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Abstract

Singularity analysis has proven to be a complementary tool to the Advanced 

Scatterometer (ASCAT) inversion residual (or Maximum Likelihood Estimator) in 

terms of wind quality control. In this paper, a new implementation scheme of 

singularity exponent is developed for ASCAT data analysis. It combines the wavelet 

projections of the gradient measurements of multiple parameters into the analysis, 

ensuring that the analyzed parameters contribute equally to the final singularity map.

Therefore, the underlying geophysical phenomena in the different ASCAT-derived 

parameters can be effectively revealed simultaneously on a unique map of singularity 

exponents. The validation using both buoy winds and European Centre for Medium 

range Weather Forecasting (ECMWF) forecasts wind output shows that the newly 

derived singularity exponent significantly improves the current ASCAT wind quality 

control. In particular, poor-quality ASCAT measurements at low wind and 
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high-variability conditions (w<4 m/s) can be effectively screened using the new 

singularity exponent.

Index terms- ASCAT, maximum likelihood estimator (MLE), singularity analysis, 

quality control, wind variability



1. Introduction

Singularity analysis (SA) derived from the study of turbulent flows has demonstrated

to be a valuable approach to analyze and understand many natural phenomena in scale 

invariant systems, such as the satellite remote sensing maps of sea surface 

temperature (SST) [1], sea surface salinity (SSS) [2], and sea surface winds [3][4][5], 

among others. It derives the local singularity exponent (SE) of a geophysical image, 

which allows to quantitatively interpret the degree of regularity of all the points or 

pixels in the image. SE can be used to detect not only the existing geophysical 

structures, characterized as singularity fronts, but also wind retrieval errors. Previous 

work shows that SA can effectively detect the presence of rain in ASCAT (onboard 

Metop-A & Metop-B) retrieved wind fields [3] [4]. More recently, in [5] SA is 

proved to be a complementary technique to the inversion residual or Maximum 

Likelihood Estimator (MLE) for both detecting increased wind variability and quality 

controlling ASCAT-derived winds. 

Up to now, singularity maps of the MLE and the ASCAT-retrieved wind 

components are derived independently at every wind vector cell (WVC). Then, the 

minimum SE value from the wind speed, wind direction, and MLE is used at each 

WVC to generate the final singularity map, which is hereinafter referred to as SEo. By 

introducing these quality-sensitive parameters into the singularity analysis, one is able 

to detect increased noise and/or wind discontinuities (divergence or convergence). 

However, the process of extracting the minimum SE value from a set of independent 

singularity maps is simple but not physical. Besides, the final SE value may be 



dominated by a certain parameter which has much larger dynamic range than the other 

parameters in the analysis, resulting in less evident frontal patterns (e.g., when the 

MLE dominates) or less patchy patterns (e.g., when the wind direction dominates) in

the ultimate SA map.

In this paper, an improved singularity analysis is developed to better accommodate

ASCAT-derived wind characteristics. Instead of applying wavelet analysis to 

characterize singularities from each quality-sensitive parameter, it is proposed to 

combine the wavelet projections of the gradient measurements of each parameter 

before extracting SE values by the logarithmic operation [6][7]. A set of weighting 

coefficients are set for each of the used quality-sensitive parameters when summing 

the wavelet projections of each parameter to get the combined projection. Through 

this approach, the analyzed parameters almost equally contribute to the SA map. In 

addition, only one logarithmic operation is required to get the singularity exponent for 

each WVC, which is more effective than the previous method in terms of numerical 

calculation.

Previous studies show that the ASCAT wind quality control is generally effective, 

except for low wind conditions. On the one hand, the geophysical noise, which is 

dominated by the sub-cell wind variability, increases significantly as the wind speed 

decreases [8]. On the other hand, the instrument thermal noise becomes 

non-negligible due to the low signal-to-noise ratio of the scatterometer measurements

[9]. Consequently, for wind speeds below 4 m/s, the ASCAT wind direction skill is 

poor and the MLE becomes little effective as quality control (QC) indicator [3]. 



Meanwhile, the verification of ASCAT wind quality at low winds is less accurate, due 

to spatial representativeness errors, i.e., the wind references (e.g., buoy winds and/or

model winds) do not well represent the area-mean ASCAT 25-km scale wind vector 

under increased wind variability conditions. A new quality indicator is thus required 

for ASCAT low winds.

