertainty estimation algorithms to the LIS land surface and coupled 

models. Here, we are invoking the LIS-OPT subsystem to conduct parameter estimation. As 

shown in Figure 1, the LIS-OPT subsystem Optimization Algorithm guides the search for 

“decision variables”, here the model Parameters, in a direction of improvement in match 

between SIM and OBS, where the quality of the match is defined by an Objective Function.

The Parameters to be optimized are given in Table 1. As noted in the introduction, the 

parameter estimation is conducted “locally”. The set of parameters requiring tuning is 

denoted as θi,j where i and j refer to the row and column, respectively, of the grid cell within 

the 0.25° SGP domain. The parameters to be tuned also include klai2vgf, which determines 

gvf as a function of LAI (Eq. 1), and, given its uncertainty and variation by land cover [81], 

WATER_CONTENT_PER_LAI that determines vegetation water content.

The inclusion of the LSM parameters results in a much larger set of parameters requiring 

tuning. For comparison, Drusch et al. [27] limited calibration to selection from among three 

parameterization schemes, and adjustment of three CMEM parameters—soil roughness, 
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vegetation structure coefficient, and vegetation water content for dense vegetation. In [28–

30], five physical process parameters were tuned: two surface roughness-related parameters 

(describing surface roughness and its angular dependence), two vegetation structure-related 

parameters (relating vegetation optical thickness to LAI), and scattering albedo. Still a 

greater number of parameters could in principle be tuned, leading to a superior calibration, 

as there are numerous parameters not accessible through top-level interfaces, a point recently 

made for LSMs [41], and also certainly the case for MEMs.

The OBS in Figure 1 derive from the SGP cloud-cleared AMSR-E MWE retrievals of 

Ringerud et al. [2], the details of which are provided in that study. The retrievals were 

performed using level 1 C AMSR-E brightness temperatures under “Confident Clear” 

conditions in all 1-km MODIS pixels within the AMSR-E largest footprint. The retrievals 

also relied on space and time-interpolated ECMWF interim reanalysis (ERA-Interim) 3-

hourly, 1-degree surface skin temperature and water vapor. The retrieval scheme involved 

radiative transfer modeling in an iterative procedure to determine the surface microwave 

emission best matching predicted and AMSR-E-observed brightness temperatures.

We restrict the observations used in the calibration to low frequency channels to avoid the 

atmospheric contamination errors of the higher frequency channels [50]. Five different sets 

of low frequency channels, C, were tested: (6.925H), (6.925V), (6.925H,10.65H), (6.925V,

6.925H), and (10.65V, 10.65H). We present only the results of C=(10.65V,10.65H) as the 

conclusions of this study were insensitive to the selection of calibration channel 

combination, and as (10.65V,10.65H) was a slightly better performer; differences (after bias 

correction) were less than 1% in RMSD. In the validation, the model uses the calibrated 

parameters to predict at all channels.

To obtain a retrieval estimate more commensurate with the 0.25° model-based estimates, the 

retrievals were processed beyond that done by Ringerud [2] to improve the quality of the 

calibration dataset. For each overpass, the retrievals were geo-located into the grid cells 

based on the lat/lon center points. If there were at least five retrievals falling within the 0.25° 

grid cell for that overpass, then the retrieved MWE was averaged to obtain the grid cell 

estimate; otherwise the average was presumed to lack sufficient accuracy for the purposes of 

calibration (and validation). In addition, as the scope of this study was restricted to the 

MWE dynamics of the soil-vegetation system, if at the time of overpass any of the models 

indicated a land surface or soil temperature below 275° K, or snow, the retrieval was 

excluded. The number of retrievals varied greatly within the year, and from year to year, 

with far fewer retrievals in the months of December through February due to the cloud 

masking and conservative masking for frozen ground and snow.

The calibration period was selected to be the warm season of 2008, defined as being from 

April 1, 2008 through September 30, 2008. The year 2008 was selected as in other SGP 

studies it was deemed more moderate than the anomalously dry 2006 and anomalously wet 

2007 [26, 85]. Calibration was restricted to the warm season to avoid frozen soil and snow. 

