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ABSTRACT - Morphological operators (MOs) and their enhancements such as 

morphological profiles (MPs) are subject to a lively scientific contemplation since they 

are found to be beneficial for e.g., classification of very high spatial resolution 

panchromatic, multi- and hyperspectral imagery. They account for spatial structures 

with differing magnitudes and, thus, provide a comprehensive multi-level description of 

an image. In this paper, we introduce the concept of object-based morphological profiles 

(OMPs) to also encode shape-related, topological, and hierarchical properties of image 

objects in an exhaustive way. Thereby, we seek to benefit from the so-called object-

based image analysis framework by partitioning the original image into objects with a 

segmentation algorithm on multiple scales. The obtained spatial entities (i.e., objects) are 

used to aggregate multiple sequences obtained with MOs according to statistical 

measures of central tendency. This strategy is followed to simultaneously preserve and 

characterize shape properties of objects and enable both the topological and 

hierarchical decomposition of an image with respect to the progressive application of 

MOs. Subsequently, supervised classification models are learned considering this 

additionally encoded information. Experimental results are obtained with a random 

forest classifier with heuristically tuned hyperparameters and a wrapper-based feature 

selection scheme. We evaluated the results for two test sites of panchromatic 

WorldView-II imagery, which was acquired over an urban environment. In this setting, 

the proposed OMPs allow for significant improvements with respect to classification 

accuracy compared to standard MPs (i.e., obtained by paired sequences of erosion, 

dilation, opening, closing, opening by top-hat, and closing by top-hat operations).  

INDEX TERMS: Very High Resolution Imagery, Supervised Classification, LULC 

Classification, Mathematical Morphology, Morphological Profiles, Object-based Image 

Analysis 
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I. INTRODUCTION 

The development of methods for the derivation of thematic information such as land use / 

land cover (LULC) classes from remote sensing imagery has been a major research subject of 

the remote sensing community in the past decades. Thereby, varying ground sampling 

distances of individual sensors induced the development of diverse methodological 

approaches. In this paper, we focus on situations where the ground sampling distance is much 

smaller than the objects of interest of a scene. This situation can occur in various remote 

sensing data, depending on the relation of ground sampling distance and corresponding size of 

the objects of interest [1]. Nowadays, especially data from sensors with a very high spatial 

resolution such as WorldView I-III, or GeoEye, among others, allow for detailed LULC 

mapping. At the same time, the high spatial resolution can induce high intra-class and low 

inter-class variability in particular in heterogeneous environments such as urban areas. This 

can decrease accuracy of the classification model and induce the well-known salt and pepper 

effect [1]. One of the most prominent ways to cope with this problem and impose coherent 

spatial regularization is to compute features which account for the neighborhood of an 

individual pixel. Among them, features that can be attributed to the family of mathematical 

morphology [2] allowed for a significant increase of classification accuracy compared to 

results obtained with the exclusive use of spectral signatures of individual pixels [3].  

Nowadays, the application of mathematical morphology [4] is still under a vivid 

scientific contemplation. From the early 2000s, numerous variations and extension of 

morphological operators (MOs) were postulated for remote sensing data processing. Pesaresi 

and Benediktsson [5] introduced an approach based on differential morphological profiles 

(DMPs) for segmentation of very high resolution imagery. In subsequent works, Benediktsson 

et al., [6], [7] deployed DMPs for classification of panchromatic and hyperspectral imagery, 

respectively. Generally, morphological profiles (MPs) allow to compile a comprehensive 

feature set, which is constituted by a sequential application of geodesic opening and closing 

(i.e., obtained with opening and closing by reconstruction operators) with varying sizes of the 

structuring element (SE) to model multi-level structural information of an image. Fauvel et 

al., [8] complemented this approach by considering the full spectral information for 

classification. Additionally, in Fauvel et al. [9], [10] a so-called morphological neighborhood 

system (implemented as a set of connected pixels with an identical gray value), was designed 

by using morphological area filtering to consider the spectral information surrounding an 

individual image element (i.e., a pixel). There, also a tailored classification approach was 

deployed by relying on a Support Vector Machines classifier with individually learned spatial 

and spectral kernels. Besides, a number of problems related to the sequential application of 

MOs were addressed. In this sense, Huang et al., [11] investigate several strategies for 

establishing the base images for further morphological processing. Moreover, Daamouche et 

al., [12] propose an optimization approach to automatically tailor both the shape and size of 

the SE with respect to the classification task, and Lv et al., [13] consider differently shaped 

structuring elements for classification. 

