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Abstract 31	  

32	  

A hybrid method of combining linear programming and physical constraints is 33	  

developed to estimate specific differential phase (  KDP ) and to improve rain estimation. 34	  

The hybrid   KDP  estimator, and the existing estimators of linear programming (LP), least 35	  

square fitting (LSF), and a self-consistent (SC) relation of polarimetric radar variables are 36	  

evaluated and compared using simulated data. Simulation results indicate the new 37	  

estimator’s superiority, especially in regions where backscattering phase ( δ hv ) dominates. 38	  

Furthermore, quantitative comparison between auto weather station (AWS) rain gauge 39	  

observations and   KDP -based radar rain estimates for a Meiyu event also demonstrate the 40	  

superiority of the hybrid   KDP  estimator over existing methods. 41	  

42	  

43	  
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1. Introduction	  44	  

45	  

In recent years, the dual-polarization upgrade of weather radar networks has 46	  

yielded new measurements and information that provide valuable new insights into cloud 47	  

and precipitation processes over conventional weather radar observations. In addition to 48	  

the radar reflectivity factor (  ZH ), polarimetric radars measure several new quantities 49	  

including the differential reflectivity factor (  ZDR ), specific differential phase (  KDP ), and 50	  

co-polar cross-correlation coefficient ( ρhv ) [1]. These polarimetric measurements, when 51	  

used alone or in combination, help to significantly improve hydrological applications 52	  

including quantitative precipitation estimation (QPE) [2, 3]. In particular, the inclusion of 53	  

KDP , defined as the range derivative of the differential propagation phase ( φDP ) between 54	  

the two polarized signals, offers many advantages for QPE, especially in challenging 55	  

heavier rainfall contexts [4]. Specifically,   KDP  is better correlated with the rainrate  R  at 56	  

all weather radar frequencies and is immune to radar mis-calibration, attenuation in 57	  

precipitation, and partial beam blocking. Furthermore,   KDP  has been successfully applied 58	  

within bulk hydrometeor classification routines since it is uniquely sensitive to improve 59	  

the designation of graupel and dendritic snow crystals [5]. 60	  

Despite these known advantages for QPE, there are still issues in obtaining 61	  

accurate   KDP  estimates from the polarimetric radar measured differential phase ( ΦDP ). 62	  

Typically,   KDP  is estimated from the range derivative of the measured ( ΦDP ). However, 63	  

the measured differential phase  ΦDP  is composed of the differential propagation phase 64	  

(  φDP ), differential backscattering phase (  δ hv ), and measurement errors including 65	  
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statistical/sampling error, ground clutters, side lobes, second-trip echoes, mixed-phase 66	  

hydrometeors (large melting aggregates and hailstones), non-uniform beam filling and so 67	  

on [6-8]. This may be expressed as,  ΦDP = φDP +δ hv + ε  if ignoring certain error 68	  

contributions from ground clutter, side lobes, non-uniform beam filling, etc. 69	  

Contributions from these terms can be mostly removed in the quality control procedure. 70	  

To reduce effects of statistical errors ε , it is useful to smooth  ΦDP  so that the range 71	  

derivative of  φDP  can be correctly calculated. Nevertheless, excessive smoothing of  ΦDP72	  

results in overly processed   KDP  estimates that lose fine-scale precipitation features. For 73	  

shorter wavelength radars and applications (e.g., X-band and C-band, with 3-cm and 5-74	  

cm wavelengths, respectively), the  δ hv  may also contribute large errors to   KDP75	  

estimation [4]. Therefore, it is increasingly critical at shorter wavelengths to separate  φDP76	  

contributions from  ΦDP  accurately to reduce the error in  φDP  for   KDP  estimation, while 77	  

keeping the inherent spatial structure of precipitation. 78	  

Many algorithms have been proposed towards obtaining accurate   KDP  estimates 79	  

from  ΦDP . One common method is to apply various forms of signal filters, such as FIR 80	  

filter [9, 10] or wavelet analysis [11]. In these approaches, high frequency components 81	  

along the  ΦDP  radial measurement profiles are removed. The most basic approach has 82	  

been to fit noisier  ΦDP  radial profiles with a smoothed one based on a median filter, a 83	  

moving average, or more sophisticated averaging methods. Recently, an algorithm based 84	  

on a Kalman filter approach was also proposed, suggesting improved estimation accuracy 85	  

under lower signal-to-noise ratio (SNR) conditions [12].  86	  
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Since  δ hv contributions are typically less significant at the longer wavelengths in 87	  

rain media (e.g., S-band, 10-cm wavelength), the operational dual-polarization WSR-88D 88	  

network is able to implement a simple, least-square fitting (LSF) method. For these 89	  

radars,   KDP  is estimated by applying LSF on multiple gates of  ΦDP  measurements over 90	  

adaptive radial ranges. These filter lengths vary from approximately 2 to 6 kilometers, 91	  

based on the intensity of radar echo (  ZH ), centered on that range gate [13]. This approach 92	  

selects  ΦDP data filtered over a relatively large radial range (6 km) for the moderate-to-93	  

weak echo   ZH < 40 dBZ), and over a relatively small radial range (2 km) for  strong echo 94	  

(  ZH > 40 dBZ). The advantage of this adaptive range, or ‘synthetic’ solution, is that it is 95	  

simple to implement operationally. The approach reflects a compromise that prevents 96	  

KDP  from being overly smoothed in severe convective regions, while facilitating rainfall 97	  

rate estimation by heavily smoothing within light precipitation regions where   KDP98	  

estimates are typically noisier. 99	  

Due to the fact that the sampling volume averaged axis ratio (ratio of minor axis 100	  

and major axis) of raindrops is never larger than 1 [2, 14], intrinsic   KDP  is nonnegative 101	  

when the radar beam goes through liquid hydrometers. Nevertheless, the aforementioned 102	  

estimation methods will occasionally produce negative   KDP  estimates in rain due to 103	  

contributions from the backscattering phase  δ hv , nonuniform beam filling, or other 104	  

statistical errors of  ΦDP  measurements [15]. As   KDP  estimates should be unbiased by 105	  

 δ hv  at the longer wavelengths, Ryzhkov and Zrnic proposed to incorporate negative 106	  

rainfall rate values into spatiotemporal integrals, such as using a formula 107	  



6	  

R = 40.6 KDP

0.866
sign(KDP )  [8]. Similarly, to designate or better account for the role of 108	  

negative   KDP  values on hydrological applications including those originating from 109	  

backscattering phase or other contributions, it is useful to examine statistical  KDP -  ZH110	  

relationships and replace physically unrealistic, negative   KDP  estimates with physically 111	  

realistic values estimated from   ZH . Simply adopting the latter approach,   KDP  and   KDP -112	  

based rain rate estimates may appear cosmetically more accurate, especially at the rear or 113	  

peripheral gradient regions of intense storms wherein negative   KDP  regions are the most 114	  

prominent. However, the ramifications for such substitutions are statistically important, 115	  

since artificial negative   KDP  excursions are accompanied by artificial positive   KDP116	  

excursions. Therefore, the radial integral of   KDP , which is related to  φDP , would 117	  

significantly increase due to the simple replacement of negative   KDP , leading to an 118	  

overestimation for the total accumulated rainfall from   KDP -based rainrate spatiotemporal 119	  

integrals. Several methods including so-called ‘ZPHI’ methods have been suggested to 120	  

offset several of these concerns by constraining the substitutions according to the path 121	  

integrated differential phase [16] 122	  

Recently, a linear programming (LP) method [17] has been proposed that may 123	  

mitigate the  ΦDP  noisiness and improve   KDP  estimation simultaneously. The LP method 124	  

is mainly based on linear optimization theory [18]. The basis for the method was to 125	  

extract a  φDP  curve that best minimizes the difference between this extracted curve and 126	  

the measured  ΦDP  at a given series of linear constraints. For the initial proof-of-concept 127	  

article, the assumption for nonnegative   KDP  values served as an example constraint set 128	  
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[17]. Using simulated and real datasets, the approach indicated nonnegative   KDP129	  

estimates, monotonously increasing  φDP , and unbiased accumulated rainfall estimation 130	  

with better fine-tuned range distribution over conventional methods. Moreover, 131	  

simplified self-consistency constraints such as   KDP = aZH
b  were identified as possible 132	  

means to further improve and constrain these methods, but were not well-developed in 133	  

that study.  134	  

As highlighted by Giangrande et al. [17], Ryzhkov and Zrnic [8] and many others, 135	  

relationships between   KDP  and   ZH  are commonly used to identify and adjust 136	  

unreasonable   KDP  values (or partial beam blockages in   ZH  )  since both measurements 137	  

are related to rainfall intensity. However,   KDP  and   ZH are approximately the 4.2nd and 6th 138	  

moments of DSD, respectively [1, 4], thus their relationship is nonlinear, unstable and 139	  

easily affected by the variability of the raindrop size distributions (DSD). Self-consistent 140	  