Section 2 highlights the basics of the traditional SA method, presents the improved 

SA scheme (with a combined wavelet projection), and summarizes the 

implementation of the ASCAT QC. In section 3, the new SA method is applied to 

three years of ASCAT 12.5-km Level 2 (L2) data, and the collocated buoy winds are 

used to validate its performance as wind quality control and sub-cell wind variability

indicator. Since the improvement of the new SA method is remarkable, in section 4 it

is particularly tested for low wind conditions (w<4 m/s). Finally, the conclusions can 

be found in section 5.

2. Methodology

2.1 SA overview

Following [10][11], the singularity exponent of a two-dimensional signal s at the point 

x is derived from the wavelet projection of its gradient, denoted as:
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where r is the scale factor, and  is the wavelet function. If the two-dimensional 

signal contains a singularity exponent h(x) at the point x according to the function

below,
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then the wavelet projection of Eq. (1) infers the same exponent as [12]:
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where   x and  ψ x are dimensional and signal-dependent amplitude factors, and 

o(rp) becomes negligible in comparison with rp (p= h(x), or h(x)+2) when r goes to 

zero. Since we are mainly interested in the most singular structures of the analyzed 

signal, rather than the wavelet projections across multiple scales, the following 

equation is used to estimate the singularity exponents
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where 0
ψT is the mean value of the wavelet projection over the whole signal. The 

scale r0 is defined as the smallest accessible scale. Negative SE values derived from 

(4) indicate irregular behavior of the field (higher decorrelation, sharp gradient 

changes), while the positive values indicate a smooth field over the corresponding 

points. 

In the numerical operation, the wavelet projection at a given point is simply 

estimated from the vector difference between its actual gradients and those inferred 

from its four nearest neighbors, which is equivalent to the following function [7],

     2 2
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where s
ig (i=x, y) is the actual gradient of parameter s in the i-direction. During the 

process, s
ig at the analyzed point is set to be zero, and then a signal is reconstructed 

from the gradient series by using the reconstruction operator. Finally, 0
s
ig (namely 

the inferred gradient) is derived from the reconstructed signal by applying once more 

the gradient operator.



2.2 Improved SA

Normally, SA is applied on a single image using Eq. (4) in order to estimate the 

singularity exponents. However, to better understand the underlying geophysical 

phenomena in a set of images or parameters which are partially correlated with each 

other, one may want to extract the singularity exponents from more than one image. 

For the ASCAT application, this was initially carried out in [3], [4] and [5] by 

applying Eq. (4) to different parameters separately, and then, at every WVC, the 

minimum SE value (named as SEo) from the set of derived SEs was selected to 

generate the final singularity map. To count the contributions of different parameters 

to the final singularity map, it is now proposed to accumulate the wavelet projections 

of all the analyzed images before applying Eq. (4). If the wavelet projection of a 

single parameter (i.e., the left part of Eq. (3)) is simply denoted as ψT s , the 

combined projection is written as follows: 
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where 0ic  for the weight of the ith parameter, and  ψT is  for the standard 

deviation (SD) of its wavelet projection. The configuration of si and ci may be 

optimized according to different applications. For instance, one should set a relatively 

high ci value for MLE to better distinguish rain, which usually shows up as blocky 

structure; or set a relatively high ci value for wind direction in order to better detect

the convergent and divergent patterns in the singularity map. 

In this paper, the ASCAT wind ambiguity (zonal u and meridional v components),



which is closest to the background wind, together with the corresponding inversion 

residual (MLE) are exploited in the new singularity analysis. The objective of this 

study is to look for an innovative way to account for the contributions of different 

parameters in singularity analysis, rather than to look for the optimal weight setting.  

Consequently, 1ic  is simply used to balance the contributions of the mentioned

parameters in SA, and the explicit expression of Eq. (6) becomes,
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Then, ψT s in Eq. (4) is replaced by the above ψT c to estimate the singularity

exponents from the multiple images. The projections’ SD values for u, v and MLE 

fields estimated from ten days of ASCAT 12.5-km L2 wind data (from June 1st- 10th

2013) are shown as follows,
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The variation of the above SD values is smaller than 5% for the u and v wind 

components, and smaller than 10% for the MLE field, depending on the time period 

used, as verified using other randomly selected 10-day periods in year 2011.

