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Abstract—Reliable feature point matching is a vital yet chal-
lenging process in feature-based image registration. In this paper,
a robust feature point matching algorithm called Recovery and
Filtering Vertex Trichotomy Matching (RFVTM) is proposed to
remove outliers and retain sufficient inliers for remote sensing im-
ages. A novel affine invariant descriptor called vertex trichotomy
descriptor is proposed on the basis of that geometrical relations
between any of vertices and lines are preserved after affine
transformations, which is constructed by mapping each vertex
into trichotomy sets. The outlier removals in Vertex Trichotomy
Matching (VTM) are implemented by iteratively comparing the
disparity of corresponding vertex trichotomy descriptors. Some
inliers mistakenly validated by a large amount of outliers are
removed in VTM iterations, and several residual outliers close
to correct locations cannot be excluded with the same graph
structures. Therefore, a recovery and filtering strategy is designed
to recover some inliers based on identical vertex trichotomy
descriptors and restricted transformation errors. Assisted with
the additional recovered inliers, residual outliers can also be
filtered out during the process of reaching identical graph for
the expanded vertex sets. Experimental results demonstrate the
superior performance on precision and stability of this algorithm
under various conditions, such as remote sensing images with
large transformations, duplicated patterns, or inconsistent spec-
tral content.

Index terms— Feature point matching, graph based match-
ing, image registration, remote sensing, Vertex Trichotomy.

I. INTRODUCTION

Image registration is a crucial preprocessing technology for
image analysis, which has been widely applied in remote
sensing, computer vision, medical imaging, and map search
[1], [2]. Regarding remote sensing applications in particular,
image registration employed in geosciences is frequently used
in a wide variety of disciplines, such as volcanology [3–
6], structural geology and paleoseismology [7–9], and soil
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microtopography [10]. Image registration aims to align two or
more images with overlapping scenes taken at different times,
by different sensors, or from different viewpoints. Feature
point matching, which establishes reliable correspondences
between feature points extracted from reference images and
sensed images, is a representative and challenging step in
feature-based registration techniques.

Several factors concerning the imaging conditions and
sensor modalities may deteriorate the performance of fea-
ture point matching for remote sensing images. First, large
transformations between remote sensing images occur due to
the great differences of remote sensors in resolutions, flight
heights, or viewpoints. Fig. 1 (a) and (b) illustrate examples
of remote sensing images with rotation, scale deformation,
and shear deformation. Large transformations not only lead
to the low overlapping area between images, but also cause
great changes in geometrical features of corresponding ar-
eas, especially in the case of shear deformations. Therefore,
outliers are inevitably established from the non-overlapped
areas. Secondly, outliers occur very easily in feature point
matching which only relies on local descriptors, especially for
the images with duplicate or similar patterns. Last but not least,
inconsistent spectral content often exists in multispectral and
multimodal images, where the intensities of pixels in the same
region may be quite different. It is difficult to obtain reliable
and sufficient correspondences according to the inconsistent
image intensities. Therefore, it is necessary to explore proper
approaches to overcome the problems caused by large affine
transformations, duplicate patterns and inconsistent spectral
content in feature point matching.

In this paper, a novel feature point matching approach
named Recovery and Filtering Vertex Trichotomy Matching
(RFVTM) is proposed for remote sensing images. Based on
the global spatial relations of feature points, an affine invariant
descriptor called vertex trichotomy is proposed, due to the
fact that the geometrical relations between any vertices and
lines are preserved after affine transformations. Therefore,
vertex trichotomy descriptor is invariant under affine transfor-
mations, including rigid deformations (i.e., rotation, scaling,
and translation) and non-rigid deformations (i.e., shear). This
makes it superior to most existing graph descriptors which
are only invariant to rigid transformation [11–15]. To estimate
the similarity of corresponding points, vertex trichotomy de-
scriptor is constructed by mapping each vertex into trichotomy
sets according to the spatial relations between vertices and
trichotomy vectors. Candidate outliers in Vertex Trichotomy
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(a)

(b)

Fig. 1: Examples of remote sensing images with large affine transformation.
(a) Images with scale and rotations. (b) Images with shear deformation.

