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A Hierarchical Approach to Three-Dimensional

Segmentation of LiDAR Data at Single Tree Level

in Multi-Layered Forest
Claudia Paris, Student Member, IEEE, Davide Valduga, Lorenzo Bruzzone, Fellow, IEEE

Abstract—Small-footprint high-density LiDAR data provide
information on both the dominant and the subdominant layers
of the forest. However, tree detection is usually carried out in
the Canopy Height Model (CHM) image domain, where not
all the dominant trees are distinguishable and the understory
vegetation is not visible. To address these issues, we propose
a novel method that integrates the analysis of the CHM with
that of the Point Cloud Space (PCS) to: i) improve the accuracy
in the detection and delineation of the dominant trees, and ii)
identify and delineate the subdominant trees. By means of a
derivative analysis of the horizontal profile of the forest, the
method detects the missed crowns and delineates the crown
boundaries directly in the PCS. Then, for each segmented
crown, the vertical profile is analyzed to identify the presence
of subcanopies and extract them. The proposed method does
not require any prior knowledge on the stand properties (e.g.,
crown size, forest density). Experimental results obtained on two
LiDAR datasets characterized by different laser point density
show that the proposed method always improved the detection
rate compared to other state-of-the-art techniques. It correctly
detected 97% and 92% of the dominant trees measured in situ
in high- and low-density LiDAR data, respectively. Moreover, it
automatically identified 77% of the subdominant trees manually
extracted by an expert operator in the high-density LiDAR data.

Index Terms—Forestry, individual tree crown detection, Light
Detection and Ranging (LiDAR), remote sensing, segmentation,
tree crown delineation.

I. INTRODUCTION

THE accurate characterization of the 3-D structure of the

forest is becoming essential for modern forest inventories.

One of the most effective remote sensing technology used for

the estimation of forest parameters is based on airborne Light

Detection and Ranging (LiDAR) systems. Due to the capa-

bility of the laser scanner to measure the vertical structure of

the forest, it is possible to accurately retrieve tree variables. In

particular, small-footprint high-resolution LiDAR data provide

detailed information on the dominant layer of the forest and

are able to collect measures on the subcanopy layers. In this

framework, the detection and the segmentation of single tree

crowns represent a fundamental step to accurately estimate

individual tree structural attributes of both the dominant and

the subdominant trees.

Several methods to extract the single tree crowns from

LiDAR data have been developed. Most of them detect the

trees in the Canopy Height Model (CHM), i.e., the rasterized

image derived from the normalized LiDAR point cloud [1],

[2], [3], [4], [5]. The treetops are usually identified with the

peaks in the CHM detected with a Local Maxima Filtering

Algorithm. However, the detection rate in the raster-based

methods is strongly affected by the spatial resolution of the

CHM and the smoothing factor, which is necessary to reduce

the noise and emphasize the crown borders. Moreover, in

mixed forest characterized by variable crown sizes it is not

possible to find an optimal smoothing factor [6]. Furthermore,

there are no reliable rules to select the spatial resolution of

the CHM, which is related to the application type and the

properties of the dataset [7]. To address this issue, in [8] the

authors develop a strategy to identify the best CHM resolution

at plot level by modelling the spatial stem distribution of

the sample plot. By testing a set of candidate pixel sizes,

the best spatial resolution is selected as the one that allows

the detection of a number of local maxima equals to the

predicted number of stems. However, the method relies on

the assumptions that all the trees are visible in the image and

that the number of trees can be accurately estimated.

After the detection phase, the crowns are typically seg-

mented around the treetop considering region growing meth-

ods [4], [9], [10], watershed or pouring algorithms [11], [12],

[8], [6], [13], [14], or techniques based on template matching

[15], [16], [17]. However, when the segmentation is performed

in the CHM the result is affected by the artefacts introduced in

the rasterization process (e.g., interpolation). In heterogeneous

forests combinations of tree groups can be segmented in one

single crown due to smoothing, thus degrading the accuracy

of the inventory estimates [18]. To solve this problem, in [9]

the region growing segmentation results are constrained by

imposing rules on the shape of the crowns, whereas in [14]

the watershed algorithm is driven by a prior estimation of the

canopy size. However, by comparing the segmentation results

obtained on both the CHM and the LiDAR point cloud space,

one can observe that the highest accuracy is obtained in the

point cloud domain [19].

For the reasons mentioned earlier, some methods address

the detection in the CHM and the segmentation in the LiDAR

point cloud, where the crowns are usually extracted by using

a k-mean clustering algorithm [20], [21], [22]. In [20] the

authors initialize the clusters by using both a set of randomly

selected seeds and a set of local maxima extracted in the CHM.

Moreover, they investigate the possibility of scaling down the

height value instead of using the original one, to minimize the

intracluster variance and fit the conical shape of the crown. As

expected, the highest accuracies are obtained by initializing the

algorithm with the detected treetops and rescaling the height
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value. Indeed, as discussed in [21], the Euclidean metric used

to drive the clustering algorithm tends to generate ball-shaped

clusters of LiDAR points. However, the main drawback of

the detection algorithms applied to the image domain is that

they are not able to extract the understory vegetation [23]. It

is worth noting that an accurate detection of the subcanopy

layers represents an important task for fire behaviour models

[24] as well as forest management and planning.

To solve this problem, several papers present methods

that perform the segmentation of the dominant trees in the

CHM and then analyze the LiDAR point cloud to detect

the understory vegetation layer. In [25] the authors present

a 3D segmentation method applied to full-waveform LiDAR

data. First, a watershed segmentation algorithm is employed

to delineate the dominant tree crowns. Second, the segmented

regions are refined by detecting the tree stems. Finally, the

small trees are detected using the normalized cut segmentation

approach presented in [26]. Although this technique is able

to obtain an high detection rate for small trees, many false

trees are identified. Moreover, the detection of the understory

vegetation strongly depends on several parameters. The same

problem is encountered in [27], where an ellipsoidal k-mean

clustering algorithm is directly applied to the LiDAR point

cloud after having detected the dominant tree crowns in the

CHM. For detecting the subdominant trees, the cluster centers

are placed at regular horizontal distance, while the height is

set as half of the mean height of the dominant trees. The

segmentation result is finally refined by fitting an ellipsoid

surface. However, many subdominant crowns delineated do not

correspond to any field-measured tree. In contrast, in [28] the

authors perform the detection of the subdominant trees without

tuning any parameters or thresholds. For each dominant crown

the height frequency distribution is interpolated with a polyno-

mial function. By analyzing the behaviour of the interpolated

curve it is possible to determine the presence of understory

vegetation. A similar analysis is performed in [29], where the

height distribution probability function of the LiDAR points is

analyzed to split the data into two canopy layers. However, this

approach relies on the assumption that the forest structure is

characterized by two layers which are separable by a plane. In

[30], the vertical profile of the dominant tree crowns delineated

in the CHM by means of a watershed algorithm is analyzed

to detect understory vegetation in multi-layered forest. The

identification of the different layers of the forest has been also

addressed by applying a statistical analysis of the LiDAR point

cloud [31], [32], [33], [34].