However, recently, Dalla Mura et al., [14] introduced a generalization of MPs to the 

remote sensing community termed morphological attribute profile (AP). Concordant with the 

aforementioned formulations, APs build upon operators of geodesic reconstruction and 

provide a multi-level characterization based on sequences of morphological attribute filters 
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(AFs) [15]. AFs are morphologically connected filters that allow for processing an image by 

merging existing flat regions. Thereby, an image is decomposed by iteratively thresholding 

the connected components. This enables computation of additional features, which 

characterize the obtained discrete regions such as shape-related measures. Those features 

were shown to be able to enhance classification accuracy [14]. Yet, APs are very popular and 

were already applied for classification of hyperspectral images [16], [17] and change 

detection [18]. Also the concept of sparsity was deployed within this framework for 

segmentation [19] and classification [20] purposes. A recent review devoted to the application 

of APs for remote sensing data processing is provided by Ghamisi et al., [21].  

In parallel, since the classic paper from Kettig and Landgrebe [22], a huge body of 

scientific literature arose that deals with the processing of aggregated image elements (i.e., 

objects) for classification. This subject is referred to as object-based image analysis (OBIA) 

[23]. One of the primal constituting aspects of such techniques is to model meaningful real-

world objects before further processing. Those allow for a diversified characterization of 

spectral values (i.e., the use of e.g., mean, median, minimum, or maximum spectral values of 

objects compared to the singular spectral values of pixels), consideration of geometry-related 

properties of objects, and also encoding of additional spatial information such as relationships 

of (topological) neighborhood and spatial hierarchy [23]. In this sense, comprehensive multi-

level classification approaches, which rely on core OBIA techniques can be found in e.g., 

[24]-[26]. The past and current popularity of the affiliated conceptual and methodological 

canon inspired researchers already to categorize it as a paradigm in the context of remote 

sensing and geographic information science [1] according to Kuhn’s theory on the structure of 

scientific revolutions [27].  

In this paper, we seek to combine MOs and OBIA techniques and internalize both 

processing principles. Therefore, we introduce the concept of object-based morphological 

profiles (OMPs). In parallel to the sequential application of MOs with varying size of the SE, 

the non-transformed image is subject to segmentation at multiple levels (i.e., scales). 

Subsequently, the transformed image information (i.e., obtained by the sequential application 

of MOs) is aggregated with respect to the generated image objects. For this purpose, we 

evaluate the applicability of different statistical measures of central tendency (i.e., mean, 

mode, median). This procedure is designed to avoid shape-related noise frequently induced by 

the SE. Moreover, it is not limited to the use of openings and closings by reconstruction 

regarding the underlying MOs to preserve the shapes of objects in the image. In addition, one 

can obtain information related to the gray-level characteristics and assemblage of discrete 

regions (i.e., the actual image objects). Overall, it is intended to allow for the computation of 

discriminative features in a very flexible way: Features can be derived, which describe the 

shape characteristics of the modelled objects on multiple spatial levels. Simultaneously, 

hyperparameters of the segmentation method allow controlling preferred shape properties. 

Moreover, in contrast to previous approaches described above, we consider gray-level 

characteristics of transformed image information of adjacent discrete regions (beyond the 

gray-level information surrounding an individual image element (pixel)). To demonstrate the 

relevance of OMPs, we compare them to classification results obtained with conventional 

sequentially applied MOs (i.e., sequences of erosion, dilation, opening, closing, opening by 

top-hat, and closing by top-hat operations) on panchromatic (i.e., single band) imagery. 
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The remainder of the paper is organized as follows. We reveal important morphological 

operators and the concept of MPs in section II. In section III, we introduce the concept of 

OMPs and provide a formal definition. Experimental data and setup is presented in section IV 

and actual results of experiments are reported in section V. Concluding remarks are given in 

section VI.  

