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Abstract—In microwave remote sensing of the Earth’s surface,
the satellite signal holds information on both soil moisture and
vegetation. This necessitates a correction for vegetation effects
when retrieving soil moisture. This paper assesses the strengths
and weaknesses of the existing vegetation correction as part of the
Vienna University of Technology (TU-Wien) method for soil mois-
ture retrieval from coarse-scale active microwave observations. In
this method, vegetation is based on a multiyear climatology of
backscatter variations related to phenology. To assess the plau-
sibility of the correction method, we first convert the correction
terms for retrievals from the Advanced Scatterometer (ASCAT)
into estimates of vegetation optical depth τa using a water-cloud
model. The spatial and temporal behaviors of the newly developed
τa are compared with the optical depth retrieved from passive
microwave observations with the land parameter retrieval model
τp. Spatial patterns correspond well, although low values for τa
are found over boreal forests. Temporal correlation between the
two products is high (R = 0.5), although negative correlations
are observed in drylands. This comparison shows that τa and
thus the vegetation correction method are sensitive to vegetation
dynamics. Effects of the vegetation correction on soil moisture
retrievals are investigated by comparing retrieved soil moisture
before and after applying the correction term to modeled soil
moisture. The vegetation correction increases the quality of the soil
moisture product. In areas of high interannual variability in vege-
tation dynamics, we observed a negative impact of the vegetation
correction on the soil moisture, with a decrease in correlation up
to 0.4. It emphasizes the need for a dynamic vegetation correction
in areas with high interannual variability.

Index Terms—Advanced Microwave Scanning Radiometer–
Earth Observing System (AMSR-E), Advanced Scatterometer
(ASCAT), soil moisture, vegetation optical depth.
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I. INTRODUCTION

S PACEBORNE microwave remote sensing has proven to
provide reliable soil moisture observations on a global

scale [1]–[4]. Microwaves are mainly sensitive to water con-
tent in both the soil and the vegetation, and separating these
components from each other is not straightforward. Much effort
has already been undertaken to correct for the impact of vege-
tation in the soil moisture retrieval in both active and passive
microwave remote sensing [5]–[10].

Most microwave retrieval algorithms use a radiative transfer
model, so-called τ−ω model, as a basis to retrieve soil
moisture. As the name suggests, a τ−ω model is based on two
parameters, namely, the optical depth τ and single scattering
albedo ω, which describe the attenuation and scattering by the
vegetation. For example, the Vrije Universiteit Amsterdam–
NASA Land Parameter Retrieval Model (LPRM) [6] uses a
simple radiative transfer model and a microwave polarization
ratio to retrieve both soil dielectric constants and vegetation
optical depth τp simultaneously from brightness temperatures
measured by, e.g., Advanced Microwave Scanning Radiometer—
Earth Observing System (AMSR-E), AMSR2, or Soil Moisture
Ocean Salinity (SMOS) microwave radiometers [6], [11], [12].
The LPRM approach is based on the assumption of polarization
independence for τ and ω, which makes it possible to solve τp
analytically [13]. An iterative approach is used to optimize for
the dielectric constant. A dielectric mixing model is employed
to calculate soil moisture from the dielectric constant, using
auxiliary data on soil physical properties such as particle
size distribution, porosity, and wilting point from soil maps
based on the FAO soil map of the world (1974–1981, scale
1:5 000 000). An advantage of this retrieval algorithm is that,
due to the analytical derivation of the optical depth, only one
variable needs to be optimized: the dielectric constant.

The official SMOS retrieval algorithm uses a decision tree,
based on auxiliary land cover data, to select the brightness
temperature models and reference values to be used for a certain
surface type. Over vegetated areas a τ−ω model is used [5]
to retrieve optical depth and soil moisture. The best-suited
set of parameters, i.e., τp and soil moisture, are retrieved by
minimizing a cost function between the modeled and measured
brightness temperatures in an iterative approach [5].

For active microwave observations, the available algorithms
use diverse approaches. To retrieve soil moisture from ERS-1
Advanced Microwave Instruments (AMI), Pulliainen et al.
[14], [15] used a least-squares algorithm with a semi-empirical
backscatter model, which incorporates a τ−ω model for canopy
backscatter and extinction. Promising results for soil moisture
and frozen soil monitoring were found. However, a priori data
on land cover and vegetation biomass are needed, making it

0196-2892 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

© 2016 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mailto: mariette.vreugdenhil@geo.tuwien.ac.at
mailto: wolfgang.wagner@geo.tuwien.ac.at
mailto: rdejeu@transmissivity.nl
mailto: rdejeu@transmissivity.nl
mailto: m.j.e.van.marle@vu.nl


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 1. Relation between backscatter and incidence angle with relation to soil
moisture and vegetation (after [10]).

more difficult to apply the method on a global scale. The
current retrieval algorithm for the Soil Moisture Active Pas-
sive (SMAP) scatterometer employs a time series datacube
approach [7], [8], using an iterative minimization function
between modeled and observed backscatter. The datacube ap-
proach leaves three unknown variables, soil moisture, rough-
ness, and vegetation water content (VWC). Roughness and
VWC will be defined using auxiliary data, whereas VWC will
be retrieved from either the radar vegetation index, calculated
from cross-polarization backscatter data, or from normalized
difference vegetation index (NDVI). As for the SMOS algo-
rithm, the SMAP algorithm uses auxiliary data to select the
backscatter model applied to retrieve soil moisture for a certain
pixel, which in this case is a land cover map.

The Vienna University of Technology (TU Wien) soil mois-
ture retrieval algorithm [9], [10] employs a change detection
method to retrieve soil moisture from scatterometers with
multiincidence angle viewing capabilities, i.e., European Or-
ganisation for the Exploitation of Meteorological Satellites
(EUMETSAT)’s MetOp-A and MetOp-B Advanced Scat-
terometers (ASCATs), and AMI onboard ERS-1 and ERS-2.
One basic assumption for the change detection method is
that backscatter (σ◦), expressed in decibels, is linearly related
to surface soil moisture content. Furthermore, σ◦ is strongly
dependent on incidence angle (θ), and the slope and curvature
of the relationship between backscatter and incidence angle
(σ◦(θ)) are assumed affected only by vegetation density but
not by changes in soil moisture (see Fig. 1). Subsequently,
the slope and curvature obtained from σ◦ observations under
different incidence angles are used to parameterize the vege-
tation for every day of the year and for every gridpoint. To
account for noise in the backscatter measurements and to ensure
that an entire range of incidence angles is covered, 366 slope
and curvature pairs (i.e., one for each day of the year) are
determined by averaging backscatter observations of several
years. Currently, the entire observation period is used, i.e.,
15 years for ERS and 8 years for ASCAT. Consequently, the
vegetation parameter in the TU-Wien retrieval algorithm is
based on climatology, which does not take into account inter-
annual variability. A more detailed description of the algorithm
can be found in Section II.

The different algorithms discussed give a brief overview of
the approaches used to account for vegetation in soil moisture
retrieval algorithms, as well as their strengths and weaknesses.
Apart from the TU-Wien retrieval algorithm, most retrieval
algorithms use auxiliary data in the form of lookup tables based
on land cover maps or additional soil property data to retrieve
soil dielectric constants. The TU-Wien approach provides soil
moisture in relative units between 0% (dry soil surface) and
100% (saturated soil surface). It is evident that the quality of
the vegetation parameterization can determine to a large extent
the quality of the retrieved soil moisture since the vegetation
correction can propagate an error into the soil moisture product.

