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Hyperspectral unmixing with endmember variability

via alternating angle minimization
Rob Heylen, Alina Zare, Paul Gader, Paul Scheunders

Abstract—In hyperspectral unmixing applications, one typi-
cally assumes that a single spectrum exists for every endmember.
In many scenarios, this is not the case, and one requires a set
or a distribution of spectra to represent an endmember or class.
This inherent spectral variability can pose severe difficulties in
classical unmixing approaches. In this paper, we present a new
algorithm for dealing with endmember variability in spectral
unmixing, based on the geometrical interpretation of the resulting
unmixing problem, and an alternating optimization approach.
This alternating angle minimization algorithm uses sets of spectra
to represent the variability present in each class, and attempts
to identify the subset of endmembers which produce the smallest
reconstruction error. The algorithm is analogous to the popular
multiple endmember spectral mixture analysis technique, but
has a much more favorable computational complexity, while
producing similar results. We illustrate the algorithm on several
artificial and real data sets, and compare with several other recent
techniques for dealing with endmember variability.

I. INTRODUCTION

HYPERSPECTRAL images are obtained from a relatively

large distance in most remote sensing applications. The

ground instantaneous field of view (GIVOF) of a pixel will

become large, and will, for example, cover several meters

squared. As a consequence, several different objects and/or

materials can be expected in the GIVOF. All of the spectral

signatures of these materials will combine to contribute to the

measured spectrum.

Spectral mixture analysis aims to invert this process to

learn the unique spectral signature of each material and

determine their relative abundances in the GIVOF of each

pixel. The unique spectral signatures of each material in a

hyperspectral scene are termed endmembers. A large class of

unmixing approaches assumes that a fixed and limited number

of endmembers is present in a scene. The mixed spectra

can then be decomposed into endmember contributions, using

various techniques based on the inversion of linear or nonlinear

mixing models, with many possible constraints on the model

parameters, such as convexity or sparsity constraints. Several

approaches which do not assume the presence of a mixing

model exist as well, and we refer the interested reader to the

recent review papers [1], [2], [3] for more details.

However, since the majority of these spectral unmixing

methods assume that a fixed and limited number of endmem-

bers (i.e., namely, a unique, fixed endmember spectral signa-

ture per material) are present in the scene, these approaches

lack the ability to represent the spectral variability of the end-

members in a scene. The assumption that a single endmember

spectrum exists for each class or material of interest is not

valid in many unmixing applications. The spectral signature

for a material varies within hyperspectral data collections due

to reasons that range from environmental, atmospheric, scale,

to temporal factors. For example, variation in illumination

conditions [4], [5], [6], differences in the architecture of plant

canopies, changes in the distribution of leaf orientation in

vegetated regions (i.e., variation in spectral signature of the

top to the underside of a leaf), varying building structure

and layout in urban areas [7], composition and density of

mineral grains in soil, and changing atmospheric conditions

cause variation in spectral signature. Also scale differences

will cause variability in many materials, as one is typically

interested in the spectrum of an object at scales close to the

image resolution. For example, a tree contains branches, which

contain wood and bark, which contain mosses, dirt, and so on.

At each scale, different spectra can be observed and defined,

with different fractions, leading to an intrinsic variability in the

spectrum of the entire tree due to differences in the makeup

of each specimen.

Although spectral variability due to these sources is ex-

pected in many hyperspectral data sets, generally, methods

in hyperspectral unmixing and endmember estimation do not

account for spectral variability. As such, errors resulting from

inaccurate or insufficient endmember representation will be

propagated throughout analysis. The most prominent effects

from inaccurate endmember representations are resulting er-

rors in estimated proportion values, termed proportion inde-

terminacy, or the use of too many endmembers to represent

a spectrum [5], [7]. In order to avoid these errors and to

represent spectral variability during analysis, a number of

spectral unmixing and endmember estimation algorithms that

incorporate spectral variability have been developed in the

literature. For recent overviews, see [8], [9]. A summary of the

methods in the literature that account for spectral variability

are shown in the diagram in Figure 1.

Most of these techniques fall under one of two classes:

One either models the spectral variability within each class

as a probability distribution, or one symbolizes each class by

building a library of representative spectra. Examples of the

former method can be found in [10] and [11], where the end-

member variability is captured by modeling the endmember

classes as normal or beta distributions respectively. The most

well-known technique which represents endmember variability

by employing libraries is multiple endmember spectra mixture

analysis (MESMA) [12], on which we will also focus in this

work. MESMA has been successfully used in a large number

of fields, such as vegetation monitoring [13], [12], [14], urban

remote sensing [15], [16], and landform [17] or fire mapping

[18], [19], [20], [21].
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Fig. 1: Summary of spectral unmixing and endmember estimation algorithms that account for spectral variability. Methods

shown in blue perform spectral unmixing. Methods shown in red perform spectral unmixing and endmember estimation. A

more complete review of the methods listed in this diagram can be found in [8] and [9].