II. MORPHOLOGICAL OPERATORS AND PROFILES 

MOs are a family of filters based on set theory [2], [28]. They are based on the execution of  

minimum and maximum filters with a SE ��, e.g., a square window of size � × �, on an 

image �. In the terminology of mathematical morphology, minimum filtering represents an 

erosion operation � extended to grayscale images. It is defined as the minimum of the 

translations of � by vectors −b of � [2, p. 66ff.]:  

��(�) = � ���

�∈�

. (1) 

Analogously, maximum filtering, which represents a dilation operation � is defined as 

follows:  

��(�) = � ���

�∈�

. (2) 

An opening is obtained by the sequential application of a dilation operation to the result of an 

erosion operation:  

��(�) = �� ○ ��(�). (3) 

Consequently, a closing is obtained by the sequential application of an erosion to the result of 

an dilation operation: 

��(�) = �� ○ ��(�). (4) 

It can be noted that although opening and closing are combinations of dilation and erosion, 

they are idempotent. That is, ��(�) and ��(�) are not affected by reapplying the opening and 

closing operator, respectively [29]. To complement these operators, so-called top-hat 

transforms can be considered. They represent the residuals of an opening or closing, 

respectively, when compared to the original image. A white top-hat transform shows the 

bright peaks of � and is obtained with respect to an opening: 

���
(�) = � − ��(�). (5) 

Analogously, a black top-hat transform shows the dark peaks (valleys) of � and is obtained 

with respect to a closing: 

���
(�) = ��(�) − �. (6) 

Generally, the sequential application of MOs with varying size of � allows for the 

computation of MPs. In literature, one can find some ambiguous definitions with respect to a 

MP. Authors such as Benediktsson et al., [6], [7] Fauvel et al., [8], or Dalla Mura et al., [14], 

only refer to an MP, when geodesic opening and closing operations (i.e., opening and closing 

by reconstruction) are considered. In contrast, Daamouche et al., [12] or Hou et al., [30] 

follow a less restrictive definition and use the term MP also when simple opening and closing 
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 � ��
� = ��

���.

��
�⊆��

�+1

 (10) 

This relation ensures that an object at segmentation level � must be included in only one 

object at level � + 1 [24] and thus allows building a consistent profile. Thereby, a defined 

number of consecutive segmentations � can be carried out to establish an exhaustive set of 

hierarchical image levels Ψ ∈ [�, s + 1, … , ��], �� < ����. Then, a new grey-level value is 

assigned to an object � based on the grey-level value of corresponding pixels using an 

arbitrary aggregation function, which is denoted with Θ. In this paper, we deploy three 

statistical measures of central tendency, namely, mean (�̅), mode (��), and median (��). It can 

be noted that e.g., statistical measures of spread (variance, or standard deviation) can be 

considered less relevant in this context since morphological operators impose prior 

homogeneity constrains on the transformed image. 

In concordance with the definition of a MP, we consider the first part of an OMP as 

follows:  

���,�,�(�) = ��(�) � ��� (�), ∀� ∈ [0, �] (11) 

where ���
 is the first operation with a SE of size � from 0 to �, ��(�) represents the set of 

hierarchical segmentations obtained from the non-transformed image �, and � is the 

aggregation function. Analogously, the second part of the OMP is defined as follows:  

���,�,�(�) = ��(�) � ���
 (�), ∀� ∈ [0, �] (12) 

 

 

where ���
 is the second operation with a SE of size � from 0 to �. The actual OMP is 

obtained by collation of both sequences:  

���(�)

= ����,�,�(�), �����,�,�(�), … , ���,�,�(�), ��,�, ���,�,�(�), … , �����,�,�(�), ���,�,�(�)�

(13) 

Consequently, the feature vector of an OMP corresponds to a dimensionality of (2� + 1) ∗ �. 

An OMP based on a single segmentation level is exemplified in Appendix A [Fig. 6]. In this 

example ��(�) represents a closing and ��(�) an opening.  

A favorable property of OMPs and their inherent processing techniques is the ability to derive 

further features based on generated discrete image regions (i.e., objects). In this paper, we 

consider two groups of features. The first group comprises shape-related features, whereas 

the second group contains contextual features describing (topological) neighborhood 

relationships. The shape-related features are retrieved to account for distinctively diverse 

geometric properties of LULC objects. For instance, in urban environments natural objects 

such as vegetation feature frequently a non-rectangular shape, whereas man-made objects 

such as buildings feature rectangular shapes, which can be employed for learning a 

discriminative classification model. A comprehensive number of measures can be found in 

literature to encode such relations. In this manuscript, we characterize the extent of modelled 

objects by computing area and perimeter. In addition, widely deployed measures that provide 

an approximate comparison of an object’s shape with 2-D geometrical forms such as 

rectangle, circle or ellipse are included. Here, five complement measures are used, namely 
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first data set is made up by 1000 × 1000 pixels and shows an urban area of Cologne, which is 

dominated by  buildings of commercial use (Fig. 3(a); referred to as “data set 1 – commercial 

area”). The second data set comprises 902 × 908 pixels and represents an area of residential 

buildings next to the river Rhine (Fig. 3(d); referred to as “data set 2 – residential area”). 