From this brief analysis of the literature one can notice

that an accurate detection and delineation of the dominant and

the subdominant trees presents critical issues especially when

dealing with dense forest scenarios [35], [36]. The majority

of the methods require prior knowledge on the considered

forest area and unrealistic homogeneity assumptions on the

average crown size and forest density. To solve this problem,

several papers developed crown size adaptive methods [6],

[37], [38], [39]. However, many of them exploit only the

image domain, which is affected by the interpolation of the

LiDAR data. In contrast, the methods that detect the trees

in the 3D point cloud have the problems of choosing the

right scale [40] and of dealing with the irregular sampling of

the canopies by the laser pulses [41]. Few hybrid approaches

combine the image and point cloud domains [20], [22], [30].

However, none of them takes advantage from the joint use of

the two domains to improve the tree detection obtained by

using each single domain. In this framework, we propose a

hierarchical 3D segmentation approach to detect and delineate

both dominant and subdominant tree crowns by using high-

density LiDAR data. Unlike the methods presented in the

literature, the proposed approach does not require any prior

knowledge on the crown size and forest density, but relies on

the geometrical structure of the forest and the properties of the

LiDAR data. Thus, it can be successfully applied to large forest

areas characterized by heterogeneous 3D crown structures. In

greater detail, the proposed method: i) exploits both the image

and the point cloud domains to detect the dominant trees, ii)

delineates the dominant tree crown directly in the PCS by

means of a derivative analysis of the horizontal structure of

the forest, iii) identifies the subdominant trees by analyzing the

3D vertical profile of the dominant trees in different angular

sectors, and iv) extracts the understory vegetation.

The main novelties of the proposed approach are: i) the

use of the LiDAR point cloud to detect the trees missed

in the CHM image domain, ii) the use of the LiDAR point

cloud to identify the position of the subdominant trees located

in different sides of the dominant tree crowns by means of

an angular analysis, iii) the crown delineation method for

both dominant and subdominant trees based on the derivative

analysis of the horizontal profile of the trees in the LiDAR

point cloud. The effectiveness of the proposed method is

demonstrated in experiments carried out in a complex dense

forest scenario located in the Southern Alps of the Trentino

region (Italy) by using high-density LiDAR data (up to 50

pts/m2) and low-density LiDAR data (up to 8 pts/m2).

The paper is organized as follows: Section II presents the

architecture of the proposed method and describes in detail

the steps of the presented technique. Section III illustrates the

dataset, and Section IV reports an analysis of the parameters

required by the proposed method and describes the experimen-

tal setup. Section V presents and discusses the experimental

results. Finally, Section VI draws the conclusions of the work.

The mathematical notation used in the paper is listed in the

appendix.

II. PROPOSED HIERARCHICAL 3D SEGMENTATION

APPROACH

The proposed method aims to accurately extract all the trees

detectable in the LiDAR data. To decompose the segmentation

process and thus to facilitate the tree detection, we exploit

a hierarchical approach which concentrates sequentially on

the dominant and on the subdominant layers of the forest.

Fig. 1 shows the block scheme of the proposed method. It is

worth noting that the PCS represents the normalized LiDAR

point cloud obtained after the subtraction of the digital terrain

model.



3

Fig. 1. Architecture of the proposed hierarchical approach to 3D segmentation of the dominant and the subdominant crowns.

A. Detection of Dominant Trees

In this step we aim to identify the dominant trees present in

the scene by exploiting both the CHM and the PCS for taking

advantage from the complementarity of the two domains.

While in the CHM it is possible to detect the majority of

the trees present in the scene with a low computational load,

the analysis of the PCS allows us to identify the missed trees.

First, a coarse analysis is performed in the image domain by

applying a level set method [42]. Then, the analysis is refined

in the PCS to detect close neighbouring treetops that may not

appear clearly separated in the CHM but are visible in the

point cloud.

Let P = {pi}
A
i=1 be the set of LiDAR points of the PCS

and let TCHM = {tk}
M
k=1 be the set of treetops detected in

the CHM. Note that pi and tk are three-element row vectors

defined by the x, y, z coordinates, i.e., pi = (xi, yi, zi) and

tk = (xt
k, y

t
k, z

t
k). To identify possible missed crowns, we

analyze the forest area around each detected treetop directly in

the PCS. Let us define Pk as the set of LiDAR points extracted

around the treetop tk within a given search radius R, which is

large enough to represent the surrounding crowns (e.g., three

times the crown radius). The detection of the neighbouring

treetops in different directions is performed by means of an

angular analysis which partitions Pk into N angular sectors.

Let Θj be the angular partition between the adjacent angles

θj = 2πj/N and θj+1 = 2π(j + 1)/N , with j ∈ [0, N -1]
(see Fig. 2a and Fig. 2b). The set of LiDAR points belonging

to the angular sector Pk,Θj
is defined as:

Pk,Θj
=

{

pi ∈ Pk

∣

∣ arctan
(xi − xt

k

yi − ytk

)

∈ [θj , θj+1)
}

(1)

To detect the treetop of the neighbouring trees, we model the

angular sector with a 1D discrete signal Sk,Θj
(ρ), composed

by the coordinates zi of the LiDAR points pi ∈ Pk,Θj

and depending on their distances from the treetop, i.e.,

ρi =
√

(xi − xt
k)

2 + (yi − ytk)
2. To this end, we first apply

a circular projection to the points pi ∈ Pk,Θj
onto the ρz

plane centered in the treetop coordinates (xt
k, y

t
k). Let us define

Πc : (x, y, z) 7→ (ρ, z) as the circular projection that allows

us to map the points from the 3D space R
3 onto the 2D

space R
2 (see Fig. 2c). Then, because we are interested in the

crown surface, we keep the set of highest points belonging to

the first return. Accordingly, we quantize the distance of the

points from the treetop ρi ∈ [0, R] into F intervals ξ = R/F
and select the maximum height value in each ξ (see Fig. 2d).