Therefore, the SD values in (8) are fixed in our SA software for the entire process.

Note that, two ambiguity removal (AR) issues need to be addressed:

 Firstly, for the ASCAT three backscatter measurements (named as triplets) 

lying close to the surface constructed by the geophysical model function 

(GMF) [13] [14], the inversion generally leads to two wind solutions or 



ambiguities 180 apart. However, near the up-, down- and crosswind 

directions, there is also a substantial number of triplets lying close to GMF 

surface, but having 3 or 4 solutions. In [15], it is shown that the third and/or 

fourth solutions are actually an artefact of the inversion procedure and they 

therefore need to be removed before ambiguity removal.

 Furthermore, the ASCAT Wind Data Processor (AWDP) uses an AR scheme 

based on data assimilation methods, i.e., the so-called two-dimensional 

variational ambiguity removal (2DVAR) method [16]. As smaller scales are 

revealed, the mesoscale analyses and consequently 2DVAR become more 

challenging. Due to the dual ambiguity nature of the ASCAT wind inversion, 

it generally leads to two solutions 180 apart which are equally likely. If the 

background wind is off by more than 90 locally, the local ASCAT wind 

ambiguities actually add information in the analysis step to reinforce the 

erroneous background. As a result, the front lines resolved by SA likely 

coincide with those of the background field, rather than with the apparent 

position depicted by the ancillary parameters, e.g., the inversion residual 

(namely MLE) or the cloud/rain data from meteorological satellites [17].

Indeed, 2DVAR has been further developed to prevent these locally wrong 

inferences by applying spatial filtering in order to achieve dynamically 

consistent wind fields [17]. To mitigate the impact of ambiguity removal 

errors in the singularity analysis in this study, the wind direction difference

between the center WVC and its neighbor WVCs is constrained as follows,



when calculating the wavelet projection of the gradient of u/v component

for the center WVC,

 ( 90 )
( 90 )180

d dd dd
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where  0 ,180d    means the actual wind direction difference, and d 

the constrained result. That is, a direction difference of 180 (over a sharp 

convergence or divergence area) is considered as a zero wind direction 

difference, and in turn, no singularity front (extremely negative SE values) 

will result in that particular area.

2.3 Quality control

Conventionally, the scatterometer wind quality is evaluated using the vector 

root-mean-square (VRMS) difference between its wind vectors and the reference 

winds (such as buoy, ECMWF),
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where ( scat
iu , scat

iv ) and ( ref
iu , ref

iv ) are the ith scatterometer and reference wind vector 

respectively; and N is the total number of collocations.

At first, AWDP uses MLE as a QC indicator. MLE depicts the distance between the 

measured backscatter triplets and the GMF surface, and also estimates the 

inconsistency among the triplets. Large MLE value corresponds well to the increased 

sub-cell wind variability and the decreased wind quality. Operationally, any WVC 

with MLE > +18.6 is flagged as poor wind quality. Afterwards, SEo is proposed to 

complement the MLE-based ASCAT wind QC. SEo performs well in detecting the 

local decorrelation between a WVC and its neighbor cells. Large negative SEo value 



corresponds to large spatial decorrelation and inter-WVC wind variability. In [5], the 

combined SEo/MLE analysis is proposed to improve the MLE-based QC. That is, the 

VRMS differences between ASCAT and ECMWF winds are studied over a set of 2D 

bins constructed by SE and MLE; then a 2D flag table is derived using a certain 

VRMS threshold (in this case 4.5 m/s), i.e., the bins whose VRMS values are higher 

than 4.5 m/s are set for rejection. Furthermore, the measurement variability factor (Kp)

[18], which depicts the variability of the backscatter measurements for each antenna 

beam, is introduced to refine the above 2D flag table, leading to the development of 

multi-dimensional histogram (MUDH) QC method. 

The 2D or MUDH methods are straightforward but not necessarily effective, since 

one needs to tune the VRMS threshold carefully, as well as the binning of 

quality-sensitive parameters. If tuning is not done properly, one of the quality 

indicators may dominate the vector difference score in a certain 2D or MUDH bin. 

