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 

Abstract— Super-resolution mapping (SRM) is a method to 

produce a fine spatial resolution land cover map from coarse 

spatial resolution remotely sensed imagery. A popular approach 

for SRM is a two-step algorithm, which first increases the spatial 

resolution of coarse fraction images by interpolation, and then 

determines class labels of fine resolution pixels using the maximum 

a posteriori (MAP) principle. By constructing a new image 

formation process that establishes the relationship between 

observed coarse resolution fraction images and the latent fine 

resolution land cover map, it is found that the MAP principle only 

matches with area-to-point interpolation algorithms, and should 

be replaced by de-convolution if an area-to-area interpolation 

algorithm is to be applied. A novel iterative interpolation de-

convolution (IID) SRM algorithm is proposed. The IID algorithm 

first interpolates coarse resolution fraction images with an area-

to-area interpolation algorithm, and produces an initial fine 

resolution land cover map by de-convolution. The fine spatial 

resolution land cover map is then updated by re-convolution, 

back-projection and de-convolution iteratively until the final 

result is produced. The IID algorithm was evaluated with 

simulated shapes, simulated multi-spectral images, and degraded 

Landsat images, including comparison against three widely used 

SRM algorithms: pixel swapping, bilinear interpolation, and 

Hopfield neural network. Results show that the IID algorithm can 

reduce the impact of fraction errors, and can preserve the patch 

continuity and the patch boundary smoothness, simultaneously. 

Moreover, the IID algorithm produced fine resolution land cover 

maps with higher accuracies than those produced by other SRM 

algorithms.  

Index Terms— Interpolation, De-convolution, Super-resolution 

Mapping 

I. INTRODUCTION 

uper-resolution mapping (SRM) is a method to predict the 

spatial distribution of land cover classes located within the 

geographical area represented by coarse spatial resolution 

pixels. SRM is generally regarded as a post-processing analysis 

of spectral unmixing, in which the coarse spatial resolution 

fraction images produced by spectral unmixing are used to 

produce a fine spatial resolution land cover map [1, 2]. 
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Compared with hard classification that only produces a land 

cover map at the coarse spatial resolution pixel scale and 

spectral unmixing that only produces coarse spatial resolution 

fraction images without detailed land cover spatial pattern 

information, SRM can produce a more informative result. 

Presently, SRM has been shown to be a promising solution to 

the mixed pixel problem that is commonly encountered with 

coarse spatial resolution remotely sensed images, and has been 

widely applied in many research fields successfully [3-7]. 

The input to a SRM analysis is typically a set of coarse spatial 

resolution fraction images, in which the image value represents 

the area percentage of one land cover class in one coarse spatial 

resolution pixel. The output of SRM is a fine spatial resolution 

land cover map, that is, a labeled image in which the label 

represents the land cover class that a fine spatial resolution pixel 

belongs to. Given that the input of SRM is continuous values 

(e.g. percentage class coverage) while the output is discrete 

values (e.g. hard class labels), and their spatial resolutions are 

different, SRM often needs perform two tasks: the increment of 

the spatial resolution of input fraction images and the 

transformation between continuous and discrete values.  

Various SRM algorithms have been proposed in the last 

decades, and different strategies are applied for these two tasks 

of SRM [7-21]. Commonly, the two tasks of SRM are 

completed in two steps [22, 23]. The first step is to increase the 

spatial resolution. In this step, the input coarse spatial resolution 

fraction images are magnified to fine spatial resolution images. 

The second step is to determine the class label using the fine 

spatial resolution images produced in the first step. This two-

step approach is often referred as interpolation-based SRM 

[22], because an interpolation algorithm is often used in the first 

step to increase the spatial resolution of input fraction images. 

Critically, an objective of the first step is estimating the class 

membership probabilities for each fine spatial resolution pixel. 

The latter are used in the second step to determine the class label 

of the fine spatial resolution pixels. Although several different 

methods have been proposed for the second step, the maximum 
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a posteriori (MAP) principle is widely used and so the class 

label is assigned as the land cover class with the highest 

probability of occurrence for each fine resolution pixel.  

The use of the MAP principle is intuitively attractive but its 

suitability may be limited by the method used to interpolate 

coarse resolution fraction images into fine resolution images. A 

variety of interpolation algorithms are available [22-29], but 

may vary in suitability for SRM using the MAP principle.  

A key feature to note is that the fraction value in the input 

coarse spatial resolution images is an areal value which 

represents the proportion of the pixel’s area that is covered with 

a certain land cover class. Often the fraction value is also taken 

to be the probability of a coarse spatial resolution pixel 

belonging to a certain land cover class [30]. The interpolation 

process is used to estimate the class membership probabilities 

for each point or fine resolution pixel contained within the area 

of a coarse resolution pixel. If the MAP principle is to be used, 

this interpolation should produce a probability value for each 

fine resolution pixel. That allows the MAP principle to be 

applied to class membership probability data that relate to each 

single fine resolution pixel alone, independent of the situation 

for other fine resolution pixels. Consequently, from the range 

of interpolation methods available [31], an interpolation 

method, which can transform the input coarse resolution 

fraction (or probability) values to the fine resolution probability 

values, should be used. 

Several area-to-point interpolation algorithms have been 

suggested for use in SRM, by considering the fine resolution 

probability value as a point value. For example, the indicator 

cokriging algorithm, a geo-statistical method that can account 

for the differences between the areal data and the point 

predictions may be suitable for this application [26, 27]. 

Another approach, which considers interpolation as a 

regression problem and uses the support vector regression to 

learn the relationship between areal data and point predictions, 

has also been proposed [29]. However, for these area-to-point 

interpolation algorithms, additional information at the fine 

spatial resolution is required prior to the interpolation. For 

example, to use the indicator cokriging algorithm, the 

variogram model must be extracted from existing fine spatial 

resolution land cover map. Similarly, for the support vector 

regression algorithm, a fine spatial resolution land cover map is 

needed to generate the fine/coarse spatial resolution patch pairs. 

