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Spatio-temporal Sub-pixel Mapping of Time-series 

Images 
Qunming Wang, Member, IEEE, Wenzhong Shi, and Peter M. Atkinson 

Abstract—Land-cover/land-use (LCLU) information extraction 

from multi-temporal sequences of remote sensing imagery is 

becoming increasingly important. Mixed pixels are a common 

problem in Landsat and MODIS images that are used widely for 

LCLU monitoring. Recently developed sub-pixel mapping (SPM) 

techniques can extract LCLU information at the sub-pixel level by 

dividing mixed pixels into sub-pixels to which hard classes are then 

allocated. However, SPM has rarely been studied for time-series 

images (TSIs). In this paper, a spatio-temporal SPM approach was 

proposed for SPM of TSIs. In contrast to conventional spatial 

dependence-based SPM methods, the proposed approach considers 

simultaneously spatial and temporal dependences, with the former 

considering the correlation of sub-pixel classes within each image 

and the latter considering the correlation of sub-pixel classes 

between images in a temporal sequence. The proposed approach 

was developed assuming the availability of one fine spatial 

resolution map which exists amongst the TSIs. The SPM of TSIs is 

formulated as a constrained optimization problem. Under the 

coherence constraint imposed by the coarse LCLU proportions, the 

objective is to maximize the spatio-temporal dependence, which is 

defined by blending both spatial and temporal dependences. 

Experiments on three datasets showed that the proposed approach 

can provide more accurate sub-pixel resolution TSIs than 

conventional SPM methods. The SPM results obtained from the 

TSIs provide an excellent opportunity for LCLU dynamic 

monitoring and change detection at a finer spatial resolution than 

the available coarse spatial resolution TSIs. 

 

Index Terms—Spatio-temporal dependence, land-cover/land-use 

monitoring, time-series images, sub-pixel mapping, 

super-resolution mapping. 

I. INTRODUCTION

Monitoring the spatial distribution of land-cover/land-use 

(LCLU) through time is important for establishing links between 

policy decisions, regulatory actions and subsequent LCLU 

activities [1]. Such monitoring has long been recognized as a 
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significant scientific goal since LCLU is a critical variable that 

describes, and impacts upon, many aspects of urban, rural and 

natural environments [2]. Satellite remote sensing images 

provide a major source of LCLU data and have the advantages 

that satellites can revisit the Earth’s surface regularly and that 

the digital format is suitable for further computer processing. 

Over the past decades, a growing number of methods have been 

developed and applied for LCLU mapping from time-series 

images (TSIs), such as Bayesian classification [3], compound 

classification [4]-[6], spatio-temporal Markov random fields 

[7]-[9], domain adaption [10] and spatio-temporal segmentation 

[11]. The fundamental goal of these techniques is pixel-level 

LCLU classification of all the images in the time-series, but they 

are based on a recognition and explicit use of the temporal 

correlation between images (in the form of, for example, 

transition probabilities or joint probabilities between LCLU 

classes). 

The Landsat and MODIS sensors are common sources of 

imagery used for LCLU monitoring due to their free availability, 

regular revisit capabilities and wide swath. However, they 

provide coarse spatial resolutions relative to the requirements of 

certain applications, for example, Landsat 30 m relative to 

changes in small residential buildings. It is often necessary to 

monitor LCLU at a fine spatial resolution to provide sufficient 

detail for specific applications. For the coarse spatial resolution 

image, each regular gird (i.e., pixel) covers a large area and 

generally contains more than one LCLU class. This type of pixel 

is termed a mixed pixel in the context of remote sensing. As one 

of the most popular mixed pixel analysis techniques, spectral 

unmixing has been investigated for decades to extract LCLU 

information within mixed pixels. This technique can estimate the 

proportions of LCLU classes constituting the mixed pixel, and 

has been applied for the goal of mapping TSIs [12], [13]. The 

unmixing outputs derived from TSIs, however, can inform users 

only of how the proportion of each LCLU class changes at the 

pixel-level, and cannot provide detailed change information at a 

finer spatial resolution. There is, therefore, a need for techniques 

that can produce continuous, fine spatial resolution maps from 

coarse spatial resolution TSIs. 

In this paper, sub-pixel mapping (SPM) is suggested for 

continuous LCLU monitoring at a finer spatial resolution than 

that of the input TSIs. SPM, also termed super-resolution 

mapping in remote sensing, is a technique that can be achieved 

through the post-processing of spectral unmixing [14], [15]. By 

SPM, each coarse pixel is first divided into multiple sub-pixels 

and the number of sub-pixels for each class is determined by the 

spectral unmixing outputs and zoom factor. The sub-pixel 

classes are then predicted based on maximizing spatial 

dependence with the assumption that the land cover is spatially 

dependent both within and between pixels (i.e., compared to 

more distant pixels, neighboring pixels are more likely to be of 
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the same class). SPM transforms pixel level unmixing outputs 

(i.e., coarse LCLU proportions) into a finer spatial resolution 

hard classification, and this allows a hard classification 

technique to be applied at the sub-pixel level. 

Over the past few decades, SPM has received increasing 

attention in the remote sensing community and a variety of 

approaches have been developed. Some existing SPM 

algorithms include genetic algorithms [16], particle swarm 

optimization [17], the pixel swapping algorithm (PSA) [18], [19], 

Hopfield neural network [20], [21], maximum a posteriori 

method [22], sub-pixel/pixel spatial attraction model (SPSAM) 

[23], [24], back-propagation neural network [25], [26], Kriging 

[27], indicator cokriging [28]-[30], Markov random field 

[31]-[33], contouring method [34], and the newly developed 

soft-then-hard SPM framework [35], [36]. In these algorithms, 

spatial dependence is described in different ways. 

Recently, SPM has been applied to bi-temporal LCLU 

mapping [37]-[41]. In [37], with two 300 m Medium Resolution 

Imaging Spectrometer (MERIS)-like images as inputs, the HNN 

was employed to detect forest changes in Brazil at a 30 m spatial 

resolution. With the availability of a fine spatial resolution map 

(FSRM) on one date, Ling et al. [38] and Xu and Huang [39] 

modified the PSA for SPM of the coarse image on the other date, 

by borrowing thematic information in the FSRM. In [40], with 

the aid of a FSRM, a Markov random field model was developed 

to detect bi-temporal forest changes in the Brazilian Amazon 

Basin at a 30 m spatial resolution. Wang et al. [41] utilized a 

FSRM to modify the initialization of a Hopfield neural network 

to achieve more accurate and faster bi-temporal change 

detection at a sub-pixel resolution. 

To the best of our knowledge, very little work has been 

reported on SPM of coarse spatial resolution TSIs for the 

purpose of continuous sub-pixel resolution LCLU monitoring. 

This goal may be achieved straightforwardly by employing 

directly existing SPM algorithms for the SPM of each coarse 

image in the TSI in turn. Such a scheme, however, fails to 

account for the temporal correlation between images. As widely 

acknowledged, temporal correlation is likely to exist between 

TSIs covering the same scene. It is always favorable to account 

for temporal correlation between images when performing 

LCLU classification of TSIs, as indicated by existing studies on 

pixel level multi-temporal mapping [3]-[11]. It is of great 

interest to develop SPM algorithms for continuous LCLU 

mapping at a sub-pixel resolution, which accounts for spatial 

and temporal dependences simultaneously. 

In this paper, a new spatio-temporal SPM algorithm is 

proposed for multi-temporal LCLU mapping from coarse TSIs. 

SPM of coarse TSIs is formulated as a constrained optimization 

problem: The objective is to maximize the spatio-temporal 

dependence in the TSIs, under the coherence constraint imposed 

by the coarse proportions of each LCLU class in each image. 

The spatio-temporal dependence at the sub-pixel scale is defined 

by fusing the spatial dependence with the temporal dependence. 

Existing SPM algorithms based on spatial dependence provide 

effective ways to characterize spatial dependence, which can be 

described either by the relationship between the sub-pixel and its 

spatially neighboring sub-pixels or by the relationship between 

the sub-pixel and its neighboring pixels. 

In pixel level multi-temporal classification, temporal links can 

be described by class transition or joint probabilities [4]-[6], [8], 

[9]. However, SPM involves scale transformation and, thus, the 

temporal dependence needs to be depicted at the sub-pixel level. 