Subsequently, the data filtered by the other quality indicators in such bin, which may 

be of relatively good (or poor) quality, are rejected (or kept) unfairly. This often 

happens when the quality indicators are of distinct characteristics.

Overall, the ASCAT wind quality (or the sub-cell wind variability) is a monotonic 

function of SE, or Kp, i.e., the wind quality decreases as Kp increases, and SE 

decreases. Regarding the signed MLE in [19], the ASCAT wind quality decreases 

rapidly as MLE increases for MLE(0, +), while the wind quality degradation is 

generally small for MLE(-, 0). WVCs with negative MLE values are never 

rejected according to the current AWDP QC. We are more interested in the positive 



MLE values, where the wind quality is indeed a monotonic function of MLE. 

Therefore, the following approach is proposed to filter the poor-quality winds [20]: 

MLEMLE T or SESE T or 
pp KK T (11)

Note that when Tx is set to infinity (x= MLE, Kp) or infinitesimal (x=SE), the 

corresponding parameter is not used to flag any wind data. Actually, TMLE = +18.6 is 

used to keep (11) being consistent with the previous MLE(only)-based QC. Moreover, 

one can achieve equivalent QC effects to the above mentioned 2D or MUDH methods 

by searching proper SE and Kp thresholds.

3. Verifications

3.1 Data

In this Section, the new SE derived from (7) (hereinafter referred to as SEn) is 

compared to both SEo and MLE parameters, in terms of QC and increased wind 

variability indicators. For such purpose, three years (March 2009- February 2012) of 

the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) ASCAT 12.5-km L2

data collocated with ECMWF forecasts and moored buoy winds are used. The 

effective spatial resolution of ASCAT data is determined by the cumulative spatial 

response function of all the full-resolution backscatter measurements integrated in 

each WVC [21], which is about twice the WVC size (25 km). The collocated 

ECMWF winds, already included in the L2 files, are estimated by interpolating three 

3-hourly ECMWF forecasts (selected from +3 h to +18 h in 3-h steps) both in space 

and time to the ASCAT WVC acquisition. Two different moored buoy data sets are 

used in this study. The first one is retrieved from ECMWF Meteorological Archival 



and Retrieval System (MARS), further referred to as MARS buoys. These buoy winds 

are segregated into 1 m/s speed bins and 10 direction bins. The collocation criteria 

for MARS buoy winds are 30 minutes (30 min) distance in time and 25 km distance in 

space from the ASCAT observations. The second one consists of continuous 

ten-minute (10-min) buoy wind measurements, further referred to as 10-min buoy 

winds. This buoy data set is available at http://www.pmel.noaa.gov/. The collocation 

criteria for 10-min buoy winds are 5 min and 25 km distance from the ASCAT 

measurements. Moreover, a series of 25 continuous 10-min buoy measurements are 

recorded in each collocation.

The total amount of collocations with MARS buoys and with 10-min buoy 

measurements is about 80,000 and 41,000, respectively. The former data set is used in 

section 3.2 and 3.3 to verify the SEn impact on wind QC; the latter data set is used in 

section 3.4 to assess the SEn impact on identifying wind variability, and used in 

section 4 to assess the low winds QC.

3.2 SEn impact on QC effectiveness - one parameter analysis

The peak of the SE distribution derived from (4) is generally at small positive 

values, as shown by the histogram of SEn in Fig. 1, since the global wind field is 

expected to be continuous and regular in general, and in math, the wavelet 

projection’s mean value 0
ψT is larger than its median value. However, the peak of the 

SEo distribution is shifted towards small negative values (see the dashed line in Fig. 1), 

since it is based at each grid point on the minimum SE value from the singularity 

analysis of the wind speed, wind direction, and MLE (i.e., three different SA maps 

http://www.pmel.noaa.gov/


generated by (4) respectively). Hence, by construction, SEo values are generally more 

negative than SEn values. To compare the parameter sensitivities to wind quality for 

different SEo and SEn distributions, the quality statistics are presented below as a 

function of the percentage interval sorted by SE values in ascending order. Fig. 2 

shows the VRMS difference between ASCAT and buoy winds as a function of the 

sorted percentage intervals. Lower SE bins correspond to negative SE values, and 

higher bins to the positive SE values. Each sorted bin contains the same amount of 