(SC) relations as proposed by Scarchilli [19], Vivekanandan [20], Giangrande [21] have 141	  

shown that   ZH ,   ZDR  and   KDP  triplets reside within a limited and possibly exploitable 142	  

three-dimensional space for rainfall studies, more stable than two-parameter   KDP -143	  

ZH relations and are less affected by raindrop size distribution (DSD) variability. By 144	  

using well-calibrated and attenuation-corrected   ZH  and   ZDR , it is possible to estimate 145	  

KDP  from the self-consistency of polarimetric radar data (PRD). It can be expected that 146	  

this estimation is always non-negative and close to the intrinsic values. Unless highly 147	  

contaminated by hail presence, the self-consistent relations are useful information to be 148	  

utilized in   KDP  estimation. 149	  
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Moreover, algorithms such as LSF, LP and those benefitting from self-150	  

consistency have advantages and disadvantages. Therefore, this study is motivated by an 151	  

attempt to combine the best attributes of those methods into a more optimal approach for 152	  

KDP  estimation. In order to make use of as much information provided by polarimetric 153	  

measurements as possible, we propose a hybrid method to estimate   KDP  in rain regions 154	  

that combines the strengths of LSF and SC under an enhanced LP framework. This paper 155	  

is organized as follows. Section 2 describes the methodology and implementation 156	  

associated with the LSF, simplified LP, and basic SC approach. Section 3 presents an 157	  

ideal experiment and a comparison of the results from these algorithms. In Section 4, an 158	  

enhanced LP hybrid method that better incorporates these three concepts is proposed and 159	  

applied on the ideal case to show its advantages. A qualitative and a quantitative 160	  

comparison of basic LSF, simple LP and enhanced LP hybrid methods during a Meiyu 161	  

event are present in Section 5. Finally, a summary and some discussions on future work 162	  

are given in Section 6.  163	  

164	  

2. Methodology 165	  

166	  

According to the textbook definition for   KDP  [4], only  ΦDP  measurements from 167	  

two range gates are needed to obtain the intrinsic value, as in formula 168	  

KDP =
φDP (r2 )−φDP (r1)

2(r2 − r1)
, provided there are no errors in  ΦDP  measurements, i.e.,  ΦDP  is 169	  

identical to intrinsic  φDP . 170	  
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When errors exist in the measurements, this problem becomes ill-posed. 171	  

Retrieving   KDP  according to its definition would lead to an unpractical result, especially 172	  

when statistical errors of  ΦDP  are relatively large. Fortunately, in weather systems and 173	  

associated storm-scale research, precipitation regimes and DSD properties does not 174	  

change significantly from gate to gate. Because of this, measurements of more than two 175	  

gates are often used to determine the   KDP . This estimation becomes over-determined 176	  

when multiple measurements are involved in evaluating one variable [22]. All the 177	  

aforementioned methods concern the issue of solving this over-determined system and 178	  

obtaining outcomes close to the intrinsic values. The   KDP  estimation methods of LSF, LP 179	  

and self-consistency are reviewed in this section. 180	  

181	  

A. Least Square Fitting 182	  

Least square fitting is a common regression approach to obtain approximate 183	  

solutions for an over-determined system. When the   KDP  of an intermediate range gate 184	  

needs to be determined; multiple  ΦDP  measurements (with errors) from the gates 185	  

adjacent along the radial construct the whole system. Generally, the number of gates to be 186	  

included should be determined mainly according to the standard deviation of the errors, 187	  

which depends on the signal noise ratio (or SNR) of the radar data, estimation error of 188	  

 ΦDP , and the variability of   KDP  along the radial. As employed by the WSR-88D radar 189	  

and CSU–CHILL radar [23] systems, we apply piecewise LSF on adaptive lengths with 190	  

respect to echo intensity, i.e.,   ZH . Two sets of experiments with different adaptive 191	  

lengths are run to examine the dependence of LSF on the filter lengths in the next section. 192	  
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One experiment uses the same adaptive lengths as those used by WSR-88D, i.e., 2 km (6 193	  

km) for gates where   ZH  is beyond (below) 40 dBZ. The other one uses the twice of the 194	  

WSR-88D adaptive lengths. The LSF formula is applied on  ΦDP  measurements at the 195	  

gates within the adaptive lengths to obtain the   KDP  estimate at the intermediate gate: 196	  

KDP =
[ΦDP (i)−ΦDP ] i [r(i)− r ]{ }

i=1

n

∑

2 [r(i)− r ]2

i=1

n

∑
, (1) 197	  

where the overbar “− ”  means an  averaged value, and r is the distance of   ΦDP198	  

measurements from the radar. 199	  

 200	  

B. Linear Programming 201	  

As proposed by Giangrande et al. [17], results from the LP with nonnegative 202	  

constraints are summarized as follows. The main idea is optimizing  φDP  under the 203	  

physical constraints of rain. We denote the n-gate raw differential phase ray with 204	  

    b = (b1,  b2 ,  !,  bn )  and the filtered or processed ray with     x = (x1,  x2 ,  !,  xn ) , 205	  

respectively. The LP problem is set as minimizing the difference between  b  and  x , i.e. 206	  

f = xi − bi
i=1

n

∑ . To mathematically deal with the absolute value, an intermediate vector 207	  

z = (z1,  z2 ,  !,  zn )  is introduced that represents the variables that appear in the cost 208	  

function. Regardless of whether  xi − bi  is positive, negative or zero,  zi ≥ xi − bi  is always 209	  

equivalent to the combination of two inequalities  zi ≥ xi − bi  and  zi ≥ bi − xi . Now the 210	  
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minimization of  f  becomes the minimization of the n-term cost function zi
i=1

n

∑  under two 211	  

sets of constraints,  zi − xi ≥ −bi  and  zi + xi ≥ bi . Mathematically, we let   xc = (z,x)T  be the 212	  

independent variable of the LP problem. Now, the cost function zi
i=1

n

∑ , i.e., sum of the 213	  

elements of  z , can be rewritten as a dot product,    c i xc , with the coefficient vector 214	  

expressed as     c = (11,  !,  1n ,  0n+1,  !,  02n ) . It was noted by Giangrande et al. [17] that 215	  

potential missing data in the observations can be handled by setting the weights of the 216	  

corresponding gates to zeros.  217	  

The matrix–vector form of the LP problem becomes minimizing    c i xc  under the 218	  

constraint of   Axc ≥ b , in which A =
In −In

In In

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, and   In  is the  n× n  identity matrix. If 219	  

there are no other constraints, the cost function reduces to zero when  x  equals to  b . 220	  

When we add a nonnegative   KDP  constraint to the LP problem as in Giangrande et al. 221	  

[17], a (n− m−1
2

)× n  matrix    
Mn−(m−1)/2, n  is employed to convert the filtered differential 222	  

phase to its derivative,   KDP . The matrix    
Mn−(m−1)/2, n  is composed of coefficients of the m-223	  

point Savitzky–Golay (S-G) second-order polynomial derivative filter: 224	  

CS-G (i) = 6(2i − m−1)
m(m+1)(m−1)

,  i = 1,  2,  !,  m , (2) 225	  

yielding, 226	  
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Mn−(m−1)/2, n =

C
S-G

(1) ! C
S-G

(m) 0
m+1

0
m+2

! 0
n

0
1

C
S-G

(1) ! C
S-G

(m) 0
m+2

! 0
n

! !

0
1

! 0
n−m−1

C
S-G

(1) ! C
S-G

(m) 0
n

0
1

! 0
n−m−1

0
n−m

C
S-G

(1) ! C
S-G

(m)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

 , (3) 227	  

where   
0 j  means zero at the   j

th  column. With the m-point derivative filters involved, 228	  

KDP  array can be expressed as 
   
Mn−(m−1)/2, nx

T . The linear inequality 229	  

Mn−(m−1)/2, nx
T ≥ Zn−(m−1)/2  

serving as the nonnegative   KDP  constraint can be merged into 230	  

the now augmented parts of matrix-vector form of the LP problem, in which    
Zn−(m−1)/2  is 231	  

a zero vector. The modified algebraic form is now minimizing    c i xc  under the constraint 232	  

of   AAUGxc ≥ bAUG , which is the combination of the minimization and nonnegative 233	  

constraint.  The augmented matrix   AAUG  and vector   bAUG  can be expressed as: 234	  

AAUG =

In −In

In In

Zn−(m−1)/2,n Mn−(m−1)/2,n

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, (4) 235	  

   
bAUG = −b,b,Zn− m−1( )/2( )T

, (5) 236	  

respectively, where    
Zn−(m−1)/2, n  is a zero matrix. Many toolkits have been developed to 237	  

solve LP problems [24, 25]. It is noted that, SciPy [26] provides a very convenient way to 238	  

obtain a satisfactory solution   xc .   KDP  estimates are obtained from the formula 239	  

   
K DP = Mn−(m−1)/2,nx

T , in which  x  should be preprocessed with a smoothing filter. 240	  
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It seems at first glance that the LP estimation system is a well-posed linear system 241	  

when applied on the   KDP  estimation problem, because the numbers of measurements 242	  