Several studies have assessed the vegetation parameterization
in the TU-Wien change detection method and in the VUA–NASA
LPRM by comparing it with other vegetation products and
indexes. Wagner et al. [16] compared backscatter observations
and the slope parameter retrieved from ERS scatterometer obser-
vations to precipitation and NDVI over the Iberian Peninsula.
They concluded that the temporal variation of the backscatter
observations is dominated by changes in soil moisture but the
slope parameter is linked to seasonal dynamics in the wet bio-
mass of the vegetation. A lag in the maxima between the slope
and NDVI was observed, attributed to the fact that the peak of
photosynthetic activity and greenness of the vegetation is in
early spring, whereas the peak in overall biomass is in summer.

Similar results were found for τp retrieved from AMSR-E
with the VUA–NASA algorithm, where τp over drylands was
found to be more sensitive to long-term precipitation variations
and NDVI responded more to short-term variations [17]. This
was attributed to the fact that the τp is more sensitive to woody
vegetation, which can absorb water from deeper soil layers,
whereas NDVI is more sensitive to canopy cover and variations
in leaf foliage. In addition, a preliminary study on comparing
the τp to the NDVI by [18] found that the τp and NDVI
correspond better to each other over grasslands and croplands
and less over shrublands and forests. The work in [19] looked
at boreal forest recovery over Alaska, USA, after wild fires.
The NDVI indicated initial postfire forest biomass recovery
after one to three years, whereas this was three to seven years
for the τp. Again, the conclusion was that τp is likely more
closely related to the water content in the vegetations’ leafs and
woody compartment, whereas the NDVI is more sensitive to
chlorophyll content and leaf area index. The previous studies
demonstrated that τ from microwave observations is a valu-
able parameter to describe vegetation characteristics, which are
complementary to NDVI and other related vegetation indexes.

The use of remote sensing soil moisture products, including
those retrieved with the TU-Wien algorithm, has increased sig-
nificantly in the last years, ranging from improved evaporation
and rainfall modeling [20]–[22] to trend analysis in droughts
[23], [24] and land–atmosphere coupling models [25]. Hence, a
good understanding of the vegetation parameterization in the
retrieval algorithms is imperative. Errors in vegetation para-
meterization can propagate to the final soil moisture product.
Therefore, the aim of this paper is to analyze the strengths
and weaknesses of the existing vegetation correction in the
TU-Wien retrieval algorithm and its effect on the final soil
moisture product. In order to quantify the ability of the veg-
etation correction to describe the vegetation, optical depth τa
is analytically retrieved from the vegetation correction using a
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water-cloud model. To asses the quality and physical meaning
of this newly derived τa, it is compared with the optical depth
from AMSR-E τp, both in the spatial and temporal domains.
After looking at the quality of the vegetation parameterization
and identifying areas where problems with the soil moisture
retrieval might arise, the effect of the vegetation correction on
the final soil moisture product is assessed. For this, the surface
soil moisture product before and after applying the vegetation
correction term are compared with modeled soil moisture from
ERA-Land, provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). Here, we particularly
focus on the effect that interannual variability in vegetation
dynamics can have on the soil moisture retrieval.

II. DATA SETS

Here an overview and a short summary of the existing data
sets that are used in this paper are given. The newly developed
products are described in Section III.

A. MetOp-A ASCAT and TU-Wien Soil Moisture Retrieval

ASCAT is a scatterometer on board MetOp-A and MetOp-B,
which are operative since 2006 and 2012, respectively. It
measures vertically copolarized backscatter at incidence angles
ranging from 25◦ to 65◦ at a frequency of 5.25 GHz (C-Band).
The MetOp satellites fly in a sun-synchronous orbit, with morn-
ing and evening overpasses at approximately 09:30 and 21:30
local time. The individual ASCAT sensors provide a global
coverage approximately every two days. The spatial resolution
of ASCAT backscatter observations is 25× 25 km2. In the TU-
Wien retrieval algorithm, soil moisture is retrieved for every
land gridpoint on a discrete global grid (WARP5 grid) with a
spacing of ca. 12.5 km.

The TU-Wien retrieval algorithm retrieves soil moisture time
series with a change detection approach. One of the first steps
in the algorithm is to normalize all backscatter observations
taken over the entire incidence angle range to the reference
incidence angle of 40◦, resulting in the normalized backscatter
σ◦(40). The σ◦(40) is used to calculate soil moisture on a
relative scale between the historically driest and wettest ob-
served measurements, and during this scaling, the vegetation
correction of the TU-Wien retrieval algorithm is applied. The
vegetation in the TU-Wien algorithm is described by way of
the behavior of the slope and curvature of the backscatter
signature with regard to incidence angle. Backscatter from bare
soils, as a result of surface scattering, decreases strongly with
increasing incidence angle, whereas volume scattering from,
for example, vegetation, leads to more uniform backscatter
values over all incidence angles (see Fig. 1). Hence, seasonal
vegetation growth and decay changes the slope of the σ◦ − θ
curve [16], [26]. The TU-Wien algorithm uses this behavior to
account for the impact of vegetation on the backscatter signal:
Achange in soil moisture tends to shift the curve up and down in
its entirety, whereas a change in vegetation or surface roughness
changes the slope of the curve (see Fig. 1). For low incidence
angles, the vegetation tends to attenuate the signal from the soil
surface, resulting in lower total backscatter than for bare soils.
At higher incidence angles, the backscatter is higher compared
with bare soil conditions, due to volume scattering from the
vegetation. There are incidence angles where the attenuation

of the observed bare soil backscatter and the contribution from
the vegetation are in equilibrium, i.e., the so-called crossover
angles (see Fig. 1). At the crossover angles, a change in
backscatter is mainly a result of a change in soil moisture. These
crossover angles are dependent on the soil moisture being at a
lower incidence angle for dry soils than for wet soils. In [16],
Wagner et al. empirically estimated these crossover angles to lie
at 25◦ for dry soils and at 40◦ for wet soils. By converting the
normalized backscatter observations to the 25◦ crossover angle,
the backscatter is only a function of soil moisture variations.
To enable the retrieval of the historically driest soil conditions
without the effect of vegetation attenuation or contribution,
the so-called dry reference (σ◦

dry), the normalized backscat-
ter is converted to the 25◦ crossover angle where the lowest
backscatter observations are related to the historically driest soil
conditions. The dry reference is retrieved for every gridpoint,
converting all backscatter values from 40◦ to 25◦, i.e., θ = 25◦

using a second-order Taylor expansion function as follows:

σ◦(θ, t) = σ◦(40, t) + σ′(40,DoY)(θ − 40)

+
1

2
σ′′(40,DoY)(θ − 40)2 (1)

where θ represents the incidence angle, σ′ is the slope, and
σ′′ is the curvature, which are both averaged over several
years and have one value for each day of the year (DoY). At
θ = 25◦, the average over the lowest measurements is taken,
and this value is converted back to the reference incidence
angle θ = 40◦ using the slope and curvature, with the Taylor
expansion function. The use of the crossover angles and the
Taylor expansion function integrate the variation of the slope,
which is sensitive to vegetation water content and hence embeds
a seasonal vegetation correction in the dry reference. The wet
reference (σ◦

wet) represents saturated soil conditions and is
based on the historically wettest backscatter measurements at
θ = 40◦. Since σ◦ is already normalized to an incidence angle
of 40◦, no conversion is needed to obtain the wet reference.
Consequently, the wet reference is a constant value. In deserts,
it can occur that fully saturated soil conditions are not reached
or captured by ASCAT. Hence, for deserts according to the
Koppen–Geiger climate classification, the wet reference is cor-
rected based on ASCAT observations in order to provide real-
istic soil moisture values. Soil moisture (Θa) is then calculated
by scaling σ◦(40, t) between the dry and wet references that
are for this purpose matched from their DoY to the date of the
observation, as follows:

Θa(t) =
σ◦(40, t)− σ◦

dry(DoY)

σ◦
wet(DoY)− σ◦

dry(DoY)
. (2)

Soil moisture is retrieved on specific days for specific years,
whereas the dry and wet reference are a product of the slope
and curvature, for which only 366 values are available, i.e., one
value for every day of the year. Consequently, the vegetation
correction, which is intrinsically incorporated in the computa-
tion of the dry and wet reference and based on the slope and
curvature, is not varying on an interannual basis. The difference
between the σ◦

dry and σ◦
wet is the sensitivity (Δσ◦) to changes

in surface soil moisture content (see Fig. 2), i.e.,

Δσ◦(DoY) = σ◦
wet(DoY)− σ◦

dry(DoY). (3)
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Fig. 2. Three components of the backscatter signal, the dry reference, wet reference, and observed backscatter from the TU-Wien change detection algorithm for
a grid point in Queensland, Australia.