As the required additional information is often unavailable, 

area-to-point interpolation algorithms are difficult to use and 

alternative spatial interpolation algorithms have been used in 

SRM. In particular, common area-to-area spatial interpolation 

algorithms have been used in SRM [22]. For example, 

Verhoeye and De Wulf used the kriging interpolation algorithm 

[24], Mertens et al. used the spatial attraction algorithm [25], 

Wang et al. used the edge-directed interpolation algorithm [32], 

Wang and Shi applied the bilinear and bicubic interpolation 

algorithms [28], and Chen et al. applied the high-accuracy 

surface modeling interpolation algorithm [33]. These 

interpolation algorithms are especially attractive as they 

estimate values for fine spatial resolution pixels without 

additional fine spatial resolution information. Generally, for a 

fine spatial resolution pixel, the interpolated value is estimated 

by averaging the surrounding coarse resolution fraction values 

with a weighting approach, and is considered as a fine 

resolution probability value. Since the interpolated values 

would often be strongly correlated with the real probability 

values of fine spatial resolution pixels, it is possible for an 

acceptable land cover map to emerge. However, the 

interpolated value itself is indeed a coarse resolution probability 

value, but not a fine resolution probability value, as no 

additional process is applied for transforming their different 

spatial resolutions. Therefore, a consequence of the use of area-

to-area interpolation and the MAP principle is that the output 

map may contain speckle-like and linear artifacts caused by 

mismatches between both probability values with different 

spatial resolutions. The latter can degrade the value of the map 

and may place a requirement for additional post-processing to 

refine the resulting fine spatial resolution land cover map [24, 

34].  

Theoretically, the performance of the two-step SRM 

algorithm should be affected not only by the first interpolation 

step and the second label assigning step, but also the interaction 

of both steps. Focusing on the label assignment step, existing 

algorithms mostly adopt the MAP principle to assign class 

labels for fine spatial resolution pixels, although there are some 

minor differences in implementation details. When the MAP 

principle is applied, however, class membership probabilities 

must be real probability values of individual fine spatial 

resolution pixel. In this situation, the area-to-point interpolation 

algorithm should be applied in the interpolation step as an area-

to-area interpolation algorithm is unsuitable because the 

interpolated values are not fine resolution probability values but 

coarse resolution probability values. In other words, if an area-

to-area spatial interpolation algorithm is used in the first step of 

two-step SRM algorithms, the MAP principle should not be 

applied in the second step. Other more suitable principles 

should be used to replace the MAP principle in recognition of 

the nature of the interpolated coarse resolution probability 

value. 

      Given the simplicity of the area-to-area spatial interpolation 

algorithms, we aim to improve existing interpolation-based 

two-step SRM algorithms by modifying the MAP principle 

used in the label assignment step. This is based on a conceptual 

image formation process that models how coarse spatial 

resolution fraction images are produced from a fine spatial 

resolution land cover map. Based on the image formation 

process, a novel iterative interpolation de-convolution SRM 

algorithm is proposed. In the proposed algorithm, the traditional 

MAP principle is replaced by the de-convolution process, 

which matches coarse resolution probability values produced 

by area-to-area interpolation algorithms. An iterative process is 

further applied in the proposed algorithm in order to reinforce 

information included in input fraction images into the resulting 

fine spatial resolution land cover map. Thus, this article aims to 

substantially enhance SRM by proposing a completely new 

approach that addresses fundamental concerns and tests it 

relative to established state-of-the-art methods. The rest of the 

paper is organized as follows: Section II discusses the 
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conceptual image formation process. The proposed algorithm is 

explained in detail in Section III and its performance is 

validated through several experiments in Section IV. Section V 

concludes the paper.  

II. CONCEPTUAL IMAGE FORMATION PROCESS 

Assumed that a remotely sensed image includes M N  

coarse spatial resolution pixels, and that the number of land 

cover classes in the entire image is C . Let 
2[ , , , ]C

1
Y Y Y Y  

be the fraction images yielded by spectral unmixing, where 
cY  

is the fraction image of the 
thc  class. By setting the zoom factor 

as z  and using Y  as input, SRM aims to generate a labeled 

fine spatial resolution land cover map X  that includes 

( ) ( )z M z N    pixels, by dividing each coarse spatial 

resolution pixel V  into z z  fine spatial resolution pixels. All 

these fine spatial resolution pixels are considered pure pixels 

and should be assigned to a specific land cover class as 

(1, )vx C  for the fine spatial resolution pixel v .  

 SRM aims to estimate the latent fine spatial resolution land 

cover map X  from observed coarse spatial resolution fraction 

images Y . This process can be considered as an inversion 

problem, and SRM can then be considered as an inversion 

model. In order to better understand the inversion process, we 

aim to establish a forward model as opposed to the inversion 

model. The forward model is the image formation process that 

is used to describe how a particular coarse spatial resolution 

fraction images Y  can be generated if the latent fine spatial 

resolution land cover map X  is known.  

Fig. 1 illustrates the conceptual image formation process. 

Fig. 1(a) is a fine spatial resolution land cover map including 

two classes shown as white and black. Because each land cover 

class has its own coarse spatial resolution fraction image, the 

original fine spatial resolution land cover map is divided into 

individual fine spatial resolution images for each land cover 

class. The value in the individual fine spatial resolution image 

is an indicator value, where 1 means that the fine spatial 

resolution pixel belongs to this class, and 0 means that the fine 

spatial resolution pixel belongs to the other class. Thus, for the 

black and white classes, their individual fine spatial resolution 

indicator images are shown in Fig. 1(b) and Fig. 1(c), 

respectively.  

For each land cover class, the process used to produce the 

coarse resolution fraction image from the fine spatial resolution 

indicator image consists of two steps: convolution and 

decimation.  