( ΦDP ) and state variables (  KDP  or  φDP  in this particular system) are the same. Yet, 243	  

mathematically it will lead to a meaningless solution because of observation errors. 244	  

However, the underlying principle is that, each m-point S-G derivative filter in 245	  

Mn−(m−1)/2, nx
T  connects  φDP  of m gates with   KDP  at the intermediate gate. This is an 246	  

analogy to an LSF within each adaptive range. It is worth noting that adaptive derivative 247	  

filters cannot be applied in the LP estimation method. These derivative filters act as a 248	  

constraint of state variable  φDP . If the lengths of the filters vary,  φDP  would not be 249	  

monotonous. This study does not further explore this problem. For the purpose of 250	  

manifesting the effect of the S-G derivative filter, the results from the LP method with 251	  

derivative filters of 2 km and 6 km lengths are shown.  252	  

253	  

 254	  

C. Self-consistency 255	  

Previous studies have shown that the intrinsic   KDP  values are constrained well by 256	  

the intrinsic   ZH  and   ZDR  [19-21]. Although the simple SC relation   KDP = aZ b  was 257	  

identified as one possibility to set a threshold in the LP method [17], the usage of self-258	  

consistency was not thoroughly studied for KDP or rainfall estimation, with emphasis on 259	  

shorter wavelengths wherein such constraints are more beneficial [27]. In order to obtain 260	  

the intrinsic self-consistent relation, polarimetric radar variables should be calculated 261	  

from in-situ observations (DSD data in this case). The T-matrix method can be used to 262	  
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compute scattering amplitude of raindrops at different sizes [28, 29]. With knowledge of 263	  

the scattering amplitude, a PRD could be calculated [1]. Since the DSD characteristics 264	  

may change for different cases, it is better to use climatological DSD observations to 265	  

obtain a robust self-consistent relation among the polarimetric variables, which is 266	  

expressed by 267	  

KDP (Zh ,Zdr ) = CZh
αZdr

β , (6) 268	  

where   Zh  and   Zdr are the linear forms of   ZH  and   ZDR . The parameters  C , α  and β  can 269	  

be estimated by minimizing the sum of the squared errors of   Zh ,   Zdr  and   KDP  from the 270	  

equation.   KDP  estimates can be acquired from measured   ZH  and   ZDR  with Eq. (6). It is 271	  

noteworthy that   ZH  and   ZDR  measurements suffer from attenuation in rain, mis-272	  

calibration, partial beam blockages and random fluctuations. Mis-calibration, partial 273	  

beam blockages and attenuation should be corrected first [30-33], or corrected adaptively. 274	  

The impact of random fluctuations can be reduced by applying moving median and mean 275	  

filters. 276	  

In this method, the errors of   KDP  estimates are attributed to the inaccuracy (or, 277	  

lack of representativeness) of the self-consistent relation and the errors of measurements 278	  

(i.e.,   ZH ,   ZDR ). A detailed error analysis is worthwhile, but beyond the scope of this 279	  

paper. Estimates from self-consistency method with two different   ZH /  ZDR  moving filters 280	  

are compared in the next section. 281	  

282	  
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3. Ideal Experiment 283	  

 284	  

A. Experiment Design 285	  

LSF, LP and SC based   KDP  estimation methods are applied on a set of radial 286	  

simulated PRD to illustrate the different characteristics of each method. These simulated 287	  

PRD are based on a time series of DSD observation from a 2-D video disdrometer 288	  

(2DVD), which is deployed at Nanjing City, Jiangsu Province in Eastern China, from a 289	  

precipitation event on July 19, 2015. The position of the 2DVD is denoted on the 290	  

topographic map in Fig. 1.  291	  

A constrained gamma model is used to process the DSD observations to generate 292	  

the simulated data [34, 35], which is expressed by 293	  

N (D) = N0Dµ exp(−ΛD),0 ≤ D ≤ Dmax ,  (7) 294	  
where   N (D)  is the raindrop number concentration of each size interval;  D  is the 295	  

equivalent volume diameter (unit [mm]);   Dmax is the maximum equivalent diameter of 296	  

raindrops and is assumed to be 8.0 mm;   N0 is the number concentration parameter; µ  is 297	  

the shape parameter; and  Λ(mm−1)  is another parameter of distribution. Since the 298	  

constrained gamma model uses a statistical relation between the parameters µ  and Λ , 299	  

only two estimated DSD moments are needed to find the DSD parameters in (7). 300	  

First, the 3rd (  M3 ) and 6th (  M6 ) moments of the DSD 301	  

Mn = DnN (D)dD
0

Dmax∫ ,  (8) 302	  

are estimated from observations [36]. A moving median and mean filter are used to filter 303	  

out the high frequency fluctuations of moments. These fluctuations are mostly caused by 304	  
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the micro-scale variability of precipitation systems, the difference of sampling volume 305	  

between disdrometer and radar, and the observation errors of disdrometer. After this 306	  

procedure,   M3  and   M6  are linearly interpolated so that the simulated data can have a 307	  

radial resolution of 75 meters. We then use a method similar to the truncated moment fit 308	  

method introduced by Vivekanandan et al. [36] to obtain DSD parameters (  N0 , µ  and 309	  

Λ ), as 310	  

 

M6

M3

=
N0Λ

−(µ+7)Γ(µ + 7)
N0Λ

−(µ+4)Γ(µ + 4)
= Γ(µ + 7)
Λ3Γ(µ + 4)

= (µ + 6)(µ +5)(µ + 4)
Λ3

µ = −0.024Λ2 +1.0662Λ− 2.7433

N0 =
M6Λ

(µ+7)

Γ(µ + 7)

,

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(9) 311	  

where the µ −Λ  relation is obtained from DSD observations measured by 2DVD in 2014 312	  

and 2015, using the method of Sorting and Averaging based on Two Parameters (SATP) 313	  

that was described by Cao et al. [37].  314	  

PRD including   ZH ,   ZDR ,   KDP , specific horizontal attenuation (  AH ), and specific 315	  

differential attenuation (  ADP ) are calculated from the simulated DSD with the T-matrix 316	  

method. The axis ratio of raindrops is set following the experimental fit [2]; the 317	  

wavelength for these calculations is set as 5.33cm, which is a typical value for C-band 318	  

radar. The temperature is set to 10 Celsius degrees. The range profile of intrinsic   ZH , 319	  

ZDR ,   KDP  and  φDP  are shown in Fig. 2. 320	  

Random fluctuations, which commonly exist in measured   ZH ,   ZDR  and  ΦDP , are 321	  

represented by normally distributed random noises (white noises). The standard 322	  

deviations of   ZH ,   ZDR , and  ΦDP  errors are assumed to be 2 dBZ, 0.4 dB, and 5 degrees, 323	  
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respectively. The SNR influence on the random fluctuation is ignored for these 324	  

calculations. To examine the impact of the backscattering phase caused by large 325	  

raindrops or melting hail, the differential backscattering phase  δ hv  is set to nonzero at the 326	  

first   KDP  peak in the vicinity of 28.5 km (called “bump” region), following: 327	  

δ hv (r)=
300

2πσ r

exp[−
(r − r0 )2

2σ r
2 ], r0 − 0.75km < r < r0 − 0.75km

0, else

⎧

⎨
⎪⎪

⎩
⎪
⎪

,  (10) 328	  

where  σ r is the shape parameter (is assumed to be 8 km);  r  is the range distance from the 329	  

radar (unit [km]); and   r0  is the center of the “bump”. The large “bump” with a maximal 330	  

differential backscattering phase of 15.0 degrees occurs occasionally in real cases; it is 331	  

used to inspect the performance of these   KDP  estimation algorithms under this extreme 332	  

situation. Finally, the intrinsic value, propagation effect, random fluctuations and “bump” 333	  

effects in  ΦDP  constitute the simulated measurements, following 334	  

 

′ZH (k) = ZH (k)− 2Δr AH (i)
i=1

k−1

∑ + εZH

′ZDR (k) = ZDR (k)− 2Δr ADP (i)+ εZDR
i=1

k−1

∑

ΦDP (k) = ′φDP (k) = 2Δr KDP (i)+δ hv + εΦDP
i=1

k−1

∑

,

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (11) 335	  

where the accumulation means the propagation effect of   AH ,  ADP , and   KDP . 336	  

From Fig. 2, the whole range of the rain cell is about 60 km, with the most intense 337	  

parts located from about 25 km to 40 km. The largest   KDP  value exceeds 3 degrees per 338	  

kilometer. Attenuation becomes significant, and  ΦDP  increases rapidly through the 339	  

intense parts of the rain cell. The large backscattering phase causes a large “bump” in the 340	  
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vicinity of the first peak of   KDP . For this region, it is obviously uneasy to estimate   KDP341	  

from  ΦDP  because backscattering overruns the propagation effect. Nevertheless, the 342	  

power measurements:   ZH  and   ZDR  are relatively immune from the back scattering phase 343	  

as long as there is no hail. The accuracy of   KDP  estimates from the self-consistent 344	  

relation is mainly decided by the feasibility of the relation for a particular case, the 345	  

random fluctuations of   ZH /  ZDR  measurements and the effect of attenuation in rain. 346	  