(SEo and SEn) data. A zoom of the first 5% of data (i.e., the data subset with the most 

variable winds, which also contains poor-quality winds) is also shown at the 

upper-right corner of each panel, in which marker “I” indicates the uncertainty bar of 

the estimated VRMS for each bin. Since the operational MLE-based QC rejects 

approximately 0.3% of the data for the retrieved winds above 4 m/s and almost no 

rejections are carried out below 4 m/s [19], the VRMS for the first 0.3% of data is 

shown in Fig. 2(a) (see black square) for comparison purposes. The black square 

markers in Fig. 2(b-d) indicate the VRMS scores of the operationally rejected WVCs. 

Note that the VRMS difference between ASCAT and ECMWF winds shows the same 

trend as that of Fig. 2 (not shown).

As shown in Fig. 2, the VRMS scores for SEn are considerably higher than those 

for SEo at the so-called poor-quality or very high wind variability region (leftmost side 

of the x axis), but lower for the so-called high-quality or stable wind conditions region

(right side of the x axis), despite of the small amount of data (i.e., large uncertainty) in 

the leftmost bins. Therefore, SEn is remarkably more effective than SEo in 



discriminating the poor-quality WVCs (w.r.t. buoy winds) from the good-quality 

WVCs over all the wind speed categories. Using the VRMS score of the 

MLE(only)-based QC as a threshold, the percentage of SE-sorted data with higher 

VRMS value than the mentioned threshold is computed. For winds above 4 m/s, SEo

detects a slightly larger amount (0.5%) of poor-quality winds than MLE, while SEn 

detects a much larger amount of data (1.1%). SEn is particularly more effective than 

SEo and MLE at winds below 4 m/s, indicating that SEn may be an effective QC 

indicator for low winds. This is further tested in Section 4.

3.3 SEn impact on QC effectiveness - combined parameters analysis

The benefits of SEn to ASCAT QC using combined SE/MLE or SE/MLE/Kp analyses 

are further investigated. According to (11), the collocated ASCAT-MARS buoys data 

are separately sorted by SE in ascending order, and by Kp in descending order at four 

wind speed categories: w<4 m/s; 4≤w<7 m/s; 7≤w<10 m/s; and w≥10 m/s. Then the 

sorted data sets are categorized with SE and Kp bins of 0.3% for the first 5% of data 

separately. If any of the binned data is of a  VRMS score (ASCAT-MARS buoys) 

higher than that corresponding to the square maker in Fig. 2, then the retrieved winds in 

such bin are flagged as poor-quality winds, and therefore rejected. This is carried out in 

ascending (descending) order for SE (Kp) until a certain bin for which the VRMS score 

is lower than that of the square marker in Fig. 2. For that particular bin, a linear 

interpolation between adjacent bins is carried out to determine the QC threshold (for 

either SE or Kp), such that only part of the winds in such bin are flagged as 

poor-quality winds and the rest flagged as good-quality data. For subsequent bins, the 



ASCAT retrieved winds are flagged as good quality data, and therefore kept. Table 1 

summarizes the QC results using different combinations of the quality-sensitive 

parameters. The above derived bin settings are then tested using the ASCAT-ECMWF 

collocations in year 2009, and VRMS scores against ECMWF winds are presented in 

table 2.

Even though the condition expressed in (11) is not exactly the same as the flag 

tables used in [5], the multi-parameter QC results for SEo are similar to those 

presented in [5], indicating that (11) is an effective way for ASCAT wind quality 

control. Using the SEn-based methods, the percentages of rejected WVCs are up to

four times higher than those of the MLE-based method. Moreover, the rejected WVCs 

produced with the SEn-based methods deviate more from both buoy and ECMWF 

winds than those produced with the MLE(only)-based method.