For the grid cell at row i and column j, we refer to the retrieval for channel c at model time 

step t as yt,c,i,j. The full set of time steps of retrievals, which correspond to the cloud-cleared, 

snow and frozen ground-free descending and ascending overpasses, for the calibration 
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period is referred to as T and, as earlier mentioned, the full set of channels calibrated to as C, 

with here C=(10.65V,10.65H). The forward model-simulated emissivities (SIM in Figure 1) 

using trial parameter set θi,j are denoted by εt,c,i,j(θi,j).

As in other LSM and MEM calibration studies [23–25, 86], the familiar least squares 

Objective Function is applied. The following problem was solved for each grid cell:

minθi, j
Z = ∑t ∈ T ∑c ∈ C wC ∗ (εt, c, i, j(θi, j) − yt, c, i, j)

2
(2)

Each channel c in C was equally weighted, i.e., wc=1. The resulting least squares solution 

can be viewed as a maximum likelihood solution if the residuals εt,c,i,j(θi,j) − yt,c,i,j can be 

described by an independent and identically distributed (iid) normal error model [87].

A genetic algorithm was selected as the Optimization Algorithm to solve the above 

optimization problem (Eq. 2). Genetic algorithms are stochastic, global search algorithms 

that draw on concepts from evolutionary search, mimicking the process of natural selection 

[88]. They are particularly suited to challenging problems like parameter estimation in 

which the objective function response surface may not be smooth and may have multiple 

local optima, properties that can confound deterministic (e.g., gradient-based) search 

algorithms. The genetic algorithm within LIS is described in detail in Kumar [58]. The 

particular configuration used here relies on a population size of 20, a mutation rate of 2%, 

90% crossover rate, elitism, and a two-point crossover scheme.

In all calibration (and default) runs, the Noah LSM was run over a two-year spin-up period 

to obtain the land surface states (e.g., soil moisture, soil temperature) just prior to the 

calibration period. The spin-up is a typical land surface modeling practice that allows for the 

land surface states at the beginning of the period of interest to become independent of the 

guess states at the start of the spin-up period. The additional two years of simulation greatly 

adds to the computation time but is necessary as the spun-up initial land surface states are 

impacted by changes to the parameters (e.g., maximum soil moisture). After finding the 

genetic algorithm solutions to Eq. 2, i.e., the models are run over the validation period using 

the “optimal” parameter values θi,j* . The approximately seven-year validation period 

consists of the AMSR-E period of record less the two-year spin-up and six-month 

calibration period.

The daily climatological estimates, which provide an additional point of reference, were 

developed in the following way. For each grid cell and AMSR-E channel, climatological 

monthly means were computed using retrievals developed over the AMSR-E record. Daily 

estimates were arrived at by interpolating between the climatological monthly means, each 

pinned to the 15th day of the month.
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Results & discussion

Below, the forward model performance over the 7-yr validation period is discussed. Root-

mean-square-difference (RMSD) is the metric selected to evaluate consistency with the 

AMSR-E retrievals. For readability, in the tables and text RMSD*100 is reported.

In Table 2, RMSD*100 was computed for each frequency, for both the calibrated and un-

calibrated models. To differentiate results in the figures and text when discussing the 

calibrated models, we append “C-” to the model name, e.g, C-Noah-CRTM and C-Noah-

CMEM. Also, given atmospheric contamination in retrievals particularly at 89V and 89H, 

averages including and excluding 89 are supplied.

First we consider the RMSD of Noah-CRTM and Noah-CMEM prior to calibration. Noah-

CRTM and Noah- CMEM outperform climatology only at 10.65H. The lack of agreement 

with retrievals is as observed in prior studies [2, 50]. Noah-CRTM is more consistent with 

retrievals than Noah-CMEM. As averaged across all channels, RMSD*100 computed for 

Noah-CRTM was 2.4, more than 40% less than that of Noah-CMEM, 4.2. The maximum 

RMSD across channels was 3.4 for Noah-CRTM as compared to 6.0 for Noah-CMEM.

After calibration, the model estimates are much more consistent with the retrievals, with C-

Noah-CRTM remaining better in terms of RMSD. C-Noah-CRTM achieves an RMSD*100 

of 2.2, whereas that of C-Noah-CMEM remains higher, 2.9. The improvement in RMSD 

from calibration is considerable. The extent of improvement was slighter for C-Noah-

CRTM, with RMSD*100 decreasing from 2.4 to 2.2, as compared to C-Noah-CMEM, which 

decreased from 4.2 to 2.9. Excluding 89 from results, C-Noah-CRTM remains superior, with 

an average RMSD*100 of 1.8, as compared to C-Noah-CMEM’s 2.1.