Since backscatter in decibels has been found to be linearly
related to soil moisture, and backscatter noise is independent of
the absolute σ◦ when expressed in decibels, all the calculations
within the TU-Wien retrieval algorithm are done in the decibel
domain.

B. AMSR-E and the LPRM Vegetation Optical
Depth (τp) Retrieval

There are several τp products available from passive mi-
crowave observations. In this paper, τp retrieved from AMSR-E
passive microwave observations at 6.9 GHz with the
VUA–NASA LPRM is used. The VUA–NASA retrieval model
is developed by the VU University Amsterdam in collaboration
with NASA, and uses a radiative transfer model to solve for
soil moisture and τp simultaneously [27]. In LPRM, Tb is
represented by the following radiative transfer equation [28]:

Tb,l = Tser,lγ + (1− ω)Tc(1− γ)

+ (1− er,l)(1 − ω)Tc(1− γ)γ (4)

where l refers to the polarization,Ts and Tc give the surface and
canopy temperature, ω represents the single scattering albedo,
er gives the emissivity of the soil, and γ is given by

γ=e
− τ

cos θ . (5)

In LPRM, Ts and Tc are assumed equal, and Ts is separately
retrieved from Ka-band observations according to [29]. τp is
derived analytically directly from the τ−ω model [13] and is
the basis of LPRM. Using (4), optical depth and soil emissivity
are optimized against Tb. The soil emissivity is related to soil
moisture using soil physical properties from FAO soil maps and
a dielectric mixing model. In LPRM, both roughness and the
single scattering albedo are assumed constant.

The τp is considered linearly related to the above-ground
biomass water content, i.e., water content in the woody and
nonwoody components of the vegetation [17], [30]. Care needs

to be taken when interpreting τp data over areas with open
water [31] and with radio frequency interference (RFI). Only
ascending nighttime observations are used to meet the assump-
tion Ts = Tc. In addition, τp is masked when the RFI flag >2.
τp data cannot be computed when the soil is snow covered or
frozen. τp data are available globally approximately every two
days on a 0.25◦ grid.

In this paper, τp time series from 2007 to 2011 are used. Since
τa is based on a climatology, averaged over several years of
data, we computed the climatology of τp by averaging the data
for every DoY from 2007 to 2011. In addition, a smoothing
with a window of 16 days was applied to better correspond to
the τa, which is calculated with a time window ranging from
2 to 12 weeks. Since the τa is available on a 12.5-km discrete
global grid (WARP5 grid), it was resampled to the spatial grid
of τp, 0.25◦, by taking the median of the τa values of which the
center of the gridpoint falls within a τp gridpoint.

C. Ancillary Data

ERA-Land surface soil moisture (ΘERA) data from the
ECMWF [32], [33] is used as a reference to analyze the effect
of the vegetation correction on the soil moisture retrieval. Soil
moisture of the first soil layer (0–7 cm) was extracted for the pe-
riod 2007–2011. ΘERA is available every 6 h, and daily means
are calculated by averaging all observations within one day.

In addition, Global Land Data Assimilation System
(GLDAS2-Noah) rainfall data at a 0.25◦ spatial sampling is
used [34] in the time series plots. The data are available on a 3-h
interval and is resampled to daily average rainfall in millimeters
for this paper.

Results of the performed analysis are spatially compared with
an updated Koppen–Geiger climate classification map from
[35], based on temperature and precipitation observations for
the period 1951–2000 (see Fig. 3). An overview of the different
Koppen–Geiger climate classes (KGCs) can be found in Table I.

For the modeling of bare soil backscatter, soil data from the
Harmonized World Soil Data set (HWSD) are used [36]. The
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Fig. 3. Map of KGCs with the gridpoint locations.

TABLE I
KGCS AFTER [35]

HWSD provides standardized soil property data on a 1-km grid,
based on regional and national data. In addition, percent tree
cover data [37] from Landsat images from the year 2000 is used
to select nonvegetated areas. All data were resampled to the
spatial resolution of AMSR-E, 0.25◦.

III. METHODS AND METRICS

This section describes the methods that are used to retrieve
new products, i.e., the optical depth from ASCAT observations,
and the methods and metrics applied to assess the existing and
newly derived products.

A. Vegetation Optical Depth Retrieval (τa) From
ASCAT Observations

For the retrieval of optical depth from ASCAT backscat-
ter observations, we used the TU-Wien retrieval algorithm

and a water-cloud model [38]–[40], which describes the total
backscatter, in the power domain, as

σ◦(θ) = C · cos θ(1 − γ2) + σ◦
s(θ)γ

2 (6)

where σ◦(θ) and σ◦
s(θ) represent the total backscatter coeffi-

cient and the backscatter coefficient of the soil surface in the
power domain, C is a parameter related to the single scattering
albedo ω, which for small isotropic scatterers take the value
of 3ω/4, but in this case, can take any value since it does not
affect the final calculation of τa. γ2, i.e., the two-way vegetation
transmissivity, is given as

γ2 = e−
2τ

cos θ . (7)

The first term on the right-hand side of (6) describes the contri-
bution from the vegetation layer, and the second term, i.e., the
soil surface contribution, is reduced by vegetation attenuation.
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TABLE II
BARE SOIL BACKSCATTER AND ROUGHNESS MEASUREMENTS FROM LITERATURE

Optical depth from active microwave observations is calcu-
lated by ingesting the σ◦

dry and σ◦
wet (converted from dB to

m2 m−2), into the water-cloud model. Because the dry and
wet references intrinsically incorporate changes in vegetation
density, a change in sensitivity (Δσ◦) is directly related to τa,
which can be mathematically illustrated using the water-cloud
model by combining (6) and (7) and calculating the sensitivity
Δσ◦ in m2 m−2

Δσ◦(DoY) = (σs,wet − σs,dry)e
− 2τa(DoY)

cos θ

= Δσ◦
se

− 2τa(DoY)
cos θ (8)

which can be solved for τa as

τa(DoY) =
cos θ

2
ln

Δσ◦
s

Δσ◦(DoY)
(9)

where Δσ◦, in m2 m−2, is the sensitivity calculated from σ◦
dry

and σ◦
wet, and Δσ◦

s, also in the linear domain, represents the
maximum range in backscatter values over bare soils related to
a change in soil moisture only and is assumed constant through
time. Δσ◦

s cannot be retrieved directly, but for this paper,
is estimated from backscatter observations over nonvegetated
areas and modeled using the latest version of the Integrated
Equation Model (IEM) [41]. The calculation of the Δσ◦

s and
results are discussed in the following sections. Negative τa
values occur when Δσ◦ exceeds Δσ◦

s. For these areas, τa is
set to 0. τa is available for every day of the year and is masked
when no data for τp is available to account for snow-covered or
frozen soil.