Matching (VTM) are determined by iteratively comparing the
disparity of corresponding vertex trichotomy descriptors. It is
noted that the similarity of corresponding graph structures is
validated by all of vertices, which enables the outlier removal
more reliable. However, some inliers mistakenly validated
by a large amount of outliers are easily to be removed for
most of graph-based feature point matching methods. Besides,
several residual outliers cannot be excluded with pseudo
isomorphic graphs, i.e., the corresponding graphs have the
same graph descriptor but still include outliers that close to
correct locations. To deal with this, we design a recovery
and filtering strategy to recover inliers from candidate outliers
based on identical vertex trichotomy descriptors and restricted
transformation errors. Assisted with the recovered inliers, both
of the outliers among the recovered candidates and the outliers
in the residual sets can be filtered out during the process of
reaching identical graph for the expanded vertex sets.

The remainder of this paper is organized as follows: Section
II gives a brief literature review for feature point matching.
Section III presents problem formulations for graph-based fea-
ture point matching, where an affine invariant descriptor called
vertex trichotomy is defined. Section IV introduces Vertex
Trichotomy Matching to determine candidate outliers and a
robust strategy to achieve inlier recovery and outlier filtering.
Section V illustrates experimental results with representative
remote sensing image pairs, and performance evaluation of the
proposed algorithms is presented. Finally, Section VI presents
the concluding remarks. The notations used in this paper are
summarized in Table I.

II. LITERATURE REVIEW

Numerous previous approaches of image registration have
been developed. One representative class of image registra-
tions focusses on finding the matching information by com-
paring global similarity metrics for all pixels in the images,
such as mutual information [16] or correlations [17]. Another
class of algorithms transforms images to a new domain, and

TABLE I: SUMMERY OF NOTATIONS USED IN THIS PAPER

PR = {pi}, PS = {p′j} Extracted feature points from reference and sensed images
C(i, j) Correspondence matrix of feature points
T (·) Affine transformation
θ∗ Affine transformation coefficients
E (PR, PS ,C) Global transformation error
GR(PR,C), GS(PS ,C) Graph structures of reference and sensed images
V = {vi}, V ′ = {v′i, } Initial corresponding vertices
φ(·) Graph descriptor
~E (i, j) Trichotomy vector starts from vi to vj
φ(G| ~E), φ(G′| ~E′) Corresponding vertex trichotomy descriptor
T+ (i, j), To (i, j), T− (i, j) Three trichotomy sets for ~E (i, j)
Mi7→j [k], M′i7→j [k] Reference and sensed trichotomy matrices
∆Mi7→j Disparity matrix
(vdout , v′

dout ) Candidate outliers
{Vres, V ′res} Residual vertex sets
{Vdel, V ′del} Deleted vertex sets
{Vrec, V ′rec} Recovered vertex sets
O(·) Time complexity

then applies these global similarity metrics to the transformed
images, where global features are more prominent [18], [19].
Yet another class of algorithms includes feature-based meth-
ods, which seeks the correspondence between the features of
images. The adopted features must be salient, distinct, and sta-
ble, which can be regions, curves, or points. Regarding feature
point based registration in particular, feature point matching is
a crucial step with the objective of establishing corresponding
points and removing outliers, which can be broadly grouped
into two main categories: feature point matching based on
local feature similarity and feature point matching based on
relations between feature points. This section presents a brief
review for these representative work of feature point matching.