Note that, the quantization step should be tuned considering

the characteristics of the LiDAR data (i.e., footprint, point

density), to guarantee that, in each interval ξ, the highest

LiDAR point represents the crown surface. A similar angular

analysis has been performed in [43], where the authors aim at

refining a manual segmentation of tree crowns based on field

measurements, by removing those sectors including LiDAR

points of the neighbouring trees. In particular, they represent

the angular sector considering the mean height values in each

interval ξ =0.5 m. Then, by evaluating the trend of the

sector profile, they determine possible oversegmentation. In

contrast, we consider the maximum height value per interval

to represent the shape of the crown and we aim to detect the

position of the closest treetop.

A Gaussian filtering is then applied to Sk,Θj
(ρ) in order to

trim upper branches and thus avoid false local maxima. Unlike

filtering applied in the image domain, we do not lose any detail

while still smoothing the conical shape of the crown. Finally,

for each 1D signal Sk,Θj
(ρ) we compute the discrete derivative

S′

k,Θj
(ρ) to detect the closest local height maximum, i.e,:

Mk,Θj
= Sk,Θj

(ρ0), with ρ0 = argmax
ρ

{

Sk,Θj
(ρ)

}

(2)

To avoid false treetops detection, a local maximum is

considered a treetop when it is detected from at least two

different tree apexes identified in the CHM. This is based on

the reasonable assumption that a missed apex is surrounded

by more than one tree. Since we are dealing with dense

forest scenarios, this cross-check allows us to avoid false

local maxima without losing possible treetops. The new set

of candidate treetops TPCS is then compared with the set of

treetops TCHM to remove the redundancy. At the end of this

step, we obtain the whole set of tree apexes T = {tk}
W
k=1.

Note that the hybrid approaches presented in the literature

typically refine the segmentation results obtained in the CHM

by detecting the tree stems [25] or by fitting parametric models

to the segmented point clouds [44]. However, tree stems

are not always visible (particularly in dense forest scenario).

Moreover, to obtain accurate detection results it is necessary to

properly tune the model parameters. In contrast, the proposed

method jointly uses the images and the point cloud domains
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(a) (b) (c) (d)

Fig. 2. Example of angular analysis: (a) top view of the LiDAR point cloud Pk divided into N angular sectors, with N=8, (b) top view
of the LiDAR points belonging to the angular sector Θj , (c) side view of the LiDAR points belonging to the angular sector Θj after the
circular projection onto the ρz plane, (d) side view of the one-dimensional discrete signal Sk,Θj

(ρ) that approximates the shape of the crown
in the sector Θj .

to improve the detection of the trees by relying only on the

geometrical structure of the crown. Furthermore, the proposed

analysis of the PCS is not computationally demanding and

thus can be easily applied to large forest areas.

B. Crown Delineation of Dominant Trees

To address the drawbacks of the segmentation methods

applied to the CHM, clustering techniques are usually applied

to the PCS to delineate the crowns [21], [20]. However, the

bottleneck of these techniques is the computational burden

since they need to process the entire point cloud. Moreover,

they do not consider the physical properties of the shape of

the crown to perform the segmentation. In contrast, we aim to

exploit the geometrical structure of the crowns to segment each

single tree. By considering an angular analysis we are able to

adapt the segmentation to the different portions of the crown

by analyzing each angular partition separately. Moreover, by

focusing the attention on the set of LiDAR points Pk extracted

around the treetop tk ∈ T within a radius R we strongly

reduce the computational load. As in the previous case, by

modelling Pk,Θj
with the discrete 1D signal Sk,Θj

(ρ), the

position of the edge Ek,Θj
can be associated to the first local

minimum detected computing the discrete derivative S′

k,Θj
(ρ),

i.e.,

Ek,Θj
= Sk,Θj

(ρ0), with ρ0 = argmin
ρ

{

Sk,Θj
(ρ)

}

(3)

By analyzing the distance ρi of the LiDAR points pi ∈ Pk,Θj

from the treetop tk, we can identify the points belonging to

the crown Ck that are those having ρi ≤ Ek,Θj
. At the end

of this step the edge positions Ek,Θj
with j ∈ [0, N -1] within

the angular sectors have been identified. Therefore, we can

delineate the crowns directly in the PCS thus generating the

set of segmented crowns {Ck}
W
k=1, where for each detected

treetop tk ∈ T we associate the set of LiDAR points Ck =
{p1, p2, .., pB} belonging to the crown. Note that the size of

the angular sectors can be the same of the one used for the

detection of the treetop. However, to better delineate the crown

contours it is possible to increase the number of angular sectors

as long as there is a sufficient number of LiDAR points in each

Θj to represent the shape of the crown. Finally, we check

the set of trees detected by means of the derivative analysis

to assess that those segmented point clouds have a minimum

number of LiDAR points. Indeed, in the case upper branches

might appear as local maxima in the derivative analysis, the

crowns delineated around them can be easily removed because

they result in few LiDAR points. Note that, unlike the state-

of-the-art methods, the proposed approach can perform the

segmentation of each crown separately and in parallel thus

strongly reducing the computational effort.

C. Detection of subdominant Trees

In this paper we refer to subdominant trees considering

all the trees covered by upper canopies. Therefore, we are

not assuming that the forest is characterized by two layers

of trees, but we can address the multilayered forest case. To

automatically detect the understory vegetation, we first split

each segmented crown Ck into L angular sectors (see Fig.

3a and Fig. 3b), large enough to allow the detection of the

subdominant trees. Thus, the number of angular sectors could

be different from the number of sectors employed to perform

the dominant tree crowns segmentation, i.e., L ≤ N . Second,

we analyze the vertical profile of each sector to detect both the

presence and the height of the subdominant trees. Indeed, if

there is a subcanopy, it is reasonable to assume the presence

of a hump in the bottom part of the vertical profile of the

angular sector of the crown (see Fig. 3c), otherwise not visible

(see Fig. 3f). Accordingly, we model the angular sector Ck,Θj

with the 1D vertical discrete signal Vk,Θj
(z), composed of the

distances from the treetop ρi of the LiDAR points pi ∈ Ck,Θj

and depending on the height coordinates zi. To this end, we

first apply the circular projection Πc to the LiDAR points

pi ∈ Ck,Θj
. Let Hk,Θj

be the maximum height value of the

set of points Ck,Θj
. Second, we quantize the height values

zi ∈ [0, Hk,Θj
] into D steps δ = Hk,Θj

/D and select in each δ
the LiDAR point having maximum distance ρi from the treetop

tk (see Fig. 3d and 3g). Finally, a Gaussian filtering is applied



5

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Example of subdominant tree crown detection: (a) top view of the dominant tree crown Ck divided into L angular sectors, with L=4,
(b) side view of the dominant tree crown, (c) vertical profile of the projected LiDAR points Πc(pi) ∈ Ck,Θ3

