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Abstract

This paper considers some of the issues of radiometer brightness image formation and 

reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area 

Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which 

generates a multisensor multidecadal time series of high-resolution radiometer products designed 

to support climate studies. Two primary reconstruction algorithms are considered: the Backus–

Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) 

algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image 

formation approach. Tradeoff study results for the various algorithm options are presented to select 

optimum values for the grid resolution, the number of SIR iterations, and the BG gamma 

parameter. We find that although both approaches are effective in improving the spatial resolution 

of the surface brightness temperature estimates compared to DIB, SIR requires significantly less 

computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial 

response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors 

in the description of the sensor measurement response function, which simplifies the processing of 

historic sensor data for which the MRF is not known as well as modern sensors. Simulation 

tradeoff results are confirmed using actual data.
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I. Introduction

Satellite passive microwave observations of surface brightness temperature are critical to 

describing and understanding Earth system hydrologic and cryospheric parameters that 

include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea-ice 

concentration, and sea-ice motion. These observations are available in two forms: swath 

(sometimes referred to as NASA EOSDIS Level 1A or Level 1B) data and gridded (Level 3) 

data [1]. While swath data have applications for processes with short timescales, gridded 

data are valuable to researchers interested in derived parameters at fixed locations through 

time and are widely used in climate studies. Both swath and gridded data from the current 

time series of satellite passive microwave data sets span over 30 years of Earth observations, 

beginning with the Nimbus-7 Scanning Multi-channel Microwave Radiometer (SMMR) 

sensor in 1978, continuing with the Special Sensor Microwave/Imager (SSM/I) and Special 

Sensor Microwave Imager/Sounder (SSMIS) series sensors from 1987 onward, and 

including the completed observational record of Aqua Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E) from 2002 to 2011. Although there are 

variations between sensors, this data record is an invaluable asset for studies of climate and 

climate change.

A number of heritage gridded products are available, including those from the National 

Snow and Ice Data Center (NSIDC) (see [2]–[4]). Although widely used in a variety of 

scientific studies, the processing and spatial resolution of existing gridded data sets are 

inconsistent, which complicates long-term climate studies using them. Each of the currently 

available gridded data sets suffers from inadequacies as Earth System Data Records 

[ESDRs, also referred to as Climate Data Records (CDRs)] since most of them were 

developed prior to the establishment of formal definitions for ESDR/CDRs. Perhaps, the 

most critical limitation of heritage products is the lack of cross-calibration of the sensors. In 

addition, all of the existing gridded data sets at NSIDC employ the original EASE-Grid 

projection [5], which has since been revised to be used more easily with standard geospatial 

mapping programs [6], [7]. Furthermore, since definition of these heritage products, new 

image reconstruction and interpolation schemes have been developed, which can be used to 

improve the products.

The SSM/I-SSMIS swath data record has been recently reprocessed and cross-calibrated by 

two research teams who have published the data as fully vetted fundamental CDRs 

(FCDRs): Remote Sensing Systems (Santa Rosa, CA) [8] and Colorado State University [9]. 

To exploit the availability of these new FCDRs and improved gridding schema while 

ameliorating the limitations of current gridded data sets, the NASA MEaSUREs Calibrated 

Passive Microwave Daily Equal-Area Scalable Earth (EASE) Grid 2.0 Brightness 

Temperature (CETB) Earth System Data Record (ESDR) [10] is generating a single 

consistently processed multisensor ESDR of Earth-gridded microwave brightness 

temperature (TB) images. The multi-decadal product includes sensor data from SMMR, 

SSM/I, SSMIS, and AMSR-E with all the improved swath data sensor calibrations recently 

developed, as well as improvements in cross-sensor calibration and quality checking, 

modern file formats, better quality control, improved grid projection definitions [6], [7], 

improved gridding techniques, and local-time-of-day (ltod) processing. To exploit 
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developments in resolution enhancement, the CETB ESDR includes both conventional and 

enhanced resolution products. Designed to serve the land surface and polar snow/ice 

communities, the new products are intended to replace existing heritage gridded satellite 

passive microwave products with a single consistently processed ESDR [10].

A key part of processing is conversion of the swath-based measurements to the Level 3 grid. 

Algorithms to transform radiometer data from swath to gridded format are characterized by 

a tradeoff between noise and spatial and temporal resolution. Conventional drop-in-the-

bucket (DIB) techniques provide low-noise low-resolution products, but higher resolution 

(with potentially higher noise) products are possible using image reconstruction techniques. 

By providing products with both processing options, users can compare and choose which 

option better suits their particular research application. The purpose of this paper is to 

explore the options for the high-resolution processing products and to compare the results to 

conventional resolution processing. A key goal of this paper is to describe the methods and 

their tradeoffs.

This paper is organized as follows. After some brief background, a review of the theory of 

radiometer image reconstruction is provided that includes a derivation of the radiometer 

measurement spatial response function (MRF) and a discussion of radiometer image 

formation algorithms. The succeeding section employs simulation to select the optimum 

parameters for image formation for the SSM/I sensor and to evaluate the sensitivity of the 

reconstruction to the accuracy of the response function. Actual data results are provided in 

the following section, followed by a summary conclusion. An Appendix considers the 

spatial frequency response of a radiometer MRF.

II. Background

Previous gridded passive microwave data sets have used various swath-to-grid interpolation 

schemes on different grids for different radiometer channels. Some products [11] used 

classic DIB methods described in Section IV-A, whereas others [2], [3] used inverse-

distance squared weighting. These approaches resulted in low-resolution gridded data with 

low noise, at the expense of spatial resolution. However, there is interest in the user 

community for higher resolution products.

For the conventional-resolution CETB product, all radiometer channels are gridded to a 

single coarse resolution grid using DIB method described in Section IV-A. To also provide a 

high spatial resolution product, the CETB exploits the results of previous studies that have 

demonstrated that high-resolution radiometer images can be produced using processing 

algorithms based on the Backus–Gilbert (BG) [12], [13] approach [14]–[18] and the 

radiometer form of the scatterometer image reconstruction (SIR) algorithm [19], [20], which 

has been successfully applied to SMMR, SSM/I, and AMSR-E data [19], [21].

BG was employed in generating the swath-based gridded SSM/I Pathfinder EASE-Grid 

product [4]. The BG implementation used data from a single swath even when overlapping 

swaths were available. Using a single swath reduces processing requirements by enabling 

precalculation of BG weights versus scan position, with tuning parameters set for low noise 
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(and therefore low spatial resolution). The antenna footprints were assumed circular. 

Gridded data were produced separately for ascending and descending passes.

The Brigham Young University Scatterometer Climate Pathfinder (SCP, www.scp.byu.edu) 

generated an enhanced-resolution passive microwave data set for selected periods of SSM/I 

and AMSR-E. Available from NSIDC [21], the SCP product uses the SIR algorithm to 

report TB on finer spatial grids than possible with conventional processing. This product 

combines data from multiple passes using measurement ltod, which minimizes fluctuations 

in the observed TB at high latitudes due to changes in physical temperature from daily 

temperature cycling. Two images per day are produced, separated by 12 hours (morning and 

evening), with improved temporal resolution, permitting resolution of diurnal variations 

[22]. The enhanced resolution gridded data are proving useful in a variety of scientific 

studies, e.g., in [23] and [24].