A. Feature Point Matching Based on Local Feature Similarity
Feature point matching strategies based on local feature

similarity are commonly adopted to find reliable corresponding
points. The local features around points are compared to
measure the similarity between the correspondences. A basic
idea for local feature similarity is to calculate the intensities
within a close neighborhood, which is commonly known as an
intensity patch. However, besides high time complexity, this
idea is sensitive to illumination changes and inconsistent spec-
tral content in multispectral/multimodal images. Therefore, it
may fail in registering remote sensing images acquired with
different modalities or illumination conditions. Scale-invariant
feature transform (SIFT) [20] is a classical feature descriptor
to extract distinctive invariant features from images, which is
capable of performing reliable matches across a substantial
range of affine distortion, addition of noise, and changes in
illumination or 3-D viewpoints. Various adapted versions of
SIFT have been proposed to improve the performance of
SIFT. Principal component analysis (PCA)-SIFT is obtained
by applying PCA on normalized gradient neighborhood. Gra-
dient location and orientation histogram [21] is computed on
a log-polar grid and upon 17 sectors. The compact feature
vector of PCA-SIFT is derived from projecting the gradient
histogram into the eigenspace, and the size of the result-
ing vector is significantly reduced with PCA [22]. Bilateral
filter SIFT (BF-SIFT) [23] establishes feature matches for
SAR images by replacing the Gaussian scale space with
an anisotropic one. Despite of reducing false matches, BF-
SIFT decreases image resolution and loses details of images.
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Adaptive binning (AB-SIFT) [24] considers both locations and
gradient orientations with an adaptive histogram quantization,
which is able to increase the descriptor performance against
local distortions. Besides, harmonic analysis transforms have
begun to be applied to the filed of SIFT-based feature point
matching methods [19]. For example, kernel affine invariant
SIFT (KA-SIFT) [25] matches the feature points detected
from the different sub-images in the corresponding layer,
which are obtained by the shearlet decomposition and affine-
SIFT (ASIFT) algorithm [26]. Instead of building gradient
histograms as SIFT-like descriptors, speeded-up robust feature
(SURF) [27] utilities the sums of Haar wavelet responses, and
estimates the principal orientations within a sliding orientation
window. In contrast to gradient-based matching, ARRSI [28]
utilizes the phase-congruency moment-based patches as the
local feature descriptor. The principle moments of phase
congruency provide the representation of corner feature points.
The local similarity between point candidates is determined
by finding the correlation of maximum moments of phase
congruency within a neighborhood centered on the candidates.
Generally, these local feature descriptors are available to
obtain feature points in uncomplicated applications, such as
homologous images with consistent and obvious features. The
main issue with them is in their high sensitivity to the local
characteristics of features [14]. They are not well suited for
the registration of remote sensing images with monotonous
backgrounds, similar patterns, or inconsistent intensities of the
same scene in multispectral and multimodal images [11].

B. Feature Point Matching Based on Relations Between
Feature Points

Numerous approaches for feature point matching have been
motivated by the relations between extracted feature points
to reject outliers. Spatial-based models are commonly utilized
as the relation constraints to match feature points. The clas-
sic approach motivated by spatial transformation models is
Random Sample Consensus (RANSAC) [29], which estimates
parameters of a transform model from two sets of feature
points, and simultaneously distinguishes inliers from the out-
liers. However, it is a nondeterministic algorithm which does
not work well when outliers account for a high proportion.
Another simple and fast method called Iterative Closest Point
(ICP) [30] utilizes the closest form solution to assign a
binary correspondence in each iteration. The transformation
is then refined by the estimate of this correspondence. Under
the assumption of initializing an adequate set of poses, it
can converge to a global minimum for rigid transformations.
Unfortunately, such an assumption is no longer valid in
the case of non-rigid transformations, especially for large
deformations. To overcome the limitation of ICP, thin plate
spline robust point matching (TPS-RPM) [31] solves both the
corresponding matches and projection transformation param-
eters through deterministic annealing and soft-assignment for
spatial mapping and outlier rejection. In contrast with these
above-mentioned methods, many probabilistic algorithms are
developed by adopting the relations of density-based models.
These methods attempt to represent feature point sets with

density-based models, and match two density-based models
instead of feature points. The representative Gaussian mixture
model (GMM) is employed in [32], [33] to represent the input
point sets. A probabilistic modeling framework for rigid and
non-rigid point set registration is proposed in [33]. Point set
registration is reformulated as the problem of aligning two
Gaussian mixtures, where a statistical discrepancy measure be-
tween the two corresponding mixtures is minimized. Coherent
Point Drift (CPD) algorithm [32] can be viewed as a special
case in the generic framework presented in [33]. However,
these probabilistic methods cannot perform well on the two
point set with high percentages of outliers [11].