347	  
 348	  

B. Climatological Parameters 349	  

In order to obtain the parameters for the self-consistency, the 2-year 350	  

climatological DSD data from 2014 and 2015 observed by the same 2DVD as in the 351	  

simulation section was used. The self-consistent relation obtained with the method 352	  

documented in the previous section is shown in Fig. 3 as a scatterplot, and expressed by 353	  

KDP (Zh ,Zdr ) = 4.7041e−5Zh
1.0411Zdr

−1.9097 (12) 354	  

with   Zh = 10ZH /10  in unit of [mm6m-3 ] and   Zdr = 10ZDR /10  dimensionless. The 355	  

scatters of intrinsic   KDP  values, versus those estimated with Eq. (12), are distributed 356	  

closely around the unity line except for several outliers. The DSDs of these outliers are 357	  

dominated by a few of big drops, mainly due to the size sorting effect [38, 39] of wind 358	  

shear, deviating from the standard gamma model. Even with all the different types of 359	  

DSDs, the self-consistent relation of PRD exhibits great reliability and robustness.  To 360	  

obtain the accurate parameters in Eq. (12), all fitting procedures in this paper are 361	  

performed using nonlinear methods in a linear scale instead of simple linear fitting in 362	  
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logarithmic scale. This is because the linear fitting in logarithmic scale would enlarge the 363	  

weights of smaller data values. As there are much more light rain samples from our DSD 364	  

observation, the fitting results can bias to light rain in linear fitting in logarithmic scale.  365	  

Besides the self-consistent relation among PRD, the linear coefficients of   AH -366	  

KDP ( c ) and   ADP -  KDP  ( d ) are also regressed to be utilized in attenuation correction [31], 367	  

written as   c=0.0987, d=0.018 . The regression performance is shown in Fig. 4.  With the 368	  

coefficients  c  and  d , attenuation of   ZH ,   ZDR
could be corrected with 369	  

  

ZH = ′ZH + cΦDP
U

ZDR = ′ZDR + dΦDP
U

, (13) 370	  

in which  ΦDP
U  means the unfolded and non-filtered differential phase,   ′ZH  and   ′ZDR371	  

indicate attenuated measurements. 372	  

 373	  

C. Comparison of Results 374	  

The   KDP  estimations of the simulated experiment with LSF, LP, and self-375	  

consistency systems are compared in this subsection. Different lengths of adaptive range, 376	  

derivative filter, and moving window for LSF, LP, and self-consistency methods, 377	  

respectively, are used to illustrate the impact of these parameters to the whole system. In 378	  

Fig. 5(a), the adaptive range is 2 km/27 gates for  ZH ≥ 40dBZ  and 6 km/81 gates 379	  

for  ZH < 40dBZ  for LSF; the derivative filter is 2 km/27 gates for LP; the moving 380	  

window is 1 km/15 gates for self-consistency. A shorter moving window is used because 381	  

the   ZH /  ZDR  standard deviation is much smaller than that of  ΦDP . 382	  
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The LSF-based   KDP  estimations have the worst performance among these three 383	  

methods. Due to the “bump” effect,   KDP  estimations have very significant fluctuations in 384	  

the vicinity of this region. The peak is higher than 9 o /km and the valley at the “leeside”385	  

can be lower than -3 o /km . This would lead to nonphysical QPE results. Even at the386	  

positions where the intrinsic values are less than 1 
o /km  (meaning that the slope of  φDP  is 387	  

insignificant),   KDP  estimates can still be negative. Statistical errors are not handled well 388	  

in the LSF approach. When LP is used, the results are better. First, due to the non-389	  

negative constraint used, estimated   KDP  values can never be negative even at the leeside 390	  

of the “bump” region, where measured  ΦDP  is of downward trend. This is a substantial 391	  

improvement, since erroneous negative values are totally avoided. Furthermore,   KDP392	  

values at the windward side are also better than those obtained from the LSF method 393	  

because of the constraints used in the LP approach. LP also results in better   KDP394	  

estimates where the rainrate is low. 395	  

Not surprisingly, the SC   KDP  estimation results in the best outcome for this 396	  

experiment. From Fig. 3, the self-consistency of PRD is very reasonable. It is fair to say 397	  

that   KDP  is not totally independent from   ZH  and   ZDR  when the DSDs are not absolutely 398	  

different from the climatology. In Fig. 5, the difference between   KDP  estimates from the 399	  

SC method and intrinsic values are quite small, especially at the “bump” region. 400	  

Differences exist only in the vicinity of the second   KDP  peak. This is a nearly perfect 401	  

result because the intrinsic self-consistency of simulated experiment PRD is almost 402	  

identical to what we get from climatological DSD data (not shown), meaning that the 403	  
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model error is small. The main source of error is the random fluctuation, which is 404	  

reduced by the moving filters. However, in other cases including real-world 405	  

implementation, the model error due to the deviation of intrinsic self-consistency from 406	  

the statistical relation would need to be taken into account. 407	  

Doubling the lengths of the adaptive ranges, the derivative filter and moving 408	  

windows with respect to those in Fig. 5(a), we obtain another set of results, shown in Fig. 409	  

5(b). Generally,   KDP  estimates are smoother when compared with those in Fig. 5(a).  410	  

According to  SD( KDP ) =
SD( ΦDP )

N (N −1)(N +1)/3
1
Δr

, the random errors of LSF   KDP411	  

estimates would decrease to about 1/3 of those in Fig. 5(a) [4, 40]. Therefore, the number 412	  

of negative values decreases remarkably. However, at about 24 km, the values become 413	  

abnormally large. This is mainly due to the incorporation of the “bump” part of the  ΦDP414	  

profile when the lengths of adaptive range are enlarged. It is not surprising to see that 415	  

values from LP do not show such a tendency because the consideration of the entire ray. 416	  

The results from LP are also closer to the intrinsic values in the vicinity of the first peak. 417	  

However, the results at the second   KDP  peak are overly smoothed when compared with 418	  

those from Fig. 5(a). The errors here are not as severe as the errors in the “bump” regions. 419	  

Nevertheless, this highlights that uniform length derivative filters without additional 420	  

constraints could either over-smooth the results when errors are not too severe, or under-421	  

smooth the results where  ΦDP  measurements are too “noisy”. For this example,   ZH  and 422	  

ZDR  measurements are also smoother due to the increased length of the moving window 423	  

in the self-consistent estimation. The results are also overly smoothed in the figure. 424	  
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The intrinsic differential phase and the error part of  ΦDP , including random 425	  

fluctuation and nonzero differential backscattering phase, are segregated in the LSF and 426	  

LP methods.   KDP  estimated from LSF and LP may deviate from the intrinsic values 427	  

when the information provided by the error part dominates compared to that provided by 428	  

the intrinsic differential phase. The performance of   KDP  estimation from measured 429	  

polarimetric data depends mainly on to what degree the method can extract information 430	  

provided by intrinsic differential phase from the measured data: the more the useful 431	  

information is contaminated by the error, the worse the performance. In most   KDP432	  

estimation approaches including LSF and the basic LP [17], only  ΦDP  measurements are 433	  

used. Therefore, these methods may perform worse when they are applied on the data for 434	  

which the information provided by error plays a more important role. The ratio of useful 435	  

information to error mainly depends on the magnitude of the error in polarimetric 436	  

measurements, and the scales (for matching fixed-length filters) over which these operate. 437	  

This is related to many factors such as radar hardware (e.g., antenna design, transmitter 438	  

characteristics), operating parameters (e.g., pulse repetition frequency:,PRF), the 439	  

propagation and scattering characteristics of the targets (e.g., Doppler spectrum 440	  

characteristics), distance between targets and radar and so on. So the performance of 441	  

different methods also depends on the data.  Likewise, only   ZH  and   ZDR  measurements 442	  

are used in the self-consistency method. However, the self-consistent relation in a 443	  

specific case could deviate from the statistical one, and there are also errors in   ZH  and 444	  

ZDR  measurements. So, it is natural to combine these methods together, and to make use 445	  
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of as much information as possible. In the next section, we will propose a hybrid method 446	  

based on the combination of the LSF, LP and self-consistent   KDP  estimation methods. 447	  

448	  

4.  A Hybrid Method on the Ideal Experiment 449	  

450	  

According to information theory [41], as more information is used in appropriate 451	  

ways, variables can be more accurately determined. Under the guidance of this principle, 452	  

a hybrid method using all available measurements including   ZH ,   ZDR , and  ΦDP  is 453	  

proposed based on the linear programming.  ρhv  usually decreases when radar scans 454	  

across insects or clutters, so it is usually used to identify and remove non-meteorological 455	  

echoes.  456	  

As mentioned before, the SC   KDP  estimation could obtain very accurate results 457	  

when a proper moving filter is chosen. Even though model errors could cause degradation 458	  

in estimation accuracy, it is revealed from Fig. 3 that self-consistent relation is very stable 459	  

from a climatological perspective. In the hybrid method, the upper and lower limits for 460	  