Both BG and SIR use regularization to tradeoff noise and resolution. While BG is based on 

least squares and depends on a subjectively chosen tradeoff parameter for regularization, 

SIR employs maximum entropy reconstruction with regularization accomplished by limiting 

the number of iterations and thereby only producing partial reconstruction. BG and SIR 

provide similar results, although SIR offers a computational advantage over BG [19]. Based 

on ongoing feedback from an early adopter community, the final CETB product will likely 

contain images derived from only one of the candidate image reconstruction methods. To 

inform this decision, one of the goals of this paper is to describe the methods and their 

tradeoffs.

A. LTOD

The passive microwave sensors employed in the CETB fly on near-polar sun-synchronous 

satellites, which maintain an orbital plane with an orientation that is (approximately) fixed 

with respect to the sun. Thus, the satellite crosses the equator on its ascending (northbound) 

path at the same ltod (within small tolerance). The resulting coverage pattern yields passes 

about 12 h apart in ltod at the equator. Most areas near the pole are covered multiple times 

per day. Analyzing the data from a single sensor, we find that polar measurements fall into 

two ltod ranges. The two periods are typically less than 4 h long and are spaced 8 or 12 h 

apart. Significantly, at any particular location, the orbital pass geometry causes the ltod of 

the observations to differ from day to day in a cyclic manner [22]. When not properly 

accounted for, this can introduce undesired variability (noise) into a time series analysis due 

to diurnal variations of the surface that is sampled at different ltod over the multiday orbit 

repeat cycle.

Heritage gridded TB products have either 1) averaged all measurements during the day that 

fall in a given grid cell [11]; or 2) selected measurements from only one (ascending or 

descending) pass per day [2]–[4]. The observed microwave brightness temperature is the 

product of surface physical temperature and surface emissivity. Since surface temperatures 

can fluctuate widely during the day, daily averaging (method 1) is not generally useful since 

it smears diurnal temperature fluctuations in the averaged TB. The single-pass approach 

(method 2) discards large amounts of potentially useful data. This method separates data into 

ascending pass-only and descending pass-only data, resulting in two images per day. This is 
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a reasonable approach at low latitudes, but at higher latitudes, the ascending/descending 

division does not work as well since adjacent pixels along swath overlap edges can come 

from widely different ltod (which vary on subsequent days) [22]. The gridded field of TB’s, 

ostensibly all representing consistent ltods, actually represent different physical temperature 

conditions. Thus, some modified form of swath averaging is desired.

Another alternative is to split the data into two images per day, based on the ltod approach of 

Gunn and Long [22]. Fig. 1 shows the difference in where the ascending/descending division 

and ltod divisions occur. Particularly near the pole, the ltod approach ensures that all 

measurements in any one image have consistent spatial/temporal relationships. The CETB 

adopts the ltod division scheme for the northern and southern hemispheres. At low latitudes, 

(which typically have few overlapping swaths at similar ltod in the same day), the ltod 

division is equivalent to the ascending/descending division. For the CETB product, an 

ancillary image is included to describe the effective time average of the measurements 

combined into the pixel for a particular day. This enables investigators to explicitly account 

for the ltod temporal variation of the measurements included in a particular pixel. To account 

for the differences in orbits of the different sensors, the precise ltod division time for the 

twice-daily images varies among sensors.

III. Radiometer Spatial Response Function

The effective spatial resolution of gridded image products is determined by the MRF of the 

sensor and by the image formation algorithm used. The MRF is determined by the antenna 

gain pattern, which is unique for each sensor and sensor channel, and varies with scan angle, 

the scan geometry (notably the antenna scan angle), and the measurement integration period. 

This section derives the MRF for a microwave radiometer. First, basic background is 

provided, followed by a discussion of the effects of temporal integration.

A. Background Theory

Microwave radiometers measure the thermal emission, which is sometimes called Plank 

radiation, radiating from natural objects [25]. In a typical radiometer, an antenna is scanned 

over the scene of interest, and the output power from the carefully calibrated receiver is 

measured as a function of scan position. The reported signal is a temporal average of the 

filtered received signal power [25].

The observed power is related to receiver gain and noise figure, antenna loss, physical 

temperature of the antenna, antenna pattern, and scene brightness temperature. In simplified 

form, the output power PSYS of the receiver can be written as [25]

(1)

where k = 1.38 × 10−23 (J/K) is Boltzmann’s constant, B is the receiver bandwidth in hertz, 

and TSYS is the system temperature in Kelvin with
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(2)

where ηl is the antenna loss efficiency (unitless), Tp is the physical temperature in Kelvin of 

the antenna and waveguide feed, L is the waveguide loss (unitless), TREC is the effective 

receiver noise temperature (determined by system calibration) in Kelvin, and TA is the 

effective antenna temperature in Kelvin. As described in the following, the effective antenna 

temperature is dependent on the direction the antenna points and on the scene 

characteristics. Since the other instrument-related terms (i.e., (1 − ηl)Tp + (L − 1)Tp + 

LTREC) can be removed by proper calibration, the value of TA, which depends on the 

geophysical parameters of interest, is thus estimated from TSYS.

The effective antenna temperature TA can be modeled as a product of the apparent 

temperature distribution TAP(θ, ϕ) in the look direction θ, ϕ, and the antenna radiation gain 

F(θ, ϕ), which is proportional to the antenna gain pattern G(θ, ϕ) [25]. TA (in Kelvin) is 

obtained by integrating the product of apparent temperature distribution TAP(θ, ϕ) (in 

Kelvin) and the unitless antenna pattern G(θ, ϕ):

(3)

where

(4)

and G(θ, ϕ) is the instantaneous antenna gain for the particular channel and where the 

integrals are over the range of values corresponding to the nonnegligible gain of the antenna. 

Note that the antenna pattern acts as a nonideal low-pass spatial filter of the surface 

brightness distribution, limiting the primary surface contribution to the observed TB to 

approximately 3-dB beamwidth, although the observed value includes contributions from a 

larger area.

For downward-looking radiometers, the apparent brightness temperature distribution 

includes contributions from the surface and from the intervening atmosphere [25]. For a 

spaceborne sensor, this can be expressed as

(5)

where TB(θ, ϕ) is the surface emission brightness temperature, Tss(θ, ϕ) is the surface 

scattered radiation, τ is the total effective optical depth of the atmosphere, and Tup(θ) is the 

effective atmospheric upwelling temperature, which depends on the temperature and density 

profile, atmospheric losses, clouds, rain, etc.
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Ignoring incidence and azimuth angle dependence, the surface brightness temperature is

(6)

where ε is the emissivity of the surface, and TP is the physical temperature of the surface. 

The emissivity is a function of the surface roughness and permittivity, which are related to 

the geophysical properties of the surface [25]. In geophysical studies, the ultimate key 

parameter of interest is typically ε, although TP is also of interest.

The surface scattering temperature Tss(θ, ϕ) is the result of downwelling atmospheric 

emissions that are scattered off of the rough surface toward the sensor. This signal depends 

on the scattering properties of the surface (surface roughness and dielectric constant) as well 

as the atmospheric emissions directed toward the ground. We note that, although some 

azimuth variation with brightness temperature has been observed over the ocean [26], sand 

dunes [27], and snow in Antarctica [28], vegetated and sea-ice-covered areas generally have 

little or no azimuth brightness variation [8].

B. Signal Integration

The received radiometer signal is very noisy. To reduce the measurement variance, the 

received signal power is averaged over a short integration period. Even so, the reported 

measurements are noisy due to the limited integration time available for each measurement. 

The uncertainty is expressed as ΔT, which is the standard deviation of the temperature 

measurement. ΔT is a function of the integration time and bandwidth used to make the 

radiometric measurement and is typically inversely related to the time–bandwidth product 

[25]. Increasing the integration time and/or bandwidth reduces ΔT. High stability and 

precise calibration of the system gain are required to accurately infer the brightness 

temperature TB from the sensor power measurement PSYS.