B. Bare Soil Backscatter Estimation and Sensitivity Analysis

In order to calculate τa, the sensitivity of backscatter to
changes in soil moisture in bare soils needs to be estimated. As a
first step, we try to estimate this based on ASCAT observations
by identifying areas that are not covered by any high vegetation
and looking at the driest (lowest) measurements over these
gridpoints during periods with minimum vegetation. Bare soil
areas are classified as areas with a percent tree cover [37]
of less than 10%, and optical depth values from AMSR-E of
less than 0.20. A literature study is performed on studies that
measured backscatter over bare soils to obtain an average value
for the backscatter sensitivity to soil moisture changes. These
studies demonstrate that sensitivity of backscatter to changes
in soil moisture varies from about 5.5 to 10 dB depending on
the change in soil moisture. These values for Δσs have been
found for different sensor configurations, for a large diversity
of soil types and rms heights of random soil roughness (s)
(see Table II). This leads to our assumption that one value for
Δσ◦

s can be set.
When σs,dry and Δσ◦

s in dB are known, Δσ◦
s can easily be

calculated in m2 m−2, as follows:

Δσ◦
s[dB] = 10 · log σs,wet − 10 · log σ◦

s,dry (10)

Δσ◦
s[m

2m−2] = σs,dry · 10
Δσ◦

s [dB]

10 − σs,dry[m
2m−2]

=

(
10

Δσ◦
s [dB]

10 − 1

)
· σ◦

s,dry[m
2m−2]. (11)

Since there are limited nonvegetated gridpoints in tropical,
temperate, and cold climate classes, and experiments are mainly
done with a different configuration than that of ASCAT, σ◦

s,dry
and Δσ◦

s are also modeled using the integral equation model
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(IEM) [41]. The IEM is the most commonly used theoretical
model for modeling backscatter from bare soils. It combines
the Kirchhoff and small perturbation methods and is applicable
to a large range of surface roughness scales and frequencies.
It describes the backscatter behavior of a random rough bare
surface. A detailed description can be found in [41]. Since
bare soil backscatter is sensitive to soil surface roughness
and soil properties a range of root mean square (rms) heights
of the surface have been used. To get representative average
values for σ◦

s,dry and Δσ◦
s, backscatter is modeled for every

gridpoint using the respective soil texture for that gridpoint.
Subsequently, a global weighted average based on soil texture
is calculated for σ◦

s,dry and Δσ◦
s. Only s is varied between

0.5 and 2.5 cm in the modeling since soil moisture is more than
ten times as sensitive to errors in s than correlation length [42].
In [43], the correlation length was found to vary between
2 and 20 cm for agricultural fields. Based on these findings, cor-
relation length is kept constant, set to a value of 10 cm. Final
values for σ◦

s,dry and Δσ◦
s are set based on observations and

modeling.
Furthermore, to take into account the effect of Δσ◦

s on the
resulting τa, a perturbation model is applied to demonstrate the
sensitivity of τa to Δσ◦

s. The sensitivity of τa to perturbation
1 + ε is given as

τa (Δσ◦
s · (1 + ε)) =

cos θ

2
ln

Δσ◦
s · (1 + ε)

Δσ◦ (12)

which can be rewritten as

τa (Δσ◦
s · (1 + ε)) =

cos θ

2
ln

Δσ◦
s

Δσ◦ +
cos θ

2
ln(1 + ε). (13)

The change in τa as a function of the perturbation ε can be
defined as

δτa = τa (Δσ◦
s · (1 + ε))− τa (Δσ◦

s)

=
cos θ

2
ln(1 + ε)

=
cos θ

2
ln

(
1 +

δΔσ◦
s

Δσ◦
s

)
.

(14)

In order to look at a valid range of Δσ◦
s, the maximum bare

soil backscatter values are set based on [44]–[46]. In these
studies, backscatter was measured either with a fieldscale radar
or spaceborne SAR. Observations at 5.25 GHz at VV and
HH polarizations over bare soils with different roughness and
soil moisture values were used. The findings of these studies
are summarized in Table II. Based on these results, the mini-
mum and maximum Δσ◦

s were estimated to 0.05 m2 m−2 and
0.7 m2 m−2, respectively.

C. Metrics Used for Assessing τa and Θa

The Spearman Rank correlation coefficient (R) is calculated
between the climatologies of τa and τp. Spearman rank corre-
lation is based on a relative ranking of the data, not on absolute
values, and does not make any assumption on the nature of the
relationship between the different data sets.

To assess the effect of the TU-Wien vegetation correction
on the soil moisture retrieval both the normalized backscatter
σ◦(40) [see (2), right-hand term] and the surface soil moisture
Θa [see (2), left-hand term] were correlated with ΘERA. The
σ◦(40) is not yet corrected for vegetation, whereas the Θa is.

With this analysis, the impact of the vegetation correction on
the quality of Θa can be identified. However, with this analysis,
we only investigate how the vegetation correction improves
the temporal dynamics of the soil moisture retrieval. How
the vegetation correction impacts the absolute values of soil
moisture is not investigated with this approach, although it is
expected to be significant.

To test the impact of the existing fixed year-to-year veg-
etation correction, the dry reference, which incorporates the
existing vegetation correction, was substituted by the τp to
produce a soil moisture product with an interannually varying
vegetation correction (Θτp), i.e.,

Θτp(t) =
σ◦(40, t)− σ◦

dry(t, τp)

σ◦
wet(t)− σ◦

dry(t, τp)
(15)

where σ◦
dry(t, τp) is the new dry reference based on τp from

AMSR-E scaled to the dry reference (in decibels) with a mean
standard deviation scaling as follows:

σ◦
dry(t, τp) =

τp(t)− E [τp(t)]

Sd [τp(t)]
Sd

[
σ◦
dry(DoY)

]
+ E

[
σ◦
dry(DoY)

]
(16)

where E and Sd are the mean and standard deviation. The mean
and standard deviation scaling is purely to scale the τp values to
the dry reference values which are in decibels. The whole time
series of τp is used to calculate the respective mean and standard
deviation. The goal of this is to introduce interannual variabil-
ity in the vegetation correction and subsequently in the soil
moisture retrieval. As a consequence, the results only provide
information on the differences in the temporal behavior of soil
moisture and not absolute values. Because of the scaling of τp to
the mean and standard deviation of the dry reference, absolute
values of soil moisture are not expected to change dramatically.

IV. RESULTS AND DISCUSSION

A. Effect of Bare Soil Backscatter on τa Retrievals

Only a limited number of gridpoints satisfied the conditions
of Hansen tree cover less than 10% and τp less than 0.20. For
all land surface areas, 17.8% of the gridpoints are classified as
bare soils, of which only 5.4% are in climate classes, which
are not deserts. This fraction of bare soils was found in the
Great Plains and Canadian prairies. The low fraction of bare
soils in nondeserts resulted in two different methods to estimate
Δσ◦

s; one for deserts and one for all other areas, here referred
to as nondesert areas. For every gridpoint in the deserts, it
is assumed that the lowest measurements are not affected by
vegetation. Hence, the lowest backscatter measurements are
taken as σ◦

s,dry. For deserts, the σ◦
s,dry varies per gridpoint based

on ASCAT observations. For all nondesert areas, results are
averaged to one value to obtain a representative value of σ◦

s,dry.
The variability in σ◦

s,dry is clearly represented in the standard
deviation per climate class (see Table III). For climate classes
A, BS, C, and D, the standard deviation ranges from 1.67 to
2.70 dB, whereas the standard deviation in climate class BW
is as high as 4.6 dB. σ◦

s,dry ranges from −27.01 to −3.71 dB
for temperate climates (class C) and from −21.91 to −8.59 dB
for cold climates (class D). For deserts σ◦

dry is highly variable,
with values ranging from −37.78 to −5.89 dB. The variability
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TABLE III
BARE SOIL BACKSCATTER AND Δσ◦

s FROM DATA AND MODELING

Fig. 4. (a) and (b) Top two graphs show Δσ◦
s in dB calculated using IEM and (c) and (d) lower two graphs show the σ◦

dry, where σ◦
dry and Δσ◦

s are calculated
using the IEM for smooth (a and c) and rough (b and d) soil surfaces given by two rms heights: s = 0.5 cm and s = 2.5 cm. Data are displayed according to the
global occurrence of soil properties: sand content (depicted on the x-axis) and clay content (depicted on the y-axis) by the size of the circles. The colorbar depicts
the σ◦

dry and Δσ◦
s with low values in blue and high values in red.

is much higher than for nondesert areas, confirming the impor-
tance of a variable σ◦

s,dry. Averaging all results from gridpoints
located within climate classes A, BS, C, D, and E yields an
average σ◦

s,dry of −15.23 dB. Based on the literature review
(see Table II) the Δσ◦

s is set to a single value of 8 dB. Inserting
the average σ◦

s,dry for nondesert areas and the estimate of Δσ◦
s

into (12) leads to a Δσ◦
s of 0.16 m2 m−2 for nondesert areas.