The high average RMSD of C-Noah-CMEM is a result of performance at the higher 

frequency channels, with C-Noah-CMEM quickly degrading to 3.7 at 36.5H and 6.0 at 

89.0H. This is perhaps a result of CMEM’s design focus on frequencies only up to 20 GHz. 

At the lower frequency channels, 10.65 to 18.7, C-Noah-CMEM generally outperformed C-

Noah-CRTM, only worse at 10.65V.

At the lower frequencies, calibration had the effect of removing the large emissivity 

simulation differences between the models. This is nicely summarized by the plot (Figure 3) 

of the probability density functions, or “PDFs”, of 10.65H GHz MWE for the un-calibrated 

and calibrated models, which were generated using all points in the domain. Noah-CMEM 

systematically simulated emissivities much lower than Noah-CRTM. These differences are 

mostly erased with calibration, with the mode of C-Noah-CMEM only slightly lower, by 

about 0.01 emissivity, than that of C-Noah-CMEM, and with virtually no differences at the 

low-emissivity end of the PDF.

Also shown in Figure 3 are the PDFs for the retrievals at 10.65H GHz. It can be seen that the 

un-calibrated Noah-CMEM emissivities are much lower than the retrievals, which was 

driving the large RMSD (as opposed to simply large random errors). But post calibration, 

the models are much more consistent with the retrievals. However, the dynamic range in 

MWE of the calibrated models is clearly narrower than that of the retrievals.
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A number of factors may be contributing to the narrower dynamic range of the model 

emissivities post calibration. Errors in the emissivity retrievals themselves stemming from 

incorrect values of surface temperature are one source [3, 50, 51, 53]. The surface 

temperatures used in the retrievals will depart from the effective temperature of the emitting 

soil layer at 10.65 GHz at the AMSR-E overpass times (about 2PM and 1AM local in the 

SGP), and in particular at the time of the afternoon overpass [89]. In addition, the 

dependence of the effective depth of the emitting soil layer on soil moisture is a 

complicating factor.

The narrower PDF may also reflect inadequate physics for the LSM or MEM. For example, 

LSMs, including Noah v3.3, lack the ability to capture inundation, which has the effect of 

greatly reducing emissivity and increasing polarization. Within the calibration period, there 

was extreme precipitation from September 11-15, 2008 from a continental-type storm event 

(12-inch rain in parts of Kansas) followed by the remnants of a hurricane [90]. And within 

the validation period, specific locations experienced serious flooding on April 28, 2009. The 

retrieved microwave polarization difference index (MPDI) and emissivities at these points 

and times were consistent with inundation [91, 92]. To fully explore the effects of inundation 

on the calibration, ancillary datasets (e.g., scatterometer) would be needed as passive 

microwave alone is not sufficient to indicate flooding, as different mixed scenes of open 

water and wet soils present similar MWE signatures [91, 93, 94].

Also, limitations in the MEM physics may be a contributing factor. For example, CRTM and 

CMEM apply the same roughness value to all frequencies and polarizations. Several have 

investigated roughness parameterizations that have frequency dependence [95] and that also 

introduce dependency on soil moisture [96–98]. In addition, the models do not account for 

phenomena such as dew or intercepted water, both of which can exert influence over 

emissivity, including, it is thought, in the SGP [99]. To improve the models, these issues 

need further exploration.

The calibration moved both models towards a generally drier state to increase MWE 

sensitivity to soil moisture changes. MWE is more responsive to addition of water to dry 

soils rather than wet soils. PDFs for soil moisture (Figure 4) illustrate this point. The PDFs 

were generated for the domain, both before and after calibration, using all points in the SGP. 

Calibration had the effect of shifting both model’s estimates of soil moisture towards a 

generally drier state. The PDF mode of C-Noah-CRTM and C-Noah-CMEM, respectively, 

was approximately two-thirds and one-third that of Noah left un-calibrated. While this 

change in soil moisture is large, it is well within the range of biases reported for Noah and 

other LSMs, including in the Great Plains (e.g.,[14]).

