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ABSTRACT

In this paper, we present a new lossy compression method for
hyperspectral images that aims to optimally compress in both
spatial and spectral domains and simultaneously minimizes
the effect of the compression on linear spectral unmixing per-
formance. To achieve this, a non-negative tucker decompo-
sition is applied. This decomposition is a function of three
dimension parameters. By employing a link between this de-
composition and the linear spectral mixing model, an opti-
mization problem is defined to find the optimal parameters
by minimizing the root mean square error between the abun-
dance matrices of the original and reconstructed datasets. The
resulting optimization problem is solved by a Particle Swarm
Optimization algorithm. An approximate method for fast esti-
mation of the free parameters is introduced as well. Our simu-
lation results show that, in comparison with well-known state-
of-the-art lossy compression methods, an improved compres-
sion as well as spectral unmixing performance of the recon-
structed hyperspectral image is obtained. It is noteworthy to
mention that the superiority of our method becomes more ap-
parent as the compression ratio grows.

Index Terms— Lossy Compression, Hyperspectral Im-
ages, Non-negative Tucker Decomposition, Spectral Unmix-
ing

1. INTRODUCTION

Hyperspectral images (HSI) are usually volumetric and re-
quire a lot of space and time for archiving and transferring.
For instance, most of the modern hyperspectral sensors such
as AVIRIS 1, EnMAP2 and HYPERION 3 capture more than
200 spectral bands covering the spectrum in a range of wave-
lengths between 0.4µm and 2.5µm. Future sensors will con-
tain even more bands, e.g. the IASI4 sensor will capture 8461
spectral bands covering the range 3.62-15.5µm. The number
of pixels composing HSI is usually high. The high spatial
and spectral dimensionality of the HSI makes their analysis
computationally very costly. Therefore, to reduce the cost of

1http://aviris.jpl.nasa.gov
2http://www.enmap.org/
3http://eo1.usgs.gov/sensors/hyperion
4http://wdc.dlr.de/sensors/iasi/

storage equipment and bandwidth, compression of HSI has
received particular attention in recent years.

There are two types of redundancy in HSI: spatial and
spectral redundancies. These redundancies allow for the de-
velopment of effective compression algorithms. Traditional
HSI compression algorithms such as dimensionality reduc-
tion through Principal Component Analysis (PCA) and Inde-
pendent Component Analysis were mainly based on vector-
izing the images, not considering the spatial correlation [1].
Recent methods consider HSI as a 3D dataset with two spa-
tial and one spectral dimension.

Several 3D wavelet-based techniques such as the Set Par-
titioning in Hierarchical Trees (SPIHT) algorithm and the Set
Partitioned Embedded bloCK (SPECK) algorithm have been
proposed in [2]. It was demonstrated that 3D-SPECK out-
performs 3D-SPIHT in compression efficiency. In another
attempt, an optimal 3D anisotropic wavelet decomposition
for HSI compression was introduced [3]. However, the re-
sults showed that a 3D isotropic wavelet is not suitable for
HSI since HSI are spectrally more correlated that spatially.
In [4], a hybrid 3D wavelet transform for spectral and spatial
decorrelations combined with JPEG2000 has been proposed.
The results showed an improved performance with respect to
the SPIHT and SPECK algorithms. In [5], JPEG2000 was
combined with PCA, in which a a reduced number of Prin-
cipal Components are retained and coded. The results reveal
an improved performance over the use of the wavelet trans-
form. Finally, other 3D decomposition methods can be ap-
plied, as in [6] where HSI were treated as a 3D tensor and a
Non-negative Tucker Decomposition (NTD) was applied.

After compression and transmitting, a HSI is recon-
structed to be used for a specific analysis task in a real
application such as classification, spectral unmixing, target
detection etc. In recent years, the effect of lossy compression
on the mentioned applications has been investigated. In [7],
a method based on an integration of PCA and the discrete
cosine transform (DCT) was developed with the aim of trying
to minimize the effect of the compression on target detection.
Several HSI compression methods with the aim of anomaly
preservation were proposed as well. In [8], anomalies are first
detected and then sent in lossless mode while the remainder
of the image is encoded using PCA+JPEG2000.

In [9], the effect of compression on classification, spectral



unmixing and anomaly detection was investigated, using a 3D
lossy compression method based on a hybrid approach using
PCA, wavelets and JPEG2000. While classification perfor-
mances remained unaffected, the performance of spectral un-
mmixing and anomaly detection were seriously degraded by
the compression. A larger study using different compression
methods in [10] revealed similar results. In [11], the effect on
spectral unmixing was studied using the H.264/AVC video
coding standard. For high compression ratio (CR) the un-
mixing performances were highly reduced. In [12], it was
proposed to use operational bit rates to balance between high
compression ratios and classification and spectral unmixing
performance.