This value is similar to the value found for relative smooth soils
from the literature review, e.g., 1.1 > s > 0.2 cm (see Table II).

Fig. 4 shows the results from the IEM modeling for σ◦
s,dry

and Δσ◦
s for using a s of 1 and 2.5 cm. Results are shown

according to the respective occurrence of combinations of sand

and clay content as derived from the FAO soil map. We have
chosen to calculate a weighted average based on occurring
soil textures, in order to obtain more representative values for
σ◦
s,dry and Δσ◦

s. Results are summarized for all values of s in
Table III. Comparing the values obtained from ASCAT observa-
tions and the literature study to modeled results of the analyses
using IEM confirms that the obtained value of 0.16 m2 m−2

is characteristic for relatively smooth soils. Modeling yields
σ◦
s,dry values ranging from -23.01 dB for smooth soils with a

s = 1 cm [see Fig. 4(c)], to −7.17 dB for rough soils with a s =
2.5 cm [see Fig. 4(d)]. The values for Δσ◦

s were found to range
from −8.54 dB for smooth soils [see Fig. 4(a)] to −4.38 dB
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Fig. 5. Sensitivity of τa to a change in surface scattering Δσs as given by (14),
with the ratio of change on the x-axis.

for rough soils [see Fig. 4(b)]. The modeling yields smaller
values for Δσ◦

s than the literature study. This can be explained
by the fact that most studies assessed in the literature review
use backscatter observed under an incidence angle lower than
the 40◦ angle of ASCAT. The sensitivity of backscatter to soil
moisture decreases with increasing incidence angles [44], [45],
[47], explaining the lower Δσ◦

s from the modeling at 40◦. Δσ◦
s

of 8 dB is on the high end of results from the IEM modeling,
i.e., Δσ◦

s around 8 dB are only found for s = 0.5 cm.
Based on the modeling study, we can conclude that the

estimated values for σ◦
s,dry and Δσ◦

s, based on observations and
a literature review, is associated to smooth soils with s � 1 cm.
Assuming that land use over tropical, temperate, and cold
climates is mainly either agriculture, tundra, or forest, average
microscale random roughness conditions for these surfaces are
likely higher than s = 1 cm. Subsequently, σ◦

s,dry in decibels
and Δσ◦

s in m2 m−2 are likely higher than calculated from
ASCAT observations over the bare soil areas in the Canadian
Prairies and Great Plains. In [48] and [49], it is stated that
1.5 and 1.6 cm are most representative for typically observed
normal conditions of roughness. Considering the results from
the data analysis, the literature review and the modeling, the
Δσ◦

s in m2 m−2 for nondeserts calculated from observations was
adjusted. For the ultimate calculation of τa,Δσ◦

s is set to the mod-
eled value for s=1.5 cm: 0.21 m2 m−2. For deserts,Δσ◦

s is low-
ered to the weighted average of the IEM analyses: −6.37 dB.
This leads to the following values being used for Δσ◦

s:

Δσ◦
s=

⎧⎪⎪⎨
⎪⎪⎩
0.21[m2m−2], for KGC = A|BS|C|D|E(
10

6.37[dB]
10 − 1

)
·σ◦

s,dry(x, y)[m
2m−2], for KGC = BW

where for climate class BW, σ◦
s,dry, converted from dB in m2

m−2, varies spatially for every gridpoint, which is denoted with
the suffix (x, y).

When calculating τa, the bare soil backscatter Δσ◦
s is as-

sumed static for all areas apart from deserts. This very likely
introduces spatial biases in τa because the range of surface
roughness conditions changes from pixel to pixel and is not
accounted for. The sensitivity analyses assesses the effect of
Δσ◦

s on τa. Fig. 5 shows for decreasing Δσ◦
s from the estimated

average value of 0.21 to 0.05 will lead to a decrease in τa of
0.55, whereas increasing Δσ◦

s to 0.7 will increase τa with 0.46.
However, it needs to be taken into account that the sensitivity
analysis is performed using extreme values. Smooth soils or
ploughed soils as prepared for the experiments described in
Section III-B are rare and unrealistic to span the entire extent of
a pixel. Taking into account the natural conditions of the soils,
a pixel of ASCAT will not solely contain recently ploughed
soils or only smooth soils but is a mix of different states
of soil surface roughness. Furthermore, one needs to keep in
mind that how soil surface roughness affects satellite scale
observations is not yet well understood. Fieldscale surface
roughness as measured during experiments, parameterized by
two variables, is not assumed representative for the effective
surface roughness at the satellite scale [50]. Taking this into
account, one can assume that soil surface roughness is unlikely
to reach extreme values of, e.g., 0.05 or 4 cm over a whole pixel
of ASCAT. A decrease in Δσ◦

s happens in relatively smooth
soils (see Fig. 4 and [44]), e.g., soils with a lower microscale
roughness, which are expected to be in natural areas such as
deserts, savanna, and rangeland. However, for most of these
areas, which fall in climate class B, Δσ◦

s is estimated at every
gridpoint from the ASCAT data. The analysis demonstrates
that for areas where τa gives lower values compared with
τp, the estimated Δσ◦

s might be too low. Considering that
Δσ◦

s of 0.21 m2 m−2 is found in relatively smooth soils, i.e.,
s = 1.5 cm, this estimate could be too low for soils with
a higher surface roughness. Although the estimation of Δσ◦

s

clearly introduces a bias, the spatial distribution and tem-
poral variability of τa still gives valuable information on how
the TU-Wien model describes the vegetation and makes it
comparable to τ values derived from other sensors. In the
following, the results are discussed in general and per climate
class.

B. Comparing τa and τp

Figs. 6 and 7 show the global maps and boxplots per KGC
of both τa and τp average values over the period 2007 to 2011.
When looking at the spatial distribution of the mean values of
τa and τp, spatial patterns are similar, particularly over tropical
forests, southern Europe and North America. As the boxplots
show (see Fig. 7), for both products, τ values decrease from val-
ues close to 1.0 for climate class Af to values between 0.4 and 0.6
for climate classes Am and As to values close to 0 for climate
classes BWh and BWk. Higher values are found in climate
class C, with lowest values in classes that are characterized
by a hot summer, identified by the suffix “a” in the climate
class classification, indicating drier conditions and a lower
vegetation density. In cold climates particularly areas with dry
winters (Dw) show very similar patterns with increasing values
for both τa and τp with decreasing summer temperatures. The
clear spatial patterns in τa demonstrate that the assumption
of a spatially constant Δσ◦

s for nondesert areas is reasonable
to obtain a fist estimate of τa. In general, values for τa are
0.15 lower than values found for τp. A potential explanation
for this is that Δσ◦

s is estimated too low. Δσ◦
s could be too low

due to the relatively large correlation length that has been used
in the IEM modeling. Lowering the correlation length to the
average value found by [49] would increase τa by 0.08, bringing
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Fig. 6. Global map of mean (a) τa and (b) τp calculated over the period from 2007 to 2011.