, where the subdominant crown
is present, (d) vertical profile quantization performed to obtain Vk,Θ3

(z), (e) Vk,Θ3
(z) after the Gaussian filtering, (f) vertical profile of the

projected LiDAR points Πc(pi) ∈ Ck,Θ4
, where no subdominant crowns are present, (g) vertical profile quantization performed to obtain

Vk,Θ4
(z), (h) Vk,Θ4

(z) after the Gaussian filtering.

to smooth the profile and reduce the noise introduced by the

tree branches (see Fig. 3e and Fig. 3h). It is worth noting that,

unlike the 1D discrete signal Sk,Θj
(ρ) generated to perform

the derivative analysis, Vk,Θj
(z) depends on the variable z

(instead of ρ) since we are interested in the vertical profile of

the tree rather than in the horizontal one. By computing the

discrete derivative V ′

k,Θj
(z), we aim to the detect the presence

of a local minimum which corresponds to the height of treetop

of the subdominant crown Hsub
k,Θj

located in the angular sector

Θj , i.e.,:

Hsub
k,Θj

= Vk,Θj
(z0), with z0 = argmin

z

{

Vk,Θj
(z)

}

(4)

Thus, if a local minimum is detected, we assume the presence

of a subdominant tree in Ck,Θj
(see Fig. 3e), whereas if no

local minima are identified we assume there is no understory

vegetation in Ck,Θj
(see Fig. 3h). Let us define with Csub

k,Θj

the sectors where a subdominant crown has been identified.

To detect the ground coordinates of the treetop (xsub
k , ysub

k ) we

consider only the set of LiDAR points P sub
k,Θj

defined as:

P sub
k,Θj

=
{

pi ∈ Csub
k,Θj

∣

∣zi ≤ Hsub
k,Θj

}

(5)

Therefore, we generate the raster image of P sub
k,Θj

and we

detect the treetop of the subdominant tree by applying the

Level Set Method to the obtained CHM representing the

understory vegetation (See Fig. 4). In particular, adjacent

angular sectors are rasterized in the same image to assess if

they represent the same subdominant tree or different ones. In

contrast, nonadjacent angular sectors are rasterized separately.

Indeed, unlike the methods presented in the literature [28],

[29], [30], the angular analysis allows us to detect the presence

of more than one subcanopy below the same dominant tree.

Moreover, the circular projection emphasizes the presence of

the subdominant crowns, thus facilitating the detection. At

the end of this step, we obtain the set of treetops of the

subdominant trees Tsub = {tsub
1 , tsub

2 , .., tsub
G }, where around

each treetop tsub
k we have the LiDAR point sectors associated

to tsub
k , i.e., P sub

k = {P sub
k,Θ1

, ..,P sub
k,ΘS

}, with S ≤ L.

(a) (b)

(c) (d)

Fig. 4. Example of subdominant tree detection: (a) top view of the
dominant tree crown Ck in the PCS, (b) top view of the subdominant
tree in the PCS obtained keeping the set of LiDAR point P sub

k =
{P sub

k,Θ2
,P sub

k,Θ3
}, (c) CHM of the dominant tree crown, (d) CHM of

the subdominant tree crown, where the detected treetop is highlighted
in red.

D. Crown Delineation of subdominant Trees

At the end of the detection step, we aim at extracting

the crowns of all the detected subdominant trees. Thus, for

each treetop tsub
k we consider the associated LiDAR point

cloud P sub
k . Then, as in the dominant layer of the forest,

we apply the angular analysis to automatically delineate the

crown boundaries of the trees belonging to the subdominant

layer of the forest. In particular, for each treetop tsub
k we

extract the crown Csub
k , thus generating the set of subcanopies

{Csub
1 , Csub

2 , .., Csub
G }.

III. DATASET DESCRIPTION

The proposed method was tested on two LiDAR datasets

acquired in different geographical areas with different laser
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(a) (b) (c) (d) (e)

(f) (g)

Fig. 5. False color representation of the raster images representing the investigated stand plots for the high-density LiDAR dataset (i.e., 15
pts/m2). (a) Sample Plot H1, (b) Sample Plot H2, (c) Sample Plot H3, (d) Sample Plot H4, (e) Sample Plot H5, (f) Sample Plot H6, (g)
Sample Plot H7. The rasterization has been performed with a spatial resolution of 25 cm.

(a) (b) (c) (d) (e) (f)

Fig. 6. False color representation of the raster images representing the investigated stand plots for the low-density LiDAR dataset (i.e., 5
pts/m2). (a) Sample Plot L1, (b) Sample Plot L2, (c) Sample Plot L3, (d) Sample Plot L4, (e) Sample Plot L5, (f) Sample Plot L6. The
rasterization has been performed with a spatial resolution of 50 cm.

TABLE I
NUMBER OF TREES, TREE HEIGHT (H) AND CROWN RADIUS (CR) PRESENTED DIVIDED PER STANDS PLOT FOR THE: (a) HIGH-DENSITY LIDAR DATA, (b)

LOW-DENSITY LIDAR DATA. WHILE THE NUMBER AND THE HEIGHT OF THE TREES WERE MEASURED IN SITU, THE CROWN RADII WERE MANUALLY

DELINEATED BY VISUAL INTERPRETATION.

Plot Trees
H (m) CR (m)

Range Mean Range Mean

H1 14 34 - 44 38.4 2.9 - 5.5 4.4

H2 33 20.7 - 33.5 28.5 1.6 - 5.9 3.3

H3 37 24 - 37.4 33.2 2.1 - 4.1 3.1

H4 28 28.2 - 39.8 35.3 2.5 - 6.2 3.9

H5 31 3.6 - 35 23.6 1.2 - 5.2 2.8

H6 39 15 - 42.4 32.1 1.8 - 6.4 3.5

H7 36 27 - 35 31.3 1.6 - 4.5 3.1

(a)

Plot Trees
H (m) CR (m)

Range Mean Range Mean

L1 33 4.4 - 28.3 21.4 1.1 - 3.6 2.3

L2 50 3.9 - 34.6 28.6 1.1 - 3.2 2.3

L3 24 16.6 - 24.4 20.6 1.3 - 3.6 2.4

L4 36 7.7 - 35.9 25 1.3 - 3.2 2.3

L5 45 34.6 - 40.5 38.1 2.1 - 3.2 4.1

L6 29 31.6 - 41.9 38.4 2.3 - 5.1 3.2

(b)

point density, hereafter referred to as the high-density (i.e.,

average point density of 15 pts/m2) and the low-density dataset

(i.e., average point density of 5 pts/m2). Both the study areas

are coniferous forests located in the Southern Italian Alps,

a mountainous scenario characterized by a complex terrain’s

morphology (steep slopes and wide range of elevation).