All these studies show that lossy compression has a seri-
ous impact on the spectral unmixing performance. The reason
is that lossy compression and spectral unmixing serve oppo-
site purposes. For compression, the high spectral redundan-
cies are optimally reduced for maximal compression ratios.
Unmixing requires the optimal preservation of subtle spectral
differences to find the true endmembers and to obtain accu-
rate abundances. In [13], compression is proposed by unmix-
ing the HSI using the linear spectral mixing model, and then
transmitting the endmember and abundance matrices. At the
decoder, the HSI is then reconstructed by inverting the un-
mixing model. Although, by construction, optimal spectral
unmixing performance is obtained after reconstruction, the
achievable CR is rather moderate, and not competitive with
state of the art compression methods.

In this work, we rather look for a method that optimizes
both purposes simultaneously. First, we need a compact rep-
resentation that is flexible in the choice of spatial and spectral
dimensions. Although wavelets are proven to be superior for
spatial compression, they are inferior to methods based on
eigenvalue decompositions in the spectral dimension. From
these methods, the NTD has the required flexibility [6]. Then,
we will make the unmixing to become part of the compression
process by establishing a direct link between the NTD repre-
sentation and the linear spectral mixing model. This allows
to derive an optimization problem that optimizes the dimen-
sion parameters for an optimal compression and an optimal
preservation of the abundance maps simultaneously.

In the proposed method, the original dataset is treated as
a 3D tensor, and spatially partitioned into smaller subtensors,
after which the NTD is applied to each subtensor. The NTD
contains three free parameters which are the rank values of
the core tensor, and which determine the obtainable CR. We
introduce a new optimization approach to select these free pa-
rameters, using a cost function that is the mean square error
(MSE) between the abundance matrices of the original and
reconstructed HSI, hereby efficiently optimizing jointly the
Signal-to Noise Ratio (SNR) and the spectral unmixing per-
formance of the reconstructed HSI. The optimization is per-
formed using a Particle Swarm Optimization (PSO) method.

In the experimental section, the proposed method is com-

pared to the well-known state-of-the-art techniques; the 3D-
SPECK algorithm from [2] and PCA+JPEG2000 from [5].
The performance is evaluated on synthetic and real datasets.
The experimental results demonstrate that our algorithm pro-
vides a much smaller MSE and higher SNR variance for the
desired CR, especially when the target CR is high. The re-
maining of the paper is organized as follows: section 2 intro-
duces the proposed algorithm. Experiments are performed in
section 3, and section 4 describes the concluding remarks.

2. PROPOSED ALGORITHM

2.1. Non-Negative Tucker Decomposition

Let us denote the HSI as a 3-rd order tensor X ∈ RI1×I2×I3

where I1, I2 are the spatial dimensions and I3 is the num-
ber of bands. The third-order Tucker decomposition is a de-
composition of X into an unknown non-negative core ten-
sor G ∈ RJ1×J2×J3 multiplied by a set of three unknown
non-negative matrices B(n) = [b

(n)
1 , b

(n)
2 , ..., b

(n)
Jn

] ∈ RIn×Jn

(n = 1, ..., 3) [14, 15] (see Fig. 1):

Fig. 1: Third-order Tucker decomposition

X =
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j1=1

J2∑
j2=1

J3∑
j3=1
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(1)
j1
◦ b(2)j2

◦ b(3)j3
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= G×1B
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(2)×3B
(3) + Er

= G× {B}+ Er

= X̂ + Er (1)

where tensor X̂ is an estimation of tensor X, J = [J1, J2, J3]
are the dimensions of the core tensor G and Er denotes the
estimation error. The objective is to find the optimal com-
ponent matrices B(n) ∈ RIn×Jn and the core tensor G ∈
RJ1×J2×J3 for a given J̄ :

(B(n)∗,G∗) = arg minB(n)≥0,G≥0(
1

2

∥∥∥X− X̂
∥∥∥2
F

)(2)

X̂
∗
(J̄) = G∗ × {B∗}

The CR is the ratio between the total number of bits NX

of the original input image and the number of bits of the com-



pressed dataset:

CR(J) =
NX∑3

n=1NB(n) +NG

(3)

withNX = I1×I2×I3×dlog2(max X)e,NB(n) = In×Jn×
dlog2(max B(n))e andNG = J1×J2×J3×dlog2(max G)e
after rounding all pixel values to integers, d·e denotes round-
ing to the next integer. After obtaining the optimal matrices
B∗(1),B∗(2),B∗(3) and the core tensor G∗ they are coded. Be-
cause the matrices and in particular the core tensor are very
sparse, they containt a lot of zero elements. In the proposed
method, all elements of the matrices and core tensor are first
rounded to two decimals after which arithmetic coding is ap-
plied. The CR(J̄) after coding is then obtained as follow:

CR(J) =
NX∑3

n=1N
′
B(n) +N ′G

(4)

where N ′G and N ′B(n) are the total number of bits, required
to transmit each matrix and core tensor respectively after ap-
plying arithmetic coding. The CR is directly dependent on the
values J = [J1, J2, J3].