Both image subsets feature a complex composition of urban land cover. Thereby, shadow 

areas can be observed primarily adjacent to buildings. In addition, the imagery represents an 

off-nadir acquisition. As such, facades of individual buildings can be identified in the 

direction of the sensor view. The pixels of the first image were grouped in five relevant 

thematic classes, namely “roof”, “facade”, “shadow”, “vegetation”, and “other impervious 

surface”. The latter class comprises non-penetrable surfaces other than building-related ones 

such as roads or parking lots, which feature similar spectral characteristics. Data set 2 

additionally features the thematic class “water”. The thematic classes of pixels were 

determined based on photo-interpretation analysis under consideration of additional aerial 

imagery and cadastral maps. Varying configurations of corresponding labeled samples of data 

set 1 and 2 [Fig. 3(b-c) and (e-f)] were used for learning the models. In particular, five percent 

of all available labeled samples were drawn randomly in a stratified manner (i.e., in 

correspondence to the a priori probabilities of the classes) from the training data pool of the 

respective data set for ten different realizations. Thereby, generalization capabilities of the 

learned models are estimated based on a fivefold cross-validation procedure. 
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environments have distinct shape and size properties, unlike, for example, natural features. 

Analogously, the weights for heterogeneity of smoothness and compactness were maintained 

equal (i.e., shape: 0.7, color: 0.5) and kept constant. Three hierarchical segmentation levels 

were considered for the experiments to account for objects with various sizes in the image. 

The scale parameters which determine - briefly speaking - the size of the objects, were chosen 

in a way that 1) at �, the majority of real-world objects are represented by several segments 

(i.e., over-segmentation); 2) at � + 1, the majority of real-world objects are represented by a 

single affiliated segment; and 3) at � + 2, the majority of real-world objects are represented in 

conjunction with other real-world objects by a single segment (i.e., under-segmentation) [37].  

In accordance with the experimental setup of e.g., Dalla Murra et al. [14], we deploy a 

Random Forest (RF) approach [38] for evaluating the capabilities of the different profiles in 

modeling the characteristics of the respective imagery. This non-parametric classification 

approach was chosen to account for a considerable redundancy shown by the profiles 

(primarily induced by the consecutive window sizes and segmentation scales of the same 

morphological operations), which can be critical for the estimation of statistics in parametric 

approaches [14]. RF represents a decision-tree-based ensemble learning method for 

classification and regression. Such methods build a prediction model by utilizing the strength 

of a collection of simple base models. To this purpose, RF grows multiple decision trees on 

random subsets of the training data. The high variance among individual trees, letting each 

tree vote for the class assignment, and determining the respective class according to the 

majority of the votes, allows the accurate and robust classification of unlabeled samples, even 

when many noisy variables are existent [38], [39]. The hyperparameters that need to be 

determined for generating a RF model consist of the number of classification trees to be 

grown ntree, and the number of features mtry used at each node. To provide a reliable error 

estimate and maintaining the computation times in a reasonable range, we chose a ntree value 

of 500. This is in a good agreement with the RF parameter study performed by Genuer et al. 

[40]. According to Breiman [38], a value for mtry=�p, with p denoting the number of input 

features, yields near optimum classification results. Thus, this heuristic was used to determine   

mtry. To impose ceteris paribus-near conditions for comparison of the computed features a 

wrapper-based feature selection [41] was carried out to identify feature sets from the complete 

pool of available features, which allow for obtaining the best accuracies given the 

aforementioned experimental setup. Wrapper methods evaluate features by using accuracy 

estimates provided by the actual classification algorithm (here RF), which is deployed 

subsequent to feature selection. Thus, the classifier is trained and accuracy estimation is 

performed for each iteration of the evaluation process. Thereby, the respective models with 

the highest Kappa statistics (κ) – as primal measure for accuracy – were further considered. 

Such as strategy is very expensive from a computational point of view, however, it ensures 

most favorable model accuracy possible for a feature set, what is desirable in this comparative 

evaluation of features.  