The high-density LiDAR data were acquired in the munic-

ipality of Pellizzano, Trentino region. The coordinates of the

central point of this area are 46◦17′31,00′′ N, 10◦45′56,49′′

E. The data were acquired between 7th and 9th of September

2012 with a Riegl LMS - Q680i sensor mounted on an airborne

platform. The aircraft was flying at a speed of about 180

km/h at an altitude of approximately 660 m above the ground

level. The pulse repetition frequency was 400 kHz. For each

laser pulse four returns were recorded, with an average point

density of 15 pts/m2 (up to 50 pts/m2). The area extends

approximately 3200 Ha and the altitude ranges from 900

to 2000 meters a.s.l.. The species composition of the forest

is mainly Norway Spruce and European Larch. Field data

were collected in 7 circular sample plots having radius 20 m

(see Fig. 5). The stands represent different forest structure in
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terms of crown size and forest density. Moreover, all of them

are uneven-aged forest (i.e., inside the stand plot the trees

have three or more distinct age classes), thus representing a

complex test case. Within each sample plot, the trees have been

surveyed by recording the tree position (x, y coordinates), the

tree height, the species, whereas we manually delineated the

crown radius by means of an accurate visual interpretation

(see Table Ia). To this end trees were displayed in the 3D

LiDAR point cloud and the crown boundaries were manually

drawn by an independent experienced operator. The crown

segmentation was based on visual interpretation of the crown

geometry both from the top and the side view of the considered

tree. Because of the lack of subdominant trees in the sample

plots, from the entire forest area a subset of 171 dominant

trees were considered for validation purpose, 85 of which

contain subdominant trees below, and 86 without subcanopies.

The presence of both the dominant and the subdominant trees

was checked individually in the PCS to generate the reference

data. The crown radii of the subdominant trees were manually

delineated by visual interpretation.

The low-density LiDAR data were acquired on 4th Septem-

ber 2007 at Parco Naturale Paneveggio - Pale di San Mar-

tino, by means of an Optech ALTM 3100EA sensor. The

coordinates of the central point of this area are 46◦17′47,60′′

N, 11◦45′29,98′′ E. For each laser pulse four returns were

recorded, with an average point density for the first return of

at least 5 pts/m2. The pulse wavelength and the pulse repetition

frequency are 1064 nm and 100 kHz, respectively. The area

extends for 368 Ha and the altitude ranges between 1536 m

and 2065 m. The dominant species are Norway Spruce and

Silver Fir. Ground data are available in 6 circular stands plot

of radius 20 m (see Fig. 6). Within each stand plot, all the

trees were measured. For each surveyed tree, the geographical

position (measured with respect to the center of the sample

plot), the tree height, the species and the projected crown area

were recorded. The crown radii were manually delineated in

the PCS for validation purpose (see Table Ib).

To link the field measured trees with the segmented crowns,

the plot center coordinates were first manually corrected by

matching the dominant trees positions measured in situ with

the treetops visible in the CHM. In particular, each detected

tree has been associated to a field measured tree considering

a maximum horizontal distance dxy of 2 m and a maximum

height difference dh of 3 m.

IV. PARAMETER ANALYSIS AND EXPERIMENTAL SETUP

Tab. II presents the recommended values for the param-

eters of the proposed approach for the high- and the low-

density LiDAR data. These values have been used in all

the experiments presented in this paper. The tuning of the

parameters was carried out by considering only the properties

of the LiDAR point cloud without any prior knowledge on the

average crown size and forest density. The spatial resolution of

the CHM was selected on the basis of the average number of

LiDAR pts/m2, while the values of the 2D Gaussian filtering

parameters were tuned in order to remove small variations on

the crown surface. Thus, the degree of smoothness is based

TABLE II
RECOMMENDED VALUES FOR THE PARAMETERS OF THE PROPOSED

APPROACH FOR THE HIGH- AND THE LOW- DENSITY DATASETS. THE

CHOICE OF THE VALUES IS BASED ONLY ON THE PROPERTIES OF THE

LIDAR DATA.

Parameters Values

High-Density Low-Density

D
o

m
in

an
t

Spatial Resolution of the CHM 0.25 m 0.50 m

2D Filter Kernel Size 5×5 3×3

2D Filter Standard Deviation 10 5

Search Radius R 20 20

# of Angular Sectors N 8 8

Horizontal Quantization Step ξ 0.30 m 0.60 m

1D Filter Kernel Size 1×3 1×3

1D Filter Standard Deviation 4 4

su
b

d
o

m
in

an
t # of Angular Sectors L 4 -

# of Vertical Quantization Step D 29 -

1D Filter Kernel Size 1×7 -

1D Filter Standard Deviation 4 -

on the spatial resolution of the image to avoid commission

errors. Accordingly, these values were the same for all the

sample plots in the same dataset.

The angular analysis was performed by considering N =
8 sectors with Θ = 45◦, which turned out to be effective for

both the treetop detection and the crown delineation in the

PCS regardless of the laser sampling density. Note that the

value Θ = 45◦ represents accurately the different sides of a

crown. To quantize the distance between the LiDAR points

and the treetop tk in each angular sector, ξ should be tuned

taking into account the LiDAR point density to guarantee at

least one LiDAR point per interval. In the considered datasets,

ξ was equal to 0.3 m and to 0.6 m for the high- and the low-

density LiDAR datasets, respectively (note that we have at

least 15 pts/m2 in the first case and 5 pts/m2 in the second

case). The Gaussian filtering applied to the 1D discrete signal

Sk,Θj
(ρ) used for smoothing the crown profile and removing

the outliers had a window size of 1×3, which can be used

regardless of the LiDAR density and the crown size.

To perform the detection of the subdominant crowns the

number of angular sectors was fixed to L = 4. Thus, the

subdominant trees were analyzed in four different portions

of the dominant tree crown. From our experiments it turned

out that in each sector an average of 20 LiDAR points for

each quantization step δ is required to properly represent

Vk,Θj
(z). In our dataset, this condition was achieved setting

D = 29, thus adapting the size of δ to the height of the

crown. Accordingly, we fixed this value to perform all the

experiments presented in this paper. Fig. 7 shows the behaviour

of the number of detected trees and true negatives versus

the value of D. Note that the detection rate of subdominant

trees increases as the value of D does. However, it leads to

a lower detection of a true negative (i.e., high detection of

false positive). Indeed, increasing the number of steps implies

a better representation of the tree structure, but the number of

LiDAR points per step δ decreases. Moreover, with too fine

quantization scale some false trees can be detected because
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Fig. 7. Behaviour of the vertical quantization step D vs the number of
detected trees and true negatives for the subdominant layer of the forest.

of the possible geometrical anomalies present in the vertical

profile of the crown. Therefore, to obtain accurate detection

results, it is necessary to have a reliable representation of the

crown guaranteeing a minimum amount of LiDAR points per

step.