Rank estimation of the Tucker decomposition of hyper-
spectral images has been done before [16,17]. Optimal values
of the rank of the tensor were based on optimizing eigenvalue
decompositions of the image correlation or covariance matri-
ces and the obtained J corresponded to one particular CR.
However in practical applications, specific bandwidth limi-
tations may require a specific CR. In this work, we want to
obtain the optimal rank for any given CR. Therefore, the fol-
lowing optimization problem is considered:

min . MSE(J)

st :


1 < J1 < I1
1 < J2 < I2
1 < J3 < I3

CR(J̄) = Const

(5)

with:

MSE(J) = (
1

I1I2I3
)

I3∑
k=1

I2∑
j=1

I1∑
i=1

(xijk − x̂∗ijk)
2 (6)

Here, the optimal values for J = [J1, J2, J3] minimize the
MSE value for any given compression ratio.

2.2. Link between the NTD and spectral unmixing

In this section, a relation between the NTD and spectral un-
mixing is established. Let us unfold the original dataset X ∈
RI1×I2×I3 in the third direction as X(3) ∈ RI3×I with the
number of pixels I = I1I2. When applying the linear spec-
tral unmixing model (LSU):

X(3) = EA + N (7)

N = N (0, σ2)

where E ∈ RI3×q is the endmember matrix and A ∈ Rq×I

is the abundance matrix, q is the number of endmembers.
N ∈ RI3×I is zero mean Gaussian noise. Usually in LSU
some constraints are considered. The endmember and abun-
dance matrices should be non-negative and each column of
the abundance matrix sums up to one.

As described in the introduction, different studies [10–12]
have shown that the compression of a HSI has a large im-
pact on the spectral unmixing performance. In [10], it was
shown that, due to the spectral distortions occurring during
compression, the effect of compression is more destructive
on the endmembers than on the abundance maps. Therefore,
in this work, we will concentrate on the development of a
compression method that optimally preserves the abundance
maps. Sometimes, some information about the endmembers
is known in advance, e.g. as spectra collected on the ground
by a field spectroradiometer or extracted from a library, such
as the USGS library. If there is no information, the num-
ber of endmembers needs to be estimated first, e.g. using the
HySime algorithm [18], after which an endmember extraction
algorithm, e.g. vertex component analysis (VCA) [19] is ap-
plied. The endmember locations are extracted and along with
the endmember spectra transmitted. The elements of E are
integer numbers (usually 16-bit) as are their locations. The
arithmetic coding is applied in lossless mode, since it is not
expected that high compression ratio’s are obtained in lossy
mode due to the fact that the endmembers are generally uncor-
related. After sending the compressed HSI, the endmembers
and their locations to the receiver, the HSI is decompressed
and the original endmembers are induced at their locations,
after which the abundance matrix Â is calculated. Here we
use a Fully Constrained Least Squares Unmixing (FCLSU)
method [20].

The reconstructed dataset X̂ can also be unfolded in the
third direction X̂(3), and modeled using the transmitted end-
member matrix E as:

X̂(3) ≈ EÂ (8)

Metricized in the third direction, Eq. 2 contains the term:

min(
1

2

∥∥∥X3 − X̂3

∥∥∥2
F

) ≈ min(
1

2

∥∥∥EA−EÂ
∥∥∥2
F

) (9)

∼ min(
1

2

∥∥∥A− Â
∥∥∥2
F

)

Because the endmember matrix is constant, the MSE be-
tween the abundance matrices of the original and the recon-
structed datasets is minimized. The MSE in Eq. 5 is now
defined as:

MSE(J) = (
1

I1I2q
)

q∑
k=1

I1I2∑
j=1

(ajk − â∗jk)
2 (10)

In order to limit the search space in Eq.(5), some con-
straints can be considered, based on the correlation properties



of HSI. The spectral correlation is higher than the spatial cor-
relation. Therefore, the choice of J3 has a significant effect
on the CR. Since we have assumed that the HSI is modeled
by the linear spectral mixing model, the value for J3 does not
need to be higher than the number of endmembers q. Since
the spatial correlation is low, the values of J1 and J2 should
not be chosen too low. The optimization problem will be con-
strained to:

min . MSE(J)

st :


I1/2 < J1 < I1
I2/2 < J2 < I2

1 < J3 < q
CR(J̄) = Const

(11)

This is a nonlinear optimization problem and can be converted
to:

min . MSE(J) + λ
∥∥CR(J)− const

∥∥
st :

I1/2 < J1 < I1
I2/2 < J2 < I2

1 < J3 < q

(12)

where λ can vary between zero and one. If λ is selected close
to zero, the algorithm tries to minimize MSE(J). This how-
ever does not guarantee that the obtained CR will be close to
the required value. Therefore, in the proposed method, λ is
selected near one.