Because the antenna is scanning during the integration period, the effective antenna gain 

pattern of the measurements is a smeared version of the antenna pattern. In the smeared 

case, we replace G in (3) and (4) with the smeared version of the antenna, Gs, where

(7)

with Ti being the integration period, ωr being the antenna rotation rate, and the integral 

limits being 0 and Ti. Note that because Ti is very short, the net effect is primarily to widen 

the main lobe. Nulls in the pattern tend to be eliminated and the sidelobes widened. The 

smeared antenna pattern varies somewhat for different antenna azimuth angles, although for 

simplicity, this effect is not considered in this paper.

For imaging the surface, we can concentrate on the pattern smearing at the surface. The 

smeared antenna pattern Gs(θ, ϕ) at the surface at a particular time defines the MRF of the 

corresponding TB measurement. Due to varying geometry, the MRF of different 
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measurements may be slightly different. For example, the azimuth angle changes across the 

swath result in varying rotation angle of the MRF.

Note from (5) that TAP(θ, ϕ) consists primarily of an attenuated contribution from the 

surface (i.e., TB) plus scattered and upwelling terms. We note that the reported TA values 

compensate or correct (to some degree) for these terms.

Let  denote the corrected TA measurement. It follows that we can rewrite (5) in terms of 

the corrected TA and the surface TB value as

(8)

We can express this result in terms of the surface coordinates x and y by noting that, for a 

given x, y location and time, the antenna elevation and azimuth angles can be computed (see 

the Appendix). Then

(9)

where

(10)

In surface coordinates, the MRF is defined as

(11)

so that

(12)

Thus, the measurements  can be seen to be the integral of the product of the MRF and the 

surface brightness temperature. The nominal resolution of the TB measurements is generally 

considered the size of the 3-dB response pattern of the smeared MRF. Image formation 

estimates TB(x, y) from the measurements .
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IV. Gridding and Reconstruction

Algorithms that generate 2-D gridded images from raw measurements are characterized by a 

tradeoff between noise and spatial resolution. Our goal is to estimate an image of the surface 

TB(x, y) from the sensor TB measurements. The “nominal” resolution of the TB 

measurements is typically considered the size of the 3-dB response pattern of the MRF. 

Although the effective resolution of DIB imaging is no finer than the effective resolution of 

the measurements, reconstruction techniques can yield higher effective resolution if spatial 

sampling requirements are met.

As previously noted, the CETB project [10] is to produce both low-noise gridded data and 

enhanced-resolution data products. The low-resolution gridded data uses the DIB method 

described in the following. These products are termed “low resolution” or “nonenhanced 

resolution” and are denoted as gridded (GRD) products. Higher resolution products are also 

generated using one of the two image reconstruction methods: the radiometer form of the 

SIR algorithm or the BG image formation method, as described in the following. Unlike the 

approach taken for the historical EASE-Grid data [4], the CETB does not attempt to degrade 

the resolution of the highest channels to match the coarsest channel; rather, it independently 

optimizes the resolution for each channel in the high-resolution products. The product is 

Earth-located (in contrast to swath based) using EASE-Grid 2.0 [6], [7]. In generating CETB 

gridded data, only measurements from a single sensor and a channel are processed. 

Measurements combined into a single grid element may have different Earth azimuth and 

incidence angles (although the incidence angle variation is small). Measurements from 

multiple orbit passes over a narrow local time window may be combined. When multiple 

measurements are combined, the resulting images represent a temporal average of the 

measurements over the averaging period. There is an implicit assumption that the surface 

characteristics remain constant over the imaging period and that there is no azimuth 

variation in the true surface TB. For both conventional (nonenhanced) resolution and 

enhanced-resolution images, the effective gridded image resolution depends on the number 

of measurements and the precise details of their overlap, orientation, and spatial locations.

The succeeding sections provide a brief summary of the algorithms used for image 

formation. Channels are gridded at enhanced resolution on nested grids at power-of-two 

relationships to the 25-km base grid. This embedded gridding simplifies overlaying grids 

from different resolutions. The method for determining the fine-resolution grid for each 

channel is given in the following.

A. Coarse-Resolution GRD Gridding Algorithm

A classic coarse-resolution gridding procedure is the simple DIB average. The resulting data 

grids are designated GRD data arrays. For the DIB gridding algorithm, the key information 

required is the location of the measurement. The center of each measurement location is 

mapped to an output projected grid cell. All measurements within the specified time period 

whose center locations fall within the bounds of a particular grid cell are averaged together. 

The unweighted average becomes the reported pixel value. Although some investigators [2], 

[3] have interpolated measurement locations to the center, or weighted the measurements by 

the distance to the center, such interpolation increases the noise level; therefore, in the CETB 
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no interpolation or measurement weighting is done. CETB ancillary data contain the number 

and standard deviation of included samples.

The effective spatial resolution of the GRD product is defined by a combination of the pixel 

size and spatial extent of the 3-dB antenna footprint size [19], [32] and does not require any 

information about the antenna pattern. Although the pixel size can be arbitrarily set, the 

effective resolution is, to the first order, the sum of the pixel size plus the footprint 

dimension (see Fig. 2). All CETB GRD products are produced on a 25-km pixel grid and 

thus have an effective resolution that is coarser than 25 km since the measurement footprints 

can extend outside of a pixel.

B. Reconstruction Algorithms

In the reconstruction algorithms, the effective MRF for each measurement is used to 

estimate the surface TB on a fine-scale grid. The MRF is determined by the antenna gain 

pattern (which is unique for each sensor and sensor channel, and varies with scan angle), the 

scan geometry (notably the antenna scan angle), and the integration period. The latter 

“smears” the antenna gain pattern due to antenna rotation over the measurement integration 

period. The MRF describes how much the emissions from a particular receive direction 

contribute to the observed TB value.

Denote the MRF for a particular channel by R(ϕ, θ; ϕi), where ϕ and θ are particular 

azimuth and elevation angles relative to the antenna boresite at azimuth scan angle ϕi. Note 

that, for a given antenna azimuth scan angle, the MRF is normalized so that the integral of 

the MRF over all azimuth and elevation angles is one.

Generally, for the FCDR data sets that are input to the CETB, the MRF can be treated as 

zero everywhere but in the direction of the surface. With this assumption, we can write R(ϕ, 
θ; ϕi) as R(x, y; ϕi), where x and y are the location (which we will express in map 

coordinates) on the surface corresponding to the azimuth and elevation angles for the 

particular ϕi. Note that ∫ ∫ R(x, y; ϕi)dxdy = 1. A particular noise-free measurement Ti 

taken at a particular azimuth angle ϕi can be written as

(13)

where TB(x, y; ϕi) is the nominal brightness temperature in the direction of point x, y on the 

surface as observed from the scan angle ϕi. Note that, if there is no significant difference in 

the atmospheric contribution as seen from different scan angles and if the surface brightness 

temperature is azimuthally isotropic, we can treat TB(x, y; ϕi) as independent of ϕi so that 

TB(x, y; ϕi) = TB(x, y). TB(x, y) is referred to as the surface brightness temperature.

With this approximation, a typical brightness temperature measurement can be written as

(14)
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where noise is radiometric measurement noise. Each measurement is seen to be the MRF-

weighted average of TB. The goal of the reconstruction algorithm is to estimate TB(x, y) 

from the measurements Ti.

For the problem at hand, TB is desired at each sample point on the EASE-Grid 2.0 grid. 