The first step in the conceptual image formation process is 

convolution, with which the fine spatial resolution indicator 

image is convoluted to produce a new fine spatial resolution 

fraction image. The spatial resolution of the convoluted fraction 

image is the same as that of the fine spatial resolution indicator 

image, while the convoluted value becomes a mixture of 

indicator pixel values within a local area defined by the 

convolution kernel. This process is similar to ‘blurring’ in the 

field of image analysis, where the observed image pixel value 

is a mixture of itself and the surrounding pixels subject to the 

camera's Point Spread Function (PSF). Given that each coarse 

spatial resolution pixel corresponds to z z  fine spatial 

resolution pixels for SRM, the convoluted value should 

correspond to the observed fraction value, and be calculated as 

the percentage of the fine spatial resolution pixels assigned to 

the class c  in the coarse spatial resolution pixel V [35]: 
2( ) ( )c c

v V

f V v z


X                              (1) 

where 
cX  is the fine spatial resolution indicator image of the 

class c , and ( )c vX  is the indicator value of the fine spatial 

resolution pixel v . ( )cf V  is the convoluted value, which is  

also the fraction value, of the class c  in the coarse spatial 

resolution pixel V . 

Thus, if we set the PSF, also the convolution kernel, as a 

z z  matrix Η , whose element values are all 
21/ z ， the 

convoluted fine spatial resolution fraction image can be 

calculated as: 

 
c c F X H                                (2) 

where   means the convolution process. In the example, Fig. 

1(d) and Fig. 1(e) are the results of convolution for Fig. 1(b) 

and Fig. 1(c), respectively. 

The second step in the conceptual image formation process 

is decimation. The size of the observed coarse spatial resolution 

fraction image is M N , while the size of the convoluted fine 

spatial resolution fraction image is ( ) ( )z M z N   . Then, the 

observed coarse spatial resolution only includes 
21/ z  values of 

the convoluted fine spatial resolution fraction image. The 

decimation process extracts the central pixel value within every 

z z  pixels from the convoluted fine spatial resolution fraction 

image (highlighted in Figs. 1(d) and 1(e)). Each extracted 

fraction value corresponds to an observed fraction value in a 

coarse spatial resolution pixel, and all values form the coarse 

spatial resolution fraction images. In the example, Fig. 1(f) and 

Fig. 1(g) are the results of decimation for Fig. 1(d) and Fig. 1(e), 

respectively. The decimation process can be expressed as: 

 ( ) z

c cY F                                (3) 

where 
z  means the decimation process with the zoom factor 

z . 

By considering all land cover classes, the whole conceptual 

image formation process is expressed as:  

 ( ) z
Y X H                                (4) 

III. METHODOLOGY 

If both aforementioned convolution and decimation steps in 

the conceptual image formation process are inverted, the latent 

fine spatial resolution land cover map can be produced from 

observed coarse spatial resolution fraction images. As shown in 

Fig. 1, the inverse process of decimation is interpolation, and 

the inverse process of convolution is de-convolution. Therefore, 

the SRM process can be performed by first interpolating the 

observed coarse spatial resolution fraction images and then de-

convolving the interpolated fine spatial resolution fraction 

images. From this viewpoint, an iterative interpolation de-

convolution (IID) SRM algorithm is proposed. The framework 
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of the proposed IID algorithm is shown in Figure 2. The input 

of IID is the observed coarse spatial resolution fraction images 

Y . For each land cover class, the fraction image is initially 

interpolated to generate a fine spatial resolution fraction image 

F, whose spatial resolution is the same as that of the final fine 

resolution land cover map. These initially interpolated fine 

spatial resolution fraction images F are then used to generate an 

intermediate fine spatial resolution land cover map X , which 

is iteratively updated by convolution and back projection 

procedures until the final land cover map X  is produced. The 

key steps of IID are discussed in detail as follows. 

 

 
 

Fig. 1.  An example shows the conceptual image formation process including the forward model and the inversion model. The zoom factor z=3. (a) is 

the fine spatial resolution land cover map including   pixels and two classes as black and white; (b) and (c) are fine spatial resolution indicator images 

for the black and white classes, respectively. The indicator value 1 means that the fine spatial resolution pixel belongs to this class, and 0 means that the 
fine spatial resolution pixel belongs to other classes. (d) and (e) are convoluted fine spatial resolution fraction images, where the value of a target fine 

spatial resolution pixel is calculated by averaging the values of   fine spatial resolution pixels, using the target pixel as the central in the corresponding 

indicator image. (f) and (g) are coarse spatial resolution fraction images produced by decimation, that is, extracting the central fraction value for each 
coarse spatial resolution pixel including   fine spatial resolution pixels from the convoluted fine spatial resolution fraction images. 
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A. Interpolation 

Interpolation is the inversion process of decimation in the 

conceptual image formation process. It aims to estimate the fine 

resolution fraction image that includes ( ) ( )z M z N    values 

from the observed coarse resolution image that includes M N  

values. All values in the fine resolution fraction image are 

estimated by interpolating the observed fractional values with 

an ‘area-to-area’ spatial interpolation algorithm. Different 

spatial interpolation algorithms, such as bilinear, cubic or 

kriging, may produce dissimilar results. The selection of the 

interpolation algorithm is, however, beyond the scope of this 

paper.  

B. De-convolution 

Once all fine spatial resolution fraction images for different 

land cover classes have been produced by interpolation, a fine 

spatial resolution land cover map can then be produced by de-

convolution, the inversion process of convolution. The input to 

the de-convolution analysis is the interpolated fine spatial 

resolution fraction images, which are convoluted versions of 

individual indicator images for the latent fine spatial resolution 

land cover map. As the convolution kernel is definite, the de-

convolution process is a non-blind problem. Considering the 

image convolution process as shown in Equation (2), the 

relationship between the interpolated fine spatial resolution 

fraction images and the latent fine spatial resolution land cover 

map can be represented as: 

 nF X H                                 (5) 

where n  is the noise in the interpolated fine spatial resolution 

fraction images. 

Generally, estimating X  from F  is not a well-conditioned 

problem. To obtain a stable solution, a specific regularization 

needs to be imposed on the observation model in Equation (5) 

[36, 37]. The regularization takes the form of constraints in the 

space of possible solutions, which is often independent of 

measured data, and is constructed based on a priori knowledge 

on the spatial patterns of land cover in the fine spatial resolution 

land cover map. Therefore, the de-convolution process can be 

converted to a cost minimization function: 

 µ arg min[ ( , )+ ( )]D l= ¡
x

X X F X                 (6) 

where ( , )D X F  is the data error term, ( )X  is the 

regularization term, and   is a weight parameter that balances 

the contribution of regularization and data error terms.  