2.3. Particle Swarm Optimization Technique

Since J1,J2 and J3 are the rank values of the core tensor, they
are integer-valued. This makes Eq.(12) an integer program-
ming problem, for which a heuristic method is appropriate.
In this work, we choose to use Particle Swarm Optimization
(PSO), of which the time complexity is very competitive to
that of other heuristic methods [21]. PSO tries to minimize
the objective function (MSE(J) + λ

∥∥CR(J)− const
∥∥) by

finding the optimum values for J in the search space (I1/2 <
J1 < I1, I2/2 < J2 < I2 and 1 < J3 < q). The PSO
algorithm will be briefly explained in the following.

PSO is a stochastic population-based optimization ap-
proach, first proposed in [22]. The algorithm defines a pop-
ulation of possible solutions as positions of particles in the
search space. At each iteration, the particles move around
and their positions and velocities are updated and validated
against the fitness function from Eq.(13). The updating is
done according to:

J̄ l(k + 1) =
⌊
J̄ l(k) + V̄l(k + 1)

⌋
(13)

V̄l(k + 1) = φ(k)V̄l(k) + α1

[
γ1l
(
P̄l − J̄ l(k)

)]
+

α2

[
γ2l
(
P̄g − J̄ l(k)

)]
where J

l
(k) denotes the position of particle l at iteration k

and is a possible solution, in our case a possible set of dimen-
sions of the core tensor. V̄ l(k) is its corresponding velocity.

The rounding operator bc ensures that the vector J
l
(k + 1)

is integer-valued. γ
1l

,γ
2l

are random numbers in the interval
[0,1]. P̄l is particle l’s best position so far and P̄g is the best
position of the whole swarm so far. φ(k) is a decreasing linear
inertia function [23]:

φ(k) = φmax − (φmax − φmin)× k

Nth
(14)

whereNth is the maximum number of iteration and φmax and
φmin are usually set to 0.9 and 0.4 respectively.

α1 and α2 are two positive constants called acceleration
coefficients; α1 controls the movement of the particle, search-
ing around for its best location and α2 controls the influence
of the swarm on the particle’s behavior. For PSO conver-
gence, the following condition should be considered [22]:

0 ≤ α1 + α2 ≤ 4 (15)

A detailed description of the position and velocity update
scheme can be found in [22], which also contains a detailed
analysis of the impact of the different setting parameters and
a derivation of a set of necessary and sufficient conditions
that ensure stable behavior of the algorithm and guarantee
convergence. The algorithm works as follows:

1. Initial population generation: Initial positions J
l
(0)

and velocities V
l
(0) of the particles are randomly gen-

erated throughout the search space bounded by specific
limits on each variable as given by Eq.(12) [24]:

J
l
(0) =

⌊
Jmin + r1(Jmax − Jmin)

⌋
(16)

V
l
(0) = Jmin + r2(Jmax − Jmin)

where r1, r2 are random vectors with components uni-
formly distributed in [0, 1]. The population consists of
Np particles.

2. Fitness function evaluation: For each particle, the ob-
jective function valueMSE(J̄ l(k))+λ

∥∥CR(J̄ l(k))− const
∥∥

is evaluated.

3. Updating: First, the optimum particle positions P̄l and
the global optimum particle position P̄g are updated.
Then, the positions and velocities of each particle are
updated using Eq.13.

4. Stopping criterion: Repeat steps 2 & 3 until the change
in the fitness function is smaller than a specified toler-
ance:∣∣MSE(J̄ l(k + 1)) + λ

∥∥CR(J̄ l(k + 1))− const
∥∥−MSE(J̄ l(k))

∣∣− λ ∥∥CR(J̄ l(k))− const
∥∥ | ≤ ε

(17)

Here, ε is chosen to be 10−5. Finally, the best global
position, P̄g is used as the best estimate of the tensor
rank in our current application:

J̄∗ = P̄g = [P1g, P2g, P3g] (18)



After obtaining the optimal values of J̄∗, the optimal matrices
B∗(1),B∗(2),B∗(3) and core tensor G∗ are calculated using
NTD, which solves Eq.(2). Then, arithmetic coding is applied
to them. Pseudo-code for the PSO-NTD algorithm is given in
Algorithm 1:

Algorithm 1 PSO-NTD Algorithm

1- Initialize the PSO parameters
2- Generate Np particles with random positions and veloc-
ities
3- Calculate B∗(1),B∗(2),B∗(3),G∗ using NTD
4- Encode B∗(1),B∗(2),B∗(3),G∗ using arithmetic coding
5- Calculate the fitness function of Eq. (12)
6- Stopping criterion satisfied?
Yes : Go to step 7
No: Update the positions and velocities of the particles

using Eq.(13) and go back to step 3
7- Return the optimal values of (J1, J2, J3)
8- Calculate B∗(1),B∗(2),B∗(3),G∗ using NTD
9- Encode B∗(1),B∗(2),B∗(3),G∗, the endmembers and
their locations using arithmetic coding
10- Transmit the compressed dataset
11- Reconstruct the dataset

2.4. PSO-subNTD

The complexity of the PSO-NTD algorithm is a function of
the three dimension parameters (I1, I2, I3) of the HSI. Since
the spatial correlation of HSI is much smaller than the spec-
tral correlation, the original dataset can be partitioned spa-
tially into smaller subtensors with size (I

′

1, I
′

2, I3) (See Fig.2).
When the PSO-NTD is applied to each subtensor separately,
the computational load is decreased. We will refer to this al-
gorithm as PSO-subNTD.