Thematic accuracies of the obtained maps (which are presented in Tables I and II) were 

assessed by computing global accuracy measures. We considered the weighted harmonic 

mean F� of the F-measures (weighted by the cardinals of the thematic classes [42]), the overall 

accuracy (OA), and the κ statistic based on the selected reference pixels (definition of those 

measures can be found in e.g., [43], [44]). Since overall accuracies of some models feature 
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comparable levels, the statistical significance of the classification maps was additionally 

evaluated with the McNemar’s test [43]. The test compares the classification outcomes for 

related samples (i.e., the number of miss-classified samples by the first model but not by the 

second model and the number of miss-classified samples by the second model but not by the 

first model) by assessing the standardized normal test statistic Z for two thematic maps. The 

null hypothesis (i.e., the models feature the same error) can be rejected for an interval of 

significance α = 5%, if |Z|>1.96. The results of this test are indicated in Tables I and II with 

the sign “*” when the accuracy of a model is higher and significantly different from the 

benchmark model (i.e., obtained with ��(�)�������). 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

To understand the role of the different groups of features on the classification accuracy, 

systematic configurations of features were compiled and deployed for classification. Thereby, 

the different configurations of features were fed to the wrapper-based feature selection 

scheme described above to eventually prune irrelevant features and ensure most favorable 

model accuracy possible.  

A. Data set 1 – commercial area 

The results of this analysis for the data set of the commercial area are documented in Table I 

in terms of accuracy measures. Selected results are also visualized in Fig. 4. Generally, the 

results in Table I are differentiated according to the pixel and object-based approaches and 

with respect to the latter in dependence of the deployed aggregation function.  

First of all, it can be noticed that the model based on the individual pixels of the panchromatic 

band does not feature viable accuracies and the affiliated classification map is not spatially 

consistent at all [Fig. 4(a)]. Instead, the usage of ��(�)������� allows for obtaining a 

considerably improved level of accuracy and a classification map with definite spatial 

consistency [Fig. 4(b)]. Regarding the deployment of OBIA techniques, notably, a significant 

improvement in terms of accuracies can be achieved in this example already with respect to 

��(�)�������, when using the object-based representation of the non-transformed image for 

model learning (i.e., an average increase of more than 7% in terms of κ statistic can be 

observed independent of the chosen aggregation function). As can be seen from [Fig. 4(c)], 

spatial assemblages of classes are less fragmented compared to the previous result, however, 

overgeneralization also occurs. The learning of models based on ���(�)������� provides 

solutions with a further substantial increase of accuracy (i.e., an average increase of more than 

4% and 12% in terms of κ statistic can be observed with respect to the object-based 

representation of the non-transformed image and ��(�)������� , respectively, independent of 

the chosen aggregation function). Thereby, the affiliated classification map [Fig. 4(d)] 

internalizes two favorable aspects, as the solution is clearly less fragmented than 

��(�)������� and the level of overgeneralization remains low.  
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TABLE I 

STUDY AREA 1 (COMMERCIAL AREA): CLASSIFICATION ACCURACIES OBTAINED WITH DIFFERENT FEATURE VECTORS 

REPORTED AS MEAN AND STANDARD DEVIATION (IN BRACKETS) FROM TEN REALIZATIONS WITH A VARYING 

CONFIGURATION OF LABELED SAMPLES. “*” = SIGNIFICANT DIFFERENCE FOR AN INTERVAL OF SIGNIFICANCE OF Α = 5% 

FROM THE BENCHMARK FEATURE VECTOR (I.E., ��(�)�������) AS EVALUATED WITH MCNEMAR’S TEST AND 

CORRESPONDING NUMERICAL VALUES OF MEAN AND STANDARD DEVIATION. RESULTS OBTAINED FOR THE CATEGORIES 

“PIXEL-BASED” AND  “OBJECT-BASED - MEAN” ARE ALSO VISUALIZED IN FIGURE 4  

feature vector 
accuracy measures 

McNemar’s 
test  

F� (%) OA (%) κ (%) 

pixel-
based 

I 
42.31 

(±4.55) 
 66.86 
(±0.21) 

52.92 
(±0.07) 

��(�)������� 
 84.96 
(±0.29) 

 86.09 
(±0.21) 

80.36 
(±0.36) 

object-
based   ̶ 
mean 

��,�̅ 
91.80  

(±0.18) 
 91.86 
(±0.18) 

 88.62 
(±0.29) 

*, 19.84 
(±0.04) 

���(�)�̅
������� 

 94.78 
(±0.08) 