The validity of the both C-Noah-CRTM and C-Noah-CMEM soil moisture estimates across 

the SGP is generally unknown. The soil moisture estimates were not compared to products 

based on AMSR-E or other passive microwave instruments as these products cannot be 

considered independent as they, too, rely on similar modeling (typically without calibration). 

One of the few grid cells for which spatially averaged in situ soil moisture data is believed to 

be fairly representative is for the single grid cell (34.875°N, 98.125°W) that corresponds to 

the USDA Agricultural Research Service (ARS) Little Washita River Experimental 
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Watershed [55, 100, 101]. The grid cell encompasses a large fraction of the experimental 

watershed. Land cover consists of pasture and rangeland, and winter wheat. The soil 

moisture time series (Figure 5) illustrates that the drying out brought about by calibration is 

warranted, as the in situ data are much drier than Noah left uncalibrated. In addition, the 

time series indicates differences in dynamic range and rate of dry-down for the calibrated 

models, behaviors seen in many such time series across the SGP. C-Noah-CMEM exhibits a 

wider dynamic range and faster dry-down than C-Noah-CRTM, which appears more 

consistent with the in situ data. However, both models continue to exhibit a wet bias with 

respect to the in situ data.

The adjustment in the models’ simulation of soil moisture was accompanied by 

simultaneous changes in the sensitivity to LAI. Differences between the calibrated models 

are evident when examining MWE as a function of soil moisture and LAI. The average 

MWE for bins of soil moisture and LAI are shown in Figure 6 for 10.65H, for the un-

calibrated models (Figures 6a,6b) and the calibrated models (Figures 6d,6e). Were the 

models to exhibit the same behaviors, we would expect the plots to be very similar. 

However, referring to Figures 6d and 6e, at high values of soil moisture and at LAI around 3, 

the MWE response is markedly different. In this region, in these average terms, C-Noah-

CRTM shows MWE sensitivity to soil moisture, whereas C-Noah-CMEM does not. A caveat 

of these MWE-soil moisture-LAI plots is that they indicate only average MWE, lumping 

together many different SGP locations, each of which has its own optimal parameter set and 

therefore unique MWE-soil moisture-LAI relationship, and which generally occupies only a 

limited portion of the soil moisture-LAI space shown.

Also in Figure 6, the MWE-soil moisture-LAI plots are shown for the retrievals. Prior to 

calibration, the plots for both models (Figures 6a,6b) are quite different as compared to the 

retrievals (Figure 6c). For the case after calibration, two plots are needed to show the 

retrievals’ sensitivity to soil moisture and LAI, as the calibration affects the soil moisture 

modeling on the x-axis. By comparing each model’s plot with the respective retrievals plots 

(i.e., Figure 6d and 6f, and 6e with 6f), two observations can be made. First, the distinct 

patterns seen for each model are largely replicated in each corresponding retrievals plot. As 

a consequence, absent other information, no one model appears more consistent with the 

retrievals than the other at 10.65H. Second, in comparison to the retrievals, both tend to 

overestimate MWE in very dry conditions, and exhibit too little soil moisture sensitivity at 

values of LAI near 1 and below. The overly high MWE in dry conditions is more evident 

with C-Noah-CRTM than C-Noah-CMEM, whereas the low sensitivity to soil moisture at 

low LAI is more evident with C-Noah-CMEM. It is not clear why. The general appearance 

of the plots for calibrated C-Noah-CMEM appear consistent with those of [13], which, while 

showing vegetative water content in place of LAI, indicate little emissivity sensitivity to soil 

moisture at all but the lowest level of vegetation.

Next, we applied a simple bias correction to the model estimates. This was motivated by the 

earlier observation of the smaller dynamic range as compared with retrievals (Figure 3), and 

also motivated by having observed significant anomaly correlations (not shown) in the 

Cropland and Grassland land cover classes. For each grid cell, month, and channel, linear 

regression was applied with the retrievals as the dependent variable and model estimate as 
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the independent variable. To put on an equal footing with the climatology, the full set of 

observations used in the development of the climatological estimates was used in the linear 

regression. By doing so, this approach also partially addresses in the comparison any 

systematic biases in the retrievals themselves (e.g., surface temperature and emitting-layer 

temperature mismatch at lower frequencies, atmospheric contamination at higher 

frequencies).