Fig. 2: Spatial partitioning in subtensors

2.5. Fast subNTD

The most time consuming step is the PSO optimization which
scales linearly with the number of particles and the number
of iterations. This method is too complex, when applied for
online compression. The optimization step can be avoided
when fixed values for the core tensor rank would be available.
In this case, the obtained J̄ is not optimal and a fixed CR is
achieved.

Therefore, we propose an alternative fast subNTD method
by selecting fixed values for the core tensor rank. Because the
spatial correlation is low, the spatial dimensions are selected
as:

J
′

1 =
⌊
0.95× I

′

1

⌋
(19)

J
′

2 =
⌊
0.95× I

′

2

⌋
J3 is selected by applying the HySime algorithm to each sub-
tensor, and J3 is selected as being equal the obtained number
of endmembers q. NTD is then applied on each subtensor
using this selection and arithmetic coding is applied to the
obtained core tensors and matrices.

3. EXPERIMENTAL RESULTS

First we want to emphasize that the proposed method is used
for compression and the aim is to minimize the effect of
compression on spectral unmixing. In unmixing analysis,
reflectance datasets are generally used because the avail-
able information about the endmembers is in reflectance
format such as is the case in the USGS library [25]. To val-
idate the compression performance of the proposed method,
first two AVIRIS radiance datasets (Cuprite (first scene) and
Moffett field) [26] are analyzed. Then, in order to investi-
gate the impact of compression on spectral unmixing, the
method is applied on reflectance data: one synthetic and
two real well-known hyperspectral datasets ”Cuprite” and
”Hydice” [26, 27].

The compression is quantified in bit per pixel per band
(bpppb). The compression ratio is then the ratio of the origi-
nal dataset (usually 16 bpppb) to that of the obtained bpppb.
The compression results are validated using the SNR variance
between the original and reconstructed images:

SNRdB = 10× log10(
var(X)

MSE∗
) (20)

MSE∗ =

I3∑
k=1

I2∑
j=1

I1∑
i=1

(xijk − x̂ijk)2

In order to evaluate the unmixing performance, the MSE
value between the original and reconstructed abundance maps
using Eq.(10) is given.



Our method was developed using the tensor toolbox [28]
and a PSO toolbox [29]. The HySime algorithm is applied
to obtain the number of endmembers [18], VCA is used to
extract the endmembers from the original dataset [19], and
a fast version of FCLSU to calculate the abundance fraction
matrix [20].

The population size of PSO was chosen to be 20. α1 and
α2 are usually taken in the range between 1.5 and 2.5, sat-
isfying the condition of Eq. 15. Simulation results showed
that a fixed acceleration coefficient of 2 generated the best so-
lutions. This value was also used in previous research (for
example see [22] [23]). Since PSO is a stochastic process,
the performance may vary by the specific choice of the initial
conditions. Therefore, the optimization process is repeated
twenty times and the average results are shown.

The proposed method is compared to two state of the art
algorithms: the 3D-SPECK algorithm [2] and PCA+JPEG2000
[5]. In both algorithms, a wavelet transform is applied. For
this, we use the popular biorthogonal 9/7 wavelet. Since
the spectral correlation is higher than the spatial correlation,
the wavelet decomposition level for the spectral dimension
should be higher than for the spatial domain. After exper-
imenting on the real images, we chose to apply 6 spatial
and 8 spectral levels for the wavelet decomposition in the
3D-SPECK algorithm. 3D-SPECK is implemented using
the QccPack toolbox [30]. The JPEG2000 coding is done
using the Kakadu software with a quantization step size of
10−7 [31] [32]. The number of principal components (PCs)
for PCA+JPEG2000 is also shown because its value affected
the obtained SNR variance value.

3.1. Real Radiance Datasets

Two AVIRIS radiance datasets (Moffett field and Cuprite
(first scene) ) are used. These 16-bit radiance datasets have
been cropped spatially to a size of 512×512, and they are
composed of 224 spectral bands. Before applying the pro-
posed method the original datasets are partitioned into 64
subtensors (I

′

1 = 64, I
′

2 = 64, I3 = 224). Since spectral
unmixing is not part of the process, Eq. 5 is optimized us-
ing PSO. The obtained optimal values of J̄∗, the matrices
B∗(1),B∗(2),B∗(3) and the core tensor G∗ are encoded using
arithmetic coding. The compression results are shown in
Tables 1 & 2. Compared with the other techniques, PSO-
subNTD obtained the highest SNR variance values at differ-
ent bpppb.