For the detection of the dominant trees, the proposed

method (PM) was compared with two standard state-of-the-art

methods: i) the Level Set Method (LSM) [42], and ii) the Local

Maxima Filtering (LMF) [4]. The in situ reference measures

were used to assess the detection accuracy. In particular, the

results were evaluated by considering the Detection (DET)

Accuracy (number of trees associated to the field data), the

Omission (OM) Error (number of missed trees) and the

Commission (COM) Error (number of trees detected which

are not associated to any field data). Both the state-of-the-art

methods detect the trees only in the image domain. Therefore,

the results are strongly affected by the degree of smoothing

applied to the CHM. Moreover, while the LSM progressively

slices the CHM to detect the treetop [42], the LMF exploits

a sliding window to search the local peaks. Thus, the applied

window size affects the detection results. Accordingly, a tuning

of the state of the art algorithms on a training set was necessary

to ensure the best performance per forest type.

To evaluate the performance of the proposed method on

the subdominant layer of the forest, we considered the set

of 171 trees selected in the high-density LiDAR data. No in

situ measures were available for these trees, thus the presence

of the both the dominant and the subdominant trees were

checked manually in the PCS according to the procedure

discussed in the previous section. In this case, the Detection

(DET) Accuracy and the Omission (OM) Error represent the

number of detected trees and the number of false negatives

in proportion to the number of real subdominant trees (i.e.,

85), respectively. The Commission (COM) Error represents

the number of false positives in proportion to the number

of dominant trees without subcanopies (i.e., 86). Finally, the

Overall Accuracy (OA) metric evaluates both the correct

identification of the presence or absence of the subdomi-

nant trees in proportions to the total amount of trees (i.e.,

171). In this case the PM was compared with the Height

Frequency Distribution method (HFD) presented in [28] and

[29]. However, due to the assumption of double layer forest

stands (not true for the considered dataset) in the latter case

the technique resulted in both many commission errors and

low detection rate. Thus, here we do not report the numerical

results obtained. As we are interested in the comparison of the

detection of the subdominant trees, we considered the same

set of dominant tree crowns extracted in the previous step for

both the HFD and the PM.

To quantitatively assess the crown delineation results the

automatic segmentation results were compared with the crown

radii identified by visual interpretation for both the dominant

and the subdominant trees. The following empirical metrics

were considered: the statistical determination coefficient (R2 ∈
[0, 1]), the Mean Error (ME ∈ [0,∞]), the Mean Absolute

Error (MAE ∈ [0,∞]), the Mean Square Error (MSE ∈ [0,∞])
and the Normalized Mean Square Error (NRMSE ∈ [0,∞]).
Note that, the NRMSE is presented to facilitate the comparison

between datasets due to the different crown radius (CR). Thus,

it is computed as the ratio between the RMSE and the range

of the measured CR (i.e., CRmax - CRmin).

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dominant Layer of the forest

Tab. IIIa and IIIb show the detection results obtained with

the PM, the LSM and the LMF on the high- and the low-

density datasets, respectively. Although the CHM provides the

full representation of the dominant layer of the forest, the LSM

and the LMF did not detect all the trees present in the scene

due to the high canopy density. In particular, the LMF achieved

a lower detection rate compared to the LSM because of the

window size, which was tuned to fit the larger crowns (to avoid

too many false tree detections), thus penalizing the detection

of the smaller crowns. This condition has less of an effect on

the detection results for the low-density dataset (i.e., 183 trees

detected compared to the 184 identified with the LSM) since

the forest stands are characterized by homogeneous crown size

(see Fig. 6). In contrast, the choice of the window size strongly

affects the detection in the high-density dataset characterized

by uneven-aged stands (i.e., 194 trees detected compared to

the 204 identified with the LSM).

Differently from the state-of-the-art methods, the proposed

approach exploits the information provided by the original Li-

DAR point cloud to refine the detection performance achieved

in the CHM. Indeed, the detection results obtained in the CHM

are affected by the interpolation process and the smoothing

filtering, whereas in the PCS the convex shape of the tree

crowns is clearly visible. Moreover, the proposed approach is

capable of handling the crown size variability within the same

forest stand since it relies on the geometrical properties of

the tree crowns. Thus, due to the further analysis in the PCS,

the proposed method improved the detection rate regardless

of the laser point density. This was achieved by keeping the

commission errors under 7% and 2% for the high- and the

low- density dataset, respectively. In particular, in the high-

density dataset the PM identified 8 and 18 trees more than the
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TABLE III
TREE DETECTION RESULTS FOR THE DOMINANT LAYER OF THE FOREST OBTAINED ON: (a) THE HIGH-DENSITY LIDAR DATASET, (b) THE LOW-DENSITY

LIDAR DATASET. THE DETECTION ACCURACY (DET), COMMISSION (COM) AND OMISSION (OM) ERRORS ARE PRESENTED DIVIDED PER STAND

PLOT. THE PROPOSED METHOD (PM) IS COMPARED WITH THE STANDARD LEVEL SET METHOD (LSM) AND LOCAL MAXIMA FILTERING (LMF).

Proposed Method (PM) Level Set Method (LSM) Local Maxima Filtering (LMF)

Plot # Trees DET COM OM DET COM OM DET COM OM

H1 14 13 (92.8%) 2 (14.3%) 1 (7.1%) 13 (92.8%) 2 (14.3%) 1 (7.1%) 11 (78.6%) 3 (21.4%) 3 (21.4%)

H2 33 30 (90.9%) 0 (0%) 3 (9.1%) 28 (84.8%) 0 (0%) 5 (15.2%) 26 (78.8%) 0 (0%) 7 (21.2%)

H3 37 36 (97.3%) 4 (10.8%) 1 (2.7%) 31 (83.8%) 4 (10.8%) 6 (16.2%) 31 (83.8%) 2 (5.4%) 6 (16.2%)

H4 28 28 (100%) 4 (14.3%) 0 (0%) 28 (100%) 2 (7.1%) 0 (0%) 27 (96.4%) 0 (0%) 1 (3.6%)