The results (Table 3) indicate that use of the models would improve upon climatology to a 

significant degree. Even if left un-calibrated, once bias-corrected, there is improvement. The 

across-channel-average RMSD*100 for Noah-CRTM and Noah-CMEM, respectively, is 

1.40 and 1.42, a 14% and 13% reduction from that of climatology (excl. 89 GHz: 17% and 

14%). Calibration leads to further improvements. The across-channel-average RMSD*100 

was 1.36 and 1.32 for C-Noah-CRTM and C-Noah-CMEM, a 17% and 19% reduction from 

climatology (excl. 89 GHz: 21% and 25%). Thus, incorporating calibrated forward model 

estimates of the dynamics of MWE, after correcting for systematic biases through linear 

regression, can result in approximately a 20% channel-average reduction in RMSD as 

compared to reliance on climatology.

In Table 4, we show RMSD for bias-corrected C-Noah-CRTM and C-Noah-CMEM by land 

cover class. C-Noah-CRTM and C-Noah-CMEM are in general agreement. Evergreen 
Needleleaf Forest has the lowest RMSD*100, 1.02 and 1.01, respectively for C-Noah-

CRTM and C-Noah-CMEM (excluding 89 GHz, 0.72 and 0.71). Cropland, the predominant 

land cover class in the SGP, has the highest, 1.44 and 1.39 (excl. 89 GHz, 1.24 and 1.19). 

Overall, the models, once calibrated, and after addressing the bias, are very similar, and 

appear almost interchangeable.

The percentage change in RMSD from climatology is also listed In Table 4. For forested 

land cover (Evergreen Needleleaf Forest, Deciduous Broadleaf Forest, Mixed Forest and 

Woodland), the reduction is small, less than 10%. This is followed by Wooded Grassland, 
Closed Shrubland, Grassland, and Cropland. The percentage reduction from climatology is 

smaller for Noah-CRTM than Noah-CMEM for these classes. For Cropland, RMSD is 

reduced by 20% and 23% for Noah-CRTM and Noah-CMEM, respectively (excl. 89 GHz: 

26% and 29%). For the Urban and Built land cover class, calibration reduces RMSD by 

about 10% from climatology.

We next explore the losses, if any, of calibrating only the LSM or only the MEM. As 

mentioned in the introduction, for understandable reasons, e.g., so as not to upset the land 

surface model climatology given the range of uses of the models, typically the MEM alone 

has been calibrated with the LSM left unchanged, e.g.,[28, 29]. The risk of restricting the 

calibration only to the MEM is that the issue with soil moisture dynamic range that was 

identified by [27, 30] is not properly addressed. It is therefore important to know the extent 

of any potential gains of joint calibration, which we briefly address here.

In Table 5, for each model, the change in RMSD is shown when calibrating only the LSM or 

only the MEM. With the exception of 89.0V/H, RMSD is higher if not performing joint 

calibration. Excluding 89.0V/H, for C-Noah-CRTM, RMSD is as much as 10% higher, and 
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for C-Noah-CMEM, as much as 22% higher. For C-Noah-CRTM and C-Noah-CMEM, 

respectively, the increase in the average RMSD (excluding 89GHz) is 2.3% and 2.7% for 

LSM-only calibration, and 5.5% and 12% for MEM-only calibration. This would suggest 

that for MWE estimation it is more important to calibrate the LSM than the MEM. For these 

results, the bias-corrected model estimates were used. Absent bias correction, the results (not 

shown) are similar but amplified, with the percentage change in RMSD at lower frequency 

channels significantly higher.

Conclusions

Improving the accuracy of forward model-simulated land microwave emissivity would be 

beneficial as retrieving precipitation over land requires removal of the land background 

signal. Prior studies, however, have highlighted the limited predictive power of forward 

models for microwave emissivity estimation. This study evaluated the potential for 

improving forward modeling through calibration to address the problem of poor model 

parameter specification.

The goal of the calibration exercise was to maximize the closeness of forward model 

predictions of microwave emissivity with retrieved estimates of emissivity during snow-free, 

unfrozen conditions. The domain selected was the U.S. Southern Great Plains (SGP). CRTM 

(version 2.0.2) and CMEM (version 3.0), two microwave emissivity models, both taking 

inputs from the Noah land surface model (version 3.3), formed the two basic model 

configurations that were subjected to the calibration. AMSR-E cloud-cleared retrievals for 

channels very similar to those of GPM were used for calibration and validation. An 

optimization method (genetic algorithm) was applied to search for the values of thirty-five 

land surface and microwave emissivity model parameters minimizing the familiar “least 

squares” criterion.