 94.80 
(±0.07) 

 92.72 
(±0.12) 

*, 27.03 
(±0.51) 

���(�)�̅
�������, ��

�����
 

 94.87 
(±0.07) 

 94.88 
(±0.08) 

 92.84 
(±0.09) 

*, 27.19 
(±0.63) 

���(�)�̅
�������, ���(�)�̅

������� 
 94.78 
(±0.08) 

 94.83 
(±0.06) 

 92.74 
(±0.11) 

*, 27.08 
(±0.56) 

���(�)�̅
�������, ��

�����
, ���(�)�̅

������� 
94.93 

(±0.03) 
 94.94 
(±0.04) 

 92.94 
(±0.04) 

*, 27.20 
(±0.62) 

���(�)�̅
�������, ��

�����
, ���(�)�̅

�������, ��(�)������� 
94.97 

(±0.02) 
 95.02 
(±0.03) 

 93.01 
(±0.02) 

*, 27.29 
(±0.69) 

object-
based   ̶ 
mode 

��,�� 
90.77  

(±0.04) 
 90.91 
(±0.06) 

 87.41 
(±0.12) 

*, 17.44 
(±0.69) 

���(�)��
������� 

 94.87 
(±0.17) 

94.89 
(±0.15) 

 92.85 
(±0.24) 

*, 27.39 
(±0.24) 

���(�)��
�������, ��

�����
 

 94.99 
(±0.05) 

95.01 
(±0.04) 

 93.01 
(±0.08) 

*, 27.55 
(±0.39) 

���(�)��
�������, ���(�)��

������� 
 94.87 
(±0.17) 

 94.89 
(±0.15) 

 92.85 
(±0.24) 

*, 27.44 
(±0.28) 

���(�)��
�������, ��

�����
, ���(�)��

������� 
 95.04 
(±0.12) 

 95.04 
(±0.09) 

 93.02 
(±0.07) 

*, 27.58 
(±0.41) 

���(�)��
�������, ��

�����
, ���(�)��

�������, ��(�)������� 
 95.13 
(±0.13) 

 95.05 
(±0.06) 

 93.08 
(±0.05) 

*, 27.62 
(±0.47) 

object-
based   ̶ 
median 

��,�� 
 91.17 
(±0.05) 

91.29  
(±0.05) 

 87.79 
(±0.03) 

*, 19.30 
(±0.16) 

���(�)��
������� 

 94.71 
(±0.03) 

 94.74 
(±0.02) 

 92.63 
(±0.04) 

*, 26.86 
(±0.21) 

���(�)��
�������, ��

�����
 

 94.84 
(±0.03) 

 94.89 
(±0.05) 

 92.76 
(±0.02) 

*, 27.65 
(±0.09) 

���(�)��
�������, ���(�)��

������� 
 94.72 
(±0.06) 

 94.77 
(±0.04) 

 92.63 
(±0.04) 

*, 27.40 
(±0.08) 

���(�)��
�������, ��

�����
, ���(�)��

������� 
 94.88 
(±0.09) 

 95.02 
(±0.02) 

 92.90 
(±0.09) 

*, 27.74 
(±0.09) 

���(�)��
�������, ��

�����
, ���(�)��

�������, ��(�)������� 
 94.89 
(±0.04) 

 95.04 
(±0.03) 

 93.05 
(±0.05) 

*, 27.82 
(±0.04) 

 

The encoding of shape and context-related properties enables an additional slight increase of 

model accuracies compared to ���(�)������� [Fig. 4(e)-(g)]. Thereby, the shape-related 

features are more valuable in this example than the context-related ones, since the increase of 

accuracy is consistently a little higher. A joint consideration of both groups of features allows 

for obtaining further increased accuracies. This indicates that both groups of features can 
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encode additional discriminative information compared to the solely application of both MPs 

or OMPs. Lastly, the creation of feature vectors containing all features allowed for further 

slight improvements and ensures the highest accuracies observed during all runs. 