In the proposed spatio-temporal SPM algorithm, one of the main 

problems to be addressed is related to the definition of an 

effective mathematical model for temporal dependence 

characterization. Based on the assumption of temporal 

dependence, the LCLU information covered by each image of 

the TSIs is deemed to resemble each other, and the similarity 

becomes obvious when the images are temporally proximate. In 

this paper, we propose to quantify the temporal dependence by 

measuring the similarity in LCLU (but at the sub-pixel level) 

between images. The temporal dependence is combined with 

spatial dependence to define the new spatio-temporal 

dependence. 

The SPM problem is always ill-posed, with many multiple 

plausible solutions that can lead to an equally coherent 

reproduction of the input coarse proportion images. It is, thus, 

necessary to borrow information from auxiliary data, such as 

finer spatial resolution multi-source data [42]-[46] and shape 

information [47], [48]. The FSRMs are generally convenient to 

acquire during the period of the TSIs. The FSRM carries reliable 

LCLU information at the target fine spatial resolution. The 

proposed spatio-temporal SPM approach is, thus, designed 

based on the availability of at least one FSRM, which provides 

reliable fine spatial resolution temporal information for the TSIs. 

In this paper, the FSRM is assumed to be a “correct” starting 

point for SPM of the coarse image sequences using a cascade 

approach. 

The proposed spatio-temporal SPM approach holds the 

following advantages. 

1) By fusing spatial and temporal dependences, the two 

types of dependence are complementary. That is, the 

spatial dependence accounts for the correlation of LCLU 

of sub-pixels within each image, while the temporal 

dependence accounts for the correlation of sub-pixel 

classes between images in the sequence of TSIs. Thus, 

information encapsulated in the TSIs is exploited more 

deeply. 

2) The incorporation of a FSRM in the given period can 

decrease the uncertainty in the SPM problem. The 

thematic LCLU information in the FSRM is propagated 

through from the closest to the farthest image in the TSIs. 

Such information helps to decrease the solution space in 

the SPM of each image, thereby increasing the SPM 

accuracy. 

3) The temporal and spatial dependences are fused with 

weights that can be estimated without manual 

intervention. The weights are estimated by a fitting 

process, in which the FSRM is treated as a training image. 

Therefore, quantification of spatio-temporal dependence 

is completely automatic. 

4) The spatial dependence characterization is flexible. The 

spatial dependence can be described either by the 

relationship between sub-pixels or by the relationship 

between a sub-pixel and its neighboring pixels. 

5) The approach offers an excellent opportunity for LCLU 

dynamic monitoring and change detection at a finer 

spatial resolution than the available coarse TSIs. For 

example, by applying it to SPM of the coarse MODIS 

TSIs that inherently have a fine temporal resolution, fine 
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spatio-temporal resolution LCLU monitoring can be 

achieved. 

The remainder of this paper is organized as follows. Section 2 

first presents the problem formulation of spatio-temporal SPM 

of the TSIs in Section 2.1, and then the approach to spatial 

dependence characterization in Section 2.2 (including two 

categories of method to describe spatial dependence) and 

proposed temporal dependence characterization in Section 2.3. 

Section 2.4 introduces the proposed spatio-temporal dependence 

model, followed by the two important considerations for SPM of 

TSIs (i.e., the starting image and the manner in which sub-pixel 

information is propagated temporally) in Section 2.5. The 

algorithm to solve the constrained optimization problem is 

introduced in Section 2.6. The last sub-section describes the 

approach to automatic weight estimation. Section 3 provides the 

experimental results for three case studies. Further discussion is 

given in Section 4, and Section 5 concludes the paper. 

II. METHODS 

A. Problem formulation 

Let R be the number of TSIs, S be the zoom factor (i.e., each 

coarse pixel is divided into S by S sub-pixels), t

jP  

( 1,2,...,j M , M is the number of pixels in each coarse 

image) be a coarse pixel in the t-th image It ( 1,2,...,t R ) and 

( )t

k jF P  be the coarse proportion of the k-th ( 1,2,...,k K , K is 

the number of classes) class for pixel t

jP . Based on physical 

processes, the coarse proportions estimated by spectral 

unmixing usually meet the abundance sum-to-one constraint and 

the abundance non-negativity constraint. 

For a particular pixel in each image It, say t

jP , the number of 

sub-pixels for the k-th class, ( )t

k jE P , is 

2( ) round( ( ) )t t

k j k jE P F P S                          (1) 

where round() is a function that takes the integer nearest to . 

The sum of the numbers of sub-pixels for all K classes is 2S . Let 
t

ijp  (
2=1,2,...,i MS ) be a sub-pixel within coarse pixel 

t

jP  in 

image It, and ( )t

k ijB p  be the binary class indicator for the k-th 

class at sub-pixel t

ijp  

1, if sub-pixel  belongs to class 
( )

0, otherwise

t

ijt

k ij

p k
B p


 


.        (2) 

In the SPM result of each image in the TSIs, each sub-pixel 

should be assigned to only one class and the number of 

sub-pixels for each class should be consistent with the coarse 

proportion data, which are described as 

2

2

1

1

( ) 1, 1,2,..., ; 1,2,...,

( ) ( ), 1,2,..., ; 1,2,...,

K
t

k ij

k

S
t t

k ij k j

i

B p i S j M

B p E P k K j M





  

  





.      (3) 

The task of SPM of TSIs is to obtain the binary class 

indicators for all sub-pixels in all R coarse images in the TSIs. In 

this paper, they are predicted based on spatio-temporal 

dependence. In the proposed spatio-temporal dependence-based 

SPM method, the objective for the SPM problem is formulated 

as 
2

1 1 1

max ( , ; )
R M S

t j i

A i j t
  

                             (4) 

where ( , ; )A i j t  is the spatio-temporal dependence for sub-pixel 

t

ijp  in image It. The proposed SPM method aims to maximize 

the sum of spatio-temporal dependence for all sub-pixels in all 

TSIs, under the coherence constraint in (3). ( , ; )A i j t  consists of 

two parts: spatial dependence ( , ; )SD i j t  and temporal 

dependence ( , ; )TD i j t . The two types of dependence are 

described below. 

B. Spatial dependence 

Based on the ubiquity of spatial dependence in the 

environment, at least at some scale, the LCLU is assumed to be 

spatially dependent within and between pixels; compared to 

more distant pixels, neighboring pixels are more likely to be of 

the same class (note this assumption may not be valid for 

small-sized objects, such as small residential buildings relative 

to Landsat 30 m). SPM exploits this property by setting the goal 

of SPM as maximizing the spatial dependence in the predicted 

image. This is the primary assumption that has underpinned 

SPM. There are two types of SPM methods to characterize the 

spatial dependence. One models the relationship between a 

sub-pixel and its spatially neighboring sub-pixels, while the 

other models the relationship between a sub-pixel and its 

neighboring pixels. The popular PSA is a typical SPM method 

for the former type [18]. With respect to the latter type, we 

consider three methods, including SPSAM, Kriging and radial 

basis function (RBF) interpolation [49]. In this paper, the two 

types of SPM methods are considered to describe the spatial 

dependence. For simplicity, we denote the spatial dependence 

quantified by the first and second types as ( , ; )SS

SD i j t  and 

( , ; )SP

SD i j t , where “S” and “P” denote “sub-pixel” and “pixel”. 

1) Spatial dependence described by the relationship between 

sub-pixels: The PSA assumes that there is attractiveness 

between sub-pixels. The greater the attractiveness, the greater 

the spatial dependence. The PSA works by attracting sub-pixels 

of the same class to cluster spatially under the constraint of 

coherence with the original pixel-level class proportions. We, 

therefore, use sub-pixel attractiveness to describe the spatial 

dependence. Specifically, for a sub-pixel t

ijp , the attractiveness 

between it and its spatially neighboring sub-pixels is quantified 

by 

1 1

1
( , ; ) ( , ) ( ) ( )

SSN K
SS t t t t

S SS ij m k ij k m

m kSS

D i j t w p p B p B p
N  

         (5) 

where 
t

mp  is a spatially neighboring sub-pixel of 
t

ijp  in image It 

and SSN  is the number of spatial neighbors. The sub-pixels of 

the same LCLU class within the spatial neighborhood (i.e., the 

term 
1

( ) ( )
K

t t

k ij k m

k

B p B p


  takes the value 1) will result in a larger 

attractiveness value, indicating greater spatial dependence. In (5), 
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( , )t t

SS ij mw p p  is a distance-dependent weight for the spatial 

dependence between sub-pixels t

ijp  and 
t

mp
 

1
( , )

( , )

t t

SS ij m t t

SS ij m

w p p
d p p 

                         (6) 

in which ( , )t t

SS ij md p p  is the spatial (Euclidian) distance between 

sub-pixels t

ijp  and 
t

mp , and   is a non-linear parameter. The 

spatial dependence decreases with increasing spatial distance. 