In the MESMA algorithm, one employs the linear mix-

ing model (LMM), i.e., the assumption that every observed

spectrum can be modeled as a convex linear combination

of endmember spectra. Each endmember spectrum can be

drawn from a library, which should contain enough spectra

to correctly capture the variability which is present in the

corresponding class. Once a single endmember from each class

has been chosen, this set of endmembers, also called model, is

used to unmix the target spectrum, and a reconstruction error

(RE) is calculated. This is repeated for all possible models

until a set of conditions has been fulfilled, such as constraints

on the abundances, and REs below a predetermined threshold.

Remark that most MESMA approaches assume the presence

of a library containing only a photometric shade or zero vector

endmember.

In the worst-case scenario, the target spectrum has to be

unmixed with respect to all possible models, and the com-

putational complexity of the algorithm scales as the product

of the library sizes. If the number of libraries is not very

small, or there are several large libraries present, the com-

putational effort required to unmix with respect to all possible

combinations becomes unrealistic to be carried out in practice.

Therefore, several techniques have been investigated to speed

up the MESMA algorithm, or to provide early stopping rules.

In the original version of MESMA presented in [12], one

performs sum-to-one constrained unmixing with respect to all

possible combinations of libraries and endmember candidates

from these libraries. For each unmixing result, one checks

whether the obtained abundances are within a given range

(e.g., positive and smaller than one, with a given tolerance),

whether the RE is below a given threshold, and if the number

of iterations and the number of large band errors has not

exceeded some predetermined values. With these additional

demands, excessively long iteration times can usually be

avoided, but the choice of thresholds and tolerances will have

a large effect on both the runtime and the quality of the results

[22], [9].

Several authors [8] choose to perform an exhaustive search

of all possible combinations, and simply retain the one with

the lowest RE. Models which do not obey the abundance

non-negativity constraint (ANC) or the abundance sum-to-one

constraint (ASC) can be discarded, or avoided by using fully-

constrained least-squares unmixing (FCLSU). This approach

will invariably lead to computational difficulties for larger

libraries, as no early stopping rules are enforced.

Approaches to reduce the sizes of the libraries have been

proposed as well. In [21], the pixel purity index (PPI) algo-

rithm is used to preselect library candidates from the image

pixels. In [18], each endmember in a given library is written as

an optimal linear combination of the other endmembers in that

library by considering it as a separate unmixing problem which

is solved with MESMA. The library members which occur the

most in the unmixing results are then used as the members of

a reduced library, as they are the most representative for the

entire library. This way, severely reduced library sizes can be

obtained: In [18], each library is reduced to contain only 3-

5 members. A similar approach is used in [13], where the

endmembers which produce the smallest error for modeling

the other library endmembers are retained.

As the inclusion of more degrees of freedom always allows

for a reduction in RE, the inclusion of more libraries in the

unmixing of a given spectrum will result in lower REs, but not

always in better results on the level of abundances. Therefore,

several approaches demand a large relative decrease in RE

before accepting unmixing results with a higher numbers of

endmembers [23]. A different approach is that each (non-

shade) endmember should contribute significantly to the total

spectral signal, and should thus have an abundance larger than

some predefined threshold.

Despite all these developments, the MESMA algorithm still

contains a relatively simple but computationally demanding

step in its implementation, where spectra have to be unmixed

with respect to a large number of possible endmember combi-



3

nations. In this paper, we aim to alleviate this problem by

introducing a new method for performing MESMA which

scales linearly in the number of libraries and endmembers

instead of as a product of the library sizes. This allows the

application of MESMA to problems with a large number of

large libraries, without compromising on the results with some

early stopping rules.

The technique is based on an alternating optimization with

respect to each library separately. The optimization itself is

rewritten in terms of an angle minimization problem, which

can be easily solved using standard algebraic relations. While

alternating optimization in this sense does not guarantee con-

vergence to the global optimum, we show that it is exactly the

high dimensionality of the data which causes this technique to

work in most practical cases. This way, alternating optimiza-

tion techniques can be employed to estimate the model which

will give the smallest RE, and unmixing with respect to all

possible combinations, which is a combinatorial problem, can

be avoided.

This paper is structured as follows: In section II we formally

introduce the version of the MESMA algorithm employed

in this manuscript, provide an efficient computational im-

plementation, and discuss several of its properties, such as

its computational complexity. In section III, we explain how

optimization with respect to a single library is equivalent

with a high-dimensional angle minimization problem, and

employ this equivalence to construct an alternating optimiza-

tion scheme which aims to solve the same problem as the

MESMA algorithm. The resulting alternating angle minimiza-

tion (AAM) algorithm is tested on several artificial and real-

world data sets in section IV, followed by the conclusions in

section V.