Recently, the concept of graph structures has been adopted
to represent a higher level spatial relation between feature
points. The similarity of the graph structures has been ex-
ploited to perform feature point matching. Representative
work in [34], [35], [36], [37], and [15] explore the graphs
of neighbor structures for feature point matching. Shape
context descriptor [34] captures the distribution of feature
points by normalizing the histogram of vectors originating
from one point to all other sample points. The solution that
minimizes the overall shape context distances is the optimal
match between feature point sets under scaling and translation
transformations. Another simple graph matching interpretation
proposed in [35] preserves local neighborhood, under the
assumptions that the neighborhood structures of points are
generally well preserved under non-rigid transformation. The
edges of neighborhood structures for each point are con-
structed with their nearest neighbors. The optimal solution
of this method is implemented by maximizing the number
of matched edges of two neighborhood structures. However,
this method may not be adequate to deal with significant
changes between local neighborhood structures caused by
large rotations and noise. Graph Transformation Matching
(GTM) [15] relies on finding consensus K Nearest Neighbor
(KNN) graphs constructed with the restriction of average
structures. This method iteratively eliminates dubious matches
by selecting the maximal disparities of edges connecting KNN
points. However, GTM has difficulties in obtaining reliable
matches when outliers have the same local neighbor structures,
or inliers have different neighbor structures interrupted by
existing outliers. Restricted Spatial Orders Constraints (RSOC)
[11] integrates the two-way spatial order constraints and the
transformation error restrictions into KNN point matching.
However, the convergence rates and accuracy depend on
transformation models and the initial parameter settings. Also,
the cyclic string matching for spatial orders is time con-
suming. Weighted Graph Transformation Matching (WGTM)
algorithm [14] utilizes the angular distances between edges
that connect a feature point to its KNN as the weight. The
angular distance in WGTM is only invariant with respect to
scales and rotations, but will be variant to shear deformations.
Delaunay Triangulation Matching [13] establishes Delaunay
Triangulations according to the random incremental method
[38]. Then Delaunay edge matrices are utilized to measure
the connection relations between the vertices of triangles.
The vertices with the maximum distinction of Delaunay edge
connections are selected as candidate outliers. Histogram of
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TAR Sample Consensus (HTSC) [12] adopts the histogram of
triangle area representation to find out correct corresponding
triangles with three matched vertices from the feature point
candidates.

Although extensive work as mentioned above has been
done, feature point matching is still a challenging task, partic-
ularly for remote sensing images with large transformations,
duplicated patterns, and inconsistent spectral content. It is
noted that most of graph structures cannot keep invariant
with respect to shear deformations, which often occur in
remote sensing images [14]. Besides that, each feature point
in most existing graph descriptors is only validated by local
graph structures with a small number of points, such as KNN
adopted in GTM [15], ROSC [11], and WGTM [14], triangles
adopted in DTM [13] and HTAR [12]. Therefore, inliers with
a large amount of outlier in their local graphs are easily
to be mistakenly removed in feature point matching. In this
paper, we explore an affine invariant graph descriptor and a
recovery and filtering strategy for robust and reliable feature
point matching.

III. PROBLEM FORMULATION AND VERTEX
TRICHOTOMY DESCRIPTOR

In this section, we approach the problem of feature point
matching for image registration as a graph matching problem
solved by finding matched graphs that minimize global trans-
formation errors. Compared to most of local feature descrip-
tors, the proposed vertex trichotomy descriptor is constructed
by mapping each vertex into trichotomy sets according to the
spatial relations between vertices and trichotomy vectors. The
similarity of corresponding graph structures is validated by all
of vertices, which enables the outlier removal more reliable.