2) Spatial dependence described by the relationship between 

sub-pixels and pixels: In the SPSAM, Kriging and RBF 

interpolation methods, the relationship between a sub-pixel and 

neighboring pixels is used to estimate the soft class value at each 

sub-pixel. Let ( )t

k ijF p  be the soft class value for the k-th class at 

sub-pixel t

ijp . Accordingly, the spatial dependence ( , ; )SP

SD i j t  

is calculated as 

1

( , ; ) ( ) ( )
K

SP t t

S k ij k ij

k

D i j t F p B p


                       (7) 

where ( )t

k ijF p  depends on the coarse class proportions within 

the neighboring pixels of t

ijp  in image It and the spatial 

distances between sub-pixel t

ijp  and its neighboring pixels. The 

approach to prediction of ( )t

k ijF p  for the three methods can be 

found in [23], [27], [49]. 

C. Temporal dependence 

It is well known that temporal dependence exists between 

TSIs. However, how best to describe mathematically the 

temporal dependence at sub-pixel resolution is a key problem. 

Temporal dependence has been used widely in pixel-level 

LCLU mapping. In the existing literature [4]-[6], [8], [9], 

temporal dependence was modeled by transition or joint 

probability matrices between LCLU classes. The transition or 

joint probabilities can be estimated from training data, if such 

information is available. Commonly, this type of training 

information can be difficult to acquire, as the training pixels at 

the different times should have the same coordinate that 

corresponds to the same points on the ground and should be 

statistically representative of all the transitions in the whole 

scene. To release the dependence on such training data, some 

iterative techniques were developed for estimation of transition 

or joint probabilities in [4]-[6]. These iterative methods, 

however, involve computationally costly processes. 

For SPM of TSIs, when there is access to high quality training 

data at the desired fine spatial resolution, they can be used 

readily to estimate the transition or joint probabilities. With 

respect to iterative techniques in [4]-[6], although they are 

directed at pixel level mapping, they undeniably provide 

informative references for estimation of the probabilities at the 

sub-pixel level in the future. In this paper, as a simpler 

alternative and building on the concept of spatial dependence 

used commonly in SPM, the temporal dependence at sub-pixel 

resolution is proposed to be characterized by the similarity in 

LCLU (in terms of class labels) between temporally close 

images. Based on temporal dependence, the LCLU maps of the 

TSIs are considered to resemble each other when they are 

temporally proximate. By maximizing the temporal dependence, 

the differences in LCLU between the TSIs can be minimized. In 

temporal space, for each coarse pixel t

jP , the objective is a 

constrained optimization problem. 
2

1 1

max ( , ; )
R S

T

t i

D i j t
 

 .                             (8) 

The coherence constraint is the same as that in (3). Theoretically, 

such a scheme can help to separate more of the real LCLU 

changes (i.e., signal) from noise. Compared to more temporally 

distant images, neighboring images have greater similarity in 

LCLU class. The greater the similarity, the greater the temporal 

dependence. This assumption is analogous to that for spatial 

dependence, in which the class label of the sub-pixel is assumed 

to resemble its spatial neighbors. Therefore, the temporal 

dependence for each sub-pixel can be described as 

1 1

1
( , ; ) ( , ) ( ) ( )

TN K
t r t r

T T ij ij k ij k ij

r kT

D i j t w p p B p B p
N  

          (9) 

where r

ijp  is a sub-pixel in image Ir that is acquired on a date 

close to that for image It. The temporally neighboring sub-pixel 
r

ijp  has the same spatial coordinate with t

ijp  corresponding to 

the same points on the ground. TN  is the number of temporally 

neighboring images. ( , )t r

T ij ijw p p  is a weight for the temporal 

dependence between sub-pixels t

ijp  and r

ijp . It depends on the 

time interval between t

ijp  and r

ijp
 

1
( , )

( , )

t r

T ij ij t r

T ij ij

w p p
d p p 

                        (10) 

where ( , )t r

T ij ijd p p  is the time interval between t

ijp  and r

ijp , and 

measured by the acquisition time intervals between two images, 

and   is a non-linear parameter. As the time interval increases, 

the temporal dependence decreases. The binary class indicator of 

sub-pixel t

ijp  (i.e., ( )t

k ijB p ) is compared to that of r

ijp  (i.e., (i.e., 

( )r

k ijB p )) to measure the similarity in LCLU between 

temporally close images. If the two sub-pixels belong to the 

same class, the term 
1

( ) ( )
K

t r

k ij k ij

k

B p B p


  takes 1; otherwise, the 

term takes the value 0, indicating weaker temporal dependence. 

Thus, the greater the similarity in binary class indicators, the 

greater the temporal dependence. 

D. Spatio-temporal dependence 

In the proposed spatio-temporal dependence-based SPM, the 

sub-pixel class depends not only on the spatial information in the 

studied image for SPM, but also the thematic information in the 

temporally neighboring images of the TSIs. The goal is to 

maximize the spatial autocorrelation in the image for SPM and at 

the same time the similarity in LCLU between TSIs, under the 

coherence constraint imposed by the coarse proportions (see (3)). 

That is, the spatial and temporal dependences need to be 

maximized simultaneously to achieve SPM. It is essential to 

choose a suitable fusion approach to combine these two types of 

dependence. In [50], several existing approaches have been 

summarized for multisource data fusion, including an approach 

subdividing the data into subsets of sources and then analyzing 



>TGRS-2015-00405< 

 

5 

each subset, an ambiguity reduction approach, a supervised 

relaxation labeling approach and a stacked-vector approach. 

They have significant limitations as general approaches for 

multisource data fusion [50]. 

We select the consensus fusion approach developed in [50] to 

fuse spatial and temporal dependences. Appreciating the 

property of finding consensus among members of a group of 

experts, consensus theory has been applied widely in statistics 

and management science [50], [51]. An appealing advantage of 

this fusion approach is that flexible weights can be assigned to 

different types of dependence and, thus, the contributions of 

different sources of dependence can be controlled according to 

specific requirements. As one of the most commonly used 

consensus rules, the linear opinion pool is employed in this 

paper. Following this rule, the spatial and temporal dependence 

is combined linearly to characterize the spatio-temporal 

dependence. Consequently, the spatio-temporal dependence for 

a single sub-pixel is 

1 2( , ; ) ( ) ( , ; ) ( ) ( , ; )S TA i j t t D i j t t D i j t              (11) 

where 1( )t  and 2 ( )t  ( 1 20 ( ), ( ) 1t t   ) are two weights 

controlling the influence of the two types of dependence for 

image It, and 1 2( ) ( ) 1t t   . Both ( , ; )SD i j t  and ( , ; )TD i j t  

fall within the interval [0, 1], thus, making it easier to choose 

appropriate weights between 0 and 1. How to determine the 

optimal weights is a key issue in the consensus fusion approach. 

The weights cannot be determined analytically. If a training set 

at the fine spatial resolution is available, the optimal weights can 

be determined by a training procedure. We treat the FSRM as the 

training image to estimate the optimal weights. The detailed 

process is illustrated in Section 2.7. 

            .

      .

.

It+1

It

It-1

            .

      .

.

 
Fig. 1. Spatio-temporal neighbors for a single sub-pixel (marked in black in 

image It). The spatial neighbors are either the green sub-pixels or deep red pixels. 

The temporal neighbors are the gray sub-pixels in the temporally closest images 
It-1 and It+1. 

 

As seen from Section 2.2, the spatial dependence ( , ; )SD i j t  

can be selected as ( , ; )SS

SD i j t  or ( , ; )SP

SD i j t , as defined in (5) or 

(7). Consequently, there are two approaches for modeling 

spatio-temporal dependence, which are denoted as SST and SPT. 

Fig. 1 shows an example for definition of spatio-temporal 

neighbors for a sub-pixel. In this example, by using 
SS

SD , the 

spatial dependence is described by the relationship between the 

black sub-pixel and its spatially neighboring sub-pixels (marked 

in green in image It); For 
SP

SD , the spatial dependence is 

described by the relationship between the black sub-pixel and its 

spatial neighboring pixels (marked in deep red in image It). The 

temporal dependence TD  can be described by the relationship 

between the black sub-pixel and its corresponding sub-pixels in 

the temporally closest images (marked in gray in images It-1 and 

It+1). 