II. THE MESMA ALGORITHM

Because several versions of MESMA are available in the

literature, with different preprocessing steps, early stopping

rules, or other differences in their implementation details, we

first provide a detailed explanation of the version of MESMA

that we will consider in this manuscript.

In its simplest implementation, the MESMA algorithm will

unmix a spectrum with respect to all possible models, where

a model is a set of endmembers drawn from their respective

endmember libraries. The model which yields the smallest

reconstruction error and obeys the ANC and ASC is retained,

and the unmixing results with respect to this model are

returned.

Because the solution has to obey the ANC and ASC,

one possible approach is to employ constrained optimization

techniques, such as FCLSU or non-negatively constrained

least squares (NCLS). Such an approach would have a very

high computational complexity, and fortunately constrained

optimization can be avoided if one considers all possible

library combinations on top of all possible models drawn from

a set of libraries.

Consider a single model, made up by the endmember

set {e1, . . . , ep}, and a single pixel x. According to the

linear mixing model, the pixel x can be written as a convex

combination of endmembers, and additional noise:

x =

p
∑

i=1

aiei + η,

{

∀i : ai ≥ 0 (ANC)
∑

i ai = 1 (ASC)
(1)

If one performs FCLSU of x with respect to the endmem-

ber set {e1, . . . , ep}, one solves the following optimization

problem:

argmin
{a1,...,ap}

∥

∥

∥

∥

∥

x−

p
∑

i=1

aiei

∥

∥

∥

∥

∥

2

, s.t.

{

∀i : ai ≥ 0
∑

i ai = 1
(2)

Because minimizing a least-squares error is equivalent with

minimizing an Euclidean distance, this minimization problem

can also be interpreted as a simplex projection problem, where

one tries to find the point of minimal distance to x inside the

simplex spanned by the endmembers [24], [25].

Many approaches for solving this constrained minimization

problem have been proposed, such as active set approaches,

quadratic programming, the alternating direction method of

multipliers, extending NCLS techniques, non-negative matrix

factorization, alternating projection methods, and geometrical

approaches. Almost all of these approaches contain some

iterative step which has to be repeated until some stopping

criterion is obeyed, which makes them computationally heavy.

Because implementing the ASC is easy, a seemingly naive

method for solving the FCLSU problem (2) can be derived by

employing active sets: The active set is the set of endmembers

with active constraints, hence with zero abundances. If one

knows the active set beforehand, one can perform sum-to-one

constrained least-squares unmixing (SCLSU) with respect to

the endmembers not in the active set, and one will obtain the

same unmixing result as FCLSU with respect to the entire

endmember set. Because the active set is not known, one can

simply evaluate every possible set, retain only those that obey

the positivity constraints, and return the one corresponding

with the smallest reconstruction error. In practice, one needs

to unmix the target x with SCLSU with respect to every

non-empty subset of endmembers drawn from {e1, . . . , ep},

and retain the result that obeys the ANC and yields the

smallest reconstruction error. As the number of non-empty

subsets is 2p−1, this approach can have a large computational

complexity as well, especially for larger p.

However, in the case of MESMA, this approach will gen-

erally be computationally favorable over applying FCLSU

to every model with p endmembers. Consider p endmember

libraries {L1, . . . , Lp}, where library Li has Ni elements. We

can distinguish two cases:

• Apply FCLSU to every model of p endmembers. This

requires executing the FCLSU algorithm
∏

iNi times.

• Apply SCLSU to every model with any number of

endmembers, for every library combination. This requires

executing the SCLSU algorithm
∏

i(Ni + 1)− 1 times.

Because FCLSU requires solving an optimization problem

and SCLSU only requires some basic linear algebra operations,

the latter approach can be orders of magnitude faster, espe-

cially for large data sets and libraries. Therefore, we present
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Algorithm 1: MESMA algorithm

1 for Every subset of libraries do

2 for Every model drawn from these libraries do

3 Determine the abundances with SCLSU;

4 if all abundances are non-negative then

5 Determine the RE;

6 else

7 Set RE to ∞;

8 Return the solution with smallest reconstruction error;

Algorithm 1 as the MESMA algorithm we will use in this

paper as a benchmark.

Line 1 can be easily implemented by counting from 1 to

2p and using this counter as a bit mask to select the libraries,

or by generating the banker’s sequence [26]. Line 2 can be

implemented by using a vector of overflowing counters. To

determine the abundances with SCLSU, several approaches

can be employed. First of all, one has to make the distinction

between cases where a shadow endmember is present or not.

Many MESMA approaches assume that a shadow or zero

endmember always has to be present, which actually removes

the sum-to-one constraint from the problem, as the abundance

of the shadow endmember can be simply derived as one

minus all other abundances. The problem then reduces to

solving an unconstrained least-squares problem, for which

many approaches can be employed.