While this is a regular grid, the measurement locations are not aligned with the grid, and the 

measurements form an irregular sampling pattern. There is a well-defined theory of signal 

reconstruction based on irregular sampling that can be applied to the problem [29], [31], 

[32]. However, since the signal measurements are quite noisy, full reconstruction can 

produce excessive noise enhancement. To reduce noise enhancement and resulting artifacts, 

at the expense of resolution, regularization can be employed [32]. Regularization is a 

smoothing constraint introduced to an inverse problem to prevent extreme values or 

overfitting.

The regularization in BG and SIR enable a tradeoff between signal reconstruction accuracy 

and noise enhancement. SIR is based on signal processing and treats the surface brightness 

temperature as a 2-D signal to be reconstructed from irregular samples (the measurements). 

BG is a least-squares approach that trades noise and solution smoothness using a 

subjectively selected parameter [12], [13]. While related alternate approaches exist [38], 

[39], [41], they are not considered here due to limited validation for this application and 

because their results are generally similar.

Both the BG and SIR approaches enable estimation of the surface brightness on a finer grid 

than is possible with the conventional DIB approaches, i.e., the resulting brightness 

temperature estimate has a finer effective spatial resolution than DIB methods. As a result, 

the results are often called “enhanced resolution,” although in fact, the reconstruction 

algorithm merely exploits the available information to reconstruct the original signal at 

higher resolution than GRD gridding, based on the assumption of a bandlimited signal [20]. 

Compared with the GRD coarsely gridded product, the potential resolution enhancement 

depends on the sampling density and the MRF; however, improvements of 25% to 1000% in 

the effective resolution have been demonstrated in practice for particular applications. For 

radiometer enhancement, the effective improvement in resolution tends to be limited and in 

practice is typically less than 100% improvement. Nevertheless, the resulting images have 

improved spatial resolution and information. Note that to meet Nyquist requirements for the 

signal processing, the pixel resolution of the images must be finer than the effective 

resolution by at least a factor of two.

For comparison, note that the effective resolution for DIB gridding is equivalent to the sum 

of pixel grid size plus the spatial dimension of the measurement, which is typically defined 

by the half-power or the 3 dB beamwidth. Based on Nyquist considerations, the highest 

representable spatial frequency for DIB gridding is twice the grid spacing.

Note that, in some cases (notably in the polar regions), multiple passes over the same area at 

the same ltod can be averaged together. Reconstruction algorithms intrinsically exploit the 

resulting oversampling of the surface to improve the effective spatial resolution in the final 

image.
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C. Signal Reconstruction and SIR

In the reconstruction, TB(x, y) is treated as a discrete signal sampled at the map pixel 

spacing and is estimated from the noisy measurements Ti. The pixel spacing must be set 

sufficiently fine so that the generalized sampling requirements [30] are met for the signal 

and the measurements [20], [32]. Typically, this means that the pixel spacing must be one-

half to one-tenth the size of antenna footprint size.

To briefly describe the reconstruction theory, for convenience, we vectorize the 2-D signal 

over an Nx × Ny pixel grid into a single-dimensional variable aj = TB(xj, yj), where j = l + 

Nxk. The measurement equation (14) becomes

(15)

where hij = R(xl, yk; ϕi) is the discretely sampled MRF for the ith measurement evaluated at 

the jth pixel center and the summation is over the image with Σj hij = 1. In practice, the MRF 

is negligible at some distance from the measurement; therefore, the sums need only to be 

computed over an area local to the measurement position. Some care has to be taken near 

image boundaries.

For the collection of available measurements, (15) can be written as the matrix equation, i.e.,

(16)

where H contains the sampled MRF for each measurement, and T⃗ and a⃗ are vectors 

composed of the measurements Ti and the sampled surface brightness temperature aj, 

respectively. Note that H is very large, sparse, and may be overdetermined or 

underdetermined depending on the sampling density. Estimating the brightness temperature 

at high resolution is equivalent to inverting (16). In the case of the CETB, H is typically 

underdetermined, and if explicitly written out, would have dimensions of over 106 × 106.

Due to the large size of H, iterative methods are the most practical approach to inverting 

(16). One advantage of an iterative method is that regularization can be easily implemented 

by prematurely terminating the iteration; alternately, explicit regularization methods such as 

Tikhonov regularization [46] can be used.

The radiometer form of SIR is a particular implementation of an iterative solution to (16) 

that has proven effective in generating high-resolution brightness temperature images [19]. 

The SIR estimate approximates a maximum-entropy solution to an underdetermined 

equation and a least squares solution to an overdetermined system. The first iteration of SIR 

is termed “AVE” (for weighted average) and can be a useful estimate of the surface TB. The 

AVE estimate of the jth pixel is given by
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(17)

where the sums are over all measurements that have nonnegligible MRF at the pixel.

D. BG Method

A direct approach to inverting (16) is based on Backus and Gilbert [12], [13] who developed 

a general method for inverting integral equations. The BG method is useful for solving 

sampled signal reconstruction problems [33]. First applied to the radiometer data in [14], the 

BG method has been used extensively for extracting vertical temperature profiles from 

radiometer data [15]. It has also been used for spatially interpolating and smoothing data to 

match the resolution between different channels [40] and to improve the spatial resolution of 

surface brightness temperature fields [19], [34], [35]. Antenna pattern deconvolution 

approaches have also been attempted with varying degrees of success [44], [45].

In application to image reconstruction of the surface brightness temperature, the essential 

idea is to write an estimate of the surface brightness temperature at a particular pixel as a 

weighted linear sum of measurements that are collected “close” to the pixel. Using the 

notation developed earlier, the estimate at the jth pixel is

(18)

where the sum is computed over nearby pixels and where wij are weights selected so that Σi 

wij = 1.

There is no unique solution for the weights; however, regularization permits a subjective 

tradeoff between the noise level in the image and the resolution [19]. Regularization and 

selection of the tuning parameters are described in detail elsewhere [33], [40]. There are two 

tuning parameters: an arbitrary-dimensional parameter and a noise-tuning parameter γ. The 

dimensional parameter affects the optimum value of tuning parameter γ. Following 

Robinson et al. [40], we set the dimensional-tuning parameter to 0.001. The noise-tuning 

parameter, which can vary from 0 to π/2, controls the tradeoff between the resolution and 

the noise. Varying γ alters the solution for the weights between a (local) pure least-squares 

solution and a minimum noise solution. The value of γ must be subjectively selected to 

“optimize” the resulting image and depends on the measurement noise standard deviation 

ΔT and the chosen penalty function. Following [35], we set the penalty function to a 

constant J = 1 and the reference function to F = 1 over the pixel of interest, and F = 0 

elsewhere.

Previous investigators [4], [40] have used BG to optimally degrade the resolution of high-

frequency channels to “match” that of lower frequency channels. Rather than do this, we 

optimize the resolution of each channel independently to fixed-size grids.
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In most previous applications of BG to spatial measurement interpolation of radiometer data, 

the measurement layout and MRF were limited to small local areas and fixed geometries to 

reduce computation and enable precomputation of the coefficients [16], [17], [40]. 

Azimuthally averaged antenna gain patterns have also been used [35]. Other investigators 

[36] processed the measurements on a swath-based grid. The fixed geometry yields only a 

relatively small number of possible matrices, enabling computational saving by 

precomputation of the matrices. Unfortunately, the Earth-based grids used in the CETB 

produce a much more variable geometry than the fixed swath-based geometries, making this 

approach less viable since similar shortcuts cannot be used.

For BG processing considered here, we follow [19] to define “nearby” as regions where the 

MRF is within 9 dB of the peak response. Outside this region, the MRF is treated as zero. 