Fig. 7. Boxplots of (a) τa and (b) τp per KGC.
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Fig. 8. Global Spearman rank correlation coefficients between τa and τp.

Fig. 9. Boxplot of the Spearman correlation coefficients per KGC for τa and τp .

it closer to the values found for τp. On top of this, τa shows
particularly lower values in cold climates, i.e., northern Europe,
Russia, and North America. The comparison of absolute values
of τa and τp are discussed in detail in the following.

Fig. 8 shows the results of the Spearman correlation coef-
ficient between the climatologies of τa and τp. The boxplots
(see Fig. 9) show the distribution of the correlation per KGC.
High correlation coefficients are observed over temperate and
cold climates (climate classes C and D). In deserts and drylands
(climate class BWh and BWk), clearly negative correlations are
observed. Fig. 10 shows the climatologies of τa and τp for nine
gridpoints with different land cover and in different climate
classes (see Fig. 3 for locations). Intra-annual variability is in
general low for τa (around 0.1) and for most gridpoints lower
than for τp.

1) Equatorial Regions (KGC: A): In tropical climates, both
τa and τp show distinctively high values (see Fig. 6), i.e.,
climate class A, can be easily distinguished with the median
values from 0.44 to 0.99 (see Fig. 7). Average values for climate

class Af, Rainforests, respectively, agree very well with each
other. However, values for τp are on average 0.17 higher in
monsoon areas (Am) and savannas (As) than τa, which is close
to the overall bias found between τa and τp. The temporal com-
parison between τp and τa in tropical climates shows both weak
negative and weak positive correlations. The cause for these
mixed weak correlations is the small intra-annual variability
for both τa and τp [see Fig. 10(a)]. The same conclusion was
drawn by [18] who found a low intra-annual variability in τp. It
needs to be considered that the Spearman correlation coefficient
is not the appropriate metric in regions with low variation of
the signal. A more suited metric is the mse (see Fig. 11), as
calculated in [2], which is a function of the correlation coeffi-
cient, the standard deviation and the mean of the time series.
Looking at the mse between τp and τa over tropical rainforests
and deserts, the mse does not show distinctly higher values than
in other regions. Hence, it supports the assumption that the low
correlations are caused by the minimal variation in τp.

Figs. 8 and 11 show negative correlations and high errors in
some regions belonging to class Aw (equatorial climate with
dry winter), i.e., north of the African tropical rainforest, over
Cameroon, Central African Republic, and South Sudan. When
looking at the mse (see Fig. 11) it shows that this area is
characterized by relatively high mse: mse > 0.10. The time
series plots [see Fig. 10(c)] show little variation in τa, but the
highest value lies around February, whereas τp has its minimum
at this time, which coincides with the end of the dry season.
Only from July to October both τa and τp increase; the rest of
the year, the behavior of the time series is opposite here, where
τa also does not follow the precipitation regime. The different
behavior of τa and τp is subject to further investigation.

2) Arid Regions (KGC: B): In arid climates, e.g., deserts, cli-
mate class B, τa and τp show low values, between 0.0 and 0.39.
Values here correspond very well to each other with almost no
bias between the two products for climate classes BSh and BSk,
i.e., bias = 0.04. For deserts (climate classes BWh and BWk),
the bias between the two products is larger, where τa is on
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Fig. 10. Time-series plots for τa (solid line), τp (dotted line), and GLDAS–Noah precipitation (gray bars) sorted after Koppen–Geiger climate classs. (a)–(c)
Tropical, (d)–(f) arid, (g)–(i) temperate, and (j)–(l) cold. Where the τp shows climatology based on data over the period 2007–2011. The locations of the plots can
be found in Fig. 3. The numbers above the plots represent the gridpoints and the Koppen–Geiger climate classs and R gives the Spearman correlation coefficient.

average 0.21 lower than τp. This originates mainly from areas
where backscatter is extremely low, e.g., in sand dunes, and
τa shows values close to 0 or even negative. Δσ◦

s is extremely
low in sand dunes, e.g., −32 dB, since it is obtained for every
gridpoint individually based on ASCAT observations, leading
to τa values of 0. Spatial patterns between τa and τp are very
similar in deserts, with higher values in Yemen and in moun-
tainous areas in the Sahara desert. Although the mean values

of the two products correspond well to each other, negative
correlations are observed between τa and τp. Previous studies
have shown that the τp shows a good correspondence to both
precipitation and NDVI over these regions [17], [18]. Multiple
processes can play a role in deserts, introducing discrepancies
and low correlations between τa and τp. Most importantly,
as for tropical forest, variation in vegetation is very low in
most parts of deserts [see Fig. 10(e)]. In fact, many areas do
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Fig. 11. Global mse between τa and τp .

not have any vegetation at all [see Fig. 10(f)]. Consequently,
correlation coefficients between τa and τp are meaningless
for some areas. In these areas, the τa and τp signal do not
correspond to vegetation water content but are sensitive to other
surface parameters.

For example, soil volume scattering can play a role in
deserts [51], which are caused by dry sand soils. In wet soils,
microwaves do not penetrate the soil very deep since the soil
moisture forms a dielectric surface; hence, volume scattering
does not need to be taken into account. However, studies have
demonstrated that, in dry sand soils, the penetration depth of
the microwaves can be large, i.e., up to several meters, causing
volume scattering [51] and the chance of hitting subsurface
bedrock. Since volume scattering is also the prevailing scatter-
ing mechanism in vegetation, volume scattering due to dry soils
can cause an increase in τa when no vegetation is present.

When microwaves do hit subsurface bedrock or rocks, τa is
also affected. Rocks and bedrock patterns at the same scale as
the wavelength of ASCAT can increase the microscale surface
roughness of the scattering surface. Since the effect on the slope
and curvature of the σ◦ − θ curve is the same for increasing
surface roughness as for increasing vegetation density, i.e.,
the slope of the σ◦−θ curve decreases with increasing soil
surface roughness [45], increasing microscale roughness can
increase τa. Rocky surfaces can be found in desert pavements,
pediments, and regolithic slopes. Pavements are flat surfaces,
formed by long-term aeolian erosion, with pebbles and cobbles
on the (sub)surface. Pediments form at the foot of mountainous
areas, and are characterized by eroded bedrock surfaces covered
with pebbles. Since weathering in deserts is a mechanical pro-
cess, and not driven by water, it results in coarse angular rocks
with the size of pebbles (2–6.4 cm) and cobbles (6.4–25.4 cm)
covering many areas in deserts [52], [53]. With a wavelength
of 5 cm, C-Band is highly sensitive to the presence of pebbles
and cobbles on the surface or in the subsurface, increasing τa.
In addition, buttes are distinctive landforms in deserts, which
consist of steep-sided hills and cliffs [52], which can function as
corner reflectors, leading to higher backscatter and potentially

increasing τa. Here, it needs to be considered that surface
roughness is difficult to define in microwave remote sensing,
and represents the roughness of the boundary between two
media with different dielectric properties. If during dry periods
volume scattering or scattering from subsurface bedrock is the
dominant mechanism, a high τa is observed, leading to negative
correlations. Furthermore, the signal-to-noise ratio is very low
in deserts, which makes a change detection very challenging. In
conclusion, not considering the generally low vegetation den-
sity and dynamics in deserts, the variation observed in τa can
be originating from sensor noise, surface roughness changes,
volume scattering, a wrong estimation of the wet reference, or
some yet unknown physical process, possibly explaining the
high values for τa and low correlation coefficients with τp.