Also when no shadow endmember is present, the same ap-

proach can be used. Because unmixing is a translation invariant

operation, one can simply designate one of the endmembers as

a shadow endmember, subtract it from all other endmembers

and the target, and again perform the unconstrained least-

squares unmixing. In practice, the Moore-Penrose pseudo

inverse can be employed to solve the unconstrained least-

squares problem. Let E = (e1, . . . , ep) be a matrix which

lists the endmembers in the model as its columns, and x the

target as a column vector. With J = (e2 − e1, . . . , ep − e1),
we can obtain the abundances by first calculating

â = (JTJ)−1JT (x− e1) (3)

The abundance vector will then be given as a =
[1−

∑

i âi; â], and the projected or reconstructed point as Ea.

Remark that these equations can be simplified if e1 = 0, or

simpler approaches can be used when p = 1 or p = 2.

Computationally, the presented version of the MESMA

algorithm performs
∏

i(Ni + 1) iterations, where the SCLSU

algorithm is executed in each iteration. The SCLSU algorithm

contains mainly matrix multiplications and pseudo-inversions,

and hence has an order d3 complexity, with d the dimension-

ality of the spectral vectors.

It must be noted that many versions of MESMA present

in the literature possess one of several early stopping rules,

or perform some selective pruning of the spectral libraries to

reduce their sizes. This will generally reduce the computational

requirements, at the cost of suboptimal solutions.

III. ALTERNATING ANGLE MINIMIZATION

The main computational bottleneck in the MESMA algo-

rithm is the requirement to unmix with respect to a very

large amount of different models. We propose an alternative

approach, where an alternating optimization is carried out

with respect to the libraries. The technique is based on

a geometrical interpretation of the unmixing problem. This

interpretation has been presented in many papers already [24],

[25], [27], and we will merely repeat some of the main results

here.

If we interpret each spectrum as a d-dimensional vector in

a spectral space [0, 1]d, and we assume that spectral noise

is identically distributed in each spectral band, applying the

maximum likelihood method to the linear unmixing problem

will yield a least-squares problem. This least-squares problem

is equivalent to finding a minimal Euclidean distance from the

target data point x onto a given subset S of spectral space.

y = PS(x) ⇐⇒ ∀z ∈ S : ‖z − x‖ ≥ ‖y − x‖ (4)

The subset S contains all points accessible under the em-

ployed mixing model (the LMM in this case), and depends on

the employed constraints on the abundances:

• No constraints: the linear subspace spanned by the end-

members

• ASC: The affine space, or hyperplane, through the end-

members

• ANC: The convex cone of the endmember set

• ANC and ASC: The simplex spanned by the endmembers

The RE can then be defined as ‖x − PS(x)‖, and the

abundances are given by the barycentric coordinates of the

projection PS(x) with respect to the endmembers [25], [27].

Let us first consider unmixing with only the ASC on the

abundances. Solving the unmixing problem is then equivalent

to projecting the target x orthogonally onto the hyperplane

H(E) through the endmembers in E. Remark that this hy-

perplane typically does not contain the origin, unless one of

the endmembers is a zero or shadow endmember. Only in this

case will the hyperplane be a linear subspace as well.

The RE is given by the orthogonal distance from x to

H(E), or as ‖x− PH(E)(x)‖. If we define F = E/{ep} =
(e1, . . . , ep−1), using standard geometrical relations one can

write this orthogonal distance as
∥

∥x− PH(E)(x)
∥

∥ =
∥

∥x− PH(F )(x)
∥

∥ sin (θ) (5)

with

θ = min(α, π − α) (6)

α = cos−1

(

(

ep − PH(F )(ep)
)

·
(

x− PH(F )(x)
)

∥

∥ep − PH(F )(ep)
∥

∥

∥

∥x− PH(F )(x)
)

‖

)

(7)

= sin−1

(

∥

∥x− PH(E)(x)
∥

∥

∥

∥x− PH(F )(x)
∥

∥

)

(8)

This is illustrated for a three-endmember scenario in Fig. 2.

The orthogonal distance of x to the plane H(E) through the

endmembers in E = (e1, e2, e3) can also be written as the

orthogonal distance to the plane H(F ) through F = (e1, e2),
multiplied by the sine of the angle θ of this projection with
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PH(F )(x)

e2

e1

PH(F )(e3)e3

PH(E)(x)

θ

x

Fig. 2: Illustration of relation (5).

x

e1

e2

e
′′

2

e
′

2
θ

θ
′θ

′′

Fig. 3: Optimizing the RE corresponds with identifying the

smallest angle θ

H(E). The angle θ is also the angle between the vectors

x−PH(F )(x) and e3−PH(F )(e3). This reasoning also works

for higher dimensional spaces, and for higher numbers of

endmembers in these spaces (with the constraint that p ≤ d).