We compute the solution separately for each output pixel using the particular measurement 

geometry antenna pattern at the swath location and Earth azimuth scan angle. This increases 

the computational load but results in the best quality images. The value of γ is subjectively 

selected for each channel but is held constant for each of the rows in Table I.

We have found that the BG method occasionally produces artifacts due to poor condition 

numbers of the matrices that are inverted. To eliminate these artifacts, a median-threshold 

filter is used to examine a 3 × 3 pixel window area around each pixel. “Spikes” larger than 5 

K above the local median are replaced with the median value within the window. Smaller 

variations are not altered.

E. SSM/I

The gridding and reconstruction methods can be applied to a variety of radiometers such as 

SMMR, SSM/I, SSMIS, AMSR-E, and WindSat. However, to illustrate the methods and 

their tradeoff, in this paper, we concentrate on describing the methods as applied to a 

particular sensor, i.e., the SSM/I. We briefly describe this sensor here. The same techniques 

can be applied to the other sensors.

The SSM/I is a total-power radiometer with seven operating channels (see Table I). An 

integrate-and-dump filter is used to make radiometric brightness temperature measurements 

as the antenna scans the ground track via antenna rotation [37]. First launched in 1987, 

SSM/I instruments and their follow-ons, i.e., SSMIS, have flown on multiple spacecraft 

continuously until the present as part of the Defense Meteorological Satellite Program 

(DMSP) (F) satellite series.

The SSM/I swath and scanning concept is shown in Fig. 3. The antenna spin rate is 31.6 

r/min with an along-track spacing of approximately 25 km. Multiple horns at 85 GHz 

provide along-track spacing for these channels at 12.5 km. The brightness temperature 

measurements are collected at a nominal incidence angle of approximately 53°. A zoomed 

view of the arrangement of the antenna footprints on the surface for different antenna 

azimuth angles is shown in Fig. 4.
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V. Reconstruction Performance Simulation

To compare the performance of the reconstruction techniques, it is helpful to use simulation. 

The results of these simulations inform the tradeoffs needed to select processing algorithm 

parameters. A simple (but realistic) simulation of the SSM/I geometry and spatial response 

function is used to generate simulated measurements of a synthetic Earth-centered image. 

From both noisy and noise-free measurements, non-enhanced (GRD), AVE, SIR, and BG 

images are created, with error (mean and rms) determined for each case. This is repeated 

separately for each channel. The measurements are assumed to have a standard deviation of 

ΔT = 1 K. The results are relatively insensitive to the value chosen.

Two different pass cases are considered: the single-pass case and the case with two 

overlapping passes. Simulation shows that the relative performance of SIR and BG are the 

same for both cases; therefore, we show only one case in this paper. Since multiple passes 

are often combined in creating CETB images, the two-pass case is emphasized in the 

simulations presented. First, the size of the pixels for each channel must be determined. To 

generate images that can be embedded, the product pixel size is restricted to fractional 

power of two of 25 km. That is, the pixel size Ps in kilometers is given by

(19)

where Ns is the pixel size scale factor, which is limited to the values 0, 1, 2, 3, and 4. The set 

of potential values of Ps are thus 25, 12.5, 6.25, 3.125, and 1.5625 km. For the simulation, 

the equal-area pixels are square.

An arbitrary “truth” image is generated with representative features, including spots of 

varying sizes, edges, and areas of constant and gradient TB (see Fig. 5). The precise 

algorithm optimums can depend on the truth image used [20]. However, the other images 

considered in this paper produced similar results; therefore, for clarity, the results from only 

a single truth image are presented in this paper.

Based on the SSM/I measurement geometry, simulated locations of antenna boresite at the 

center of the integration period are plotted for a particular channel (37 GHz) in Fig. 6(a) for 

a single pass. Images calculated in the polar regions can combine measurements from 

multiple passes of the spacecraft over the same area. While the sampling for a single pass is 

fairly regular, the sampling from multiple overlapping passes tends to be less regular. Fig. 

6(b) illustrates the sampling resulting from two overlapping passes. The variation in sample 

locations with each 25-km grid element is apparent.

The MRF is modeled with a 2-D Gaussian function whose 3 dB (half-power) point matches 

the footprint sizes given in Table I. The orientation of the ellipse varies over the swath 

according to the azimuth antenna angle. To apply the MRF in the processing, the MRF is 

positioned at the center of the nearest neighbor pixel to the measurement location and 

oriented with the azimuth antenna angle. The values of the discrete MRF are computed at 

the center of each pixel in a box surrounding the pixel center. The size of the box is defined 
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to be the smallest enclosing box for which the sampled antenna pattern is larger than a 

minimum gain threshold of −30 dB relative to the peak gain. A second threshold (typically 

−9 dB) defines the gain cutoff used in the SIR and BG processing. The latter threshold 

defines the Nsize parameter used in [19].

The image pixel size defines how well the MRF can be represented in the reconstruction 

processing and the simulation. Since we want to evaluate different pixel sizes in this 

simulation, a representative plot of the MRF sampling for each channel for each pixel size 

under consideration is shown in Fig. 7. Note that, as the pixel size is decreased, the sampled 

MRF more closely resembles the continuous MRF, thereby reducing quantization error; 

however, reducing the pixel size increases the computation and size of the output products.

GRD images are created by collecting and averaging all measurements whose center falls 

within each 25-km grid element. For comparison with high-resolution BG and SIR images 

in this paper, the GRD image is pixel-replicated to match the pixels of the SIR or BG 

images.

Separate images are created for both noisy and noise-free measurements. Error statistics 

(mean, standard deviation, and rms) are computed from the difference between the “truth” 

and estimated images for each algorithm option. The noise-only rms statistic is created by 

taking the square root of the difference of the squared noisy and noise-free rms values.

Both single and dual-pass cases were run as part of this paper, but only the dual-pass cases 

are shown in this paper. Fig. 5 shows a typical simulation result. It shows the true image, and 

both noise-free and noisy images. The error statistics for this case are given in Table II. For 

this pixel size, the image size is 448 × 224 with Ps = 3.125 km. In all cases, the error is 

effectively zero mean. The nonenhanced results have the larger errors, with the AVE results 

slightly less. The rmse is the smallest for the SIR results. Visually, GRD and AVE are 

similar, although SIR images better define edges. The spots are much more visible in the 

SIR images than in the GRD images, although the SIR image has a higher apparent noise 

“texture.” BG results are discussed in a later section.

A. SIR Processing

Theoretically, SIR should be iterated to convergence to ensure full signal reconstruction. 

This can require hundreds of iterations [20]. However, continued SIR iteration also tends to 

amplify the noise in the measurements. By truncating the iteration, we can tradeoff signal 

reconstruction accuracy and noise enhancement. Truncated iteration results in the signal 

being incompletely reconstructed (partial reconstruction) with less noise. The reconstruction 

error declines with further iteration as the noise increases.

To understand the tradeoff between number of iterations and signal and noise, Fig. 8 shows 

noisy and noise-free SIR images for several different iteration numbers (recall that AVE is 

the first iteration of SIR). Note that as the number of iterations is increased, the edges are 

sharpened and the spots become more evident. Fig. 9 plots the mean, standard deviation, and 

rms versus iteration. Moreover, shown in this figure are the errors for the GRD and AVE (the 

first iteration of SIR) images. The noise texture grows with increasing iteration. We thus 

Long and Brodzik Page 16

IEEE Trans Geosci Remote Sens. Author manuscript; available in PMC 2017 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conclude that although iteration improves the signal, extended iteration can overenhance the 

noise.