Table 1: SNR variance (dB) for the different compression methods
on the Moffett radiance dataset

bpppb
Method 0.05 0.1 0.25 0.5 1

3D-
SPECK 25.32 29.23 35.09 39.82 45.16

PCA+
JPEG2000

34.71
(PCs=

14)

39.26
(PCs=

25)

44.02
(PCs=

39)

47.16
(PCs=

82)

50.99
(PCs=
104)

PSO-
subNTD 37.06 42.64 46.31 49.89 52.77

Table 2: SNR variance (dB) for the different compression methods
on the Cuprite radiance dataset

bpppb
Method 0.05 0.1 0.25 0.5 1

3D-
SPECK 35.14 38.76 43.09 46.5 50.72

PCA+
JPEG2000

43.13
(PCs=

20)

45.25
(PCs=

23)

48.17
(PCs=

38)

50.51
(PCs=

75)

54.21
(PCs=
100)

PSO-
subNTD 46.17 48.96 51.96 53.74 56.83

It is noteworthy to mention that the radiance Cuprite
dataset has well known calibration artifacts [33] and care
should be taken to use it for compression tests as a spe-
cific coder may be designed that is optimized for these ar-
tifacts. Therefore, in the following a synthetic and two real
reflectance Cuprite and Hydice datasets (without these arti-
facts) are also considered in order to show that the obtained
coding performances are still consistent.

3.2. Synthetic Reflectance Dataset

To generate the endmember matrix E, we randomly select
a number of spectral signatures from the USGS mineral
database [25]. The dimensionality is chosen to be 224, the
number of endmembers is chosen to be 15. The abundance
fraction matrix (A) is generated by sampling from a Dirichlet
distribution [18], including the non-negativity and the sum to
one constraints. In this way, images of 128 × 128 pixels are
constructed. Then, i.i.d. Gaussian noise is added, with differ-
ent values of the variance. To apply the subtensor method, the
image is partitioned into four subtensors (I

′

1 = 64, I
′

2 = 64,
I3 = 224). Then, HySime and VCA are applied to each
subtensor separately in order to find the number of endmem-
bers (q) and to identify the endmembers and their locations.
Finally, PSO-subNTD is applied to the subtensors.

In Tables 3 & 4, the results of an experiment is shown
using σ2 = 0.1 and different bpppb varying from 0.05 to 1.



The proposed algorithm outperforms the two state of the art
methods with respect to SNR variance and MSE.

Table 3: SNR variance(dB) values for different compression meth-
ods on the synthetic dataset with σ2 = 0.1

bpppb
Method 0.05 0.1 0.2 0.5 1

3D-
SPECK 24.15 26.04 28.04 30.9 35.05

PCA+
JPEG2000

27.31
(PCs=

23)

28.95
(PCs=

27)

31.51
(PCs=

43)

33.13
(PCs=

84)

37.43
(PCs=
107)

PSO-
subNTD 32 34.04 38.1 39.13 41.21

Table 4: MSE for different compression methods on the synthetic
dataset with σ2 = 0.1

bpppb
Method 0.05 0.1 0.2 0.5 1

3D-
SPECK 0.2209 0.1849 0.0729 0.0441 0.0156

PCA+
JPEG2000 0.1444 0.0625 0.0441 0.0324 0.0149

PSO-
NTD 0.0380 0.0289 0.0225 0.0196 0.0137

We also applied the compression method from [13],
where a HSI is unmixed, and the obtained endmembers
and abundances are transmitted to be reconstructed. For
our synthetic dataset at bpppb=1, the obtained MSE is zero
by construction and the obtained SNR variance was 27.3 dB,
which is much smaller than obtained with the other compres-
sion methods.

3.3. Real Reflectance Datasets

The Cuprite Reflectanc dataset is very popular for spectral un-
mixing. It is freely available in [26]. The file f970619t01p02-r02-s
c04.a.rfl is used. This reflectance dataset is composed of 614
× 512× 224 pixels. We selected a subimage of 301×365 pix-
els (X coordinates 50:350,Y coordinates 250:614). This part
was chosen since it contains most minerals of interest. The
atmospheric and water absorption bands (bands [1-4],[107-
113],[153-168],[217-224]) are removed from the original
dataset prior to spectral unmixing and compression [20] [34].
The remaining 189 bands are used in the experiment. The im-
age is partitioned into 30 subtensor (20 subtensors with size
64×64×189, 5 subtensors with size 64×45×189, 4 subten-
sors with size 45×64×189 and one with size 45×45×189)
for (I

′

1, I
′

2,I3) , while the number of endmembers (q) and
their locations are obtained using HySime and VCA for each
subtensor separately.

Table 5 shows the obtained SNR variance values at differ-
ent bpppb ratios for the three methods. PSO-subNTD outper-
forms the other methods, especially when the bpppb becomes
lower than 0.5. Fig. 3 displays reconstructed band 170 at 0.2
bpppb. By visual comparison, the reconstructed image ob-
tained from the proposed algorithm is less noisy and shows
more details than the other reconstructed images.