A. Problem Formulation for Graph based Point Matching

Assuming that we have two images in which feature points
have been extracted, denoted as PR = {pi|i = 1, 2, 3, ....NR}
and PS = {p′j |j = 1, 2, 3, ....NS} respectively, and any
feature point from one set corresponds to at most one feature
point from the other set. Define a correspondence matrix by
C(i, j) ∈ {0, 1} such that C(i, j) = 1 when pi corresponds
to p′j . Otherwise, C(i, j) = 0. Feature point matching can be
treated as finding an optimal correspondence matrix C(i, j)
to minimize the global transformation error E (PR, PS ,C).
Here, E (PR, PS ,C) is defined by

E (PR, PS ,C) =

√√√√√√√√
NR∑
i=1

NS∑
j=1

C (i, j)
∥∥T (pi, θ)− p′j

∥∥2
NR∑
i=1

NS∑
j=1

C(i, j)

(1)

where transformation parameters θ are estimated by at least
three corresponding pairs of feature points under affine trans-
formation T (·). Therefore, the optimal match C̃ is the solution
to the following optimization problem:

C̃ = arg min
C

E (PR, PS ,C) . (2)

Graph structures are established by a higher level geo-
metrical relations between corresponding feature points. Any
feature points (pi, p

′
j) exist as vertices of graphs when pi cor-

responds to p′j , i.e., {(pi, p′j)|C(i, j) = 1, 1 ≤ i ≤ NR, 1 ≤
j ≤ NS}. Graph matching is trying to find two matched
graphs GR(PR,C) and GS(PS ,C) from the reference image
and the sensed image respectively, such that corresponding
vertices of graphs are matched in pairs. Graph descriptor φ(·)
is explored in graph based methods to describe the features of
graph structures, such as K Nearest Neighbours (KNN) [15],
Histogram of Triangle Area Representation (HTAR) [12]. If all
of the corresponding vertices of graphs are real matches, the
descriptors of GR(PR,C) and GS(PS ,C) should be identical.
Therefore, the optimal problem of feature point matching can
be simplified as finding two matched graphs that minimize
global transformation error as follows:

C̃ = arg min
C

E (GR, GS ,C) , s.t. φ (GR (PR,C)) =

φ (GS (PS ,C)) . (3)

B. Affine Invariant Graph Descriptor Based on Vertex Tri-
chotomy

An affine transformation is composed of linear transforma-
tions including rotation, scaling, translation, shear deforma-
tions, and finite combinations thereof. Based on the consensus
that affine transformation preserves collinearity and parallelity
[12], the followings can be derived:

1) All points lying on a line initially still lie on a line after
affine transformation.

2) Any points lying on the same side of a line remain the
same side after affine transformation.

We assume there are two initial sets of match correspon-
dences between the two images: V = {v1, v2, . . . , vi, . . . , vN}
and V ′ = {v′1, v′2, . . . , v′i, . . . , v′N} of size N ≤
min {NR, NS}, where vi matches v′i. The proposed vertex
trichotomy descriptor φ(G| ~E) = (T+, To, T−) is created
according to the following definitions:

1) Define a trichotomy vector starts from vi to vj as ~E (i, j),
∀1 ≤ i, j ≤ N .

2) Define T+ (i, j), To (i, j), and T− (i, j) as three tri-
chotomy sets for ~E (i, j). Any of the vertices vk belongs
to one of these trichotomy sets relying on the spatial
relations between vk and ~E (i, j), which can be obtained
by computing the determinant of the following matrix

det (vi, vj , vk) =

∣∣∣∣∣∣
xvi

xvj xvk
yvi yvj yvk
1 1 1

∣∣∣∣∣∣ (4)

where (xvi , yvi),
(
xvj , yvj

)
, and (xvk , yvk) are the

coordinates of vi, vj , and vk respectively. vk ∈
T+ (i, j), when det (vi, vj , vk) > 0; vk ∈ To (i, j), when
det (vi, vj , vk) = 0; Otherwise, vk ∈ T− (i, j), when
det (vi, vj , vk) < 0.