The data error term measures the difference between the 

solution and the observed data, and the popular least squares 

cost function is applied: 

 
2

2
( , )D X F F H X                              (7) 

The regularization term provides particular knowledge about 

the spatial pattern of land cover classes. In SRM, the spatial 

dependence principle, that is, the tendency for spatially 

proximate observations of a given property to be more similar 

to one another that distant observations, is widely used [35]. 

Based on this principle, the spatial regularization term is 

expressed as: 

 
( ) ( ) ( ) ( )

1 1 1

( ) ( ) ( , )
z M z N z M z N w w

v n v n

v v n

x x x 
      

  

      X   (8) 

where 

 
0 if  

( , )
1 otherwise

v n

v n

x x
x x


 


                       (9) 

 ( ( , ))n v nd x x                                (10) 

where ( , )v nx x  characterizes the relationship between the fine 

spatial resolution pixel vx  and the neighbors nx  within a 

w w  window. n  is the spatial weighting function that 

balances the influence of different fine spatial resolution pixel 

nx . ( , )v nd x x  is the distance between vx  and nx , and   is the 

power law index that controls the nonlinear parameter of the 

distance decay model. 

The simulated annealing (SA) algorithm [38] is applied to 

optimize the de-convolution model. The annealing schedule is 

based on a power law decay function, where temperature nT  at 

iteration n  is changed to 

1n nT T                                    (11)  

 

 
Fig. 2.  The flowchart of the proposed iterative interpolation de-convolution SRM algorithm. The fraction image includes 2×2 coarse spatial resolution 

pixels. The zoom factor z=3. The fine resolution land cover map ( X  and X ) includes 3 land cover classes.  
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Parameter (0,1)   controls the decrease rate of 

temperature 
nT . In the initialization step, a fine resolution land 

cover map is generated by assigning a random class label to 

each fine resolution pixel. In one iteration step, all fine spatial 

resolution pixels are visited using a row wise scheme. For each 

fine spatial resolution pixel, it is changed to another class label 

randomly. The changed class label is accepted if doing so can 

decrease the object function value in Equation (6). Otherwise, 

if doing so increases the object function value, the change class 

label is accepted only with a very low probability according to 

the current temperature. The iterations terminate when the 

previously fixed number of iterations is achieved. 

C.  Re-convolution 

Initially, the fine spatial resolution land cover map produced 

by the de-convolution process is generally far from reality. The 

main reason is that most values in the convoluted fine spatial 

resolution fraction images estimated by interpolating observed 

coarse spatial resolution fraction images are different from the 

real values, because of the errors included in the observed 

fraction images and caused by the interpolation algorithm. In 

theory, if the fine spatial resolution land cover map ( )kX  

produced by de-convolution is similar to the latent fine spatial 

resolution land cover map, the forward model of the conceptual 

image formation process should be satisfied. Therefore, if the 

convolution and decimation process are applied to the 

intermediate fine spatial resolution land cover map ( )kX  again, 

the result should be closer to the observed fraction images. 

Otherwise, ( )kX  should be refined by using the back projection 

process as follows.  

D. Back Projection 

The underlying idea of back projection is that the fraction 

images produced from the fine spatial resolution land cover 

map by applying the conceptual image formation process 

should be identical to the observed coarse spatial resolution 

fraction images. In order to make them consistent, the back-

projected operation is expressed as:  

 ( )z z
F F F Y                         (12) 

where F  is the original fine spatial resolution fraction image, 

and F  is the updated fine spatial resolution fraction image with 

back projection. 
z  is the decimation operation and 

z  is the 

interpolation operation with the zoom factor z . 

This procedure is illustrated in Figure 3. Fig. 3(a) shows the 

fine spatial resolution fraction image produced by re-

convolving the intermediate fine spatial resolution land cover 

map. The decimation process is applied to generate a coarse 

spatial resolution fraction image, as shown in Fig. 3(b). Fig. 

3(c) shows the observed coarse spatial resolution fraction 

image. Fraction values in Fig. 3 (b) and (c) are then compared 

and their fraction difference image is calculated, as shown in 

Fig. 3(f). This coarse spatial resolution fraction difference value 

is further interpolated to generate a fine spatial resolution 

fraction difference image as shown in Fig. 3(e), which is again 

used to update the fine spatial resolution fraction images in Fig. 

3(a), and the updated result is shown in Fig. 3(d). 

E. The proposed algorithm 

The proposed IID algorithm is summarized as follows: 

1) Interpolate the input coarse spatial resolution fraction 

images for each land cover class; 

 

6/9 7/9 6/9 01/93/9

7/9 8/9 1/96/9

6/9 8/9 1 3/96/98/9

3/9 6/9 8/9 4/96/93/9

1/9 6/9 3/97/9

0 1/9 3/9 1/93/94/9

8/9 3/9

4/94/9

8/9 3/9

4/94/9

5/9 6/9

7/94/9

3/9 -3/9

-3/90

3/9 -3/9

-3/90

3/9 4/9 5/9 3/94/94/9

4/9 7/9 4/97/9

4/9 6/9 8/9 6/911

2/9 5/9 1 7/91

1/9 7/9 6/91

0 1/9 4/9 4/96/96/9

4/9

5/9 6/9

7/94/9

Decimation Minus

=

Interpolation

Minus

3/9 3/9 1/9 -1/9 -3/9

-3/9

-3/9

-3/9

-3/9

-3/9-3/9-2/9-1/900

0

1/9

2/9

3/9 1/9 -1/9

-1/9

-1/9

-2/9

1/92/9

1/9 -1/9

-1/9

-3/9

-3/9

-3/9

(a) (b) (c)

(d) (e) (f)

Coarse Spatial Resolution 

Fraction Image

Fine Spatial Resolution 

Fraction Image

Input Coarse Spatial 

Resolution Fraction Image

Coarse Spatial Resolution 

Fraction Difference

Fine Spatial Resolution 

Fraction Difference

Updated Fine Spatial 

Resolution Fraction Image
 

Fig. 3.  The flowchart of the back projection process. 
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2) Estimate an initial fine spatial resolution land cover map, 

by optimizing the object function of de-convolution expressed 

in Equation (6) with the simulated annealing algorithm, using 

the interpolated fine spatial resolution fraction images as input; 

3) Re-convolute the fine resolution land cover map produced 

in the step 2); 

4) Update the fine spatial resolution fraction images by back-

projection, with the input coarse spatial resolution fraction 

images and the re-convoluted fine spatial resolution fraction 

images produced in the step 3). 