3.4 SEn impact on identifying wind variability

The assessment and validation of scatterometer wind quality is challenging under 

increased sub-cell wind variability conditions. Consequently, continuous 10-min buoy 

wind series are adopted to assess the ASCAT wind quality under such wind 

conditions [5][20]. The sub-cell variability is depicted by the standard deviation of 

buoy wind components within a certain measurement period. Note that the SD values 

of u or v components are particularly combined to express the wind vector variability as

2 2
vector u vSD SD SD  (12) 

The time window for assessing the wind variability is determined by expanding the 

10-min-equivalent distance vector in the adjacent time bins (centered at the ASCAT 



measurement time), until the length of the distance vector reaches the WVC size (25 

km). That is, for a 5 m/s (i.e., 18 km/h) area-mean wind, a 25-km equivalent mean 

buoy wind is computed by temporally averaging all the buoy data in the range of +/- 

40 minutes of the ASCAT measurement time. To ensure that the uncertainty in the 

variability estimation for a single collocation is below 50%, at least five 10-min buoy 

measurements are required in the calculation. Consequently, the minimum period is 

set to be within ±20 min of the ASCAT measurement time. Moreover, the mean buoy 

wind vector within such period is derived and used as reference in the validation. That 

is, the mean wind speed is calculated by averaging the wind speed series, and the 

mean wind direction is derived from the averaged wind u and v components [5].

Table 3 shows the mean SD values of the temporal 10-min buoy wind series for the 

rejected WVCs by the different QC methods. The same statistics but for stable winds 

are presented in the last column for comparison. It shows that the SDvector values for 

SEn are generally higher than those for SEo, indicating that SEn is also more effective 

than SEo in identifying more variable winds, particularly with larger wind direction 

variability. The VRMS difference between ASCAT and mean buoy winds is shown in 

table 4. Although the total number of collocations with continuous buoy winds is 

smaller than that with MARS buoy winds [20], the rejection ratios in table 4 (using 

continuous winds) are comparable to those in table 1 (using MARS buoy winds). The 

VRMS scores are in general lower in table 4 than in the last row of table 1, which 

confirms that the mean buoy winds are more representative of ASCAT area-mean 

winds than the 10-min buoy winds. In [20], it is shown that when discrepancies 



between ASCAT and mean buoy winds are large, the ASCAT quality (as well as the 

mean buoy quality) is degraded. The higher VRMS scores associated with SEn (as 

compared to SEo) in the rejected categories of table 4 prove that the SEn-based QC is 

more effective than the SEo-based QC.

Fig. 3 illustrates the vector difference (ASCAT against buoy winds) ratio between 

QC-rejected and QC-kept winds as a function of the buoy wind vector variability ratio

between the mentioned categories. On the one hand, it shows that SEn is a better 

sub-cell wind variability indicator than SEo (i.e., SEn-based methods are located more 

to the right in the x axis as compared to the other methods). On the other hand, it shows 

that SEn-based methods are capable showing larger discrepancies between ASCAT and 

buoy winds. This is consistent with the first conclusion, i.e., larger discrepancies should 

occur over higher wind variability areas (i.e., the so-called spatial representativeness). 

Interestingly, the variance ratio does not change much when VRMS is computed with 

10-m buoy winds or mean buoy winds. As suggested by [5], this is an indication of no 

significant rain contamination over the QC-rejected WVCs. Both ASCAT and buoy 

winds quality degrade over high wind variability areas [5], but the main cause of this 

degradation is in both cases the increased wind variability. As clearly seen in the Fig. 3, 

the use of SEn proves to be beneficial for both wind quality control and increased 

wind variability detection, as the discussion in the previous paragraphs of this section. 

4. Low winds quality control

At low wind conditions, as shown in [8], the measurement noise substantially 

increases due to the relatively high sub-cell wind variability, leading to high MLE 



values and poor wind direction skill (the measurements show poor anisotropy). 

Therefore, the MLE is not an effective quality indicator for w<4 m/s, in which 

condition only 0.2% of data are rejected with the MLE threshold of +18.6. Also 

AWDP incorporates a quality flag defined by Kp. The operational Kp threshold given 

by (13) is different with the one described in section 3.3,

   
 

mm
m

52 0.1 0.03 5
50.2pK QC

WWT W
        

(13)

where Wm is the mean wind speed of the retrieved wind ambiguities. For winds above

4 m/s, 
pK QCT is much higher than the determined 

pKT (about 0.1) in section 3.3, thus 

the condition (13) only rejects a few number of extreme poor-quality winds. For 

winds below 4 m/s, the wind direction variability is relatively high in the rejected data 

by the operational Kp-based QC (1%), mainly due to the fact that the backscatter

measurements are close to the noise floor, and in turn very low winds (w＜2 m/s, not 

shown) are rejected. Since the SEn is very sensitive to discrepancies between ASCAT 

and buoy winds at low winds (see Fig. 2(a)), we further examine different thresholds 

for QC purposes in this section.