3) Warm Temperate Regions (KGC: C): Temperate regions
cover parts of Europe, Argentina, Eastern China, and U.S., and
are dominated by croplands. In general, τa shows lower values
for temperate climates than τp, with an average bias of 0.15.
This bias originates mainly from climate classes Cwa and Cwb,
temperate climates with a dry winter and hot and warm summer.
Climate class Cwa covers part of the Himalaya mountains and
mountainous regions in China, excluding the Tibetan Plateau,
which falls in climate class ET, where retrieval is potentially
hampered due to the rough terrain. Analysis of RADARSAT2
observations over the Italian Alps showed a difference in
backscatter values of 8–9 dB attributed to extreme topography
[54]. Although backscatter is normalized for topography in the
TU-Wien retrieval algorithm, extreme topography, as found
in the Himalayas, can still cause ambiguity in backscatter
observations and thus in τa. When looking at spatial patterns
and mean values of τa and τp, they are similar in Southern
Europe and the Southern USA. In Southern Europe, higher
values are found for both τp and τa in Northern Spain, around
the Mediterranean and the coastal regions of Turkey. For both
products, the inland of Turkey and Iran show lower values
than the coastal areas. Moreover, over North America, similar
patterns are found, with low values in the southeastern part of
U.S. and higher values in the northwestern part. Fig. 7 shows
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that for temperate climates, both products show lower values
in regions with hot summers, i.e., Cfa, Csa, and Cwa. Both τp
and τa are increasing with decreasing summer temperatures,
demonstrated by the increasing averages from, e.g., Cfa to Cfc.

Correlation coefficients between τa and τp are very high for
temperate climate regions [see Figs. 7, 8, and 10(h)–(l)]. This
is demonstrated by the high correlation coefficients of > 0.7
(see Fig. 9) in KGC classes C. For temperate climates with
hot summers, i.e., class Cfa, Csa, and Cwa, the correlation
coefficients are lower than for the other temperate classes,
which have a median correlation below 0.5. One explanation
for this may be volume scattering, as described in the section on
arid regions, taking place in summer when soils are very dry. In
particular, in Spain and in the southeast of U.S., this has been
observed, where high backscatter values occur in dry periods
[55], [56]. In some cases, total backscatter only decreases after
the occurrence of a rain event. Due to the rainfall event, the
main scattering mechanism shifts from volume scattering to
surface scattering, decreasing the τa.

4) ColdRegions (KGC:D): In cold climates (climateclassD),
characterized by tundra, taiga, and forests, τa shows lower
values compared with τp, particularly over Canada, Alaska,
and Russia. The average bias between τa and τp is higher here
than for all other climate classes, i.e., 0.21. This bias originates
mainly from climate class Dfc and Dwc, cold climates with
cool summers, and either dry summers or dry winters, and
these classes cover mainly boreal forests and taiga. There are
different reasons that might explain this phenomenon. First,
the estimated sensitivity of bare soil backscatter Δσ◦

s may be
too low, e.g., because increasing vegetation cover increases the
soil surface roughness, e.g., by the presence of litter on the
surface and roots in the subsurface. However, we do not see
these particularly low values, e.g., the median negative bias
for climate classes Dfc and Dwc is close to 0.5, for τa, in
other forested areas, which would be the case if the problem
would lie with the Δσ◦

s estimation. Another more likely reason
could be a bias in the estimation of the dry reference. Ad-
ditional analysis revealed that the wet reference σ◦

wet shows
very little variation between climate classes A, BS, C, and D
with an overall mean and standard deviation of 0.47 and 0.96,
respectively. When comparing subclasses with similar τp values
from climate classes A and D the dry reference in climate
classes Dfc and Dwc is on average 3 dB lower than in climate
classes As and Am and up to 5 dB lower than in climate class
Af. This suggests that the dry reference might be estimated too
low in cold climates where land cover is characterized by boreal
forests. Since the wet reference can be considered the same for
these classes, a lower dry reference leads to lower τa values.
Several processes could possibly explain the low estimates for
the dry reference. In the TU-Wien retrieval algorithm, the dry
reference is estimated based on the lowest observed backscatter
values per gridpoint. Since the dielectric constant of ice is
significantly lower than that of water [57], frozen soils are
characterized by a lower backscatter, which can be similar
to backscatter from dry soils [58]. Hence, even if backscatter
is obtained during frozen soil conditions, we assume these
values are comparable to dry soil surface conditions. A possible
explanation for lower dry reference values compared with more
temperate climates, may be that in areas with an extended pe-
riod of freezing, frozen conditions extend to the water content in

vegetation [59], and this leads to a decrease in backscatter. This
decrease in backscatter due to the freezing of trees has been
observed and modeled in other studies using L-Band SAR and
C-Band SIR-C observations [60]–[62] over boreal forests. This
hypothesis is supported by the extent of the low values for τa,
which only occur in boreal forests and taiga and not in less veg-
etated regions such as the northern parts of the Siberian Plain.

In cold climates, many other natural processes can cause
strong variations in backscatter, i.e., freeze–thaw cycles, snow
cover, and ponding water on frozen soils or snow. In springtime,
when temperatures are above freezing point, surface water can
form from snow melt and thawing of frozen soils. During
this time, backscatter values can decrease strongly, due to the
presence of ponding water on the surface as shown in [63]. The
work in [1] found that artifacts in the soil moisture time series
that leads to low correlations between in situ soil moisture and
satellite soil moisture are found in northern latitudes. These
artifacts are assumed caused by strong backscatter variations
due to freeze–thaw cycles or specular reflection on ponding wa-
ter, which decreases the returned backscatter signal. Snow can
also contribute to the backscatter signal, originating from three
components, the top of the snow pack, volume scattering from
within the snow pack, or the underlying soil. When the snow
pack is dry, it is practically transparent, and the backscatter
signal is controlled by the underlying soil. However, if the top
of the snow pack is wet and smooth, backscatter originates from
the top of the snow pack and can be as low as or even lower than
from a dry soil. However, when calculating the dry reference,
outliers are removed, and this subsequently masks backscatter
values obtained during freeze–thawing cycles, ponding wa-
ter, and wet snow cover. Naturally, the outlier removal is an
automated procedure and can be subject to error. However,
since the dry reference is an average of many observations, the
contribution of these spurious values is assumed small.

The temporal behavior of τa and τp is very similar to each
other, although correlation coefficients are lower than for tempe-
rate climates. In particular, in Canada around the Hudson Bay,
and the northern parts of Ural and Siberia, negative correlations
occur. However, these areas are characterized by the presence
of numerous lakes. As discussed earlier, the presence of open
water and ponding water can cause artifacts in the retrieved
τa and τp. The retrieval of both soil moisture and vegetation
optical depth in northern latitudes is hindered by the presence
of snow cover, freeze–thaw cycles, and frozen soils and ponding
water on the surface. Further research is planned to look at
the estimation of the dry reference and the relation between
the lowest backscatter values found for every gridpoints and the
surface conditions at the time of observation.

5) Wetlands: In wetlands and regularly or permanently
flooded regions such as irrigated areas and floodplains, i.e., the
Ganges and Mekong floodplain, the Okavango Delta and rice
fields in Malaysia τa shows negative correlations with τp (see
Fig. 8) and very high values for mse (see Fig. 11). Previous
studies have emphasized that care should be taken with inter-
preting τp observations in areas with large open water areas
[17], [31], [64]. For active microwave, backscatter is controlled
by the roughness of the water surface. Hence, the backscatter is
a function of wind direction and impedes the retrieval of the τa.
Consequently, this can lead to low correlations between both
products.
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Fig. 12. Difference in Spearman correlation coefficients between Θa and ΘERA and σ◦(40) and ΘERA, where positive values indicate areas where the
correlation between Θa and ΘERA is higher than between σ◦(40) and ΘERA, i.e., areas with positive impact of the vegetation correction.