E. Spatio-temporal SPM of TSIs 

We assumed access to at least one FSRM at the desired fine 

spatial resolution in the TSIs. The FSRM can be obtained from a 

GIS database or by hard classification of a fine spatial resolution 

remote sensing image (e.g., a Landsat image amongst coarse 

MODIS TSIs), under the condition that the source of FSRMs is 

temporally close to the studied TSIs. If the spatial information of 

the FSRM is coarser than the desired fine spatial resolution for 

SPM, an additional downscaling process will be required to 

provide the FSRM at the desired fine spatial resolution. The 

thematic LCLU information from the FSRMs can be used in the 

temporal dependence characterization. This section introduces 

the approach to SPM of TSIs using the concept of 

spatio-temporal dependence. The SPM process is performed for 

each image one-by-one. For convenience of illustration, we 

consider the case of one FSRM. The approach to SPM of TSIs 

introduced in this section can also be extended to the case of 

multiple FSRMs. When conducting SPM of TSIs, there are two 

important considerations. One is the starting image, while the 

other is the manner in which the temporal information is 

propagated. 

1) Starting point: As for the starting image, an intuitive option 

is the image at the earliest time. In this way, the starting point is a 

SPM solution of the earliest image and involves the inevitable 

uncertainty of the scale transformation (i.e., downscaling). By 

utilizing the temporal information, the uncertainty in the SPM of 

the starting image may be propagated to the SPM process of later 

images. To avoid such uncertainty, we select the FSRM as the 

starting point. 

The FSRM is a thematic LCLU map at the target fine spatial 

resolution, and can be regarded as a highly reliable SPM result at 

that time. From this viewpoint, the whole SPM process of the 

TSIs starts from the time closest to that of the FSRM to make the 

most use of the fine spatial resolution LCLU information in the 

FSRM and decrease the uncertainty in the SPM. Fig. 2 shows an 

example for illustration of this point. Suppose the FSRM is the 

x-th ( {1,2,..., }x R ) image in the TSIs, and the zoom factor S 

for SPM of each coarse image is four. The SPM process begins 

from the fine spatial resolution thematic map Ix looking to both 

of its sides: SPM of images Ix-1 and Ix+1 is carried out first. The 

LCLU distribution in the FSRM (such as red, yellow and blue 

pixels in the coarse pixel in Fig. 2) can be included in the 

temporal dependence characterization and used to aid the SPM 

of the corresponding coarse pixels in the temporally closest 

images Ix-1 and Ix+1. 

2) Propagation of temporal information: In multi-temporal 

image classification (but at pixel-level), two main approaches 

have been suggested for propagation of temporal information, 

that is, the cascade and mutual approaches [3], [8]. The main 

difference between the two approaches is choice of temporally 

neighboring images. For SPM of each image in the TSIs, the 

mutual approach borrows temporal information from images 

before it and after it. It repeats the SPM of TSIs to decrease the 

uncertainty and allow enough iteration for the process to 
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converge on a satisfactory solution. Such an iterative scheme is 

generally computationally expensive, especially when the 

number of TSIs (i.e., R) is large. In contrast to the mutual 

approach, the cascade approach is a single-pass scheme and, 

thus, non-iterative. In this paper, we use the non-iterative 

cascade approach for propagation of temporal information as it 

allows a significant simplification of the proposed 

spatio-temporal SPM for TSIs. 

In the cascade approach, once the image on a given date has 

been classified by SPM, the resultant map is considered as the 

source of temporal information for the next image that is 

temporally closest to it. For example, in Fig. 2, after SPM of 

image Ix-1 is completed by using the temporal information from 

the closest image (i.e., the FSRM), the SPM result along with the 

FSRM provides the temporal information for the next image Ix-2 

(see (11)), and so on. This is also the case for the images at the 

other side of Ix (i.e., Ix+1, Ix+2,…, IR). The arrows in Fig. 2 show 

the direction of temporal information propagation. The whole 

process is terminated when the SPMs of all coarse TSIs are 

predicted once.             .

      .

.

Ix+1

FSRM (Ix)

Ix-1

?

?

            .

      .

.

Ix-2

?

?

Ix+2

 
Fig. 2. SPM of the TSIs, in which the FSRM is considered as the starting point. 
The red, yellow and blue colors represent three LCLU classes in a coarse pixel 

containing 4 by 4 sub-pixels. 

F. Model optimization 

The proposed SPM method for coarse spatial resolution TSIs 

is implemented by maximizing the overall spatio-temporal 

dependence, as defined in the optimization problem in (4). The 

coherence constraint in (3) is imposed in the SPM of all TSIs. 

This section introduces the approach to solve the optimization 

problem. Ideally, the most suitable distribution of all sub-pixel 

classes within each coarse pixel can be obtained by evaluating 

all possible configurations and selecting the one that meets the 

constraint in (3) and maximizes the objective function in (4). 

This assumption works mainly for cases involving small-size 

images and a small zoom factor. For a large zoom factor, the 

number of combinations of possible sub-pixel spatial 

distributions increases dramatically and the computational load 

may become unrealistic. This necessitates the application of an 

effective optimization algorithm to solve the optimization 

problem. The simulated annealing algorithm is employed for 

this purpose [51]. Readers may refer to Atkinson [51] for details 

on this algorithm. 

The input is a set of proportion images for all TSIs, and the 

whole solving process contains two stages: initialization and 

update. The whole flowchart is shown in Fig. 3. 

Stage 1: Initialization. According to the constraint in (3), in 

each image, sub-pixels for each class are allocated. As a 

straightforward scheme, sub-pixel classes can be allocated 

randomly. However, to achieve a faster convergence rate, this 

paper adopts the corresponding basic SPM algorithm (i.e., 

SPSAM, Kriging or RBF method) to produce the initial SPM 

maps. For the SST method, in which the PSA is essentially the 

basic SPM algorithm, the simple and fast SPSAM is utilized for 

initialization. After initialization, only the spatial locations of the 

sub-pixels can vary, and the number of sub-pixels for each class 

within each coarse pixel is fixed. 

Stage 2: Update. As mentioned in Section 2.5, the SPM 

process is started from the FSRM and implemented for each 

coarse spatial resolution image one-by-one, that is, based on the 

cascade approach. 

1) For each coarse image, SPM is conducted in units of 

coarse pixels. 

2) For a current coarse image It, within a particular coarse 

pixel t

jP , the following steps are implemented. 

a) The sum of spatial dependence for all 
2S  sub-pixels 

is calculated by using ( , ; )SS

SD i j t  in (5) or 

( , ; )SP

SD i j t  in (7). Then, with the temporal 

neighbors in images from the FSRM to It-1 (if the 

time of It is after the FSRM) or It+1 (if the time of It is 

before the FSRM), the sum of temporal dependence 

for all 
2S  sub-pixels is calculated by using 

( , ; )TD i j t  in (9). For all 
2S  sub-pixels, the sum of 

spatio-temporal dependence is calculated according 

to (11). 

b) A pair of sub-pixels with different class labels is 

selected randomly and their spatial locations are 

swapped. The sum of spatio-temporal dependence 

for all 
2S  sub-pixels in the new configuration is 

calculated again. If the overall spatio-temporal 

dependence increases, the swap is accepted; 

Otherwise, the swap is allowed with a certain 

probability determined according to the current 

“temperature”. Such a probability decreases with the 

decreasing temperature at each iteration. 

3) For each coarse pixel, steps a) and b) are implemented. 

4) For the current image It, the swap process is repeated 

until the pre-defined number of iterations is reached. 

5) For each coarse image in the TSIs, steps 1)-4) are 

implemented. 

When calculating ( , ; )SS

SD i j t , the class labels of the 

neighboring sub-pixels are used, see (5). However, they are 

updated after each iteration. Thus, this type of spatial 

dependence needs to be calculated at each iteration. For 

( , ; )SP

SD i j t , however, it is calculated using the fixed coarse 

proportions, see (7). For each sub-pixel, the spatial dependence 

of all cases (one case corresponds to one class) can be quantified 

according to (7) in advance. The calculation is conducted only 

once and the generated values can be utilized in all iterations. 
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Therefore, the SPT approach is deemed more computationally efficient than the SST approach. 

 

Initialization

Visit a coarse image

Visit a coarse pixelOverall spatio-temporal 

dependence Sum_A within 

the coarse pixel

Swapping a pair of 

sub-pixels

Update the spatial 

distribution of 

sub-pixel classes 

Sum_A increased? 