Using the data sorting strategy followed in Fig. 2, Table 5 shows the VRMS 

difference and the wind speed bias between ASCAT and mean buoy winds for the first 

2%, the 2-5%, and the remaining 95% respectively. The sub-cell variability statistics 

are shown in the right part of this table. As a comparison, the first row presents the 

statistics of the data set flagged by the AWDP Kp- and MLE-based flags. In line with 

the results for winds above 4 m/s presented in Section 3.4, SEn proves to be an 

effective increased wind variability indicator under low wind conditions. As already 



mentioned, [5] and [20] show that under increased wind variability conditions, 

ASCAT-buoy wind discrepancies increase due to a decrease in both ASCAT and buoy 

wind quality. Consequently, here we use ASCAT-buoy discrepancies as an ASCAT 

wind quality indicator, although note that such discrepancies are not an estimation of 

the absolute ASCAT wind quality but a combination of both ASCAT and buoy wind

qualities.

The QC verification at low winds is rather challenging, among others due to the 

used CMOD5.n GMF generally produces a negative ASCAT wind speed bias w.r.t. the 

mean buoy winds at low wind conditions (see the last row of Table 5). A new C-band 

GMF, namely C-2013, has been developed in [22] to address this problem. Using the 

more stable and good quality winds as reference for the bias correction (i.e., +0.5 m/s),

the flagged data indeed show an increased bias. The quality degradation at low winds

may be due to several reasons: on the one hand, the rain splashing on the sea surface 

and the volume backscatter of raindrops increase the ASCAT backscatter power

predominantly at low-wind conditions, thus the retrieved ASCAT winds are 

apparently higher than the true winds; on the other hand, wind variability could also 

increase the speed bias, as shown in Fig. 4. Within the same amount of poor-quality 

data, i.e., 2% or 2-5% of data in the second and third rows of Table 5, the speed bias 

and most notably the VRMS values associated with SEn are higher than those

associated with MLE and SEo, indicating that SEn is more effective in identifying 

rain-contaminated WVCs at low wind conditions. Comparing to the operational Kp

and MLE QC flags (the first row of Table 5), SEn identifies more poor-quality low 



winds data (5%) with higher VRMS and variability scores. In summary, the SEn is 

more effective than MLE, Kp, and SEo in terms of low-wind quality control. Therefore, 

it should be used alone for such purpose.

5. Conclusions

In this paper, a new singularity exponent based on the exploitation of multiple 

ASCAT-derived parameters is developed for ASCAT quality-control purposes. It 

combines the wavelet projections of the gradient measurements of each parameter

using a set of weighting coefficients, such that the analyzed parameters contribute 

more equally to the derived SE map than the previous method in [4]. The newly 

derived SE is more effective than both the operational and the previous SE-based 

QC (w>4 m/s), i.e., a larger amount of data with larger ASCAT-buoy discrepancies are 

flagged using either the combined SE/MLE analysis or the MUDH method.

Since SEn-based method appears to significantly improve the QC as compared to 

SEo, the ASCAT wind quality at low wind conditions (w<4 m/s) is particularly 

examined. In spite of the generally high wind variability at low winds, SEn is also 

sensitive to both wind quality and sub-cell wind variability. Therefore, it can also be 

used for ASCAT QC at low winds. 
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Tables 

Table-1 Percentage and vector root-mean-square (VRMS) difference [m/s] between ASCAT 

and MARS buoy winds using different QC methods. R indicates QC-rejected category, K 

represents QC-kept category, and R% means the QC rejection ratio. (Number of collocations 