KDP  estimations are calculated from   ZH ,   ZDR  and  ΦDP  measurements with LSF, LP and 461	  

self-consistency as accurately as possible. Then, these reasonable upper and lower 462	  

constraints for   KDP  can be incorporated in the LP system. Such combinations of methods 463	  

and measurements should be able to make better use of observational information and 464	  

make   KDP  estimates more accurately. 465	  

First, upper and lower limits are decided according to the upper and lower 466	  

boundary shown in Fig. 3, following, 467	  
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KDP
U = C U i KDP (Zh ,Zdr )

KDP
L = C L i KDP (Zh ,Zdr )

, (14) 468	  

where   KDP
U /   KDP

L  and   CU /   CL  mean the upper/lower   KDP  limits and the slope of 469	  

upper/lower boundary in Fig. 3, respectively. If radome attenuation or partial beam 470	  

blockage exists in real cases, there exist biases in reflectivity measurements. The biases 471	  

can be corrected from LP/LSF-estimated   KDP  using methods similar to Vivekanandan et 472	  

al. [20]. The moving windows used in this example are the shorter than those used in the 473	  

SC method in Fig. 5(a). Limits from Eq. (14) only use   ZH  and   ZDR . In order to eliminate 474	  

the potential effect of model error from the self-consistent relation or of statistical error in 475	  

measurements, these limits should be further adjusted with LSF based   KDP  estimations. 476	  

LSF uses only  ΦDP  measurements so that those estimates represent information purely 477	  

independent from the self-consistent relation. In this study, heavily smoothed LSF 478	  

estimations with adaptive ranges three times the length of those used in Fig. 5(a) are 479	  

utilized. Adjusting the lower limits is as follows: 480	  

KDP
L =

0.5KDP
L if KDP

(H) < 0

KDP
(H) if 0 ≤ KDP

(H) < KDP
L

KDP
L if KDP

(H) ≥ KDP
L

⎧

⎨
⎪⎪

⎩
⎪
⎪

, (15) 481	  

where heavily smoothed   KDP  estimates from LSF are denoted as   KDP
(H) .   KDP

(H)  tends to 482	  

underestimate   KDP  values in heavy rain regions and overestimate those in the transition 483	  

region between light rain and heavy rain. Eq. (15) would eliminate abnormally low 484	  

values in the lower limits. Overestimations in   KDP
(H)  would not play any role in Eq. (15). 485	  

The upper limits are adjusted as follows: 486	  
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KDP
U =

8, KDP
U > 8, and ZH < 35dBZ

10, KDP
U >10, and ZH < 45dBZ

⎧
⎨
⎪

⎩⎪
. (16) 487	  

Information from LSF is not used here, because it is not easy to obtain stable 488	  

upper   KDP limits without super overestimations, and severe overestimations would cause 489	  

negative consequence. 490	  

The combination of the LSF and self-consistency methods results in better lower 491	  

and upper limits for the   KDP  estimation. When errors dominate in  ΦDP  measurements, 492	  

the lower limits mainly use information from   ZH  and   ZDR  measurements in the 493	  

estimation. Similarly, the heavily smoothed LSF based   KDP  estimates will play a role 494	  

when errors in   ZH  and   ZDR  measurements dominate. The errors in one measurement can 495	  

be ameliorated by the useful information in the other measurements. 496	  

Since more accurate limits are obtained, the next step is combining them with the 497	  

LP system. Eq. (4) and (5) are modified to, 498	  

AAUG =

In

In

Zn− m−1( )/2,n

−In

In

Mn− m−1( )/2,n

Zn− m−1( )/2,n −Mn− m−1( )/2,n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

, (17) 499	  

and, 500	  

   
bAUG = −b,b,K DP

L ,−K DP
U( )T

, (18) 501	  
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respectively. Now,   KDP  constraints are controlled by the modified augmented part of 502	  

AUGA  and AUGb , which can be written as 
   
K DP

L ≤ Mn− m−1( )/2,nx ≤ K DP
U , instead of simplified 503	  

monotonicity constraints (nonnegative   KDP ) used in the original LP method. 504	  

We call this approach a hybrid method, not only because it is the combination of 505	  

the equations of the LSF, LP and self-consistency methods, but also for blending the 506	  

underlying philosophy for each of them. The LSF is the most straightforward method. It 507	  

can result in a satisfactory   KDP  estimation when the error in the measurements does not 508	  

dominate. The LP method is a global optimization algorithm for  φDP . However, the basic 509	  

methods implemented to shorter wavelengths lack some detailed consideration for 510	  

KDP estimation realities, especially when the error in  ΦDP  overruns the useful 511	  

information. The self-consistency method previously designed for partial beam blockage 512	  

and other corrections capitalizes better on  other available information (  ZH  and   ZDR ). 513	  

This self-consistency approach often fails in critical situations such as hail cores where 514	  

these methods must rigidly adhere to consistency relationship constraints that do not 515	  

apply.  516	  

The proposed hybrid method and the original LP method are applied on the 517	  

simulated data to show the changes in the performance (Fig. 6). The derivative filters are 518	  

set as 2 km in length for both. There is only a marginal difference between  φDP  estimates 519	  

from the two methods when taking an overall view of whole radial data.   KDP  estimated 520	  

by the hybrid method is smoother and much closer to intrinsic   KDP , owing to the more 521	  

accurate constraints from the additional information. As described before, the lower the 522	  
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ratio of information provided by the intrinsic differential phase and the error, the more 523	  

difficult it is to find solutions close to the intrinsic variables. The difference between 524	  

solutions estimated by the hybrid method and the original LP method reaches a maximum 525	  

at the “bump” region where the information ratio is the lowest. In the “bump” regions, 526	  

minor useful information is provided by  ΦDP  measurements, so constraints play 527	  

relatively important roles. When the LP method is used without additional constraints, the 528	  

nonnegative constraints associated with the cost function (of minimizing difference 529	  

between measured and filtered differential phase) would make  φDP  increase quickly 530	  

along with the upward slope part of the ‘bump’ region as shown by the red line in Fig. 531	  

6(a), and then increase slowly in the remaining part of the “bump”. This would result in 532	  

abnormally large   KDP  values in the upward slope part and abnormally low   KDP  values in 533	  

the remaining part. When additional information is used as upper and lower constraints in 534	  

this hybrid method,   KDP  is limited by stricter constraints than the simpler nonnegative 535	  

constraint. We see that upper and lower constraints from extra   ZH  and   ZDR536	  

measurements result in a better estimation than simple non-negative physical constraints. 537	  

538	  

5. Verification With A Real Case 539	  

540	  

The Nanjing University-C-band-Polarimetric Radar (NJU C-POL) is a mobile C-541	  

band polarimetric radar for weather research, jointly designed by Nanjing University and 542	  

Beijing Metstar Radar Company in China. Its main parameters are listed in Table 1. 543	  

During the 2014-2015 field campaign of Observation, Prediction, and Analysis of severe 544	  
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Convection of China (OPACC) , NJU C-POL was deployed in Anhui province, East 545	  

China, to observe the summer severe convection ( Fig. 1). An absolute calibration using a 546	  

metallic ball was conducted to guarantee the accuracy of   ZH /  ZV  before the observations. 547	  

A vertically pointing scan was also performed every 6-minute volume scan for   ZDR548	  

calibration. The distance between NJU C-POL and 2DVD is 171 km. These two 549	  

instruments are influenced by the same synoptic systems. Therefore, it is acceptable to 550	  

use DSD data collected by the 2DVD as representative to fit a statistical self-consistent 551	  

relation for NJU C-POL for application of the hybrid method on the measured PRD. 552	  

An event during the Intensive Observing Period 8 (IOP8) on July 11-12, 2014 is 553	  

selected for investigation from the OPACC dataset. In order to show the performance on 554	  

the real event, the LSF/LP/hybrid   KDP  methods will be applied on a plane position 555	  

indication (PPI) scan. Then, quantitative precipitation estimations from three sets of LSF, 556	  

LP and hybrid-based   KDP  estimators will be compared with accumulated rainfall (AR) 557	  

observed by several automatic weather stations (AWS) within the observing umbrella of 558	  

the radar. QPEs are estimated according to the  R  -  KDP  relation obtained from the 2DVD 559	  

[8, 42], as shown in Fig. 4. 560	  

Radar scans at 1.5 degree instead of the lowest elevation (0.5 degree) are used to 561	  

avoid the impact of partial beam blockages. The quality of radar moment data are 562	  

carefully controlled with five procedures before estimating  φDP  and   KDP : 563	  