We establish the corresponding descriptors φ(G| ~E) =
(T+, To, T−) and φ(G′| ~E′) =

(
T ′+, T

′
o, T

′
−
)

according to the
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above definitions. φ(G| ~E) = φ(G′| ~E′) can be obtained when
all of the vertices are correctly matched in pairs. If this is
not the case (in general), the disparity of corresponding graph
descriptors exist between the two graph structures.

Fig. 2 shows an example of vertex trichotomy
descriptor for two corresponding vertex sets without
any transformation. The initial corresponding
vertex sets V = {v1, v2, v3, v4, v5, v6, v7} and
V ′ = {v1′, v2′, v3′, v4′, v5′, v6′, v7′} with one outlier
(v6, v

′
6) are demonstrated in Fig. 2 (a). The vertex

trichotomy descriptor of graphs is constructed as
φ(G| ~E(i, j)) = (T+(i, j), To(i, j), T−(i, j)) and
φ(G′| ~E′(i, j)) =

(
T ′+(i, j), T ′o(i, j), T ′−(i, j)

)
, ∀1 ≤ i, j ≤ 7.

The vertex trichotomy descriptor with i = 2, j = 4
is shown in Fig. 2 (b), which are depicted as
φ(G| ~E(2, 4)) = ({v1, v7}, {v2, v4}, {v3, v5, v6} and
φ(G′| ~E′(2, 4)) = ({v′1, v′6, v′7}, {v′2, v′4}, {v′3, v′5}).
φ(G| ~E(2, 4)) does not exactly match to φ(G′| ~E′(2, 4))
due to the existence of outlier (v6, v

′
6). These disparities

of corresponding graph descriptors are utilized by vertex
trichotomy matching in the following section.
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Fig. 2: A demonstration of vertex trichotomy descriptor for V =
{v1, v2, v3, v4, v5, v6, v7} and V ′ = {v1′, v2′, v3′, v4′, v5′, v6′, v7′}.
(a) Initial vertex sets with one outlier (v6, v6′). (b) φ(G| ~E(2, 4)) and
φ(G′| ~E′(2, 4)).

IV. SEARCHING FOR AN OPTIMAL SOLUTION

In this section, the searching process is introduced to obtain
an optimal solution of finding two matched graphes with the
identical vertex trichotomy descriptors that minimize global
transformation error. The initial one-to-one correspondences
between two images as the input of the searching process are
established by the classical local feature similarity method
SIFT [20]. First, Vertex Trichotomy Matching (VTM) is
proposed, which utilizes the disparity of vertex trichotomy de-
scriptors iteratively to determine candidate outliers. Then, in-
lier recovery and outlier filtering strategy for VTM (RFVTM)
is proposed with two criteria restrictions of identical vertex
trichotomy descriptors and reductive transformation errors.
The end of this section discusses approaches to reduce the

time complexity in the searching process. The frameworks of
VTM and RFVTM are shown in Fig. 3.

A. Vertex Trichotomy Matching (VTM)

The Vertex Trichotomy Matching method is proposed to find
candidate outliers based on the disparity of vertex trichotomy
descriptors, which are validated by all of the corresponding
vertices between two graphs. The corresponding vertices with
the maximum accumulated disparities between corresponding
descriptors are selected as candidate outliers. The determina-
tion of candidate outliers iterates through the following steps:

1) The trichotomy matrix denoted by Mi 7→j [k]
represents the attribution of vk according to
φ(G| ~E(i, j)) = (T+(i, j), To(i, j), T−(i, j)) and
φ(G′| ~E′) =

(
T ′+, T

′
o, T

′
−
)
. Mi7→j [k] = 0 when

vk belongs to To(i, j); Otherwise, Mi 7→j [k] = −1
when vk ∈ T−(i, j) ; Mi 7→j [k] = 1 when
vk ∈ T+(i, j). Accordingly, the corresponding
trichotomy matrix M′i 7→j [k] is derived from
φ(G′| ~E′(i, j)) =

(
T ′+(i, j), T ′o(i, j), T ′−(i, j)

)
.