Remark that the roles of x and ep can also be inter-

changed for calculating the angle θ. With G = F ∪ x =
(e1, . . . , ep−1,x), we can also write

α = sin−1

(

∥

∥ep − PH(G)(ep)
∥

∥

∥

∥ep − PH(F )(ep)
∥

∥

)

(9)

We can use this observation to easily find the optimal

endmember in a single-library situation [28]. Suppose that the

p − 1 endmembers in F = (e1, . . . , ep−1) are fixed, and the

final endmember ep can be chosen from a library Lp with Np

elements. Because
∥

∥x− PH(F )(x)
∥

∥ is a constant, (5) states

that the endmember with the smallest angle θ will also be the

one which will generate the lowest RE. Obtaining the optimal

endmember can then be done by calculating the angles θ for

every library element, and choosing the smallest angle.

An illustration in two dimensions, with a library of three

endmembers, is given in Fig. 3. The point x is unmixed with

respect to two endmembers, where one is a fixed point e1, and

the second has to be chosen from a library containing three

options e2, e′2 and e′′2 . It can be easily seen that the option

with the lowest RE will also be the one with the smallest angle

θ.

However, in a general scenario, each endmember can be

drawn from its respective library. A strategy often used in

optimization theory is to perform the optimization with respect

to each library iteratively, until no further improvement is

found or some maximal number of iterations has been reached.

This is also the approach we use in the proposed alternating

angle minimization (AAM) algorithm: Starting from a random

initial model, we repeatedly optimize each endmember in

turn using the minimal angle approach presented above, for a

maximal number of iterations. As we only considered the ASC

so far, we will employ a similar approach as in the MESMA

algorithm in order to implement the ANC: We consider all

possible subsets of libraries, perform the iterative optimiza-

tion for each subset, and do fully-constrained unmixing with

respect to the optimal model from each subset. The solution

with the smallest RE is returned after considering all subsets.

The AAM algorithm is given in Algorithm 2.

Algorithm 2: AAM algorithm

1 Select a number of iterations K .

2 for Every non-empty subset S ⊂ {1, . . . , p} do

3 Let q = |S| be the cardinality of S
4 Let eij be shorthand for LSi

(j), endmember j from

library LSi

5 Select a random index set {Ii}
q
i=1, Ii ∈ 1, . . . , NS(i).

6 for iteration ∈ [1, . . . ,K] do

7 for i ∈ [1, . . . , q] do

8 F = {e1I1 , . . . , e
i−1
I(i−1), e

i+1
I(i+1), . . . , e

q
Iq
}

9 G = F ∪ x

10 for n ∈ [1, . . . , NS(i)] do

11 pn = sin−1
(

‖ei
n−PH(G)(ei

n)‖

‖ei
n−PH(F )(ei

n)‖

)

12 if (x−PH(F )(x)) · (e
i
n−PH(F )(e

i
n)) < 0

then

13 pn = π − pn

14 Ii = argminn({pn}
Ni

n=1)

15 E = {e1I1 , . . . , e
q
Iq
}

16 a(S) = FCLSU(x, E)
17 RE(S) = ‖x− Ea(S)‖

18 Return results corresponding with min(RE)

The hyperplane projections PH(.) can be performed with

(3). In line 16, the abundances are determined by fully-

constrained unmixing x with respect to the endmembers in

E. Many algorithms exist to perform this step, and we used

the FCLSU algorithm presented in [29]. In the angle mini-

mization, ties are randomly broken, as these are not expected

to occur much due to the high-dimensional vector inputs of

real numbers.

For a given library subset, the RE will decrease after each

update in the algorithm until a local minimum is reached

or the maximal number of iterations has been performed.

However, it cannot be guaranteed that the global minimum

will be found, and one can easily construct situations in low

dimensional spaces where the alternating optimization will

not reach the global minimum. This is especially the case

when the target spectrum lies inside the convex hull of the

libraries. An example of this situation is given in Fig. 4 (a),

where depending on the initialization, a different final result

can be expected. When the point lies outside the convex hull

determined by the libraries, as in Fig. 4 (b), the alternating

optimization will reach the correct global minimum in this

case.

Now, a feature of high-dimensional data sets is that gener-
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(a) (b)

Fig. 4: Two libraries (black and red points) in 2 dimensions,

and a target to unmix (green point). The optimal solution

is indicated with a gray line. The RE is the perpendicular

distance to this line. Left: The target and some library spectra

are inside the convex hull, and the problem is hard to solve.

Right: No point is inside the convex hull of any set. The

optimal model is easy to determine.

ally, every point will lie on the border of the convex hull, a

consequence of the infamous “curse of dimensionality” [30].