H5 31 31 (100%) 1 (3.2%) 0 (0%) 31 (100%) 0 (0%) 0 (0%) 28 (90.3%) 3 (9.7%) 3 (9.7%)

H6 39 38 (97.4%) 1 (2.6%) 1 (2.6%) 38 (97.4%) 1 (2.6%) 1 (2.6%) 36 (92.3%) 0 (0%) 3 (7.7%)

H7 36 36 (100%) 2 (5.6%) 0 (0%) 35 (97.2%) 2 (5.6%) 1 (2.8%) 35 (97.2%) 2 (5.6%) 1 (2.8%)

Total 218 212 (97.2%) 14 (6.4%) 6 (2.8%) 204 (93.6%) 11 (5%) 14 (6.4%) 194 (89.0%) 10 (4.6%) 24 (11%)

(a)

Proposed Method (PM) Level Set Method (LSM) Local Maxima Filtering (LMF)

Plot # Trees DET COM OM DET COM OM DET COM OM

L1 33 31 (93.9%) 0 (0%) 2 (6.1%) 28 (84.8%) 0 (0%) 5 (15.2%) 26 (78.8%) 0 (0%) 7 (21.2%)

L2 50 46 (92%) 0 (0%) 4 (8%) 41 (82%) 0 (0%) 9 (18%) 43 (86%) 0 (0%) 7 (14%)

L3 24 22 (91.7%) 1 (4.2%) 2 (8.3%) 20 (83.3%) 0 (0%) 4 (16.7%) 20 (83.3%) 0 (0%) 4 (16.7%)

L4 36 34 (94.4%) 0 (0%) 2 (5.6%) 31 (86.1%) 0 (0%) 5 (13.9%) 29 (80.6%) 0 (0%) 7 (19.4%)

L5 45 41 (91.1%) 1 (2.2%) 4 (8.9%) 40 (88.9%) 0 (0%) 5 (11.1%) 38 (84.4%) 0 (0%) 7 (15.6%)

L6 29 26 (89.7%) 1 (3.4%) 3 (10.3%) 24 (82.8%) 0 (0%) 5 (17.2%) 27 (93.1%) 0 (0%) 2 (6.9%)

Total 217 200 (92.2%) 3 (1.4%) 17 (7.8%) 184 (84.8%) 0 (0%) 33 (15.2%) 183 (84.3%) 0 (0%) 34 (15.7%)

(b)

LSM and the LMF, respectively, whereas it introduced only 3

and 4 commission errors more than the LSM and the LMF,

respectively. In the low-density dataset the PM identified 16

trees more than the LSM and 17 more than the LMF, while

incurring only 3 additional commission errors.

Note that on the high-density dataset we obtained higher

detection rate (i.e., 97.2%) than in the low-density dataset

(i.e., 92.2%) because of the better characterization of the 3D

structure of the forest. However, while in the high-density case

the CHM provided enough information to detect the majority

of the trees (the spatial resolution of the CHM is 0.25 m),

in the low-density case the analysis of the PCS allowed us to

halve the omission errors obtained with the LSM (i.e., from 33

to 17 missed trees ). This reduction of the omissions strongly

improves the estimation of forest parameters such as volume

and structure, especially when dealing with trees characterized

by an average height that ranges from 23.6 m to 38.4 m

in Pellizzano (see Tab. Ia) and from 20.6 m to 38.4 m in

Paneveggio (see Tab. Ib).

Let us now address the crown delineation results. Fig. 8a and

Fig. 8b show the scatterplots of the real versus the estimated

crown radius of the correctly detected trees for the high-

and the low- dataset, respectively. The scatterplots show the

capability of the angular analysis to properly delineate the

single tree crowns regardless of the forest density and the

laser sampling density. As expected, the high-density dataset

resulted in a better delineation of the crown edges. However,

the error metrics point out that we obtained accurate results

in both of the datasets. Indeed, R2 ranges between 0.78 to

0.82, whereas the NRMSE ranges from 7.96% and 8.75%.

Due to the missed detection of some trees, we have some

cases of over-segmented crowns. For a complete evaluation of

the method Tab. IV presents the error metrics of the estimated

crown radius divided per dataset. By taking into account all

the sources of errors, we obtained a MAE of 0.52 m, on an

average crown radius of 3.4 m, for the high-density dataset

(i.e., 15.3%), and a MAE of 0.51 m on an average crown

radius of 2.6 m, for the low-density dataset (i.e., 19.6%). A

qualitative evaluation of the segmentation results confirms the

effectiveness of the angular analysis in detecting the crown

boundaries. Fig. 9 shows some examples of crown delineation

results by presenting the segmented trees in the forest area for

the high-density (Fig. 9a - Fig.9f) and the low-density LiDAR

dataset (Fig. 9g - Fig. 9l). As one can notice, the segmentation

method was able to delineate the crowns of detected trees,

despite the presence of overlapping and asymmetric crowns.

B. Subdominant Layer of the forest

Tab. V presents the values of the quality metrics obtained by

the PM and the HFD [28] in the detection of the subdominant

trees. As one can notice, both methods achieve similar perfor-

mances in terms of number of detected trees (i.e., 61 with the
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Fig. 8. Real versus estimated (with the proposed method) crown radius (CR) of the dominant trees for: (a) the high-density LiDAR dataset, (b) the low-density
LiDAR dataset.

TABLE IV
ME, MAE, MSE AND NRMSE OF THE ESTIMATED CROWN

RADIUS ARE PRESENTED DIVIDED PER DATASET. THE ERROR

METRICS INCLUDE THE OVER-SEGMENTATION ERROR DUE TO THE

OMISSION ERRORS.

Dataset ME MAE MSE NRMSE

High-density 0.38 m 0.52 m 0.81 16.8%

Low-density -0.26 m 0.51 m 0.59 15.1%

PM and 66 with the HFD), whereas the proposed approach

strongly reduced the number of false trees detected (i.e.,

24 compared to 43). Note that, while the proposed method

analyzes the geometrical structure of the vertical profile, the

HFD detects the anomalies in the vertical profile of the crown

(i.e., the presence of understory vegetation) considering the

frequency height distribution. However, when dealing with

dense forest scenarios the trees are very close to each other

and thus, the shape of the dominant crowns is not symmetric.

Accordingly, the presence of anomalies in the frequency height

distribution is poorly correlated to the presence of understory

vegetation as proved by the commission errors. In contrast, the

angular analysis allows us to address the issue of anisotropic

crowns. Moreover, the projection of the laser points onto the

ρz plane (accomplished to represent the vertical profile of the

tree) further reduces the influence of the asymmetry of the

crown in the detection of the subdominant trees. Thus, the

overall accuracy is improved due to both the angular analysis

which allows the detection of subdominant trees present in

different portions of the crown and the circular projection step

which emphasizes the presence of the subdominant crowns.