N=60,536)

w(m/s)
SEo/MLE SEn/MLE SEo/MLE/Kp SEn/MLE/Kp

R K R% R K R% R K R% R K R%

[4,7) 5.16 2.04 0.64 5.53 1.99 1.27 5.16 2.02 0.98 5.38 1.98 1.56

[7,10) 6.63 2.02 0.98 7.24 1.97 1.23 6.63 1.98 1.35 7.00 1.95 1.54

≥10 9.79 2.69 0.52 11.90 2.60 0.69 10.03 2.62 0.86 11.2 2.56 0.95

≥4 6.78 2.20 0.74 7.39 2.14 1.13 6.89 2.16 1.09 7.16 2.11 1.41

Table-2 Percentage and VRMS difference between ASCAT and ECMWF winds using 

different QC methods. Winds above 4 m/s are studied. (Number of collocations N=17.6 

million)

MLE-only SEo/MLE SEn/MLE SEo/MLE/Kp SEn/MLE/Kp

VRMS- rejected (m/s) 6.12 6.03 6.47 5.92 6.27

VRMS- kept (m/s) 2.28 2.26 2.22 2.25 2.21

Rejection ratio (%) 0.30 0.63 1.10 0.85 1.20

Table-3: The mean standard deviation (SD) values of the continuous buoy wind speed, direction 
and wind components for different QC methods. The last column presents the statistics of stable 
wind condition (total number N=28,111)

MLE-only SEo/MLE SEn/MLE SEo/MLE/Kp SEn/MLE/Kp

|MLE|<0.5, 

SE>0

SD (speed, m/s) 1.21 1.27 1.24 1.31 1.24 0.39

SD (direction, °) 18.0 18.4 22.6 20.4 22.1 4.5

SD (u, m/s) 1.51 1.60 1.67 1.58 1.60 0.47

SD (v, m/s) 1.59 1.56 1.68 1.71 1.70 0.54



Table-4 VRMS difference between ASCAT and mean buoy winds using different QC methods. 

Winds above 4 m/s are studied. (N=28,111)

MLE-only SEo/MLE SEn/MLE SEo/MLE/Kp SEn/MLE/Kp

Rejected 5.53 6.20 6.90 6.17 6.50

Kept 1.91 1.86 1.81 1.83 1.79

Rejection ratio 0.29% 0.71% 0.99% 1.07% 1.28%

Table-5: Statistics of the ASCAT wind quality and the sub-cell wind variability at low-wind 

conditions (N=7,175)

Data set

Wind quality w.r.t. the 

mean buoy winds

Sub-cell wind variability, mean SD of temporal buoy 

wind series:

VRMS Speed bias (speed,m/s) (direction, °) (u, m/s) (v, m/s)

1.2%
AWDP 

flags
2.70 -0.54 0.65 38.4 0.69 0.79

Top 2% 

(Poor-quality)

MLE 3.67 -0.14 0.83 21.9 0.97 0.98

SEo 3.10 -0.23 0.88 29.9 1.02 1.03

SEn 4.32 0.28 0.98 26.1 1.18 1.17

Top 2-5%

(Poor-quality)

MLE 2.93 -0.24 0.66 17.6 0.81 0.77

SEo 2.82 -0.45 0.75 24.7 0.83 0.86

SEn 3.75 0.13 0.91 24.5 1.01 1.05

Rest 95%

(Good-quality)
SEn 1.94 -0.50 0.62 19.6 0.69 0.72



Figures 

Fig. 1 The histogram of old (SEo, dashed line) and new (SEn, solid line) singularity exponents with 

binning width of 0.05.



(a) (b)

(c) (d)

Fig. 2 VRMS difference between ASCAT and MARS buoy as a function of the sorted percentage 

intervals at (a) w4 m/s; (b) 4≤w7 m/s; (c) 7≤w10 m/s; and, (d) w≥10 m/s. A zoom of the 

first 5% of data is shown on the right-upper corner of each panel, in which marker “I” denotes the 

uncertainty bar of the estimated VRMS for each bin. The square marker in (a) denotes the VRMS 

score (y-axis) of the top 0.3% of data; while in (b)-(d) indicates the VRMS score (y-axis) and the 

rejection ratio (x-axis) of the operational MLE-based QC.



Fig. 3 The variance ratio (w.r.t. buoy winds) between QC-rejected and QC-kept winds as a 

function of the buoy wind variability ratio in these two categories.

Fig. 4 ASCAT wind speed bias w.r.t. mean buoy winds as a function of the categorized wind 

vector variability SDvector at low wind conditions.