1) ZH  is calibrated according to the absolute calibration experiment. 564	  

2) Systematic differential phase in measured  ΦDP  and   ZDR  bias are removed with 565	  

data from the vertical pointing scan. 566	  
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3) The echoes having  ρhv  less than 0.75 or spectral width is larger than 9 m/s are 567	  

considered as nonmeteorological or second trip echo and thus removed. 568	  

4) A much stricter constraint is used to deal with  ΦDP  measurements that may 569	  

cause errors. Along all radials, if the  ΦDP  difference between two adjacent gates 570	  

is larger than   40! ,  ρhv  is less than 0.9, or the spectral width is larger than 6 m/s, 571	  

the gate is flagged as a bad gate.  ΦDP  values at these potential bad gates are 572	  

removed and then refilled with the linear interpolations from the surrounding 573	  

gates. 574	  

5) Finally,  ΦDP  is unfolded,  and correction for attenuation in rain for 575	  

  ZH /  ZDR fields is conducted using Eq.(13). 576	  

 577	  

In order to illustrate the difference of the hybrid method and the basic LP method, 578	  

a comparison of their results on a radial data from a PPI image collected by the NJU C-579	  

POL on July 11, 2014 at 2325UTC is shown in Fig. 7. As influenced by the back 580	  

scattering phase and noise, the observed  ΦDP  increases abnormally in the vicinity of 35 581	  

km, which is called a “bump” region similar to the abnormal back scattering region in the 582	  

ideal case.  ρhv  (denoted in subplot [e]) also manifests a decreasing tendency in this 583	  

region. This “bump” region lacks sufficient differential phase information, which could 584	  

obviously impact the performance of both methods. Similar to the results in the ideal case, 585	  

the  φDP  estimate from the LP method tends to increase rapidly at the first half part of the 586	  

“bump” region, and then to flatten afterwards. This result is mainly required by the 587	  

algorithm to minimize the cost function. However, owing to the inclusion of  physical 588	  
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constraints, the   KDP  estimate from the hybrid method corresponds better with   ZH  and 589	  

ZDR  observations in subplots (c) and (d). It is very important to note that the frequency of 590	  

the occurrence of such large “bump” features is,not very low especially in the C-/X- band 591	  

radar datasets. As we tested in the real data, the inclusion of these physical constraints 592	  

can obviously improve the quality of the   KDP  estimates and rainfall estimates 593	  

consequently. This will be further illustrated using the whole PPI image and QPE results. 594	  

The PPI image at the 1.5 degree elevation (Fig. 8) shows that this Meiyu 595	  

precipitation has a large region of uniform stratiform precipitation with multiple 596	  

embedded convections near the southern part of the system. These embedded convections 597	  

cause a significant radial  ΦDP  increase, corresponding to increased   KDP  values. Since 598	  

 ΦDP  measurements have a large dynamic range in the image,  ΦDP  is noisy and 599	  

unsuitable for use in quantitative applications. 600	  

After quality control,   KDP  values are estimated using the LSF method with the 601	  

same adaptive ranges used in the algorithms of WSR 88D (2 km/6 km) and with 602	  

LP/hybrid method with adaptive derivative filters of 27 gate lengths (2 km). Before 603	  

estimating the upper and lower limits for the hybrid method, the attenuation-corrected 604	  

ZH /  ZDR  are smoothed with 15-gate moving median and mean filters. Results from the 605	  

PRD are found in Fig. 9. The most obvious difference of LSF based   KDP  estimates and 606	  

LP/hybrid based ones are that, with nonnegative constraints in the LP method and self-607	  

consistent constraints in the hybrid method, negative   KDP  values completely disappear. 608	  

Negative   KDP  values are  associated with localized errors. As proposed by Ryzhkov and 609	  

Zrnić [8] , QPE biases could be partially mitigated by including these negative rainrates 610	  
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associated with negative KDP  values. However, if the AR is not calculated over a 611	  

sufficiently large spatiotemporal area to capture both negative and positive   KDP  estimates, 612	  

this may still result in a negative rainfall accumulation. Results of LP estimation seem to 613	  

be much more capable than those from LSF estimation, with erroneous negatively values 614	  

disappearing. However, as shown in Fig. 10(c) and (d), the original LP based  KDP615	  

estimates near echo edges occasionally spike if backscatter phase contributions and filter 616	  

length choices are not well-handled. The results look improved in   KDP  estimates using 617	  

the hybrid method constraints as in Fig. 10(a) and (b) for those edge regions. Around the 618	  

regions of embedded convection, where  ΦDP  measurements would likely increase more 619	  

rapidly, there are additional azimuthal discontinuities in the   KDP  image from the lesser 620	  

constrained LP method than that from the better constrained hybrid method. This 621	  

azimuthal discontinuity (e.g., one not the direct result of rain microphysics) indicates a 622	  

potential drawback for lesser-constrained LP methods. In the meantime, having more 623	  

realistic physical constraints under the proposed hybrid method,   KDP  estimates seem to 624	  

be more physically realistic and smoother.  625	  

Within 80 km radius of the NJU C-POL radar station, there are 10 AWS locations 626	  

with rain gauge measurements (positions as shown in Fig. 1). The distances between 627	  

AWSs and the radar are listed in Table 2. ARs from these AWSs are sampled at 1-minute 628	  

temporal resolution. Since the AWSs have much shorter sampling times than the radar 629	  

(approximately 6 minutes), this allows a quantitative comparison at the radar observation 630	  

scale temporal resolution. The total AR results for each AWS during this event are 631	  
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located in Table 3. Most of the sites record moderate rainfall to heavier rainfall, with the 632	  

largest 48-hour accumulated rainfall recorded as 72.8 mm. 633	  

In order to quantify the precision of   KDP  from the LSF/LP/hybrid methods, time 634	  

series,  KDP (i),1≤ i ≤ N , over the AWSs’ sites are extracted from estimates over the entire 635	  

event from UTC 02:20, July 11, 2014 to UTC 23:50, July 12, 2014. With these estimated 636	  

KDP  time series, three sets of rainrate series are estimated using the following formula: 637	  

R(i) = 30.81 KDP (i)
0.775

sign[KDP (i)],1≤ i ≤ N , (19) 638	  

where   R(i)  is the rainrate at the   i th  scan. The parameters of Eq. (19) are estimated from 639	  

the same dataset as in Fig. 3. The scattergram of the fitting result is shown in Fig. 4. Then, 640	  

the AR for each station is estimated following: 641	  

AR(i) =
R(i −1)Δt(i), 2 ≤ i ≤ N
0, i = 1

⎧
⎨
⎪

⎩⎪
, (20) 642	  

where   Δt(i)  is the time interval between the   i th and   i +1st  scan over the station. It is 643	  

important to note that these time series report at the highest temporal resolution we can 644	  

obtain from the radar. Next, AWS observations and radar estimates are compared at five 645	  

different temporal resolutions, including 1) at the radar scan time; 2) every 15 minutes; 3) 646	  

every 30 minutes; 4) every 60 minutes; and 5) every 180 minutes. Here, the time series at 647	  

the coarser temporal resolution reflect integrations of those at the finest temporal 648	  

resolution.  649	  

Correlation coefficients and relative errors, whose formulas are: 650	  
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ρ =
[ARAWS(i)− ARAWS][ARradar (i)− ARradar ]

i=1

N

∑

[ARAWS(i)− ARAWS]2

i=1

N

∑ [ARradar (i)− ARradar ]
2

i=1

N

∑
, (21) 651	  

ε r =

1
N

[ARAWS(i)− ARradar (i)]
2

i=1

N

∑
1
N

ARAWS(i)
i=1

N

∑
, (22) 652	  

where  ARAWS  and   ARradar  are accumulated rainfall time series of a particular temporal 653	  

resolution, and “ ”denotes expected value, are listed in Table 3.  The relative error 654	  

represents to what degree the estimates deviate from the AWS observations. The AWS 655	  

total ARs and   KDP  based estimates are also listed to show the absolute bias. 656	  

From the table, performance varies from station to station. These differences are 657	  

because of several factors, including different sampling volume/time between the radar 658	  

and AWSs, and the variability of precipitation when falling (e.g., as related to 659	  

microphysical or dynamical processes). Not surprisingly, radar-estimated accumulated 660	  

rainfall from all three methods is in better agreement with AWS observations at the 661	  

coarser temporal resolutions. In general, estimates from the hybrid method correlate 662	  

better with the AWS observations than do those from the basic LP method and the LSF 663	  

approach. Once again, differences between the methods are less noticeable at coarser 664	  

temporal resolution. Typically, rainfall comparisons between radar and in-situ gauge 665	  

measurements are produced at a temporal resolutions of 1 hour or longer (e.g., 24-hour 666	  

daily accumulation mapping) to reduce the role of instantaneous measurement noise [2, 3, 667	  

42]. At such longer temporal resolutions, we find that correlation coefficients between the 668	  

AR series and AWS observations are high, with most of them exceeding 0.95. It can be 669	  
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seen from Table 3 that, even when the comparisons are made at the highest temporal 670	  

resolution (radar scan time), the majority of the correlation coefficients between the AR 671	  

time series and AWS observations are larger than 0.8. Additional information from   ZH672	  

and   ZDR  included in the hybrid method makes such precise rainfall estimation possible. 673	  