For the AAM algorithm however, this will have a beneficial

effect, as the situation depicted in Fig. 4 (a) will never occur in

practical situations. While this is not a proof of why the AAM

will always reach the global minimum (and counter-examples

can be found in most data sets), this provides an intuitive

explanation as to why the minimization functions better as the

number of dimensions rises. We will show in the experimental

section that the AAM algorithm indeed has a high dependence

on the data dimensionality, and that the performance increases

dramatically with increasing spectral dimension.

The computational complexity can be determined relatively

easy. There are three nested for loops, where the first (line 2)

will be executed 2p−1 times, the second (line 6) K times, and

the third (line 7) q times, with q the cardinality of the library

subset. Because
∑p

q=0

(

p
q

)

q = p2p−1, the angle minimization

(lines 8-14) will be executed Kp2p−1 times in total, for each

pixel.

The angle minimization involves the calculation of two pro-

jection matrices via pseudo-inversion of endmember matrices.

Pseudo-inversion is typically solved via singular value decom-

position, which has a worst-case behavior of d3, with d the

dimensionality of the vectors. The for-loop in line 10 can be

avoided by employing matrix multiplication, which will yield

an operation with complexity of order qdNi. The maximal

value for this term is pdNmax, with Nmax = maxi{Ni}i. All

other operations are of lower complexity. In total, this results in

a highest-order and worst-case complexity of NKp2p−1(d3+
pdNmax). Furthermore, the FCLSU algorithm will be executed

N(2p − 1) times as well, each time to unmix a single pixel

with respect to an endmember set with at most p endmembers.

This analysis shows that the proposed algorithm is linear in

the number of pixels N and the library sizes Ni. The scaling

with the number of libraries p is p2p−1, which will increase

quickly with increasing p. Remark that the MESMA algorithm

scales as
∏

iNi with the library sizes, and also scales as 2p

with the number of libraries. A disadvantage of the AAM

algorithm is that each pixel has to be processed concurrently,

while the MESMA algorithm can treat an entire data set at

once. Nevertheless, we will show in the experimental section

that the AAM algorithm will be much faster than MESMA and

other alternative algorithms in many practical scenarios, and
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Fig. 5: Two artificial data sets in two dimensions. Three

libraries are indicated with colored circles (red, green, cyan),

while the data set is indicated with black circles. Two values

of c are shown. For higher c, the libraries will show less

correlation and overlap.

can treat situations which become computationally intractable

with the alternatives.

IV. RESULTS

A. Artificial data sets

Several properties of the AAM algorithm can be tested and

illustrated on artificial data sets, in order to be able to easily

modify the data parameters. The data set consists of points

in a d = 200 dimensional space. Each library is created as

a d-dimensional random unit Gaussian distribution, centered

around the point ki. These centers {ki}
p
i=1 are randomly

selected from a Gaussian distribution with standard deviation

c. The data set {xi}
N
i=1 itself is selected from a unit Gaussian

distribution around the origin. This way, the libraries and the

data will show large overlaps (or correlation) for low values

of c, and will be more independent for larger values of c.
For simplicity, each library contained the same number of

spectra. An illustration for 3 libraries of 10 endmembers in

2 dimensions is given in Fig. 5.

As a first experiment, we want to assess the evolution of

the RE during the alternating angle minimization process. The

RE is determined before each update in the AAM algorithm

(i.e., between lines 7 and 8 in algorithm 2) for a given subset

of libraries, and plotted in Fig. 6 as a function of the number

of iterations. The number of libraries was p = 10, containing

10 endmember candidates each. As each iteration contains p
updates, there are 10 data points in each interval.

This figure illustrates that in these artificial data sets, most of

the decrease in RE happens during the first iteration, and that

the RE reaches a stable minimum after 3 iterations for most

points. Therefore, we set the number of iterations to K = 3
in all further experiments.

Next, we want to compare the results returned by the

AAM algorithm with those obtained by MESMA on these

artificial data sets. There are several ways to assess these

differences between the unmixing results. First of all, both

the AAM algorithm and MESMA return an endmember set

for each pixel, which might show differences, and might

even contain a different number of endmembers. Furthermore,

after unmixing with these endmembers, the abundances with
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Fig. 6: The RE as a function of the number of iterations in

the AAM algorithm, for 10 randomly selected data points (thin

colored lines), and the average over 1000 random data points

(black line).

respect to each library are obtained. These can be compared as

well, as different endmembers do not necessarily lead to large

differences in the eventual unmixing results. Nevertheless, an

approach which would be able to compare unmixing results

simultaneously on both the endmember and the abundance

level would be very advantageous.

Such a technique is proposed in [31], where the earth

mover’s distance (EMD) is used to assess differences between

unmixing results. The main idea is to consider endmembers as

bin centers in a high-dimensional space, and the corresponding

abundances as bin values. With this interpretation, unmixing

results can be represented as high-dimensional histograms,

and histogram comparison measures such as the EMD can

be employed to assess differences between unmixing results,

even with different numbers of endmembers. Hence, to assess

the per-pixel unmixing results, we employ three different

measures:

• The number of different endmembers (NDE).