Plotting the signal reconstruction error versus noise power enhancement as a function of 

iteration number in Fig. 9 can help make a choice for the number of iterations that balances 

signal and noise performance. Note that the GRD result is much noisier and that the signal 

error improves with each iteration of SIR. Noting that we can stop the SIR iteration at any 

point, we somewhat arbitrarily choose a value of 20 iterations, which provides good signal 

performance and only slightly degraded noise performance. This is the value used in Table 

II, where we see that the overall error performance of the SIR reconstruction is better than 

the GRD result.

This analysis is repeated for different values of Ns, i.e., the number of passes, and for each 

radiometer channel. While the numerical values of the rmse change, the overall ranking and 

relative spacing of the GRD and SIR values are the same for all cases. Based on these 

detailed results (not shown), the following observations can be made.

1. With proper choice of the number of iterations SIR always has better signal 

performance (as well as better spatial resolution) than GRD.

2. Iterating SIR too long causes it to have worse noise performance than GRD, 

although the signal performance improves for longer iterations.

3. Based on the rmse comparison, SIR performance is slightly better than BG with 

the optimum γ.

In general, we want to use a small Ns to minimize computation and to minimize the number 

of iterations. Based on Nyquist criteria for sampling the response pattern, Ns = 2 is the 

minimum usable value. With the idea that we want to keep the same values for all channels, 

if possible, for consistency, it appears that Ns = 3 (i.e., Ps = 3.125 km) provides the best 

overall performance for all channels and that 5–20 iterations provide a reasonable tradeoff 

between signal and noise. Using Ns = 3, Table III provides a performance comparison for the 

rmses of GRD, AVE, and SIR for the different channels using 20 iterations. Fig. 5 compares 

the resulting noisy simulation results. Note that, although the pixel size is 3.125 km, the 

effective spatial resolution of the images is, of course, coarser than this. Recall that at least 

some of the extra pixel resolution is required to properly process the signal to meet the 

Nyquist signal representation requirements and represent the higher frequency content of the 

high-resolution images. It should be noted that the precise minimum value depends on the 

exact noise realization; however, the optimum can only be computed in simulation; 

therefore, we have chosen the nominal optimum and use it for the processing of real data.

In summary, SIR provides better spatial resolution and lower overall rmse than 

conventionally gridded (GRD) products. The reconstruction does tend to enhance the noise, 

but this is offset by reduced signal error. The total error can be controlled by the number of 

iterations to tradeoff noise and resolution.
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B. BG Processing

The BG approach requires selection of a subjective tuning parameter. It also requires 

significantly more computation than does SIR. Previous investigators who worked on swath-

based grids were able to coarsely quantize the possible measurement positions to reduce the 

number of matrix inversions required. This enabled them to generate precomputed 

approximate solutions [18], [40]. However, as noted previously, the situation is different 

when working with Earth-based grids. Note that, Fig. 4, the measurement centers are 

irregularly arranged with respect to the Earth-located pixel grid. This limits any ability for 

using similar preprocessing techniques to speed the BG computation. Further, to avoid the 

approximations used with fixed geometries, we use the actual measurement positions and a 

general pixel grid so that reconstruction can be done on the Earth-located pixel grid [19]. 

Another advantage of this approach is that all data from overlapping swaths (subject to ltod) 

can be used, whereas previous implementations used data from one swath for any given 

Earth grid cell [16], [17]. The general form we use requires creating and inverting a matrix 

for each image pixel.

In the BG simulations in the following, the same simulated SSM/I measurements are used as 

in the SIR simulations. In [19], note that SIR and BG results appear similar, but SIR has 

slightly better performance in simulation and is much faster than BG. Our simulations for 

SSM/I confirm this conclusion. As noted, the BG γ controls the regularization and relative 

weighting between signal reconstruction and noise enhancement. The value of γ can range 

from 0 to π/2. Note that, for simplicity in the captions and plots, the symbols γ′ or g are 

sometimes used, which are related to γ by γ = (π/2)γ′ and γ = πg.

A BG image for a particular γ closely resembles a SIR image for a particular iteration 

number. For small values of γ′, the noise is the most enhanced but the features are sharpest. 

For larger values of γ′, the noise texturing is reduced but features are smoothed. A plot of 

the rmse versus γ′ is shown in Fig. 10. Note that noise-free and noisy results are shown 

both for BG and BG after median filtering. Due to a poorly conditioned matrix, some BG-

estimated pixels have extreme values. These can be suppressed by applying a 3 × 3 median 

filter after the BG processing. The median filter can significantly reduce the rms noise and 

artifacts in the image without significantly degrading the image quality. The median filter is 

edge preserving and so has minimal effect on the image quality.

Similar to the analysis of number of iterations for SIR, it is useful to compute the noise and 

signal rmse, which varies with the value of γ′. An example for the 37-GHz channel with Ns 

= 3 is shown in Fig. 10. A numerical comparison of the results is shown in Table II. BG for 

the optimum γ is noisier than SIR with the optimum number of iterations.

Other examples of BG images versus different gamma parameters were considered. Large 

values of Ns result in excessive (and impractical) run times. Fortunately, the rmse varies only 

slightly with changes in Ns and the same value selected for SIR processing can be used. All 

cases have a minimum total rmse near g = 0.85; therefore, for consistency, we adopt this 

value, i.e., γ = 0.85π, for all channels and all values of Ns.
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We find that BG requires at least an order of magnitude more computation time than SIR. 

For larger values of Ns, it requires several orders of magnitude more computation time; 

hence, the desire for small values of Ns. The choice of γ does not affect the computation, but 

changing the antenna gain cutoff from −9 dB to larger values can reduce the number of local 

measurements included in the matrix inversion and thus the required CPU time. Changing 

the gain threshold is not considered here.

In summary, BG and SIR provide similar results, and both provide better spatial resolution 

and overall rmse than conventionally gridded (GRD) products. BG is, however, 

computationally demanding. Final selection of BG versus SIR for CETB will rely on input 

from the user community.

VI. Reconstruction Sensitivity to Inaccuracy in the Description of the MRF

As previously noted, the MRF for some sensors is not known very well. Even for those for 

which the MRF is known, there are uncertainties (errors) in the description of the MRF. This 

leads to the following question: How sensitive is the reconstruction to the accuracy of the 

MRF? In pursuing this question, we consider only the SIR algorithm in this paper. However, 

we find similar performance using BG. We note that we are interested in the partial 

reconstruction case when only a relatively small (5–20) number of SIR iterations is 

performed.

To address the question of reconstruction sensitivity, an experimental study is conducted in 

which simulated measurements of a synthetic scene are generated using the full MRF 

previously described. Then, different (erroneous) MRF descriptions are used in the 

reconstruction process. The results from the correct description and the erroneous 

descriptions are then compared.

Although other erroneous MRFs were considered in a larger study [10], in this paper, we 

consider the family of erroneous MRFs defined to be a power of the true MRF. That is, the 

MRF used for reconstruction R′(x, y) is computed from the true MRF R(x, y) using

(20)

where 0 < ρ < 3. As ρ is varied in the range of 0.25–3, the area of the 3-dB footprint 

changes, and the response pattern rolloff characteristics change. Fig. 11 plots the total noisy 

rmse versus ρ for this case. Two curves are shown. One is for a fixed number of iterations 

(20 in this case), and the other is the rmse resulting when selecting the number of SIR 

iterations that minimize the total rmse. This is the optimum number of SIR iterations. Note 

that, in all cases, the variation in the rmse is small, and the difference between the fixed and 

the optimum number of iterations is also very small.