In contrast, the LSF method shows a significant deficiency. Most sets of rainfall 674	  

estimates from the LSF method have an extremely low correlation coefficients with AWS 675	  

observations. Relative errors, which denotes a relative magnitude of bias, still decrease 676	  

when the comparison is conducted at a coarser temporal resolution. Finally, rainfall 677	  

estimates from the hybrid method exhibit a lower bias than those from the other methods.  678	  

Not surprisingly, a mismatch of the radar data and estimation methods, as well as 679	  

errors associated with the AWS observations, would cause the differences between radar 680	  

estimated rainfall and AWS observations. Three time series traces from AWS 681	  

observations (stations 58320, 58323 and 58224) and their corresponding radar rainfall 682	  

estimates are selected to help illustrate the reasons associated with 1) the LSF method 683	  

under-performing as compared to the hybrid method; 2) rainfall estimations from all 684	  

methods performing poorly; and 3) rainfall estimations from all three methods 685	  

performing well. These time series examples to follow are all reporting at the native radar 686	  

scan time interval.  687	  

To begin, Figure 11 confirms that only those time series   KDP  estimates from LSF 688	  

methods report negative values. The underlying philosophy for including negative 689	  

rainfall is that effect of erroneous negative   KDP  values would be eliminated when spatial 690	  

integration is calculated (as LSF methods would also promote compensating positive 691	  
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KDP  excursions); in other words, spatial integration of   KDP  values estimated from LSF 692	  

method would be close to the intrinsic value. If negative   KDP  values (along a radial or 693	  

along adjacent radials) are abandoned or absolute values are used, spatial integration 694	  

would be positively biased. However, for these examples, time series performances over 695	  

point locations are considered instead of wider spatial integrations. These negative 696	  

rainfall values from the LSF would therefore be strongly decorrelated with the time series 697	  

of the real precipitation. Fig. 11(a) highlights one example when the correlation 698	  

coefficient of the LSF method-based rainfall estimates with AWS observations for station 699	  

58320 is near 0, implying these estimates are strongly uncorrelated. For this station 700	  

example, the peak of AR observations is not very large compared with the other two 701	  

subplots. The magnitude of the oscillation of the LSF method-based rainfall estimates 702	  

exceeds the peak of AR observations. This means that the statistical noise resulting from 703	  

the raw measurements and the processing algorithm totally contaminates the useful 704	  

information. 705	  

For the LP method, the exclusion of extreme negative or positive excursion values 706	  

makes the   KDP  series correlations align closer to the intrinsic ones. However, the LP 707	  

method cannot accurately recover   KDP  at the “bump” regions with only its basic 708	  

constraint configuration. Thus, we find that the extra physical constraints from   ZH  and 709	  

ZDR  have a positive effect for the hybrid method-estimated   KDP /rainfall time series. 710	  

Overall, the hybrid method does a superior job when compared with the LSF and LP 711	  

methods. For example, in the vicinity of index 12, both the rainfall estimates from LSF 712	  

and LP predict two phantom peaks of AR, which do not match with the observations or 713	  
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the results from the hybrid method. The best performance in terms of total accumulation 714	  

estimation is found for station 58323, where the total AR from hybrid method is almost 715	  

equal to that from the observations. 716	  

However, despite the accurate AR estimate over longer scales for the hybrid 717	  

method, the station 58323 example highlights other sources for the possible failure of all 718	  

three methods at shorter scales including: 1) the phantom peak of AR in the vicinity of 719	  

index 8, 2) the insufficient AR in the vicinity of index 12, and 3) the time shift of the 720	  

main rainfall peak. As noted before, temporal mismatch issues are often related to 721	  

mismatches between the height of the radar volume and the surface AWS station. This 722	  

offset could be associated with instantaneous measurement errors from additional storm 723	  

advection, or  drop distribution evolution. Several of these storm evolution factors may 724	  

be offset if our comparisons are conducted over a coarser temporal resolution. For 725	  

example, the correlation coefficients exceed 0.8 for all methods once we consider 1-hour 726	  

accumulations; the hybrid method-based AR reaches 0.98 for station 58323. For station 727	  

58224, the two AR peaks at index 38 and 60 are estimated successfully by all methods, 728	  

thus we are able to achieve decent correlation coefficients at both the high and coarse 729	  

temporal resolutions across all methods. 730	  

Finally, it should be mentioned that the comparisons performed at station 58321 731	  

were unexpectedly poor. The relative error (correlation coefficient) is extremely high 732	  

(low), even when the comparison is conducted at the lengthier temporal scales, with 733	  

emphasis on the LSF method-based AR performance. The total LSF method-based AR is 734	  

-9.86 mm and a negative 48-hour AR is clearly not acceptable. As previously noted, 735	  

spatiotemporal integration would potentially eliminate most detrimental effects of 736	  
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instantaneous LSF  negative and positive value excursions. In general, our results still 737	  

confirm the expectation that the longer the   KDP  time series, the more likely we would 738	  

find a result for the total AR close to the intrinsic value. In this example, the number of 739	  

radar samples during the 48 hour window is approximately 394, which is still insufficient 740	  

to offset those negative values. Both the LP and hybrid methods perform poorly, but the 741	  

hybrid method-estimated total ARs still suggest the lowest biases.  742	  

In general, the hybrid method performs better than the LSF/LP methods when 743	  

applied to a real event, especially when quantitatively compared verified with AWS 744	  

observations. 745	  

746	  

6. Discussion and Summary 747	  

748	  

To examine the performance of    KDP  estimators for polarimetric radar 749	  

measurements, least square fitting, which is the most common operational method; linear 750	  

programming, which is a newly proposed optimization approach to guarantee the 751	  

nonnegativity of   KDP  estimates; and the self-consistency, which is commonly used to 752	  

calibrate radar, are compared using simulated data. Each of these methods have 753	  

weaknesses when dealing with PRD that are severely affected by measurement or model 754	  

error. 755	  

To improve KDP estimation by efficiently utilizing different information, a hybrid 756	  

method of combining LSF   KDP  estimation and self-consistent property of polarimetric 757	  

variables into the linear programming problem as stricter constraints has been developed. 758	  
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This hybrid method is applied on an ideal case and on a real event to demonstrate its 759	  

theoretical advantage and realistic performance. The advantage of the hybrid method is 760	  

that it utilizes as much information into the estimation system as possible. The results of 761	  

the ideal case and the real event suggest that it performs better than the three existing 762	  

methods. 763	  

A specific method to calculate lower and upper   KDP  limits from   ZH  and   ZDR  has 764	  

been adopted. With these physical constraints,   KDP  values that are too small would not 765	  

exist in heavy rain areas, and   KDP  values that are too large would not exist in light rain 766	  

areas. Since the values of   ZH  and   ZDR  are not entirely precise (due to radial fluctuations 767	  

and problems in the attenuation correction algorithm) and the method proposed is not 768	  

perfect, future work could focus on obtaining more accurate lower and upper limits.  769	  

Estimating   KDP  and  φDP  is a necessary but not sufficient part of polarimetric data 770	  

quality control [43, 44]. Errors exist in polarimetric measurements mainly because of 771	  

defective radar hardware, random fluctuation, clutter environment, imperfect signal 772	  

processing, attenuation of hydrometeors on high frequency radar, and so on. Even if the 773	  

quality of radar hardware and observing environment is ensured, and signal processing 774	  

algorithms are improved, errors still exist in measured polarimetric variables (e.g., 775	  

ZH ,  ZDR , ρhv and  ΦDP ). Hybrid   KDP  estimation method is based on optimal estimation 776	  

theory, in which   ZH ,   ZDR  and  ΦDP  information are [43] utilized to optimize  φDP  and 777	  

KDP . Future work could focus on taking measurement errors into account in the 778	  

optimization to further improve the estimation performance. 779	  

780	  
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Table 1 Settings and parameters of NJU C-POL and its observations. 794	  
Parameters NJU C-POL （mobile）  

Transmitter 5.625 GHz （klystron） 

PRF 1000 Hz 

Pulse width 0.5 µs 

Peak Power > 250 kW 

Receiver Simultaneous Horizontal/Vertical 

Noise figure < 3 dB（H and V channel） 
Dynamic range > 95 dB 

Antenna feeder paraboloid，center feed 
Antenna gain > 41 dB 

Antenna aperture 3.2 m 

Beam width 1.2 
!  