The quantitative evaluation presented in Fig. 10 confirms

the accuracy of the proposed approach in delineating the

sub-canopies. Fig. 11 shows a qualitative example of the

segmentation results obtained for the subdominant trees. A

visual analysis confirms the effectiveness of the segmentation

TABLE V
DETECTION ACCURACY (DET), COMMISSION ERRORS (COM),

OMISSION ERRORS (OM) AND OVERALL ACCURACY (OA)
OBTAINED FOR THE SUBDOMINANT LAYER OF THE FOREST WITH

THE PROPOSED METHOD (PM) AND THE REFERENCE METHOD

(HFD).

DET COM OM OA

PM 61 (71.8%) 24 (27.9%) 24 (28.3%) 123 (71.9%)

HFD 66 (77.6%) 43 (50%) 19 (22.3%) 109 (63.7%)

method in extracting the shape of the crown. Due to the

angular analysis, the small trees can be extracted even though

they are really close to the trunk of the dominant tree crown.

VI. CONCLUSION

In this paper a hierarchical approach to the 3D segmentation

of LiDAR data at single-tree level in multilayered forest has

been proposed. The proposed method: i) detects the dominant

trees by exploiting both the image (CHM) and the LiDAR

point cloud (PCS) to identify all the trees present in the scene,

ii) delineates the dominant tree crowns in the PCS by exploit-

ing the conical shape properties of the crown, iii) detects the

subdominant trees by a derivative analysis of the 3D vertical

profile of the dominant tree crowns, and iv) delineates the

understory vegetation by applying a segmentation algorithm

directly in the PCS domain.

From the analysis of the experimental results we can draw

the following conclusions. The proposed approach improves

the detection rate of the dominant tree crowns with respect

to the standard methods at the state-of-the-art. This is ac-

complished by refining the detection achieved in the CHM

considering the information provided by the original LiDAR

point cloud, which is not affected by the interpolation process

and the smoothing filtering. It is worth mentioning that the

detection improvement is achieved by keeping the commission

error rate under 7% for both datasets. Moreover, the detection
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Fig. 9. Qualitative example of tree crown segmentation obtained in the dominant layer of the forest for: (a)-(f) the high-density LiDAR data
and, (g)-(l) the low-density LiDAR data. The segmented crowns (represented in bright colors) are located in the original forest scenario. A
visual analysis confirms that the proposed method is able to properly extract trees both in dense canopy scenario and when they are isolated
regardless of the laser point density.
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Fig. 10. Real versus estimated (with the proposed method) crown radius (CR)
of the subdominant trees.

performed in the PCS proved to be robust with respect to the

forest density and the average crown size since it relies on

the geometrical properties of the tree crowns, thus addressing

the issue of segmenting heterogeneous forest stands (i.e.,

high crown size variability). Indeed, results on the high-

density dataset demonstrate that the method can be applied

to heterogeneous forests by using the same set of parameters.

Note that, the tuning of parameters was accomplished by

considering only the properties of the LiDAR data without

using any prior knowledge or training procedure. Finally, the

angular analysis of the vertical profile of the crown of the

proposed method drastically reduced the commission errors in

the detection of trees in the subdominant layer of the forest.

Furthermore, the proposed method also detected multiple trees

present below the dominant crowns. Also in this case, the

detection rate was better than the one obtained with the method

presented in the literature.

As a final remark, we can conclude that the proposed

segmentation method is able to fit the shape of the trees for

both the dominant and the subdominant layers of the forest.

Indeed, the angular analysis performed in the PCS is able to

adapt the crown delineation different portion separately.

As future developments of this work, we aim at testing the

proposed method on LiDAR data characterized by different

point densities and in forests having properties different from

the one used in the paper. Moreover, we plan to test the

effectiveness of the proposed approach on the full waveform

LiDAR data.
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(a) (b) (c) (d) (e) (f)

Fig. 11. Qualitative example of tree crown segmentation obtained in the subdominant layer of the forest (high-density LiDAR dataset). (a)-(f)
the segmented crowns are represented in bright colors in the original forest scenario.

APPENDIX

The mathematical notation used in this paper is listed in Tab. VI. Symbols are listed in the order of appearance.

TABLE VI
NOTATION USED IN THIS PAPER.

Symbol Description

P = {pi}
A
i=1

Set of LiDAR points of the PCS, with pi = (xi, yi, zi)

TCHM = {tk}
M
k=1

Set of dominant treetops detected in the CHM, with tk = (xt
k
, yt

k
, zt

k
)

R Given search radius

Pk Set of LiDAR points extracted around the treetop tk within the given search radius R

N Number of angular sectors used for the derivative analysis of the horizontal profile of the crowns

Θj Angular sector between the adjacent angles θj and θj+1, with j ∈ [0, N -1]

Pk,Θj
Set of LiDAR points belonging to the angular sector Θj

Πc Circular projection that maps the LiDAR points into the ρz plane

ξ Quantization step of the distance of the points from the treetop, ρi ∈ [0, R]

Sk,Θj
(ρ) 1-D discrete signal representing Πc(Pk,Θj

), where pi = (ρi, zi)

Mk,Θj
Closest height maximum to the treetop tk , detected along ρ in the angular sector Θj

TPCS Set of dominant treetop detected in the PCS

T = {tk}
W
k=1

Whole set of detected treetop

Ek,Θj
Edge position of the kth tree detected in the angular sector Θj

{Ck}
W
k=1

Set of dominant segmented tree crowns, with Ck = {p1, .., pB}

L Number of angular sectors used for the detection of the subdominant trees, with L ≤ N

Ck,Θj
Set of LiDAR points of the crown Ck belonging to the angular sector Θj

Vk,Θj
(z) 1-D vertical signal representing Πc(Ck,Θj

), where pi = (zi, ρi)

Hk,Θj
Maximum height value of the set of points Ck,Θj

δ Quantization step of the vertical profile of dominant tree

Hsub
k,Θj

Height of the subdominant tree detected in the angular sector Θj

C
sub,Θj

k
LiDAR point sectors of the kth dominant crown where the subdominant crown has been detected

Psub
k,Θj

Set of LiDAR points pi ∈ Csub
k,Θj

having zi ≤ Hsub
k,Θj

Tsub = {tsub
k

}G
k=1

Set of treetops of the subdominant trees

{Csub
k

}G
k=1

Set of dominant segmented tree crowns.
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