2) Select the candidate outlier (vdout , v′dout) from the match-
ing set. The difference between corresponding graphs is
approximated by computing the accumulated disparity
matrix ∆Mi 7→j :

∆Mi7→j =


N∑

k=1

(Mi 7→j [k]⊕M′i 7→j [k]) , i 6= j

0 , i = j
(5)

where (·)⊕ (·) denotes the logical operation exclusive or
(i.e., XOR) that outputs true only when the two inputs (in
this case Mi 7→j [k] and M′i 7→j [k]) differ from each other.
The outlier (vdout , v′dout) is selected yields the maximal
difference of vertex trichotomy descriptors as follows:

dout = arg max
j=1,2,...,N

N∑
i=1

∆Mi 7→j . (6)

3) Once the candidate outliers are identified, all references to
dout in the corresponding trichotomy matrices Mi 7→j [k]
and M′i 7→j [k], ∀i, j, k = dout should be removed. A new
iteration begins with the decrement of residual vertices
until ∆Mi7→j = 0,∀i, j, which indicates that there is no
difference between the corresponding vertex trichotomy
descriptors, and no candidate outlier needs to be removed.
The details of VTM to determine candidate outliers are
outlined in Algorithm 1.

B. Inlier Recovery and Outlier Filtering Strategy for VTM
(RFVTM)

Despite being invariant with respect to affine transforma-
tions, vertex trichotomy matching could still fail to remove
few stubborn outliers, namely false matches closed to correct
locations but mistakenly supported by the identical trichotomy
sets during VTM iterations. These stubborn outliers cannot be
picked out from the residual vertices without any addition of
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Fig. 3: The frameworks of VTM and RFVTM.

fresh matches. One the other hand, a certain amount of inliers
are inevitably removed as candidate outliers when mistakenly
supported by a large number of outliers in the previous
iterations. Therefore, a restricted inlier recovery and outlier
filtering strategy (RFVTM) are proposed to recover inliers
and filter outliers. First, we pick up the candidate outliers
into the residual set one by one. The following two coarse
constraints are imposed for these candidate outliers, which
can be recovered, i.e., 1) The residual vertices should have
identical vertex trichotomy descriptors with one addition of
the candidate outlier being checked; 2) The matching accuracy
on the basis of current transformation parameters will not
decrease with one addition of candidate outlier being checked.
Then, VTM is re-implemented to the expanded vertex sets
containing residual vertices and all of recovered candidate
outliers, so that both of the outliers among the recovered
candidates and the outliers in the residual sets are capable of
being removed with the updated vertex trichotomy descriptors.
The proposed strategy is described as follows:

1) The residual vertices with exactly the same vertex tri-
chotomy descriptors are left in the residual vertex sets
{Vres, V ′res}, while the candidate outliers (vdout , v′dout)

resulting from VTM are assembled into the deleted vertex
sets {Vdel, V ′del}. The transformation errors E(k) and
Ē respectively provide individual and average measures
of matching accuracy on the basis of current affine
transformation coefficients θ∗,

E (k, θ∗) = ‖T (vk, θ
∗)− v′k‖

2 (7)

Ē =

√√√√ 1

Ns

Ns∑
k=1

‖T (vk, θ∗)− v′k‖
2 (8)

where θ∗ are estimated by the matched vertices in
{Vres, V ′res} through the common model parameter esti-
mation approach Least Square Method (LSM) [39]. Here,
Ns represents the size of residual vertex sets.