Sidelobe < -40 dB ( > 15 
! ) 

Polarimetric mode Simultaneously transmit and receive H and V 

Scanning mode PPI: 0-360 
!  rotating speed: ~15 

! s-1 time for VCP: ~6min 

Elevations 0.5, 1.5, 2.4, 3.4, 4.3, 5.3, 6.2, 7.5, 8.7,10.0, 12.0, 14.0, 16.7, 
19.5, 90.0 

Precision 

Radial resolution 75m 

Radar variables ZH ,  ZDR ,  ρhv , ΦDP ,  vr ,  σ v ,  SNR

ZH precision 1 dB 

  vr precision 1 m/s 

 σ v precision 1 m/s 
ZDR precision 0.2 dB 

 ΦDP precision 2° 
795	  

 796	  

Table 2 AWSs positions and their distances away from NJU C-POL. The first line stands 797	  
for the names of the AWSs. 798	  

Station 
Name 58221 58225 58212 58215 58220 58224 58311 58320 58321 58323 

Lon. 117.30 117.67 116.77 116.78 117.15 117.02 116.50 117.13 117.30 117.48 
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Lat. 32.85 32.533 32.717 32.433 32.467 32.65 31.73 31.733 31.78 31.88 
Dis. 77.09 65.73 68.45 42.30 32.73 53.62 75.68 48.83 46.75 46.44 

 799	  
Table 3 Comparison of the accumulated rainfall AR from AWS units to those estimated 800	  
from LSF/LP/hybrid methods. Information on these AWS stations is shown in Table 2.  801	  

Station Name 58221 58225 58212 58215 58220 58224 58311 58320 58321 58323 

Total 
AR. 

aws 39.70 42.80 44.30 40.40 39.90 36.90 72.80 21.90 26.60 41.80 
LSF 13.16 27.98 55.36 52.14 46.98 45.14 61.35 19.60 -9.86 24.31 
LP 35.20 34.12 44.97 57.30 69.75 43.42 57.05 29.35 26.78 36.70 
HY 38.47 34.95 53.39 53.09 63.51 46.52 65.63 23.06 23.33 41.45 

C 
O 
R 
R 
. 

C 
O 
E 
F 
. 

Rad. 
LSF 0.41 0.45 0.42 0.52 0.41 0.66 0.51 0.00 0.19 0.31 
LP 0.60 0.56 0.73 0.72 0.57 0.89 0.57 0.48 0.34 0.48 
HY 0.75 0.66 0.88 0.83 0.71 0.94 0.61 0.81 0.60 0.39 

15 
min 

LSF 0.74 0.60 0.76 0.68 0.63 0.69 0.64 0.21 0.22 0.50 
LP 0.85 0.73 0.95 0.83 0.77 0.90 0.66 0.61 0.53 0.66 
HY 0.92 0.83 0.98 0.89 0.89 0.95 0.72 0.90 0.79 0.51 

30 
min 

LSF 0.80 0.78 0.88 0.77 0.70 0.75 0.65 0.20 0.31 0.79 
LP 0.89 0.83 0.98 0.88 0.84 0.90 0.67 0.70 0.71 0.87 
HY 0.95 0.91 0.98 0.94 0.91 0.95 0.72 0.93 0.87 0.80 

60 
min 

LSF 0.85 0.90 0.85 0.80 0.76 0.75 0.94 0.24 0.20 0.86 
LP 0.93 0.91 0.96 0.92 0.89 0.91 0.94 0.84 0.77 0.91 
HY 0.95 0.96 0.98 0.96 0.93 0.97 0.97 0.97 0.88 0.98 

180 
min 

LSF 0.91 0.92 0.80 0.95 0.91 0.80 0.93 0.65 0.10 0.90 
LP 0.95 0.94 0.97 0.98 0.97 0.93 0.97 0.94 0.89 0.93 
HY 0.96 0.97 0.96 0.99 0.98 0.98 0.97 0.99 0.95 0.99 

R 
E 
L 
A 
T 
I 
V 
E 

E 
R 
R 
O 
R 

Rad. 
LSF 2.64 2.40 2.68 2.61 3.15 2.21 2.94 4.84 3.36 3.26 
LP 1.68 1.76 1.67 1.31 1.44 1.07 2.24 1.88 2.01 2.46 
HY 1.38 1.28 1.14 0.79 1.05 0.90 2.06 1.00 1.42 3.29 

15 
min 

LSF 1.52 1.66 1.47 1.46 2.17 1.40 1.74 3.26 2.72 2.20 
LP 1.21 1.22 0.75 0.91 1.09 0.79 1.52 1.57 1.60 1.65 
HY 1.06 0.89 0.51 0.63 0.75 0.64 1.34 0.83 1.20 2.30 

30 
min 

LSF 1.37 1.04 1.07 1.20 1.69 1.12 1.30 3.09 2.50 1.39 
LP 1.14 0.93 0.58 0.83 0.91 0.71 1.15 1.34 1.44 1.04 
HY 0.99 0.67 0.44 0.53 0.68 0.58 1.04 0.71 1.14 1.27 

60 
min 

LSF 0.99 0.64 0.89 1.24 1.24 1.00 0.59 2.39 2.45 1.31 
LP 0.68 0.58 0.53 0.85 0.74 0.65 0.51 1.07 1.31 1.07 
HY 0.60 0.45 0.41 0.53 0.6 0.49 0.36 0.53 1.09 0.64 
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180 
min 

LSF 0.95 0.50 0.69 1.01 0.76 0.88 0.50 1.69 2.43 1.06 
LP 0.61 0.46 0.32 0.83 0.55 0.67 0.35 0.83 1.02 0.73 
HY 0.57 0.34 0.34 0.48 0.47 0.55 0.33 0.37 0.81 0.35 

802	  
803	  
804	  

805	  
Figure 1: Location and topography of Yangzi-Huaihe river basin and instruments 
sites. The black triangle and circle indicate NJU C-POL, 2DVD, respectively. Black 
pentagrams in the smaller subplot indicate AWS locations. 
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806	  
Figure 2: Range profile of polarimetric variables from simulated DSDs. (a) intrinsic 
ZH (red solid line) and   ZH observation (blue solid line); (b) intrinsic   ZDR  (red solid 
line) and   ZDR observation (blue solid line); (c) intrinsic   KDP  (red solid line) , 

 ΦDP observation (blue solid line), and intrinsic  φDP  (green solid line). 
807	  
808	  
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809	  
Figure 3: Scattergram of simulated   KDP  directly from 2DVD observation vs.   KDP

estimation from   ZH  and   ZDR  using a self-consistency relation. The DSD data used was 
collected by 2DVD denoted in Fig.1 from 2014 to 2015. The green dot dash line and cyan 
dot line are upper [  125%KDP (ZH ,ZDR ) ] and lower [  75%KDP (ZH ,ZDR ) ] reference lines. 
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Figure 4: Specific attenuation (  AH
: left) and specific differential attenuation (  ADP : 

middle) versus specific differential phase (  KDP ) for C-band, as well as the calculated 
intrinsic rainrate versus that estimated from   KDP . 

810	  
Figure 5: Comparisons of   KDP  estimations from the LSF (green solid), LP (red solid) 
and self-consistency (blue solid) methods with two different lengths of adaptive 
ranges/derivative filters/moving windows. Shorter (2 km) options as in (a), longer (6 
km) options as in (b). The intrinsic   KDP  is denoted with black solid line. 
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811	  

812	  
Figure 6: Comparisons of  φDP (a)/  KDP (b) estimates from the hybrid (blue solid) and 
basic linear programming (red solid) methods. Simulated  ΦDP  observations are 
denoted as cyan solid line in (a). The intrinsic  φDP /  KDP values are denoted with black 
solid lines.  
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813	  
Figure 7: Comparisons of  φDP (a)/  KDP (b) estimates from hybrid (blue solid) and basic 814	  
linear programming (red solid) methods applied on a ray collected by NJU C-POL on 815	  
July 11, 2014 at 2325UTC at an elevation of 1.5 degrees and azimuth of 54.33 degrees. 816	  

 ΦDP  observations are denoted as cyan solid line in (a). The attenuation corrected 817	  
ZH (blue solid), attenuation corrected   ZDR (red solid) and corrected  ρhv  (black solid) are 818	  
denoted in subplots (c), (d) and (e). 819	  
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820	  
Figure 8: Quality controlled PRD images of a Meiyu precipitation event collected by 

NJU C-POL on July 11, 2014 at 2325 UTC at an elevation angle of 1.5 degrees. (a) 

ZH (dBZ) , (b)   ZDR (dB) , (c)  ρhv , and (d)  ΦDP (deg) .  

821	  
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822	  
Figure 9: Comparison of   KDP / φDP  estimation based on NJU C-POL data shown in 
Fig. 8. (a)  KDP  estimates from hybrid method, (b)  φDP  estimates from hybrid method, 
(c)  KDP  estimates from the basic LP method, (d)   KDP  estimates from LSF method. 
The black circles are reference lines at a radius of 80 km from the radar. Regions 
denoted by dashed and dotted rectangles are enlarged in Fig. 10. 

823	  
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824	  
Figure 10: Zoom in for   KDP  images shown in Fig. 9. Region of (a)/(b) is 
corresponding to the dashed/dotted rectangle in Fig. 9(a); region of (c)/(d) is 
corresponding to the dashed/dotted rectangle in Fig. 9(c). 

825	  
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826	  
Figure 11: Time series of accumulated rainfall estimated from   KDP  of LSF (green 
solid lines), LP (red solid lines), and hybrid (blue solid lines) methods and 
corresponding AWS observations at station (a) 58320, (b) 58323, (c) 58224.  

827	  
828	  
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