Calibration improved the agreement of the forward model and retrieved estimates of 

microwave emissivity. The calibration of Noah-CRTM and Noah-CMEM resulted in drier 

soil moisture states being simulated (more so for Noah-CMEM) and with simultaneous 

adjustments to vegetation sensitivity. Calibrated Noah-CMEM resulted in a better match to 

the retrievals at lower frequency channels than Noah-CRTM (RMSD as averaged over 10.65 

GHz and 18.7 GHz channels, V and H polarizations: Noah- CRTM, 0.0089; Noah-

CMEM=0.0087), but a worse match overall due to high RMSD at high frequency channels 

(RMSD as averaged over all channels : Noah-CRTM, 0.022; Noah-CMEM=0.029), though it 

is important to note that CMEM is designed only up to 20 GHz. A systematic bias of the 

calibrated forward models was observed, a distinctly narrower dynamic range than the 

retrievals. Possible explanations include surface temperature errors in the retrievals, a lack of 

an inundation modeling ability in land surface models, and limitations in the models’ 

roughness parameterization schemes.

A bias correction scheme was applied to the model estimates, as would be done if 

implementing the models in operations. This led to a much better match to retrieved 

emissivities. The average RMSD for both forward models was just over 0.013, which 

compared to before bias correction represents a one-third and one-half reduction for Noah-
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CRTM and Noah-CMEM, respectively. This also represents an approximate 10% 

improvement over the models when left un-calibrated but bias-corrected.

Use of the forward models to capture the dynamics of emissivity can lead to improvements 

over reliance on daily climatology (as interpolated from monthly emissivity climatology). In 

average terms, the models achieve an approximate 20% reduction in RMSD over 

climatology.

The improvements in RMSD differed by land cover. RMSD (after bias correction) was least 

for forested areas in absolute terms (0.010) and in percentage reduction from climatology 

(<10%). RMSD was highest for grasslands and cropland in absolute terms (0.014) and 

percentage improvement (near 20%).

Numerous calibration exercises were performed. Joint calibration of the land surface and 

microwave emissivity model was found to result in lower RMSD than calibrating only the 

microwave emissivity model, which was the approach taken in previous related calibration 

studies. The calibration of the microwave emissivity model alone resulted in RMSD that was 

6% and 12% higher than the joint calibration for Noah-CRTM and Noah-CMEM, 

respectively. Land surface model-only calibration resulted in approximately 2% higher 

RMSD for both models. In another calibration exercise, the study conclusions were found to 

be insensitive to the choice between five different channel combinations against which to 

calibrate (bias-corrected RMSD <1% difference). Calibration to 10.65 GHz V and H, 

equally weighted, proved adequate.

The validation of the calibrated forward models depends on high quality calibration datasets, 

particularly. A sound in situ-based emissivity dataset would help in discerning the source of 

discrepancies between the forward models and retrievals, both of which are subject to error. 

The availability of sound datasets would also help to guide model development.

With further development, the forward models, with their ability to capture the dynamics in 

microwave emissivity, could improve the accuracy of overland precipitations in the GPM-

era. However, further studies are needed to quantify the impact of improved emissivity 

estimation on precipitation retrieval accuracy, and ultimately on the applications (e.g., water 

budgets, flooding, drought, landslide assessment) that rely on precipitation retrievals.
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Figure 1. 
The overall forward modeling and calibration approach, as implemented within the NASA 

Goddard Land Information System (LIS)
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Figure 2. 
U.S. Southern Great Plains (SGP) domain (top;[34°N:39oN, 100oW:95oW]), dominant soil 

texture (middle), and dominant land cover (bottom).