These simulation results reveal that using the correct MRF for reconstruction minimizes the 

error, but modest distortions in the MRF used in the reconstruction have a limited impact on 

the accuracy of the reconstruction results. The variation in total rmse with MRF distortion is 

small for all channels and cases. Thus, the results of the reconstruction are not particularly 
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sensitive to the accuracy of the MRF, and we can successfully use approximate MRF 

models. This is a fortunate result because it means that precise antenna pattern descriptions 

are not required in computing MRF.

To explain this result, consider that since the noise is amplified as the signal is enhanced, 

there is a tradeoff between the signal reconstruction error and the noise increase. This 

tradeoff leads us to truncate the iterative reconstruction process before it is complete, i.e., the 

result is only a partial reconstruction. The simulations show that the partial reconstruction 

can tolerate modest errors in the MRF description and still yield reasonable estimates of the 

desired signal. Not shown is that when the erroneous MRF is used to attempt to fully 

reconstruct the signal, the final signal can be significantly distorted compared to the signal 

resulting from the correct MRF description.

VII. Actual Data

While the previous results are based on simulation, here, we compare GRD and enhanced-

resolution products using actual data (see Fig. 12). These evening ltod images are small (250 

km × 250 km) subimages extracted from the full EASE-Grid-2.0 Northern Hemisphere grid 

for day 61 of 1997 using the selected grid size and algorithm parameters derived from 

simulation. A visual comparison of the images reveals improved detail in the SIR and BG 

images compared with the GRD images. Note that, when using actual data, the true TB 

values are not known; therefore, errors cannot be computed.

As expected, the GRD images are blocky, whereas the high-resolution images exhibit finer 

resolution. Subjectively, the SIR images have the highest contrast and appear more detailed 

than the BG images, but there is also somewhat more noise in the SIR images compared 

with the BG images. Note that the effective resolution varies between channels, with the 

highest frequency channels (which have the smallest MRFs) providing the finest resolution. 

The differences in TB with polarization show that vertically polarized images appear in 

general brighter than horizontally polarized images. Further interpretation of the TB images 

is left to other papers.

VIII. Conclusion

The NASA-sponsored Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness 

Temperature ESDR (CETB) project is producing a multisensor multidecadal time series of 

gridded radiometer products from consistently calibrated TB measurements from SMMR, 

SSM/I, SSMIS, and AMSR-E. The CETB product includes both conventional 25-km 

gridded images and high-resolution radiometer products designed to support climate studies. 

This paper has considered two primary high-resolution image reconstruction algorithms: the 

BG approach and the radiometer form of SIR algorithm. In effect, for each pixel, BG inverts 

a local matrix that describes the interaction of measurements near the pixel of interest and a 

different matrix that depends on the relative location and spatial measurement response 

pattern of the measurements. This matrix is regularized by including the noise covariance. 

The iterative SIR algorithm reconstructs the image from the measurements using the 

measurement locations and response patterns. SIR is equivalent to inverting the full matrix 
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reconstruction matrix for the entire image but is regularized by truncating the iteration, 

resulting in only partial reconstruction. Both SIR and BG provide higher spatial resolution 

surface brightness temperature images with smaller total error compared with conventional 

DIB gridded image formation.

A tradeoff study is summarized for selecting optimum grid resolution, the number of SIR 

iterations, and the BG gamma parameter. Although the optimum values vary somewhat 

between sensors and sensor channels, we constrain the selected parameters to a common set 

of values. We found that although both image formation approaches are effective in 

improving the spatial resolution of the surface brightness temperature estimates, SIR 

however requires less computation. Our analysis of the sensitivity of the reconstruction to 

the accuracy of the MRF shows that the partial reconstruction selected based on the noise 

tradeoff can tolerate errors in the description of the sensor measurement response function. 

This simplifies the processing of sensor data for which the measurement response function is 

not known.

A summary of the reconstruction parameters selected for the CETB project for each sensor 

channel is summarized in Table IV.

Appendix

Here, we consider the spatial frequency information within an SSM/I measurement by 

computing the wavenumber spectrum of the MRF. Fig. 13 provides a conceptual illustration 

of the projection of the sensor antenna pattern on the Earth’s surface in the elevation plane 

and the geometry definitions used in the following. From the geometry and temporarily 

assuming a spherical Earth, the nominal slant range R between the sensor and boresite 

location can be computed from the spacecraft height H, the incidence angle θi, and the 

(local) radius of the Earth Re using

(21)

Aligning the x coordinate with the look direction at azimuth angle ϕ = 0, on a locally tangent 

plane, the approximate x displacement is dx ≈ Rdθi/ sin θi. Since the incidence angle for the 

SSM/I is approximately 53°, 1/ sin θi ≈ 1.252; therefore, the nominally circular antenna 

pattern is elongated on the surface in the range direction by about 25%, resulting in an 

elliptical footprint on the surface. As previously noted, the instantaneous antenna pattern is 

smeared in the rotation azimuth) direction by the temporal signal averaging.

Given the elevation angle and height, for a particular displacement Δx along the Earth’s 

surface from the intersection of the antenna boresite vector at elevation angle, the antenna 

elevation angle offset Δξ is computed by first determining the Earth angle α0 (see Fig. 13) 

using
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(22)

(23)

The antenna elevation offset angle corresponding to the point of interest at Δx is computed 

as

(24)

(25)

These equations provide a formula to relate surface displacement from the boresite to the 

change in the elevation angle.

It is known that the far-field antenna pattern can be expressed as the Fourier transform of the 

electric field across the effective aperture of the antenna [25]. Since the effective aperture is, 

by definition, finite extent, this implies that the antenna pattern is angularly bandlimited. 

This argument has been used to suggest that the wavenumber spectrum (the 2-D spatial 

Fourier transform) of the MRF is similarly bandlimited. However, it should be noted that the 

aperture-to-far-field Fourier transform is computed in angular units, whereas the spectrum of 

the MRF is in km−1 on the surface. As derived earlier, there is a nonlinear transformation 

between angle and surface distance. Further, the angular Fourier transform is periodic in 

angle, whereas the surface spectrum Fourier is computed over a finite domain and is 

therefore infinite in extent. In the following, we consider these issues in more detail and 

compute the approximate spectrum of the MRF.

As previously described, the MRF results from projecting the antenna pattern onto the 

surface and integrating the moving pattern over the integration period. The projection 

stretches and compresses the pattern on the Earth’s surface. Due to the curvature of the 

Earth, not all of the antenna pattern is projected onto the Earth’s surface. Thus, the MRF 

contains only part of the antenna pattern, i.e., the pattern is clipped. This can be modeled as 

the multiplication of the stretched antenna pattern by a rectangular window or boxcar 

function. The inverse R term in the spherical propagation factor has the effect of tapering the 

projection of the antenna gain onto the surface MRF. For simplicity, this factor is ignored in 

the following discussion. Integration has only a small effect on the projected elevation gain.

As evident from (22)–(25), the projection in elevation is nonlinear. The MRF on the surface 

is a nonlinearly stretched and windowed (clipped) version of the original antenna pattern. In 
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principle, the wavenumber (spatial) spectrum of the MRF can be analytically derived from 

the projecting and clipping functions. However, this is quite complicated, and we resort to 

numerical methods. Recall from signal processing theory that the Fourier transform of the 

product of two functions is the convolution of the Fourier transforms of the individual 

functions. In this case, the convolution yields a wider region of support in frequency domain 

than either of the individual functions. Furthermore, since the clipping window function is 

finite length, its Fourier transform is infinite in extent (though it can have nulls). The 

convolution of an infinite-extent function with any function results in an infinite-extent 

function. It thus becomes apparent that the region of support of the MRF is not bounded, i.e., 

at the surface, the MRF is not truly bandlimited, although the aperture illumination pattern 

is.