Swapping is 

allowed

Yes

Swapping is 

allowed with 

a probability

All coarse

pixels visited? 

All coarse

images visited? 

Yes

No

No

…

…

Yes

Initialization

Input

Update

Output

No

DT in 

(10)

λ1 and λ2

DS in (5) 

or (8)

A in (12) Iteration completed? 

Yes

No

+

 
Fig. 3. Flowchart of the proposed spatio-temporal SPM algorithm. 

 

G. Estimation of optimal weights 

The weights in (11) (i.e., 1( )t  and 2 ( )t ) control the 

influence of the spatial and temporal dependences. This section 

introduces a new approach for completely automatic estimation 

of the optimal weights. As mentioned earlier, the FSRM is 

regarded as a highly reliable thematic LCLU map at the target 

fine spatial resolution. We therefore adopt the FSRM as a 

training image for weight estimation using a fitting procedure. 

The weights need to be estimated for each coarse image It 

( 1,2,...,t R ) in the TSIs (except the FSRM). Essentially, only 

one weight, either 1( )t  or 2 ( )t , needs to be estimated for each 

coarse image, as 1 2( ) ( ) 1t t   . 

Suppose S is the spatial resolution (zoom) ratio between the 

coarse images and FSRM, the FSRM is the x-th image in the 

TSIs (see Fig. 2) and the current image is Ix+n. The FSRM is first 

applied to spatio-temporal SPM of the coarse images from Ix+1 to 

Ix+n along the single direction, and then their SPM results are 

applied to spatio-temporal SPM of the degraded FSRM 

backwards. The original FSRM is used to examine each weight. 

The detailed processes are described as follows. 

Step 1: A weight pool is set for 1( )x n  : 

1,1 1,2 1,{ ( ), ( ),..., ( )}Lx n x n x n     . In this paper, 1( )x n   

was varied from 0.1 to 0.9 with a step of 0.1, that is, the pool set 

is {0.1,0.2,...,0.9} . 

Step 2: A weight 1, ( )l x n   ( {1,2,..., }l L ) is selected from 

the pool and the following procedures are conducted. 

1) Regarding the FSRM as a starting point, spatio-temporal 

SPM of coarse images Ix+1, Ix+2,…, Ix+n is performed with 

a zoom factor of S. In this process, the temporal 

information from the FSRM is propagated from Ix+1 to 

Ix+n, as illustrated in Section 2.6. 

2) The FSRM is degraded with the factor of S to simulate 

the coarse images at that time. 

3) SPM of the simulated coarse images for FSRM using the 

spatio-temporal model, in which the SPM results of Ix+1, 

Ix+2,…, Ix+n are considered as temporally neighboring 

images. 

4) The original FSRM is used for supervised assessment of 

the corresponding SPM result, and an accuracy value is 

recorded for the selected parameter. 

Step 3: Step 2 is implemented for all weights in the pool and L 

accuracy values are obtained as a result. 

Step 4: The weight leading to the greatest accuracy is 

determined as the optimal one. 

Step 5: Steps 1-4 are performed for the next coarse image 

Ix+n+1 to estimate the corresponding weight 1( 1)x n   . The 

whole procedure is terminated after all coarse images are visited. 

Fig. 4 is a flowchart of the weight estimation method. In this 

example, FSRM is assumed to be I0 and SPM goes from I1 to It 

directly. When the FSRM is not I0, SPM of each side follows the 

rule in Fig. 4. We can see from the procedure that the functions 

of FSRM in the proposed spatio-temporal approach are twofold: 

it not only provides valuable fine spatial resolution temporal 

information for the TSIs, but also acts as a training image to 

obtain the optimal weight. 
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t=1

l=1

l=L ? 

Yes

No

Degrade FRSM I0

SPM of degraded FRSM, 

using SPM results of I1,I2,…,It-1 

as temporal neighbors

Compare the SPM result with 

the FRSM for assessment

t=T ? 

Select out the optimal weight 

l=l+1

No

t=t+1
Yes

End

SPM of I1,I2,…,It-1, using 

already estimated weights

        SPM of It with 1, ( )l t

 
Fig. 4. Flowchart of optimal weight estimation approach, where the FSRM is 

assumed to be I0. 

III. EXPERIMENTS 

Two synthetic datasets and one real dataset were used in the 

experiments to examine the proposed spatio-temporal SPM 

approach. As stated in Section 2, there are two approaches for 

modeling spatial dependence, that is, 
SS

SD  in (5) and 
SP

SD  in (7). 

PSA was used for 
SS

SD , while three methods, SPSAM, Kriging, 

RBF, were used as for 
SP

SD . The corresponding spatio-temporal 

dependence structures are referred to as SST and SPT. The four 

original SPM methods were considered as benchmark 

algorithms in this section. For the SPSAM, Kriging and RBF 

methods (whether or not they are coupled with temporal 

dependence), the window sizes of the neighborhood were set to 

3, 5 and 5 [23], [27], [49]. The parameter in the basis function 

(i.e., Gaussian function) was set to 10 [49]. In addition, to 

illustrate the benefit of the SPM technique in LCLU mapping, 

traditional pixel level hard classification (HC) was performed, 

by which all sub-pixels within a coarse pixel are assigned to the 

dominant class. In total, nine methods were compared for SPM 

of TSIs. 

SPM is essentially a hard classification technique (but at the 

sub-pixel scale). The performances of the SPM methods were 

evaluated quantitatively by the classification accuracy of each 

class and the overall accuracy (OA) in terms of the percentage of 

correctly classified pixels. In the experiments on synthetic 

datasets, synthetic coarse images were considered, which 

contain no uncertainty in the coarse proportions. For pure pixels, 

SPM assigns all sub-pixels within it to the same class to which 

the pure pixel belongs. This simple copy process will only 

increase the SPM accuracy statistics without providing any 

useful information on the actual performance of the SPM 

methods, as suggested by the existing literature [21]. Therefore, 

for the synthetic coarse images, we did not consider the 

non-mixed pixels in the accuracy statistics. For the real dataset, 

both mixed and non-mixed pixels were included in the accuracy 

statistics. 

A. Synthetic datasets 

Two synthetic datasets were used for validation in Sections 

3.2 and 3.3. Specifically, the fine spatial resolution (i.e., 30 m in 

the experiments) TSIs are available and were degraded to 

synthesize the coarse spatial resolution TSIs. One of the 30 m 

thematic maps was considered as the FSRM. The coarse class 

proportion images were simulated by degrading the other 30 m 

thematic maps via an S by S mean filter. SPM methods were 

implemented to recreate the 30 m LCLU maps of the TSIs. The 

produced SPM results were compared to the corresponding 

reference maps for assessment. By using synthetic coarse images, 

the input proportions were known to be error free and represent 

greater control in the test. Moreover, the reference maps are 

known perfectly for SPM evaluation. The test is directed at the 

SPM algorithm itself which is appropriate at the method 

development stage [14]. 

    

    
 Water      Urban      Vegetation 

Fig. 5. Four Landsat images of Shenzhen, China on four dates. From left to right: 

I1 in Nov 2001, I2 in Nov 2002, I3 in Nov 2004 and I4 in 23 Nov 2005. Line 1: 

Color image (Bands 4, 3 and 2 as RGB). Line 2: Hard classified LCLU maps 
used as reference. 

 

   
C1: Developed, High intensity   C2: Developed, Medium intensity 

C3: Evergreen Forest     t C4: Open Water 

 C5: Cultivated Crops      C6: Deciduous Forest 

C7: Emergent Herbaceous Wetlands  C8: Developed, Low Intensity 

C9: Barren Land (Rok/Sand/Clay) ) C10: Shrub/Scrub 

 C11: Mixed Forest       C12: Pasture/Hay 

C13: Developed, Open Space    C14: Woody Wetlands 
C15: Grassland/Herbaceous 

Fig. 6. Three NLCD maps in Georgia, US at three times. From left to right: 

NLCD 2001, NLCD 2006 and NLCD 2011. 

 

The first dataset includes four 30 m Landsat images covering 

an area in Shenzhen, China. They were acquired in Nov 2001 

(I1), Nov 2002 (I2), Nov 2004 (I3) and Nov 2005 (I4). 