5) Produce the fine spatial resolution land cover map with 

updated fine spatial resolution fraction images; 

6) Repeat steps 3)-5), if the iteration time is less than the 

maximal time or the difference between the updated fine spatial 

resolution fraction images compared to that of the previous 

iteration is less than 0.1%; otherwise, the updated fine spatial 

resolution land cover map is regarded as the final result. 

IV. EXPERIMENTS 

A. Simulated shapes 

To illustrate and evaluate the performance of the proposed 

algorithm, we first applied it to a set of synthetic categorical 

images derived from three artificial shapes including the 

number six, a cross, and an open triangle (Fig. 4). All original 

shape images were 70 × 70 pixels and included two classes 

representing the shape and the background. The coarse spatial 

resolution fraction images were then simulated from the 

original images, and three zoom factors z = 5, z = 7, and z = 10 

were considered. At each zoom factor, the area proportions of 

different classes in each coarse spatial resolution pixel in a 

window were calculated and assigned as the fraction values. In 

order to simulate the effects of error introduced by spectral 

unmixing, Gaussian noise was added in the simulated fraction 

images. The root mean square error (RMSE) was used to 

compare the class area proportions in the simulated fraction 

images with those computed from original shape images, which 

are used as the reference. The RMSE is calculated as follows: 

2

, ,

1 1

1
RMSE ( )

C M N
c c

V SIM V REF

c V

y y C
M N



 

 


         (13) 

where ,

c

V SIMy  denotes the fraction value of the 
thc  class in the 

coarse resolution pixel V  in the simulated fraction images, and 

,

c

V REFy  denotes the fraction value of the 
thc  class in the coarse 

resolution pixel V  in the reference land cover map. 

Three fraction images with RMSE = 0, 0.05 and 0.10 were 

simulated for each shape at each zoom factor. The simulated 

fraction images were then considered as the outputs of a spectral 

unmixing analysis and were used as the SRM input. In addition 

to the proposed IID algorithm, the pixel swapping algorithm 

(PS) [9], the bilinear interpolation based SRM algorithm (BI) 

[22], and the Hopfield neural network based SRM algorithm 

(HNN) [2] were also applied for comparison. The performance 

of all these algorithms was visually and quantitatively assessed 

on the basis of the reference fine spatial resolution land cover 

map. The accuracy of fine spatial resolution land cover maps 

produced by various algorithms was assessed using the overall 

accuracy value that is measured by comparing the result and 

reference fine spatial resolution maps. 

The output of a SRM algorithm is dependent on the 

parameter settings used. For the PS algorithm, according to 

[39], the neighboring window size is set to be 5 × 5, and the 

power law index in the distance decay model is set to be one, 

meaning that the 24 closest fine resolution pixels with equal 

weights are applied to calculate the spatial dependence of a fine 

spatial resolution pixel. For the BI algorithm, the bilinear 

interpolation method was used to magnify the coarse spatial 

resolution fraction images, and the sequent assigning method 

were applied to assign class labels of fine spatial resolution 

pixels, in order to produce the final fine spatial resolution land 

cover map [22]. For the proposed IID algorithm, the bilinear 

interpolation algorithm was used for spatial interpolation. For 

the de-convolution object function in equation (6), parameters 

are determined by trial and error. According to our experiments, 

a 5 × 5 neighboring window in which the power law index was 

set to be one was suitable to calculate the regularization term in 

equation (8). For the weight parameter  , it is found that the 

optimal value is mainly affected by fraction errors. By 

comparing various SRM results, the same values of   were 

used for all experiments in this paper, that is, 0.05, 0.08 and 

0.10 for RMSE = 0, 0.05 and 0.10, respectively.  

During an analysis with the proposed IID algorithm, an initial 

 

(a) (b) (c)
 

Fig. 4.  The reference fine spatial resolution shapes with 70×70 pixels. 

  

 

 
 

Fig. 5.  The fraction image of the shape of number six with z=7 and 
RMSE=0.05, and initial fine spatial resolution land cover map and updated ones 

at different iteration times. The initial map includes many local convex parts as 

indicated by circles.  
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fine spatial resolution land cover map is first produced by de-

convolution, then, the initial fine spatial resolution land cover 

map is iteratively updated by re-convolution, back-projection 

and de-convolution processes. Taking the shape of number six 

with z=7 and RMSE = 0.05 as example, Figure 5 shows the 

initial fine spatial resolution land cover map and those 

associated with the next four iterations. It is evident that the 

initial map includes many local convex parts and is different 

from the reference fine spatial resolution map. This is mainly 

caused by value errors in the initial interpolated fine spatial 

resolution fraction images. With the increment of iteration, the 

local convex parts disappear gradually, because the 

reinforcement of observed fraction values by back-projection 

can act to decrease the value errors in the fine spatial resolution 

fraction images. The fine spatial resolution land cover maps 

produced in the 3rd and 4th iterations are almost the same and 

both very similar to the reference map. 

Figure 6 shows the overall accuracy of each fine spatial 

resolution land cover map and the percent of changed fine 

spatial resolution pixels between two iterations. For the 1st 

iteration, the changed percent is larger than 0.01, meaning that 

more than 1% pixel labels in the initial map was updated. The 

changed percent decreases gradually with the increment of 

iteration and reaches 0 in the 6th iteration. Accordingly, the 

overall accuracy increases with the increment of iteration and 

becomes stable with the highest value in the 6th iteration. 