In order to show what the separate contributions of the
NTD and the arithmetic coding are on the different matri-
ces and core tensor, we analyse more closely the result at a
bpppb=0.05, which comes down to a CR of 320. If no arith-
metic coding is applied, the obtained compression ratio is
61.45. The extra compression ratios due to the arithmetic cod-
ing are CRB∗(1) = 1.64, CRB∗(2) = 1.6, CRB∗(3) = 1.73
and CRG∗ = 12.7 for the three matrices and the core tensor
respectively. This demonstrates that the obtained core tensor
is very sparse which is beneficial for the coding. The CR
of the endmember matrix E and the endmember locations is
1.31 and 1.27 respectively.

Table 5: SNR variance (dB) for the different compression methods
on the reflectance Cuprite dataset

bpppb
Method 0.05 0.1 0.25 0.5 1

3D-
SPECK 25.74 28.77 32.22 35.02 38.69

PCA+
JPEG2000

28.31
(PCs=

15)

31.02
(PCs=

20)

34.08
(PCs=

30)

36.79
(PCs=

55)

40.28
(PCs=
100)

PSO-
subNTD 32.06 34.64 37.96 41.31 43.71

Table 6 shows the MSE between the abundance fraction
matrix of the uncompressed and reconstructed datasets. The
MSE values of the proposed method are smaller than of the
other methods. Fig.4 plots 5 of the most significant endmem-
bers of the Cuprite dataset. The obtained abundance maps at
0.2 bpppb are shown in Fig.5. The results demonstrate that the
abundance maps of the proposed method are very similar to
the original abundance maps. One can conclude that the pro-
posed method simultaneously displays a good compression
performance and minimizes the effect of lossy compression
on spectral unmixing.



(a) original (b) 3DSPECK (c) PCA+JPEG2000 (d) PSO-subNTD

Fig. 3: Original and compressed band 170 of the reflectance Cuprite image at bpppb=0.2

Table 6: MSE for different compression methods on the reflectance
Cuprite dataset

bpppb
Method 0.05 0.1 0.2 0.5 1

3D-
SPECK 1.1729 0.596 0.1978 0.1176 0.0645

PCA+
JPEG2000 0.4270 0.3178 0.143 0.041 0.0294

PSO-
NTD 0.2333 0.1444 0.0773 0.0174 0.011

Fig. 4: Spectral signatures of five endmembers of the reflectance
Cuprite dataset

In a second experiment, we apply the same experimen-
tal methodology to an urban dataset (Hydice). It has a size
of 307×307 pixels and contains 210 bands. This dataset
is available in [27]. The atmospheric and water absorption
bands (bands [105-107],[140-151]) are removed and the re-
maining 195 bands are used. The Hydice dataset is partitioned
into 25 subtensors (16 subtensors with size 64×64×195, 4
subtensors with size 64×51×195, 4 subtensors with size
51×64×195 and one with size 51×51×195) for (I

′

1, I
′

2,I3).
Table 7 shows the SNR variance values at different bpppb

ratios. Tables 8 shows the obtained MSE values. Again, PSO-
subNTD ouperforms the other methods, especially when the
bpppb becomes lower than 0.5. Band 30 of the Hydice dataset
at 0.2 bpppb is displayed in Fig.6. in Fig.7, the six most sig-

nificant endmembers of the Hydice dataset are plotted. The
obtained abundance maps for these endmembers at 0.2 bpppb
are displayed in Fig. 8. Similar conclusions as with the
Cuprite image can be drawn.

When analysing more closely the result at bpppb=0.05
(CR= 320), we find that the compression ratio without arith-
metic coding is 47.2. The extra compression ratios due to
the arithmetic coding are CRB∗(1) = 4.88, CRB∗(2) = 4.53,
CRB∗(3) = 2.1 and CRG∗ = 10.86 for the three matrices
and the core tensor respectively. The CR of the endmember
matrix E and the endmember locations is 1.86 and 1.41 re-
spectively.

Table 7: SNR variance (dB) for the different compression methods
on the reflectance Hydice dataset

bpppb
Method 0.05 0.1 0.25 0.5 1

3D-
SPECK 12.11 14.02 18.39 23.41 30.34

PCA+
JPEG2000

15.08
(PCs=

15)

18.01
(PCs=

20)

23.88
(PCs=

30)

29.18
(PCs=

50)

35.09
(PCs=
100)

PSO-
subNTD 19.07 22.3 27.15 32.23 36.91

Table 8: MSE for the different compression methods on the re-
flectance Hydice dataset

bpppb
Method 0.05 0.1 0.2 0.5 1

3D-
SPECK 3.4003 2.576 1.4568 0.3782 0.0734

PCA+
JPEG2000 1.7243 1.341 0.424 0.0764 0.0181

PSO-
subNTD 0.6448 0.4502 0.112 0.034 0.0078



(a) e1, original (b) e1, 3DSPECK (c) e1, PCA+JPEG2000 (d) e1, PSO-subNTD

(e) e2, original (f) e2, 3DSPECK (g) e2, PCA+JPEG2000 (h) e2, PSO-subNTD

(i) e3, original (j) e3, 3DSPECK (k) e3, PCA+JPEG2000 (l) e3, PSO-subNTD

(m) e4, original (n) e4, 3DSPECK (o) e4, PCA+JPEG2000 (p) e4, PSO-subNTD

(q) e5, original (r) e5, 3DSPECK (s) e5, PCA+JPEG2000 (t) e5, PSO-subNTD

Fig. 5: Abundance maps for the five most significant endmembers of the reflectance Cuprite dataset: e1=beryl, e2=kaolinite, e3=halite,
e4=alunite, e5=clinopilolite; original and after compression at bpppb=0.2