Registration and radiometric correction (using the LEDAPS tool) 

were applied to the Landsat images. The study area is a 

heterogeneous region covered by 600 by 600 pixels in which 

three main LCLU classes can be identified, including water, 

urban and vegetation. The four images were classified using 

K-means-based unsupervised classification to generate the four 

30 m reference LCLU maps. Fig. 5 shows the four images and 

the classified LCLU maps. 
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The second dataset includes three maps from the National 

Land Cover Database (NLCD) 2001, 2006 and 2011. The NLCD 

dataset is a raster-based classification with a 30 m spatial 

resolution covering all 50 US states and Puerto Rico. The study 

area covers an area in Georgia, and has a size of 1000 by 1000 

pixels and ground extent of 30 km by 30 km. As shown in Fig. 6, 

15 classes are presented in the maps, which are labeled as 

C1-C15. This dataset aims to examine the proposed approach for 

a large region with a large number of LCLU classes. 

B. Experiment on the Shenzhen Landsat images 

In this section, we used the 30 m reference map in 2001 as the 

FSRM. The other three 30 m maps were degraded with an 8 by 8 

mean filter to synthesize 240 m MODIS-like TSIs (R=3). Fig. 7 

shows the 240 m proportion images of the three classes for the 

image in 2002, which can be treated as error-free spectral 

unmixing results. Through visual inspection, due to the 

ambiguous boundaries between classes, the LCLU information 

presented in these proportion images was found to be 

insufficient for interpretation. Three sets of proportion images 

were taken as input for SPM. With a zoom factor of eight (i.e., 

S=8), three 30 m LCLU maps of the TSIs were reproduced. We 

took the results of the 2002 image as an example for visual 

inspection. 

   
(a)                                    (b)                                     (c) 

 
0                          100% 

Fig. 7. Synthesized 240 m proportion images of the 2002 Shenzhen Landsat 

image. (a) Water. (b) Urban. (c) Vegetation. 

 

We first show the influence of the weights (see (11)) in the 

proposed spatio-temporal approach in Fig. 8. Both the SPT and 

SST methods produce a stable accuracy when the weights 

change from 0.1 to 0.6. The approach presented in Section 2.7 is 

able to determine an appropriate weight for characterizing 

spatio-temporal dependence, as marked by the asterisk. Fig. 9 

shows the SPM results of the nine methods for the 2002 image. 

The HC result in Fig. 9(a) was dominated by the jagged 

boundaries that provide limited LCLU information at the 30 m 

spatial resolution. The other eight SPM methods produced more 

detailed LCLU information than the HC method and the 

boundaries in Fig. 9(b)-Fig. 9(i) were characterized by more fine 

(i.e., 30 m) pixels. This reveals the obvious benefit of SPM in 

LCLU mapping. Comparing the results of the four proposed 

spatio-temporal SPM methods in Fig. 9(f)-Fig. 9(i) to those of 

the original methods in Fig. 9(b)-Fig. 9(e), the proposed methods 

produced much more satisfying results than the original methods. 

The original SPM methods (i.e., SPSAM, Kriging and RBF), 

based only on the spatial dependence between sub-pixels and 

neighboring coarse pixels, produced many linear artifacts, 

particularly for the SPSAM method. This phenomenon can be 

illustrated by the distribution of the urban class in the results. For 

the original PSA method, which described the spatial 

dependence at sub-pixel level, the result was over-smooth (see, 

e.g., the boundaries of the river class), with many disconnected 

and hole-shaped patches (e.g., the restoration of the urban class). 

The four proposed methods, by accommodating temporal 

information propagated from the FSRM, restored many linear 

features and small size patches, and the results were similar to 

the 2002 reference map in Fig. 5. 

 
Fig. 8. Influence of weights in (11) for SPM of the 2002 Shenzhen Landsat image, 
where the estimated optimal weights in each case are marked by the asterisk. 

 

   
(a)                                    (b)                                     (c) 

   
(d)                                    (e)                                     (f) 

   
(g)                                    (h)                                     (i) 

Fig. 9. Results of the 2002 Shenzhen Landsat image. (a) HC. (b) SPSAM. (c) 

Kriging. (d) RBF. (e) PSA. (f)-(h) SPT results of SPSAM, Kriging and RBF. (i) 
SST (PSA). 

 

Table 1 lists the accuracies of the nine methods for all three 

images in the TSIs. Checking the class accuracies as well as the 

OAs for all images, the proposed spatio-temporal approaches 

were superior to HC and the four original SPM methods (the 

differences in OAs are statistically significant at the 95% level of 

confidence based on the McNemar test). For the HC and four 

original SPM methods, they produced close OAs (around 79% 

for all three images). Using the proposed spatio-temporal 

approaches, all four original SPM methods were enhanced. 

More precisely, for the 2002 image, using the proposed 

approaches, the accuracy gains of the water, urban and 

vegetation classes were about 15%, 8% and 8%, respectively, 

and the gains of OA were about 9%. Focusing on the values of 

the 2004 image, the increases in accuracy were smaller than 

those for the 2002 image. The accuracies of the water, urban and 

vegetation classes increased by around 13%, 4% and 5%, 

respectively, and the OAs increased by around 5%. Regarding 
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the 2005 image, the OAs of the proposed approaches were about 

4% larger than those of the original SPM methods. Therefore, 

for spatio-temporal SPM of a coarse image, the SPM accuracy 

decreased when the acquisition time interval between the FSRM 

and the coarse image increased. An interesting observation is 

that the accuracy increase for water was much greater than that 

for the urban and vegetation classes. Moreover, it is worth noting 

that the SST and SPT approaches have similar performances in 

SPM: the OAs of the four new methods are close and the 

differences are insignificant at the 95% level of confidence. 

C. Experiment on the NLCD maps 

In the experiment on the NLCD maps, the NLCD 2001 map 

was selected as the FSRM. The NLCD 2006 and 2011 were 

degraded with an 8 by 8 mean filter to simulate the 240 m coarse 

TSIs. The synthesized two sets of coarse proportion images were 

considered as spectral unmixing results. SPM was performed 

with S=8 to restore the 30 m LCLU maps for the TSIs. The 

results of the NLCD 2011 map are shown in Fig. 10. For clear 

visual inspection, we present zoomed results of a sub-area, with 

a size of 100 by 100 pixels and marked in Fig. 10(a). 

 
(a)                     (b)                     (c)                     (d)                     (e) 

 
(f)                     (g)                     (h)                     (i)                     (j) 

 
(a1)                   (b1)                   (c1)                   (d1)                   (e1) 

 

(f1)                   (g1)                    (h1)                   (i1)                   (j1) 

Fig. 10. Results for the NLCD 2011 map. (a) Reference. (b) SPSAM. (c) Kriging. 

(d) RBF. (e) PSA. (f) HC. (g)-(i) SPT results of SPSAM, Kriging and RBF. (j) 

SST (PSA). (a1)-(j1) Results of the sub-area. 

 

Examining the results, again the proposed spatio-temporal 

approaches produced more accurate results than the other 

approaches. Specifically, the HC result has an unnatural blocky 

appearance, and many features are mis-represented. Although 

the four original SPM methods were able to reproduce more 

LCLU information, the configuration of the classes was 

considerably different from that in the reference in Fig. 10(a). 

For example, they failed to reproduce the linear features of the 

C2 class and the C11 class was over-compact. There exist many 

large patches and linear artifacts in the SPSAM, Kriging and 

RBF results, and many locally smooth and disconnected patches 

in the PSA result. With respect to the proposed methods, 

however, most of the fine pixels were correctly located. The 

configurations of the scattered C11 and C12 classes were 

generally accurately reproduced and the linear feature for the C2 

class was also well restored. Referring to Fig. 10(a), the results 

of the proposed methods were very close to the reference. 

The quantitative results of the nine methods are displayed in 

Table 2. Consistent with the abovementioned visual evaluation, 

the four proposed spatio-temporal SPM methods produced 

greater accuracy than the other methods for both the NLCD 2006 

and 2011 maps. Examining the results for the 2006 map, the OA 

gains from the four original SPM methods compared to the four 

corresponding spatio-temporal SPM methods were around 35%. 

For the 2011 map, the OAs of the four original SPM methods 

increased from 59% to 90% for the proposed methods, with 

gains of 31%. Furthermore, inter-comparison of the four 

spatio-temporal SPM methods reveals that the two types of 

spatio-temporal dependence (i.e., SST and SPT) led to similar 

accuracies (the differences are insignificant at the 95% level of 

confidence). More precisely, they yielded accuracies of about 

93.4% and 90% for the 2006 and 2011 maps, respectively. 