A clear recommendation regarding the most favorable aggregation function cannot be 

drawn from this example. This is evident since the most favorable feature vectors of different 

categories are attributed to different aggregation functions. However, the results do not vary 

greatly between the different aggregation functions and the overall accuracy pattern is 

consistent - independent of the chosen aggregation function. Overall, feature vectors based on 

OMPs reveal more favorable results than models obtained with MPs, what demonstrates the 

viability of this concept.   
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B. Data set 2 – residential area 

The classification accuracies for the data set of the residential area are documented in Table 

II and the application of selected models can be found in Fig. 5. In accordance with the results 

from data set 1, the information of the single panchromatic image cannot reliably partition the 

pixels in thematic classes [Fig. 5(a)]. Again, the use of MPs enables a steep increase of 

accuracy measures (e.g., from 61% to 93% in terms of κ statistic) and a stable classification 

map with respect to its spatial consistency [Fig. 5(b)]. An improvement can be obtained also 

for this example when relying on the object-based representation of the non-transformed 

image for model learning [Fig 5(c)] compared to the outcomes achieved with the single 

panchromatic image. However, in contrast to the previous example, this model features lower 

accuracies compared to ��(�)�������. Instead, the postulated OMPs exceed the accuracy of 

the benchmark vector considerably again (i.e., an average increase of more than 4% in terms 

of κ statistic can be observed independent of the chosen aggregation function), although the 

levels of model accuracies are already very high. Moreover, as for the previous data set, the 

considered shape and context-related features allow for a further increase of model 

performance. In accordance, the highest accuracies can be retrieved based on all available 

features.   
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TABLE II 

STUDY AREA 2 (COMMERCIAL AREA): CLASSIFICATION ACCURACIES OBTAINED WITH DIFFERENT FEATURE VECTORS 

REPORTED AS MEAN AND STANDARD DEVIATION (IN BRACKETS) FROM TEN REALIZATIONS WITH A VARYING 

CONFIGURATION OF LABELED SAMPLES. “*” = SIGNIFICANT DIFFERENCE FOR AN INTERVAL OF SIGNIFICANCE OF Α = 5% 

FROM THE BENCHMARK FEATURE VECTOR (I.E., ��(�)�������) AS EVALUATED WITH MCNEMAR’S TEST AND 

CORRESPONDING NUMERICAL VALUES OF MEAN AND STANDARD DEVIATION. RESULTS OBTAINED FOR THE CATEGORIES 

“PIXEL-BASED” AND “OBJECT-BASED - MEAN” ARE ALSO VISUALIZED IN FIGURE 4  

feature vector 
accuracy measures 

McNemar’s 
test  

F� (%) OA (%) κ (%) 

pixel-
based 

I 
 61.25 
(±0.18) 

 72.92 
(±0.06) 

 60.90 
(±0.23) 

��(�)������� 
 93.95 
(±0.02) 

 94.90 
(±0.04) 

 92.77 
(±0.01) 

object-
based   ̶ 
mean 

��,�̅ 
 94.69 
(±0.04) 

 94.64 
(±0.03) 

 92.37 
(±0.05) 

- 

���(�)�̅
������� 

 97.71 
(±0.12) 

 97.77 
(±0.12) 

 96.85 
(±0.16) 

*, 10.79 
(±0.20) 

���(�)�̅
�������, ��

�����
 

 97.82 
(±0.03) 

 97.89 
(±0.05) 

 97.01 
(±0.05) 

*, 11.17 
(±0.10) 

���(�)�̅
�������, ���(�)�̅

������� 
 97.86 
(±0.04) 

 97.92 
(±0.05) 

 97.06 
(±0.05) 

*, 11.17 
(±0.04) 

���(�)�̅
�������, ��

�����
, ���(�)�̅

������� 
 98.00 
(±0.10) 

 98.05 
(±0.08) 

 97.25 
(±0.14) 

*, 11.40 
(±0.27) 

���(�)�̅
�������, ��

�����
, ���(�)�̅

�������, ��(�)������� 
98.36 

(±0.01) 
 98.39 
(±0.01) 

 97.43 
(±0.32) 

*, 13.28 
(±0.08) 

object-
based   ̶ 
mode 

��,�� 
93.29 

(±0.44) 
93.91 

(±0.33) 
91.37 

(±0.52) 
- 

���(�)��
������� 

 97.89 
(±0.04) 

 97.95 
(±0.04) 

 97.10 
(±0.07) 

*, 10.71 
(±0.93) 

���(�)��
�������, ��

�����
 

 97.94 
(±0.05) 

 97.99 
(±0.03) 

 97.16 
(±0.01) 

*, 10.89 
(±0.75) 

���(�)��
�������, ���(�)��

������� 
 97.92 
(±0.02) 

 97.98 
(±0.01) 

 97.14 
(±0.03) 

*, 10.89 
(±0.75) 