(a) original (b) 3DSPECK (c) PCA+JPEG2000 (d) PSO+subNTD

Fig. 6: Band 30 of the reflectance Hydice dataset; original and reconstructed at bpppb=0.2

Fig. 7: Spectral signatures of six endmembers of the reflectance Hy-
dice dataset

3.4. Fast subNTD

In the next experiment, the Fast subNTD method of section
2.5 is validated. In this case, specific core tensor dimensions
are chosen, leading to a fixed compression ratio. The com-
pression results for the synthetic and the two real reflectance
datasets are shown in Tables 9-11. The fast subNTD can not
be applied to radiance datasets because it requires the number
of endmembers.

Table 9: Compression results on synthetic reflectance dataset,
bppp=1.5

dataset SNR
variance(dB) MSE

3D SPECK 37.58 0.0524
PCA+ JPEG2000

(PCs=185) 39.08 0.0397

Fast subNTD 42.9 0.0237
PSO- subNTD 43.74 0.0208

Table 10: Compression results on Cuprite reflectance dataset,
bppp=1.5

ntering

dataset SNR
variance(dB) MSE

3D SPECK 41.34 0.057
PCA+ JPEG2000

(PCs=140) 42.62 0.0383

Fast subNTD 45.01 0.0096
PSO- subNTD 45.83 0.0084

Table 11: Compression results on Hydice reflectance dataset,
bppp=1.6

dataset SNR
variance(dB) MSE

3D SPECK 35.51 0.0131
PCA+JPEG2000

(PCs=170) 39.28 0.0094

Fast subNTD 41.28 0.0067
PSO-subNTD 42.04 0.0053

In all cases, the fast version outperforms the other meth-
ods for a fixed compression ratio and gives results that are
close to the ones from the optimal PSO-subNTD.

Based on the obtained results in this section, we can con-
clude that all compression methods show good performance
at high bpppb values. For higher compression ratios, 3D-
SPECK fails because it suffers from the difference in spectral
versus spatial correlations of a HSI. PCA+JPEG2000 treats
the spectral and spatial correlations separately and shows bet-
ter results. The proposed method however obtains compres-
sion results that are significantly better. Moreover, the ob-
tained spectral unmixing performances of the reconstructed
HSI using PSO-subNTD are superior to those using the other
methods.

We finalize with some words on the time complexity of
the proposed method. The method is implemented in Matlab
on a computer with an Intel(R) Core(TM) i7-4770 processor



(a) e1, original (b) e1, 3DSPECK (c) e1, PCA+JPEG2000 (d) e1, PSO-subNTD

(e) e2, original (f) e2, 3DSPECK (g) e2, PCA+JPEG2000 (h) e2, PSO-subNTD

(i) e3, original (j) e3, 3DSPECK (k) e3, PCA+JPEG2000 (l) e3, PSO-subNTD

(m) e4, original (n) e4, 3DSPECK (o) e4, PCA+JPEG2000 (p) e4, PSO-subNTD

(q) e5, original (r) e5, 3DSPECK (s) e5, PCA+JPEG2000 (t) e5, PSO-subNTD

(u) e6, original (v) e6, 3DSPECK (w) e6, PCA+JPEG2000 (x) e6, PSO-NTD

Fig. 8: Abundance maps for six endmembers of the reflectance Hydice dataset at bpppb=0.2; e1=Road, e2=Metal, e3=Dirt, e4=Grass,
e5=Tree, e6=Roof



(3.9 GHz), 32GB of memory and a 64-bit Operating System.
Since the method contains an iterative procedure for NTD and
an optimization procedure (not in the case of the fast version),
it is about 2 orders of magnitude slower than the optimized
codes that were applied for the methods that we compare to.
On the other hand, the applied procedures lend themselves
easily to parallelization.

4. CONCLUSION

A new method for HSI compression using the Non-negative
Tucker Decomposition is introduced. This method simulta-
neously minimizes the effect of compression on the spectral
unmixing of the reconstructed image. The method determines
the optimal reduced core tensor dimensions by minimizing
the MSE between the abundance matrix of the original and
reconstructed datasets by Particle Swarm Optimization.

The proposed algorithm achieves a better performance
(higher SNR variance and smaller MSE) in comparison with
two state-of-the-art compression algorithms, especially at
high compression ratios. A fast approximate method that
fixes the core tensor dimensions, is introduced as well. In fu-
ture work, our aim is to reduce the computational complexity
of the proposed algorithm.
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