Therefore, after six iterations, the final fine spatial resolution 

land cover map was produced. In this experiment, for all cases 

with various shapes, RMSE values, and zoom factors, the final 

result can be produced within 10 iterations. 

Figure 7 shows the resultant fine spatial resolution land cover 

maps generated by the selected SRM algorithms, each using the 

coarse resolution fraction images simulated with RMSE = 0.05 

and z=7 as input. In the fine spatial resolution land cover maps 

produced by PS, there are many speckle-like artifacts caused 

the fraction errors in the simulated fraction images. Likewise, 

the fine spatial resolution land cover maps produced by BI are 

also characterized by many speckle-like artifacts. Moreover, the 

continuous shapes are broken into several individual patches in 

the result of PS. In the result of BI, the spatial continuity of 

these shapes was better maintained, but these shapes have 

irregular boundaries. By contrast, the fine spatial resolution 

land cover maps produced by HNN and the proposed IID 

algorithm are similar to the reference. Most speckle-like 

artifacts are eliminated, and their spatial continuities are well 

represented by both HNN and IID. However, the shape 

boundaries in the result of HNN have some local convex parts, 

while those in the result of IID are smoother, showing that IID 

is superior to HNN.  

The overall accuracies of the different algorithms are shown 

in Table I. The results indicate that classification accuracy 

varied with the zoom factor and simulated fraction RMSE 

values. With the increment of zoom factor or the simulated 

 
Fig. 6.  The overall accuracy of each fine spatial resolution land cover map in 

the initial step and different iteration times, and the percent of changed fine 

spatial resolution pixels between two iterations for the experiment of the shape 
of number six with z=7 and RMSE=0.05. 

  

 

 
Fig. 7.  Fraction images of the simulated shape experiment with z=7 and RMSE=0.05, and result fine spatial resolution land cover maps generated from different 

SRM methods.  
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fraction RMSE value, overall accuracy tended to decrease for 

all cases. When the simulated fraction RMSE value was zero, 

which indicates that the output of the spectral unmixing was 

error-free, the overall accuracies of IID and PS are similar and 

are both higher than those of BI and HNN in most cases. For 

shapes of the number six and the open triangle at z=10, 

however, the overall accuracies of IID are much higher than 

those of PS. When the simulated fraction RMSE value equals 

to 0.05 or 0.10, the overall accuracies of IID and HNN are all 

higher than those of PS and BI. When RMSE = 0.05, the overall 

accuracies of IID are all higher than those of HNN, showing the 

effectiveness of the proposed IID algorithm. When RMSE = 

0.10, however, there are little differences between the overall 

accuracies of IID and HNN. This is because a higher RMSE 

value introduces more errors in both interpolation and de-

convolution processes, and then decreases the accuracy of the 

result. 

B. Simulated multi-spectral images  

In this experiment, a simulated multi-spectral image was 

used. The data were obtained from a subset of Quickbird 

panchromatic image in Wuhan, Hubei Province, China in Fig. 

8 (at spatial resolution of 0.6 m). The panchromatic image was 

manually interpreted to form the reference map of 120 × 120 

pixels containing 4 classes: tree, grass, ground, and path. With 

this reference map, three different coarse spatial resolution 

multi-spectral images were simulated. The spectral band 

number of the simulated multi-spectral image was set as 6, and 

the spatial resolution was set as 3m, meaning the zoom factor 

equals to 5. The 4 endmember reflectance values were manually 

set to [0.73, 0.45, 0.27, 0.13, 0.09, 0.12]T, [0.21, 0.08, 0.13, 

0.23, 0.31, 0.37] T, [0.05, 0.69, 0.34, 0.69, 0.94, 0.90] T and 

[0.90, 0.22, 0.52, 0.36, 0.68, 0.49] T. The covariance matrices 

were defined following the approach discussed in [38]. For 

three different cases, the covariance matrices for all the classes 

were manually set to a 6×6 identity matrix multiplied by 0, 0.06 

and 0.26 respectively. The spectral values of fine-resolution 

pixels of the simulated image were independent and identically 

distributed, and the fine-resolution pixels were conditionally 

independent given their class association. The fine-resolution 

multi-spectral image was spatially degraded to the coarse-

resolution multi-spectral image using a 5×5 mean filter. The 

linear spectral unmixing method was then applied to generate 

fraction images for all three cases. The resulting fraction images 

have the RMSE values of 0, 0.05 and 0.10, respectively. Using 

the fraction images as input, PS, BI, HNN and IID algorithms 

were applied to produce final fine spatial resolution land cover 

maps.  

The fine spatial resolution land cover maps shown in Fig. 9 

were used to visually assess the performance of various SRM 

algorithms. The value of RMSE greatly affected the 

performance of all SRM algorithms. The quality of the final fine 

spatial resolution map from each SRM algorithm was 

negatively related to the magnitude of the RMSE; thus the 

smaller the RMSE, and so the better the unmixing, the more 

accurate the final SRM. Both the PS and BI algorithms maintain 

absolutely the input class fractional cover information in the 

resulting fine spatial resolution land cover maps. Therefore, a 

larger RMSE value brings more speckle-like errors in the result 

of PS and BI algorithms. Moreover, PS breaks continuous 

patches into several parts, such as the circle of the ‘path’ class, 

and the application of BI makes patch boundaries less smooth. 

HNN eliminates most speckle-like errors in the result; however, 

it also breaks many continuous land cover patches. By contrast, 

IID can overcome these shortcomings of PS, BI and HNN. 

Although large RMSE value decreases the performance of IID, 

no obvious speckle-like errors are found in the result produced 

by IID. The spatial continuity of land cover is better kept and 

the patch boundaries are also smoother in the result of IID. 

TABLE I 
OVERALL ACCURACIES (%) OF THE FINE SPATIAL RESOLUTION LAND COVER MAPS PRODUCED BY THE PS, BI, HNN AND IID ALGORITHMS FOR THE SIMULATED 

SHAPES EXPERIMENT. THE HIGHEST OF THE 3 ACCURACY VALUES FOR EACH SETTING OF RMSE IS HIGHLIGHTED IN BOLD. 