C. Effect of τa on Soil Moisture Retrievals

Since τa is a function of both Δσ◦ and Δσ◦
s, the effect of

τa on soil moisture retrievals with regard to the absolute soil
moisture values is not straightforward. However, since Δσ◦

s is
assumed constant, apart for deserts, we can discuss the effects
ofΔσ◦ and the estimation of σ◦

dry on the retrieved soil moisture.
As already discussed in Section IV-B.4, in cold climates, low
values for the σ◦

dry are found most likely caused by surface
conditions in winter and spring, i.e., snow cover, frozen soils,
freeze–thaw cycles, and ponding water on the surface. With the
dry reference being this low, it introduces a positive bias in
the soil moisture retrieval, which is suggested by the relatively
high soil moisture values found in boreal forests compared with
soil moisture products from other satellites, e.g., SMOS and
AMSR-E [65]. The work in [65] have attributed the high soil
moisture values to the high porosity values that were used to
calculate absolute soil moisture. However, considering the low
values for τa, another likely explanation is the low dry reference
that is obtained during frozen conditions.

The TU-Wien products before and after the application of
the current vegetation correction, i.e., the TU-Wien normal-
ized backscatter (σ◦(40)) and TU-Wien soil moisture (Θa),
respectively, were compared with modeled surface soil mois-
ture from ERA-Land (ΘERA) (see Fig. 12). Green colors
represent regions where the vegetation correction improves the
correlation with ERA-Land, whereas red colors indicate areas
where the correlation between Θa and ΘERA is decreased as a
result of the vegetation correction. The results demonstrate the
positive impact of the existing vegetation correction over semi-
arid, temperate, and cold climates, reinforcing the previously
observed high correlation coefficients between τp and τa. In
particular, the positive impact on soil moisture retrievals in
deserts and drylands is interesting since the temporal correla-
tion between τa and τp is negative in these areas. This suggests
that either the existing vegetation correction does not correct
for vegetation but corrects for dynamic land surface properties

other than vegetation or that τp does not describe vegetation
correctly.

Spearman R between Θa and ERA-Land soil moisture can
decrease by as much as 0.4 in the northern Sahel, the southern
regions in Africa, and the Ganges and Mekong floodplains
and deltas, compared with Spearman R between σ◦(40) and
ERA-Land soil moisture. We suggest that this is because these
regions are characterized by strong interannual variations in
vegetation, whereas the correction method applies the same
correction every year. Fig. 13 shows interannual variability in
the τp for the period 2007–2011 based on the range between
the minimum and maximum Pardé Coefficient ΔPC [66]. ΔPC
is calculated as the difference between the minimum and maxi-
mum monthly mean τp values normalized per year, i.e.,

ΔPC =
1

m

12∑
m=1

max
(
τp(m,a)

)
−min

(
τp(m,a)

)
τp(a)

(17)

where subscript m represents months, and a represents years.
Areas with a high coefficient are areas where the behavior of
the τp differs significantly from year to year. Regions of strong
interannual variability in τp can be found in Australia, the
Sahel, Southern Africa, and Texas. These regions correspond
with regions where the Θa shows lower correlations to ΘERA

than the σ◦(40). In these regions, interannual variability is not
only found in the mean or maximum of the vegetation but
also in the timing, e.g., where vegetation growth is strongly
dependent on sporadic rainfall events and hence the timing of
maximum vegetation cover is highly variable.

Fig. 14 shows the results of the interannual variability test,
with the difference in the correlation coefficient between mod-
eled soil moisture ΘERA and the soil moisture product using
the τa as a correction, Θa, and the soil moisture product using
τp as a correction Θτp . Fig. 14 is very similar to Fig. 12, but
in more temperate and continental climates, such as in Europe
and North America, the use of τp deteriorates the soil moisture
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Fig. 13. ΔPC over the normalized monthly differences of τp, where red areas represent high interannual variability.

Fig. 14. Difference in Spearman rank correlation coefficients between Θa and ΘERA and Θτp and ΘERA, where τa is substituted by τp. Negative values (in
red) indicate areas where the correlation between Θτp and ΘERA is higher than between Θa and ΘERA.

retrieval with lowering the correlation coefficients with as much
as 0.5. Areas such as the Sahel, which are characterized by
high interannual variability in vegetation dynamics show signif-
icantly higher correlations when using Θτp . Fig. 15 shows the
histograms of relative frequency of ΔPC for points where Θτp

outperforms Θa when correlated to ΘERA (ΔR < −0.1) and
when Θa correlates better to ΘERA (ΔR > 0.1). The histogram
shows that points where Θτp outperforms Θa correspond to
areas with a high ΔPC, i.e., to areas with high interannual vari-
ability. In addition, a Mann–Whitney test was performed which
confirmed a significant difference between ΔPC of areas where
Θτp performed better, characterized by a higherΔPC, and areas
where Θa performed better, characterized by a low ΔPC. It

appears that in areas with no significant interannual variability
in vegetation dynamics, the seasonally fixed vegetation correc-
tion shows similar results or even outperforms the Θτp . For
these regions, the characterization of vegetation and roughness
is better by the existing vegetation correction than by the τp.

V. CONCLUSION

This paper has analyzed the vegetation correction method
of the TU-Wien soil moisture retrieval algorithm for active
microwave observations and its impact on the final soil mois-
ture product. To verify spatiotemporal characteristics of the
vegetation characterization with respect to a vegetation product
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Fig. 15. Relative frequency of ΔPC for points where when compared to
ERA-Land Θτp outperforms Θa (ΔR < −0.1) in pink purple and where Θa

outperforms Θτp (ΔR > 0.1) in blue.

from passive microwave observations, we first converted it
into vegetation optical depth using a water-cloud model. On
average, mean values of the newly derived τa are 0.15 lower
than mean values from τp retrieved using LPRM from pas-
sive microwave observations. This can be attributed to the
underestimation of Δσ◦

s. Over boreal forests, τa is even lower,
which can potentially be explained by the estimation of the
dry reference over cold climates. Apart from the low values in
boreal forests, τa shows very similar spatial patterns as τp and
the retrieval of τa is not hampered by the assumption that Δσ◦

s

does not vary spatially. High temporal correlation coefficients
are found between τa and τp in temperate and continental
climates, apart from areas with open water. In particular, in
semi-arid, temperate, and cold climates τa shows potential to
monitor vegetation. In arid regions and in areas with dry hot
summers, low or even negative correlations with the τp were
observed. These are likely due to volume scattering effects or
apparent soil roughness changes in dry soils. However, in these
areas, the effect of vegetation on the soil moisture retrieval
is minimal, and the vegetation correction does not negatively
impact the quality of the soil moisture product itself.

In areas where there is high interannual variability in vegeta-
tion dynamics, the soil moisture product is negatively affected
by the fixed year-to-year vegetation correction, although the τa
itself is highly correlated to τp. Substituting the existing cor-
rection for a dynamic correction based on the τp demonstrates
that the soil moisture product is improved with respect to soil
moisture from ERA-Land in areas with high interannual vari-
ability in vegetation dynamics. Consequently, the importance
of a dynamic from-year-to-year varying vegetation correction in
soil moisture retrievals is confirmed in this paper. This is par-
ticularly valuable information for the algorithm development
of new soil moisture missions such as SMAP and Sentinel-1
and the improvement of the TU-Wien soil moisture retrieval
itself. With regard to the latter, research is ongoing to develop a
dynamic vegetation correction from ASCAT active microwave
observations in order to provide a more robust and accurate
soil moisture product. Based on the results of this paper, it
is expected that the new dynamic correction will improve the
soil moisture retrieval particularly in drylands and deserts and
regions with high interannual variability in vegetation.
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