���(�)��
�������, ��

�����
, ���(�)��

������� 
 97.94 
(±0.01) 

 97.99 
(±0.02) 

 97.16 
(±0.01) 

*, 10.91 
(±0.73) 

���(�)��
�������, ��

�����
, ���(�)��

�������, ��(�)������� 
 98.37 
(±0.09) 

 98.40 
(±0.09) 

 97.74 
(±0.14) 

*, 12.60 
(±0.88) 

object-
based   ̶ 
median 

��,�� 
 93.43 
(±0.10) 

 93.98 
(±0.05) 

91.46 
(±0.05) 

- 

���(�)��
������� 

 97.74 
(±0.13) 

 97.82 
(±0.13) 

 96.92 
(±0.16) 

*, 10.49 
(±0.03) 

���(�)��
�������, ��

�����
 

 97.88 
(±0.06) 

 97.94 
(±0.07) 

 97.09 
(±0.08) 

*, 10.96 
(±0.26) 

���(�)��
�������, ���(�)��

������� 
 98.01 
(±0.14) 

 98.07 
(±0.12) 

 97.27 
(±0.19) 

*, 11.26 
(±0.81) 

���(�)��
�������, ��

�����
, ���(�)��

������� 
 98.06 
(±0.08) 

 98.11 
(±0.08) 

 97.32 
(±0.13) 

*, 11.30 
(±0.77) 

���(�)��
�������, ��

�����
, ���(�)��

�������, ��(�)������� 
 98.26 
(±0.08) 

 98.32 
(±0.08) 

 97.62 
(±0.13) 

*, 12.29 
(±0.86) 

 

As can be seen from the visualization of the OMP-based models [Fig 5(d)-(h)], which 

all exceed the accuracy of the baseline vector, the obtained maps are not only spatially less 

fragmented again but also some thematic classes are in general extracted way more reliably. 

This can be prominently observed for the thematic class “other impervious surface”, which 
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���(�)�̅
�������; (e) ���(�)�̅

������� under additional consideration of shape features; (f)  
���(�)�̅

������� under additional consideration of context features; (g)  
���(�)�̅

������� under additional consideration of both shape and context features; (h) same as (g) but additional 
consideration of ��(�)�������. 

VI. CONCLUSIONS AND OUTLOOK 

In this paper, the concept of object-based morphological profiles was introduced for 

classification of very high spatial resolution remote sensing images. A formal definition of 

OMPs and experimental evaluation were provided. OMPs are intended to allow for a very 

flexible and exhaustive characterization of various objects in an image with respect to 

morphologic operators. As such, they allow for a multi-level decomposition of an image 

considering also shape-related, topological, and hierarchical properties of affiliated image 

objects (i.e., discrete image regions). Thereby, this work can be attributed to, and extends the 

methodological canon of object-based image analysis techniques, which is found to represent 

an emerging paradigm in the context of remote sensing and geographic information science 

[1].  

The proposed technique was applied to two portions of very high spatial resolution 

panchromatic imagery acquired by the WorldView-II sensor. The imagery was classified 

according to relevant urban LULC classes within random forest architecture. Thereby, a 

comprehensive number of features based on OMPs was computed and employed for 

classification. In this, various feature sets were compiled to understand the role of the 

different groups of features that can be retrieved based on OMPs. The results underline the 

effectiveness of the proposed OMPs, which allow for obtaining a significantly increased 

classification accuracy of learned models compared to standard MPs, and enhanced spatial 

consistency of classification maps.   

Subsequent works can address the extension of this concept for processing of multi- and 

hyperspectral imagery. Thereby, the implementation of a proper dimensionality reduction 

scheme (e.g., principle component analysis) appears imperative to alleviate the computational 

burden associated with feature selection based on filters and in particular wrapper-based 

methods for high-dimensional data sets. Moreover, a tailored classification approach based on 

e.g., a SVM with multi-source composite kernels could provide beneficial joint consideration 

of the spectral and spatial information. Finally, it would be very interesting to benchmark 

OMPs in a consistent experimental setup, which allows for stringent comparability, with 

respect to results obtained by other advanced mathematical morphology-based processing 

techniques such as attribute profiles.  

VII. APPENDIX A 

Fig. 6 shows an exemplification of a ��(�) and corresponding ���(�). The considered 

MOs opening and closing were obtained with a square-shaped SE. One segmentation level � 

was created for the ���(�) and mode was used as aggregation function. 
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