 

  RMSE=0 RMSE=0.05 RMSE=0.10 

  PS BI HNN IID PS BI HNN IID PS BI HNN IID 

 Six 99.21 98.97 98.81 99.16 96.34 96.26 98.30 98.35 92.45 92.61 96.79 96.84 

z=5 Cross 99.59 99.34 99.57 99.63 96.45 96.36 99.04 99.06 93.72 94.04 97.01 97.11 

 Triangle 99.43 98.61 98.73 99.08 94.81 94.75 97.77 98.12 91.74 92.18 96.61 96.79 

 Six 97.98 96.08 96.12 97.91 93.04 94.59 95.89 97.22 91.47 92.24 95.07 94.67 

z=7 Cross 99.08 97.30 97.48 98.87 95.10 94.25 96.08 97.47 90.94 91.38 94.91 95.38 

 Triangle 97.29 94.88 95.18 97.73 93.08 93.53 94.89 95.71 89.75 90.97 94.06 94.45 

z=10 

Six 93.05 93.09 91.55 96.10 86.53 91.24 90.52 92.06 86.06 87.98 90.12 90.56 

Cross 94.18 93.90 90.54 93.91 90.06 91.45 89.96 92.92 85.12 86.01 89.83 89.75 

Triangle 94.94 92.70 92.59 97.51 90.49 89.98 92.05 94.37 86.16 87.17 90.10 89.74 

 

 

 
Fig. 8.  The panchromatic image and reference map for the simulated multi-
spectral image experiment.  
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The accuracy statistics in Table II shows an increase in the 

overall accuracies for IID compared with PS, BI and HNN. 

When RMSE=0, the improvement of overall accuracy for IID 

is 0.96% compared with PS, 4.05% compared with BI, and 

4.30%  compared with HNN. The overall accuracy of PS is 

similar as that of BI for RMSE=0.05 and 0.10. Compared with 

PS and BI, the overall accuracy of HNN increases about 4% 

with RMSE=0.05 and 7% with RMSE=0.10. The overall 

accuracy of  IID is the highest, and the improvement reaches 

about 3%, compared with that of HNN.  

C. Synthetic Landsat images 

In this experiment, the performance of the proposed IID 

algorithm was validated using synthetic Landsat Thematic 

Mapper (TM) images. A TM scene located in the Brazilian 

Amazon Basin and acquired on June 19, 2006 was used. The 

original Landsat TM image used for analysis includes bands 1, 

2, 3, 4, 5, and 7. The experiment was conducted with a subset 

of 350 × 350 pixels, as shown in Fig. 10(a). The original 

Landsat TM image was degraded to simulate coarse-resolution 

multispectral images at the zoom factors z = 7. The simulated 

coarse-resolution images are of 50 × 50 pixels, as shown in Fig. 

10(b). The original Landsat TM image was visually interpreted 

to generate a fine resolution land cover map to serve as a 

reference data set. This map comprised four land cover classes:  

barren, grassland, cultivated and forest (see Fig. 10(c)). The 

simulated coarse-resolution image was unmixed to generate the 

fraction images using the linear spectral unmixing method, and 

the resulting RMSE is 0.097. Using the fraction images as input, 

fine spatial resolution land cover maps were produced by the 

four SRM algorithms. 

The land cover maps produced by different SRM algorithms 

are shown in Fig. 10 and the accuracy statistics of different 

algorithms are shown in Table III. Both the fine spatial 

resolution land cover maps produced by PS and BI include 

many speckle-like errors, which are often small round patches 

for PS and linear patches for BI. BI can better maintain the 

continuity of land cover patches than PS, while PS produces 

smoother patch boundaries. HNN eliminates most speckle-like 

errors, but the continuity of land cover patches is not well 

presented. IID produces better fine resolution land cover maps 

than both PS, BI and HNN, as it eliminates most speckle-like 

errors, and preserves the patch continuity and the patch 

boundary smoothness at the same time. The overall accuracies 

of all SRM algorithms also show the effectiveness of the 

proposed IID algorithm. The improvement of overall accuracy 

is 8.17%, 6.63% and 1.67%, compared with PS, BI and HNN, 

respectively.  

 
 

Fig. 9.  Simulated multi-spectral images and result fine spatial resolution land cover maps generated from different SRM methods. 

  

TABLE II 

OVERALL ACCURACIES (%) OF DIFFERENT SRM ALGORITHMS FOR THE 

SIMULATED MULTI-SPECTRAL 
  

RMSE PS BI HNN IID 

0 91.28 88.19 87.94 92.24 

0.05 83.53 83.70 87.83 90.59 

0.10 76.74 77.84 84.24 87.29 

 

TABLE III 
OVERALL ACCURACIES (%) OF DIFFERENT SRM ALGORITHMS FOR THE 

DEGRADED LANDSAT TM IMAGE 
  

 PS BI HNN IID 

OA 85.86 87.40 92.36 94.03 
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D. Discussion 

The experimental results confirm that the proposed IID 

algorithm can produce a fine spatial resolution land cover map 

with higher accuracy than PS, BI, and HNN algorithms. There 

are two main advantages of the proposed IID algorithm. First, 

it can eliminate the impact of fraction errors caused by spectral 

unmixing on the result. This feature is mainly attributed to the 

de-convolution process, which takes account of the fraction 

errors in the interpolated fine spatial resolution fraction images 

and suppresses its affect by spatial regularization. Second, IID 

can preserve the patch continuity and the patch boundary 

smoothness, simultaneously. The patch continuity is preserved 

because the interpolation process takes account of neighboring 

fraction values, and the resulting interpolated fine resolution 

fraction images are spatial smooth. The patch boundary 

smoothness is preserved because the spatial regularization 

model applies the local smoothness as the prior model of the 

latent fine spatial resolution land cover map. 