 

Table 1 SPM accuracy (%) of the nine methods for the TSIs. The 30 m reference map in 2001 was used as the FSRM 

2002 

 
HC SPSAM Kriging RBF PSA 

SPT SST 
(PSA) SPSAM Kriging RBF 

Water 58.85 67.18 67.73 68.67 69.22 84.60 84.67 85.20 85.75 

Urban 78.06 77.72 78.19 78.49 77.97 86.66 86.81 86.91 87.21 

Vegetation 

OA 

82.30 

79.07 

80.41 

78.46 

80.80 

78.90 

81.13 

79.25 

80.76 

78.87 

88.52 

87.49 

88.65 

87.63 

88.74 

87.75 

89.01 

88.04 

2004 

 
HC SPSAM Kriging RBF PSA 

 SPT  SST 

(PSA) SPSAM Kriging RBF 

Water 61.82 68.40 69.21 70.05 70.72 83.34 83.13 83.29 84.51 

Urban 80.92 80.32 80.78 81.06 80.55 84.09 84.27 84.31 84.48 

Vegetation 
OA 

80.11 
79.32 

80.03 
79.43 

80.56 
79.94 

80.94 
80.30 

80.51 
79.91 

84.73 
84.35 

84.90 
84.50 

84.96 
84.56 

85.17 
84.81 

2005 

 
HC SPSAM Kriging RBF PSA 

 SPT  SST 
(PSA) SPSAM Kriging RBF 
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Water 49.55 58.41 58.97 59.56 59.85 73.91 73.98 74.18 74.87 

Urban 81.64 79.46 79.88 80.19 79.72 82.79 83.03 83.10 83.46 

Vegetation 

OA 

80.51 

78.78 

79.99 

78.19 

80.46 

78.64 

80.84 

79.00 

80.35 

78.58 

84.17 

82.80 

84.40 

83.02 

84.46 

83.10 

84.85 

83.50 

 

Table 2 SPM accuracy (%) of the nine methods for the TSIs. The 30 m NLCD 2001 map was used as the FSRM 

 
HC SPSAM Kriging RBF PSA 

 SPT  SST 

(PSA) SPSAM Kriging RBF 

NLCD 2006 
NLCD 2011 

58.59 
58.01 

58.69 
58.15 

59.39 
58.80 

59.84 
59.23 

59.37 
58.80 

93.33 
89.98 

93.42 
90.15 

93.46 
90.22 

93.39 
90.19 

 

D. Influence of the FSRM and registration errors 

The proposed spatio-temporal approach borrows fine spatial 

resolution information in the FSRM when accounting for 

temporal dependence. It acts as a starting point for SPM of the 

TSIs and its information is propagated through the whole 

time-series. This necessitates a study on the influence of the 

FSRM on the performance of the proposed method. In this 

section, we considered two factors when using the FSRM: the 

error of the FSRM and the registration error between the FSRM 

and the coarse time-series images. 

1) Error of the FSRM: The NLCD maps were used to analyze 

the influence of the error of the FSRM on the proposed approach. 

The 30 m NLCD 2001 map was used as the FSRM. The NLCD 

2006 and 2011 maps were degraded via an 8 by 8 mean filter. 

Taking the sythsized 240 m proportion images as input, SPM 

was performed with S=8 to restore the 30 m TSIs. We simulated 

FSRMs with different errors by changing the class labels of 

some pixels in the 30 m NLCD 2001 map. For example, to create 

a FSRM with an error of 10%, 10% of the pixels in the whole 

map were selected randomly and their class labels were changed 

to others. In this sub-section, FSRMs were simulated with errors 

of 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80% 

and 90%. The performances of both SPT- and SST- based 

spatio-temporal approaches were tested. Here, the RBF method 

was selected as a representative for the SPT approach. Fig. 11 

displays the SPM accuracies of the SPT and SST approaches in 

relation to the error of the FSRM. Meanwhile, the accuracies of 

two original SPM methods (i.e., RBF and PSA) were also 

included as benchmarks. From the figure, three observations can 

be made. 

 
Fig. 11. Influence of the error of the FSRM on the proposed method. 

 

First, the accuracies decreased with increasing error of the 

FSRM. For SPM of the coarse 2006 image, the OAs of two 

spatio-temporal approaches decreased from 93% to 56% when 

the error increased from 0 to 90%, while for the 2011 image, the 

OAs decreased from 90% to 55% correspondingly. 

Second, when the error of the FSRM reached 80%, the 

accuracies of the spatio-temporal SPM approaches were lower 

than those of the original methods, suggesting that the FSRM 

could not help to increase the accuracy of the proposed 

approaches. 

Third, when the FSRM has an error between 20% and 70%, 

the SST approach is more advantageous in comparison with the 

SPT approach. Particularly, when the error falls within [40%, 

60%], for each image the OA of the SST approach was over 1% 

larger than that of the SPT approach. 

2) Registration error: The Shenzhen Landsat images were 

used to analyze the registration error between the FSRM and the 

coarse time-series images. The 30 m reference map in 2001 was 

used as the FSRM, and the other three images were degraded 

with an 8 by 8 mean filter to simulate the 240 m coarse TSIs. 

SPM was conducted with S=8 for each coarse image. We 

simulated registration errors ranging from −4 to 4 sub-pixels. Fig. 

12 shows the SPM accuracies of the original RBF and PSA 

approaches, and the proposed SPT (RBF) and SST (PSA) 

approaches in relation to the registration error. It can be 

observed clearly that the registration error imposes a negative 

effect on the proposed spatio-temporal SPM methods and the 

accuracies of both SPT and SST decrease with the increasing 

absolute value of registration error. Moreover, when the absolute 

value of error exceeds two sub-pixels, SPT and SST produce 

smaller accuracies than the original RBF and PSA methods. 

Therefore, reliable registration is critical in the proposed 

spatio-temporal SPM methods. 

 
Fig. 12. Influence of registraiton error between the FSRM and coarse time-series 
images. 

E. Computing Efficiency 

All experiments were carried out on an Intel Core i7 Processor 

at 3.40 GHz with the MATLAB 7.1 version. In the 

spatio-temporal approaches, the number of iterations for 

simulated annealing was set to 3000. In the original PSA method, 

the iteration number was 1000. Table 2 is the average computing 

time for each image achieved using the SPM methods in the 

experiments. The computational cost of SPM is closely related 

to the size of coarse image, zoom factor and number of classes in 

the study area. As observed from the table, the original SPSAM, 

Kriging and RBF took much less time than the original PSA 

method. This is because the SPSAM, Kriging and RBF methods 

are implemented based on 
SP

SD , that is, calculated using the 

fixed coarse proportions and, thus, are non-iterative. However, 
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the PSA method depends on the class labels of sub-pixels and 

requires several iterations to achieve an acceptable solution. 

With respect to the four proposed spatio-temporal approaches, 

they were more time-consuming than the original methods. The 

reason is that the incorporation of temporal aspects in the 

proposed approaches complicated the process of model 

optimization, and more iterations were required to converge to a 

satisfactory solution. It is worth noting that by using 
SP

SD  for 

spatial dependence characterization, the SPT approaches are 

faster than the SST approach. The main reason is that 
SP

SD is 

calculated only once and utilized in all iterations, while 
SS

SD  

needs to be calculated at each iteration. 

 

Table 3 Computing time (average for each image in the TSIs) of the SPM methods in the experiments 

 Size of coarse 

image 

Zoom 

factor S 

Number of 

classes SPSAM Kriging RBF PSA 
SPT SST 

(PSA) SPSAM Kriging RBF 

Shenzhen 75×75 8 3 2s 17s 17s 65s 152s 167s 167s 200s 

NLCD 125×125 8 15 30s 49s 48s 214s 490s 509s 508s 800s 

 

Table 4 SPM accuracy (%) of the SPM methods for the real dataset 

 
SPSAM Kriging RBF PSA 

SPT SST 
(PSA) SPSAM Kriging RBF 

OA 70.70 70.66 70.61 70.63 71.78 71.75 71.72 71.91 

 

F. Application to the real dataset 

The studied real dataset covers a 45 km by 45 km area of 

tropical forest in Brazil, within which two main land cover 

classes, forest and non-forest, were identified. We performed 

SPM of a MODIS image acquired in July 2005, using the 

Landsat image acquired in July 1988 as the source of the FSRM 

(the FSRM was produced with an unsupervised k-means 

classifier). The original seven-band MODIS image was 

re-projected into a Universal Transverse Mercator projection 

and resampled to 450 m using the nearest-neighbor algorithm. 