• The Euclidean distance (ED) between the abundance

vectors

d(a1,a2) =
√

(a1 − a2)T (a1 − a2) (10)

where we set the abundances of non-contributing libraries

to zero.

• The EMD as proposed in [31], determined by the code

distributed by the authors. The ground distance, the only

parameter in the algorithm, is set to Euclidean.

These three measures are plotted as a function of the

parameter c used to construct the data sets in Fig. 7. The

displayed results are averaged over 100 random instances of

100 pixels each, with p = 4 libraries containing 10 members

each. The dimensionality of the data was set to d = 200. These

plots show that the NDE and the EMD decrease consistently

as the endmember libraries become less related (i.e., have a

c
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Fig. 7: The NDE between the endmember sets, the ED between

the abundance vectors, and the pixel-wise EMD as defined

in [31], averaged over 100 random instances with 100 pixels

each, with a given value of c.
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Fig. 8: The NDE (a) and the ED (b) as a function of the data

dimensionality d.

larger average distance from each other in spectral space). But

even for c = 0, or a situation where all library members and

data points are drawn from the same Gaussian distribution,

the NDE graph shows that on average only 0.34 endmembers

out of 4 differ between the AAM and the MESMA results.

The ED between the abundance vectors is 0.011 in this case,

which can be considered negligible for all practical scenarios.

For larger values of c, this ED even decreases by an order

of magnitude, and both the AAM and MESMA techniques

will obtain the same unmixing results in virtually all cases.

Note that the slight increase in ED for large values of c can

be attributed to numerical reasons, as the magnitude of the

endmembers scales with c.
As described in section III, the performance of the AAM

algorithm depends strongly on the dimensionality d of the

data set. To show this effect, we have repeated the previous

experiment for several values of d, with c = 0 (i.e., all library

and data points are drawn from the same standard Gaussian

distribution). The ED between the abundance vectors and the

NDE are displayed in Fig. 8, as a function of d, and averaged

over 50 random data sets. We do not display the EMD as

it depends strongly on d. These graphs show that the AAM

algorithm functions very well for high d, but breaks down for

lower dimensions.

In order to assess the computational runtimes, we have

executed the AAM algorithm and MESMA on these artificial

data sets, for varying numbers of libraries and library sizes.

These runtimes are displayed in Fig. 9, and illustrate clearly

that the computational cost rises quickly for MESMA as a

function of the library sizes, but hardly increases for the

AAM algorithm. For large libraries, the AAM algorithm will

dramatically outperform MESMA, and this effect becomes

more prominent as the number of libraries increases. For very
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Fig. 9: The runtime in seconds of the AAM algorithm and

MESMA as a function of library size, for different values of

the number of libraries p. All libraries are equally sized.

small problems, MESMA would be the algorithm of choice.

B. Hyperspectral images

We have employed the proposed AAM algorithm to unmix

several real-world data sets, and compare its performance with

several alternative algorithms often used in the literature to

deal with endmember variability. The algorithms used for

comparison are the MESMA algorithm presented in section II,

the normal compositional model (NCM) presented in [10], and

the beta compositional model (BCM) presented in [11]. Both

compositional models are solved with quadratic programming,

and the spectral variant of the BCM is used. We refer to [32],

[11] for more information on solving the NCM and BCM.

Furthermore, we also provide the results that are obtained

with FCLSU, where each library was replaced with its spec-

tral average, and we provide known classification maps for

illustrative purposes. Remark that there is no straightforward

way of comparing abundance maps with classification maps,

and classification ground truth can only serve as an illustrative

example of where one might expect large abundances for

a given class. This does not exclude other classes from

contributing as well in the spectral mixture, often even with

significant magnitude. Due to computational constraints, the

compositional models are only executed on the data sets of

limited size.

As the proposed AAM algorithm serves as an alternative

for the MESMA algorithm, it should ideally return the same

results. The alternatives based on the NCM and BCM allow

comparisons with distribution-based techniques. We do not

provide a detailed analysis of the relation between the abun-

dance maps and possible classification ground truth, as the

aim is to provide a fast alternative for MESMA, and not a

new method for unmixing, nor a classification technique. We

assess the differences between the MESMA and the AAM

unmixing results by the NDE, the ED between the abundance

vectors, and the EMD, represented as color maps.

The first hyperspectral image is also used in [11] to assess

the BCM, and was collected in Long-beach, Missouri, USA.

(a) NDE (b) ED (c) EMD

Fig. 11: Illustration of the differences between the MESMA

and the AAM algorithm: The number of different endmembers

(a), the ED between the abundance vectors (b) and the EMD

between the unmixing results (c).