    The iterative back projection technique has been widely used 

in image super-resolution algorithms [40]. This kind of image 

super-resolution algorithm often first uses a simple bilinear or 

bicubic interpolation method to produce an initial fine 

resolution image. Then, the interpolated fine resolution image 

is refined by various models, such as non-local processing [41] 

or adaptive enhancement [42], and the back projection 

technique is used to minimize the reconstruction error 

iteratively. Compared with these image super-resolution 

algorithms, the proposed IID algorithm has a similar 

framework, as it also first interpolates the coarse spatial 

resolution fraction images, and then iteratively refines the result 

with the back projection technique. The difference is that a 

special de-convolution model is applied in the IID algorithm to 

produce the fine resolution land cover map, which has discrete 

class labels instead of continue image values, from the 

interpolated and refined fine resolution fraction images. 

The most important parameter in the proposed IID algorithm 

is the regularization value λ. The regularization parameter acts 

as a tradeoff parameter that balances the influence of the data 

fidelity and regularization terms on the solution of (6). If the 

regularization parameter is too small, the solution is 

unsmoothed and susceptible to the noise in input interpolated 

fine spatial resolution fraction images. If it is too large, the 

regularization term has a dominant effect on the solution, 

generating an over-smoothed fine spatial resolution land cover 

map. The data fidelity and regularization terms should be 

appropriately balanced when the de-convolution process is 

implemented. Here, through trial and error, the regularization 

value is set to be 0.05 for RMSE=0, 0.08 for RMSE=0.05, and 

0.10 for RMSE=0.10. As the de-convolution model is based on 

the regularization theory, some popular methods, such as L-

curve and U-curve [35, 40], can also be used to select the 

optimal value of the regularization parameter. 

All algorithms were tested on an Intel Core i7-4770 3.40 GHz 

CPU with 16.0-GB RAM using MATLAB version R2012a. For 

HNN, the iteration number was set to be 3000. For IID, the 

iteration number was set to be 8, and the inner iteration number 

in the de-convolution step was set to be 70. The run times of 

 

TABLE IV 

RUNNING TIME OF DIFFERENT SRM ALGORITHMS FOR DIFFERENT IMAGES 
  

Image Coarse Pixels PS BI HNN IID 

Shapes 10×10 10sec 1sec 2min 2min 

Simulated 24×24 43sec 2sec 10min 11min 

Landsat 50×50 58sec 4sec 114min 120min 

 

 
 

Fig. 10.  Landsat TM data set and results. (a) is the Landsat TM multi-spectral image (band 4-3-2). (b) is the degraded Landsat TM images with zoom factor z=7. 
(c) is the reference land cover map. (d)-(g) are land cover maps generated by pixel swapping, bilinear interpolation, Hopfield neural network and the proposed 

iterative interpolation de-convolution SRM algorithms, respectively. 
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different SRM algorithms are listed in Table IV. Run time 

increases with image size for different SRM algorithms. BI is 

the fastest algorithm, and PS also converges within a short run 

time. The run times of HNN and IID are about the same, and 

are both longer than those of BI and PS, because they need the 

iteration process to eliminate the impact of fraction errors 

caused by spectral unmixing on the result. 

Although the proposed IID algorithm has shown its 

effectiveness, some further improvements could be made. First, 

as the quality of the initial interpolated fine spatial resolution 

fraction images impact the subsequent iterations and the final 

result, there may be value in exploring the potential of different 

interpolation methods. In this paper, the bilinear interpolation 

method was applied and it could be replaced by some advanced 

interpolation algorithm. Second, in the de-convolution object 

function, the spatial smoothness principle was applied for 

regularization. However, the performance would be expected to 

vary with the nature of the land cover mosaic. Therefore, some 

special regularization terms, such as an anisotropic land cover 

prior, should sometimes be adopted as the regularization term 

to better preserve detailed information on land cover patches. 

Finally, when the regularization parameter is set, a high-weight 

regularization parameter should be used in homogeneous 

regions to better remove speckle-like artifacts, while a low-

weight regularization parameter should be used near patch 

boundaries to better preserve boundary shapes. In this present 

research, a fixed regularization parameter was applied and it 

should perhaps be replaced with a locally adaptive method for 

regularization parameter estimation. 

V. CONCLUSION 

A novel iterative interpolation de-convolution algorithm was 

proposed for super-resolution land cover mapping. Through 

analyzing the popular interpolation-based two-step SRM 

algorithms, we found that the MAP principle, which is used as 

the second step in existing algorithms, is suitable only when an 

area-to-point interpolation method is used. If a traditional area-

to-area interpolation method is used, the MAP process should 

be replaced by the de-convolution process, based on a new 

constructed conceptual image formation process that 

establishes the relationship between the observed coarse spatial 

resolution fraction images and the latent fine spatial resolution 

land cover map. The proposed IID algorithm first interpolates 

the input coarse spatial resolution fraction images to fine spatial 

resolution, and then produces an initial fine spatial resolution 

land cover map by a de-convolution process. This fine spatial 

resolution land cover map is further updated iteratively by re-

convolution, back-projection and de-convolution until the final 

fine spatial resolution land cover map is produced.  

The performance of the proposed IID algorithm was assessed 

with several experiments including simulated shapes, simulated 

multi-spectral images, and spatially degraded Landsat images. 

The proposed IID algorithm was compared with the popular PS, 

BI and HNN based SRM algorithms. The results show that the 

proposed IID algorithm produced fine spatial resolution land 

cover maps with higher accuracies than those produced by PS, 

BI and HNN algorithms. The proposed IID algorithm can 

reduce the impact of fraction errors caused by spectral 

unmixing on the resulting fine spatial resolution land cover 

map. Moreover, the proposed IID algorithm can preserve the 

patch continuity and patch boundary smoothness 

simultaneously, because the interpolation process uses 

neighboring coarse spatial resolution fraction values and the de-

convolution process used the local smoothness of land cover 

patches as the prior information. In practice, the performance of 

the proposed IID depends on the interpolation algorithm and the 

object function of the de-convolution process. Some potential 

further improvements about the IID algorithm, including the 

spatial interpolation algorithm, the spatial regularization term 

and the regularization parameter estimation method in the de-

convolution object function, were highlighted. 
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