The task of SPM was to produce a 30 m spatial resolution land 

cover map in July 2005, and the zoom factor for SPM was set to 

15. The Landsat image acquired in July 2005 was classified with 

an unsupervised k-means classifier to provide the reference for 

accuracy assessment. The Landsat image in 1988 and MODIS 

image in 2005 are shown in Fig. 13. 

  
(a)                                       (b) 

Fig. 13. The real dataset. (a) The Landsat image in July 1988 (1500 by 1500 

pixels, bands 432 as RGB). (b) The MODIS image in July 2005 (100 by 100 

pixels, bands 214 as RGB). 

 

For the MODIS image, spectral unmixing was performed 

based on a fully constrained least squares linear spectral mixture 

analysis. The proportion images of forest and non-forest were 

used as input for SPM. Table 4 presents the accuracy of the eight 

SPM methods. Checking the results, the four proposed 

spatio-temporal SPM methods produce greater accuracies than 

the four conventional methods and the OA gains were around 

1%. For the real dataset, there exist uncertainties in the unmixing 

algorithm, the point spread function of the MODIS sensor, 

registration, the FSRM and the reference map. To study the 

effect of these uncertainties in realistic circumstances, the 30 m 

reference map in July 2005 was degraded with a factor of 15 to 

simulate the 450 m spatial resolution proportions, and the SPM 

accuracy resulting from such a design was over 94% (20% larger 

than that of the OA values in Table 4). 

IV. DISCUSSION 

This paper presents a spatio-temporal SPM approach to 

transfer coarse spatial resolution TSIs to a sequence of fine 

spatial resolution LCLU maps. The proposed approach was 

tested using two synthetic datasets and one real dataset. It was 

shown that, by accommodating temporal information, through a 

model of temporal dependence and initially propagated from the 

FSRM, the proposed method can produce greater SPM accuracy 

in comparison to conventional SPM methods. Through the 

experiment on the NLCD maps, it was demonstrated that the 

proposed approach also works well for large regions with many 

LCLU classes. This will promote operational applications of the 

SPM technique in downscaling of TSIs covering large areas. 

In the proposed spatio-temporal SPM approach, the temporal 

dependence is quantified by the similarity between images. The 

temporal aspect pushes the SPM realization of each image 

towards its temporally neighboring images. However, if abrupt 

LCLU changes occur in the TSIs (e.g., a pure coarse pixel at one 

time is changed to a mixed pixel covering multiple new classes 

at another time), the temporal neighbors cannot provide useful 

information on SPM of these classes within the pixel. Therefore, 

the new method is more appropriate for cases where smooth 

changes occur between images in the TSIs. This can be more 

realistic if the temporal resolution of the TSIs is fine enough. For 

example, MODIS images revisit the Earth’s surface on a daily 

basis. The temporally dense TSIs are reliable sources for 

monitoring smooth changes such as a changed coastline caused 

by melting glaciers and reduced vegetation caused by illegal 

deforestation. By applying the proposed SPM approach to the 

coarse MODIS TSIs, monitoring such LCLU changes at a fine 

spatio-temporal resolution becomes possible. Note that the 

spatio-temporal SPM problem is different from that defined in 

some studies where sub-pixel shifted coarse time-series images 

were used to enhance SPM. In those studies, it was assumed that 

no LCLU changes occur between the utilized coarse time-series 

images [52], [53]. 
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With respect to spatial dependence, both 
SS

SD  and 
SP

SD  were 

extended to spatio-temporal dependence in this paper, and 

correspondingly, two versions of spatio-temporal SPM models 

(i.e., SPT and SST) were developed. The differences in their 

accuracies are insignificant. This leaves the door open for 

alternative approaches to spatial dependence characterization. 

The SPT approach, however, quantifies spatial dependence only 

once. This eases the computational burden to some extent, which 

is an advantage over the SST approach. Obviously, more SPT 

approaches can be developed by considering other methods in 

measuring 
SP

SD , such as the existing back-propagation neural 

network [25], support vector machine [54] and indicator 

cokriging [28]. They are implemented based on the availability 

of prior spatial structure information (or some other alternatives 

[30]) on the LCLU classes at the desired fine spatial resolution. 

It is also worthwhile to consider fusing 
SP

SD and 
SS

SD  in spatial 

dependence characterization. However, such a scheme will 

introduce a new parameter that balances the influence of the two 

parts. Certainly, by treating the FSRM as the training data, the 

parameter can be estimated in a similar way to that for the weight 

balancing spatial and temporal dependences (see Section 2.7), 

but such a process will quadratically increase the computational 

complexity. Another issue is how important is the reliability of 

the spatial dependence characterization in the new method, 

where the FSRM provides reliable temporal information for the 

whole time-series. In cases where the temporal correlation in the 

TSIs is not large, the FSRM may not propagate very useful 

information and it would be necessary to study approaches 

capable of describing spatial dependence accurately (e.g., shape 

information [48] and additional data [47]-[51]). 

In this paper, the optimal weight in (11) was estimated by 

using the whole FSRM as training data. To reduce the 

computational burden in this process, users may select as subset 

of pixels from the whole FSRM as training data. The optimal 

weight for the subset can be similarly estimated according to the 

procedures presented in Section 2.7, which can then be used for 

the entire FSRM. The training data need to be representative of 

the spatial structure across the whole scene. It is not clear 

whether this scheme will adversely affect the SPM accuracy of 

TSIs, especially for the spatially non-stationary scene. 

The SPM of TSIs is modelled as a constrained optimization 

problem, under the coherence constraint imposed by the coarse 

proportions. The optimization problem can be solved by other 

artificial intelligence algorithms, such as a genetic algorithm [21] 

and particle swarm optimization [22]. Artificial intelligence is an 

active scientific topic in the field of computer science. However, 

whether an optimization algorithm is a preferable choice for the 

problem depends on the accuracy obtained and computational 

cost. It will be of great interest to explore more effective and 

faster optimization algorithms for the proposed spatio-temporal 

SPM model. 

Spectral unmixing is a critical pre-processing step of SPM and 

its uncertainty can be propagated directly to the SPM. For TSIs, 

this step needs to be performed independently for each coarse 

image. The spectral reflectance of some materials, such as 

vegetation, may change across time, especially when the TSIs 

cover a long period. This necessitates extraction of reliable 

endmembers for each coarse image or construction of a reliable 

spectral library over a long time. All these considerations 

motivate future research. 

V. CONCLUSION 

In this paper, a spatio-temporal SPM approach was proposed 

to extract sub-pixel resolution LCLU information from TSIs. In 

the proposed approach, the objective of the SPM problem is to 

maximize the spatio-temporal dependence. The temporal aspect 

aims at maximizing the temporal similarity in LCLU between 

images, while the spatial aspect aims at maximizing the spatial 

correlation of LCLU within each image. The spatial dependence 

was characterized in two different ways: the relationship 

between sub-pixels and the relationship between a sub-pixel and 

its neighboring pixels. The PSA method was used for the former, 

while the SPSAM, Kriging, RBF methods were used for the 

latter. Correspondingly, two types of spatio-temporal SPM 

approaches, SST and SPT, were defined. The proposed SPM 

approach incorporates information from the FSRM in the TSIs. 

The SPM approach has several advantages: it accounts for 

spatial and temporal dependences simultaneously to deeply 

exploit information encapsulated in the TSIs; it can readily 

incorporate multi-resolution and multi-source data (such as the 

FSRM in this paper) to enhance SPM; the spatio-temporal 

dependence is quantified automatically, with weights estimated 

without manual intervention; based on SPM of TSIs, LCLU 

dynamic monitoring and change detection at a fine 

spatio-temporal resolution can be achieved. 

The proposed approach was tested with three datasets, and the 

conclusions are summarized as follows. 

1) The proposed approach can provide more accurate TSIs 

at sub-pixel resolution than conventional methods. Both 

SST and SPT are effective spatio-temporal SPM 

approaches. 

2) The FSRM imparts greater benefits for SPM of images 

temporally close to it. The closer to the FSRM, the 

greater the SPM accuracy achieved. 

3) The reliability of the FSRM is crucial in the proposed 

approach, and when the error in it was increased to a very 

large value (above 80%), the proposed method could not 

increase the SPM accuracy compared to conventional 

spatial-only methods. 

4) However, for remarkably large error values (up to 80%), 

the proposed approach was able to impart benefits 

compared to conventional spatial-only methods.  

5) When the FSRM is in error, the SST method is generally 

more accurate than the SPT approach, but the advantage 

was small and the SST approach has a much larger 

computational burden than the SPT approach. 
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