Harrison et al. Page 24

IEEE Trans Geosci Remote Sens. Author manuscript; available in PMC 2018 May 22.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 3. 
Estimated probability distribution functions (PDFs) for 10.65 GHz horizontal polarization 

emissivity across the SGP, for the forward models (un-calibrated and calibrated) and 

retrievals. As compared to the retrievals, Noah-CMEM has much lower emissivities, while 

Noah-CRTM has a narrower dynamic range. The calibrated models, C-Noah-CRTM and C-

Noah-CMEM, are more in line with the retrievals, but the dynamic range remains too narrow 

by comparison.
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Figure 4. 
Estimated probability density functions (PDFs) for soil moisture across the SGP, prior to and 

after calibration. Calibration to the emissivity retrievals shifts soil moisture to a much drier 

state, more so for C-Noah-CMEM than C-Noah-CRTM.
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Figure 5. 
Overpass-time surface soil moisture time series for uncalibrated Noah (blue plus signs), C-

Noah-CRTM (left; red triangles), C-Noah-CMEM (right;red triangles), and USDA ARS 

Little Washita River Experimental Watershed in situ (black circles; 0–5 cm depth)
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Figure 6. 
10.65 GHz horizontal polarization emissivity for bins of soil moisture and LAI, for the 

models (a,b) and retrievals (c) prior to calibration, and for the models (d,e) and retrievals 

(f,g) after calibration. Axes are as labeled in c). Soil moisture (x-axis) is as estimated by 

Noah (a–c), C-Noah-CRTM (d,f), and C-Noah-CMEM (e,g).
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Table 1

Forward model parameters subjected to calibration and their allowed ranges.

a) Noah 3.3

Parameter description Model code name Low High Unit

Maximum volumetric soil moisture (porosity) SMCMAX 0.1 0.6 m3/m3

Saturated soil matric potential PSISAT 0.01 3.2

Saturated soil hydraulic conductivity DKSAT 5.00E-07 3.00E-05 m/s

Saturated soil water diffusivity DWSAT 6.00E-07 2.40E-05

“b” parameter in hydraulic functions BEXP 2.75 12

Quartz content, used to compute soil thermal diffusivity QUARTZ 0.02 0.95

Minimum stomatal resistance RSMIN 40 1000 s/m

Canopy resistance: radiation stress parameter RGL 30 150

Canopy resistance: vapor pressure deficit coefficient HS 36 55

Roughness length Z0 0.01 0.99 m

Leaf area index (set to 4.0 across vegetation classes) LAI 0.05 6.5

Canopy water evaporation exponent CFACTR 0.1 2

Maximum canopy water capacity CMCMAX 1.00E-04 2.00E-03 m

Vegetation canopy effect on groundheat flux as function of greenness SBETA −4 −1

Maximum stomatal resistance RSMAX 2000 10000

Optimum air temperature for transpiration TOPT 293 303 K

Parameter used with REFKDT to compute surface runoff parameter KDT REFDK 5.00E-07 3.00E-05

Bare soil evaporation exponent FXEXP 0.2 4

Surface runoff parameter REFKDT 0.1 10

Zilintikevich parameter (controls aerodynamic resistance of atm. surface layer) CZIL 0.05 0.8

Soil heat capacity CSOIL 1.26E+06 3.50E+06 J/m3/K

Ice content threshold above which frozen soil is impermeable FRZK 0.1 0.25

Water-equivalent snowdepth upper threshold for 100% snow cover/Max albedo SNUP 0.01 0.1 m

Soil moisture threshold for onset of some transpiration stress SMCREF 0 0.5 m3/m3

Top layer soil moisture threshold at which direct evaporation from soil ceases SMCDRY 0 0.15 m3/m3

Soil moisture wilting point at which transpiration ceases SMCWLT 0 0.15 m3/m3

Soil thermal diffusivity/conductivity coefficient F1 −11 0.17

Deepest soil layer drainage coefficient modifier for slope SLOPE 0 1

Surface emissivity EMISS 0.8 1 –

b) CMEM

Parameter description Model code name Low High Units

Surface roughness height SR 0.0002 0.02 m

Leaf thickness D_LEAF 0.035 0.28 mm

Vegetation water content per LAI VWC2LAI 0.05 0.7 –

Dry mass fraction of vegetation M_D 0.1 0.5 –
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c) CRTM

Parameter description Model code name Low High Units

Surface roughness height SIGMA 0.2 20 mm

Leaf thickness LEAF_THICK 0.035 0.28 mm

Vegetation water content per LAI WATER_CONTENT_PER_LAI 0.05 0.3

Single scattering albedo factor SSALB_FACTOR 0.85 1.1

d) Additional tuning parameters

Parameter description Model code name Low High Units

Fixed bare ground fraction BGF_FIXED 0 0.4 –

LAI to vegetation greenness fraction factor K_LAI2VGF 0.2 2 –
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