This 13×19 pixel subset shows four different areas containing

an asphalt road, a yellow curb next to the road, grass and

oak trees. Ground truth spectra are available for each of

these classes, obtained in the scene with a hand-held ASD

spectrometer. The library sizes are 10 (asphalt), 10 (yellow

curb), 50 (grass) and 10 (oak leaves). The number of spectral

bands in both the image and the endmember libraries is 53.

The unmixing results obtained by the various methods are

presented in Fig. 10, where each row corresponds with a class,

and each column with an unmixing technique (or the ground

truth). It can be observed that the AAM and the MESMA

method both yield very similar results, and only differ in a

handful of pixels. The NCM and the FCLSU method are very

similar, while the BCM results show some differences with the

NCM and FCLSU method. This similarity can be expected,

as the spectral average employed in the FCLSU method will

also serve as a highly probable candidate in the distribution-

based approaches. One can conclude that the FCLSU and

compositional models show similar results, while the library-

based methods for endmember variability show a different

behavior.

The differences between the results obtained by MESMA

and the AAM algorithm are illustrated in Fig. 11, where the

number of misidentified endmembers and the EDs between the

abundance vectors are shown as color maps. It is clear that for

the majority of pixels, identical endmembers and abundances

are obtained. Possible deviations typically stay small.

Comparison of both maps indicates that one or two misiden-

tified endmembers do not always automatically lead to large

abundance errors. The endmembers obtained with the AAM

algorithm can be very similar to those obtained with MESMA,

or the corresponding abundance can be small. Both situations

would lead to small abundance errors, even with misidentified

endmembers.

The second data set is the well-known Pavia university data

set, obtained over Pavia, Italy. The employed section of this

data set has 510 × 200 pixels with 103 spectral bands, and

has classification ground truth available. Four libraries were

constructed, each containing 5 randomly selected spectra from

the impervious classes, the meadows class, the trees class and

the shadow class respectively. Using this library, the data set

was unmixed with FCLSU, MESMA, and the AAM algorithm.

We did not employ the compositional models as they required

too much computational resources on data sets of this size.

The classification and abundance maps are displayed in Fig.

12. The maps obtained with MESMA and the AAM algorithm

again show a very large similarity, while several notable differ-
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Fig. 10: Gulfport abundance maps

Algorithm Long Beach Pavia5 Pavia10 Pavia15
FCLSU 0.17 86 88 85
BCM 91 N/A N/A N/A
NCM 12 N/A N/A N/A

MESMA 16 197 2207 9854
AAM 6.4 2080 2153 2232

TABLE I: The runtime in seconds of the algorithms for both

data sets.

ences exist with the map obtained with FCLSU. The obtained

unmixing results can again be assessed by considering the

NDE, the ED and the EMD, which are displayed in Fig. 13

as colormaps. The NDE shows that for 69% of the pixels, the

same endmembers are identified. The rest of the pixels have

1 (27%), 2 (3.5%) or 3 (0.4%) different endmembers. These

are also the pixels where the ED and EMD will differ from

zero.

The runtimes required for running the algorithms on these

real hyperspectral data sets are shown in table I. For the

Pavia data set, we included 3 versions, i.e., the version with 5

endmembers in each library used above, and one with 10 and

15 endmembers in each library, to illustrate the dependence

on library size in real data sets. These are indicated as Pavia5,

Pavia10 and Pavia15 respectively. This table shows that FCLSU

is the fastest algorithm for both data sets. On the Pavia data

set, MESMA will be the fastest variant as long as the library

sizes are less than 10, while AAM is faster for larger libraries.

The runtime of MESMA also increases very fast for larger

libraries, while AAM is much less sensitive to the library sizes.

The compositional models could not be executed on the Pavia

data set due to memory constraints.

V. CONCLUSIONS

We have introduced a new algorithm to deal with endmem-

ber variability in a constrained linear unmixing setting, based

on alternating optimization with respect to each endmember

library. The resulting AAM algorithm aims to solve the same

optimization problem as the popular MESMA algorithm, but

possesses a computational complexity which is linear in the

size of the endmember libraries instead of multiplicative. This

results in an algorithm which is capable of dealing with very

large libraries as well without requiring large computational

runtimes.

The AAM algorithm is illustrated on artificial and real data

sets, and shown to yield very similar results as the MESMA

algorithm in most cases, but with severely reduced runtimes.

The measures employed for comparison of the unmixing

results are the number of misidentified endmembers per pixel,

the distances between the abundance vectors, and the EMD

between the entire unmixing results, taking both endmember

and abundance differences into account.

Future work concerns computational optimization of the

current algorithm , and the inclusion of early stopping rules

and sparsity, which will yield a further speedup, and might

bring library-based methods for dealing with endmember

variability into the reach of real-time or on-the-fly unmixing

applications.
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