The wavenumber (spatial frequency) of the MRF informs us about the information content 

in the radiometer measurements. The nonlinearity in the projection from antenna pattern to 

the MRF produces a broader region of support for MRF wavenumber spectrum than 

suggested from the finite region of support of the antenna pattern illumination function, 

although there is attenuation of the high-wavenumber portions of the spectrum and portions 

of the high-wavenumber spectrum are unrecoverable due to low gain.

The top two panels of Fig. 14 illustrate a slice through the idealized 19-GHz SSM/I pattern 

over the full angular extent of the pattern (the effects of spacecraft blockage are ignored), 

and the corresponding Fourier transform, which is Ea(ra), has a finite region of support as 

expected. The other channels have similar results, although for shorter wavelengths, the 

pattern is narrower and the frequency support is wider. Projecting the elevation-slice antenna 

pattern on to the Earth’s surface using typical SSM/I measurement geometry results in the 

gain pattern on the Earth’s surface, as shown in the bottom panels of Fig. 14. The 

wavenumber spectrum has units of inverse ground distance, with a scale distance that is 

twice the inverse of the wavenumber. The region of support in surface wavenumber has a 

tapered rolloff. As expected, broader region of support confirms that we can recover as least 

somewhat more spatial information than merely assuming the spatial scale is set by the 3 dB 

footprint.
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Fig. 1. 
Illustrations of the boundaries along the swath for (left) ascending/descending and (right) 

ltod for a northern hemisphere swath. The ascending/descending division is based on the 

nadir position of the spacecraft and, due to the antenna rotation, results in significant ltod 

spread between passes at the poles. The ltod approach segments the swath based on the ltod 

of each measurement and results in more consistent swath division.
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Fig. 2. 
GRD pixel resolution illustration. The inner square represents the pixel area while the 3-dB 

footprints of some potential measurements, whose center is shown as a dot, are placed 

within the pixel. Note that more than half of some measurement can extend outside the pixel 

area. Depending on the measurement distribution, to the first order, the dimensions of the 

effective pixel size are thus the sum of the pixel and the footprint dimensions as indicated by 

the dashed bounding box.
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Fig. 3. 
Illustration of the SSM/I swath. The antenna and feed are spun about the vertical axis. Only 

part of the rotation is used for measuring brightness temperature: The rest is used for 

calibration. The incidence angle is essentially constant as the antenna scans the surface. This 

diagram is for the aft-looking F08 SSM/I. Later, SSM/Is looked forward but had the same 

swath width.
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Fig. 4. 
Illustration of the individual 3 dB footprints of the various channels shown at two different 

antenna rotation angles. Only footprints for the vertically polarized channels are shown. 

Note the change in orientation (rotation) of the footprints with respect to the underlying 

Earth-fixed grid reference [19].
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Fig. 5. 
SSM/I 37-GHz simulation results in Kelvin. (Top Panel) The “true” brightness temperature 

image. (Left Column) Noise-free simulation results. (Right column) Noisy simulation 

results). (Top row) 25 km GRD. (Second row) AVE. (third row) SIR (20 iterations). (Bottom 

row) BG with γ = 0.85π. Error statistics are summarized in Table II.
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Fig. 6. 
Illustrations of the measurement locations within a small area of the SSM/I coverage swath. 

(Top) Locations for a single orbit pass. (Bottom) Locations for two passes.
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Fig. 7. 
Sampled MRF for different pixel sizes for an 85-GHz SSM/I channel. (Left) 6.25-km pixels. 

(Center) 3.125-km pixels. (Right) 1.5625-km pixels.
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Fig. 8. 
SIR-reconstructed images for different iteration numbers in Kelvin. (Left column) Noise-

free simulation results. (Right column) Noisy simulation results. (Rows, top to bottom) 1 

iteration (AVE), 10 iterations, 20 iterations, and 30 iterations.
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Fig. 9. 
(Top) SIR reconstruction error versus iteration number. (Upper left) mean error. (Upper 

right) rmse. The red line is the noisy measurement case, whereas the blue line is the noise-

free measurement case. Green is the noise power computed from the difference between the 

noisy and noise-free cases. The green line is vertically displaced for clarity. The large spot is 

the error for the GRD image, whereas the large square is for AVE. The “optimum” 

(minimum error) number of iterations occurs at the minimum of the red curve. For reference, 

the dashed vertical line is shown at 20 iterations. (Bottom) RMS noise power versus rms 
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signal error for each iteration, which extends from right to left. The large spot denotes the 

GRD result, whereas the large square is the AVE result. The star is SIR at 20 iterations.
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Fig. 10. 
(Top) BG error versus versus γ′. (upper left) mean error. (Upper right) rmse. The location of 

the optimum (i.e., the minimum rmse) values is indicated with asterisks. (Bottom) RMS 

noise versus RMS signal error for different γ′. The solid line is noisy BG, whereas the 

dotted line is after thresholded median filtering. These lines often coincide in the plots.
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Fig. 11. 
Plots of the noisy total rmse resulting from simulating measurements with the MRF and 

using an erroneous MRF from (20) versus fractional power ρ. The dotted curve is the SIR 

error at 20 iterations. The solid curve shows the rmse resulting from minimizing the total 

rmse versus SIR iteration number.
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Fig. 12. 
Subimages extracted from a one-day CETB Northern Hemisphere SSM/I EASE-Grid 2.0 

image product: (left column) GRD, (Center Column) SIR, and (Right Column) BG, and 

(each row, top to bottom) for channels 19H, 19V, 37H, 37V, 85H, and 85V. The area shown 

spans 250 km × 250 km and is centered over Baffin Island west of Greenland, which is 

partially visible in the lower right corner. No-data pixels in the GRD images have been filled 

with the median of nearby pixels units in Kelvin.
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Fig. 13. 
(Top) Conceptual diagram illustrating the projection of the instantaneous radiometer antenna 

pattern on the Earth’s surface. (Bottom) Geometry for computation.
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Fig. 14. 
(Top panel) Magnitude squared plot of elevation slice through an idealized 19-GHz SSM/I 

channel antenna pattern. (Second panel) Magnitude Fourier transform. This is the magnitude 

of the aperture illumination function. (Third panel) Antenna pattern projected onto the Earth 

versus displacement along the surface. The x-axis is the range over which the platform is 

visible from the surface. Note the variable spacing of the sidelobes. (Bottom panel) 

Magnitude Fourier transform of the slice of the projected antenna pattern. The vertical line is 
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at −20 dB and corresponds to a 27 km spatial scale. For comparison, the 3-dB scale 

corresponds to 43 km.
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TABLE II

Error Statistics for Two-Pass Simulation for 37 GHz, Ps = 3.125 km. SIR Uses 20 Iterations. BG Uses γ = 

0.85π

Case Mean STD RMS

N-F GRD 0.00 3.96 3.96

N-F AVE 0.00 3.94 3.94

N-F SIR 0.00 3.33 3.33

N-F BG 0.00 3.52 3.52

Noisy GRD 0.01 4.08 4.08

Noisy AVE 0.00 3.97 3.97

Noisy SIR 0.01 3.55 3.55

Noisy BG 0.01 5.58 5.58
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TABLE III

Total RMSE for Noisy Two-Pass Simulation Using Ns = 3 (Ps = 3.125) and 20 SIR Iterations

Case GRD (K) AVE (K) SIR (K)

19 GHz 4.60 4.76 4.10

37 GHz 4.09 3.97 3.55

85 GHz 3.72 2.97 3.01
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