2) Check candidate outliers individually whether they are
likely to be arbitrarily deleted in the previous iterations.
Each time there is only one candidate outlier from
{Vdel, V ′del} to be checked with the residual vertices.
These candidate outliers with a high probability of be-
ing inliers are restored into the recovered vertex sets
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Algorithm 1 VTM
Input:

The corresponding vertex sets V = {vk} and V ′ = {v′k}
of size N initialized by SIFT, where vk matches v′k;

Output:
The residual vertex sets {Vres, V ′res};

1: Initialization: {Vres, V ′res} = {V, V ′};
2: for each (vi, v

′
i), (vj , v

′
j), (vk, v

′
k) ∈ {Vres, V ′res} do

3: Mi 7→j [k] ← CreateTrichotomyMatrix(vi, vj , vk);
4: M′i 7→j [k] ← CreateTrichotomyMatrix(v′i, v

′
j , v
′
k);

5: end for
6: for each k from 1 to sizeof (Vres) do
7: ∆M ← SumDisparityMatrix(Mi 7→j [k],M′i 7→j [k]);
8: end for
9: while ∆M 6= 0 do

10: dout ← FindMaxRowSumDiff(∆Mi7→j);
11: if sizeof(dout) > 0 then
12: {Vres, V ′res} ← DeleteOutliers({Vres, V ′res}, dout);
13: Mdout 7→j [k] = 0; Mi 7→j [d

out]−−;
14: M′dout 7→j [k] = 0; M′i 7→j [d

out]−−;
15: ∆M ← SumDisparityMatrix(Mi 7→j [k],M′i 7→j [k]);
16: else
17: return {Vres, V ′res};
18: end if
19: end while

{Vrec, V ′rec} when both of the following criterions are
satisfied.
a) The corresponding vertex trichotomy descriptors

should remain identical with one additional can-
didate (vdout , v′dout). The corresponding trichotomy
matrices of residual vertices have already become
the same after VTM iterations. Therefore, we only
need to consider if the corresponding trichotomy
matrices related to the additional candidate outlier
are identical, i.e.,


Mi 7→j [dout] = M′i 7→j [dout]
Mdout 7→j [i] = M′dout 7→j [i]

Mi 7→dout [j] = M′i 7→dout [j]
,∀(vi, v′i), (vj , v′j)

∈ {Vres, V ′res}. (9)

b) The individual transformation error should not in-
crease with one additional candidate (vdout , v′dout)
in terms of the current transformation coefficients θ∗

obtained in Step 1) , i.e.,

E
(
dout, θ∗

)
≤ Emax (10)

where Emax = max(‖T (vk, θ
∗)− v′k‖

2
),∀ (vk, v

′
k) ∈

{Vres, V ′res}.
3) All of vertices in {Vrec, V ′rec} are recovered into
{Vres, V ′res}. In order to remove the outliers existing
in the recovered sets and the residual sets, VTM is re-
implemented with the expanded vertex sets to achieve
identical vertex trichotomy descriptors. Accordingly, both
of vertices in {Vres, V ′res} and {Vdel, V ′del} are updated.

A new iteration of RFVTM begins with the updated
{Vres, V ′res} and {Vdel, V ′del} until Ē reaches to a preset
matching accuracy therr (set to 0.5 in this paper), or no
candidate outlier needs to be recovered. The searching
process of RFVTM is summarized in Algorithm 2.

Algorithm 2 RFVTM
Input:

The corresponding vertex sets V = {vk} and V ′ = {v′k}
of size N initialized by SIFT, where vk matches v′k;

Output:
The residual vertex sets {Vres, V ′res};

1: Initialization: {Vres, V ′res} = {V, V ′}, therr, Ē = inf;
2: while Ē ≥ therr do
3: {Vrec, V ′rec} = ∅; {Vdel, V ′del} = ∅;
4: M,M′ ← CreateTrichotomyMatrix({Vres, V ′res});
5: ∆M ← SumDisparityMatrix(Mi 7→j [k],M′i 7→j [k]);
6: while ∆M 6= 0 do
7: dout ← FindMaxRowSumDiff(∆Mi 7→j);
8: if sizeof(dout) > 0 then
9: {Vdel, V ′del} ← AddVertices({Vdel, V ′del}, dout);

10: {Vres, V ′res} ← DeleteOutliers({Vres, V ′res}, dout);
11: Update M, M′ and ∆M;
12: else
13: break;
14: end if
15: end while
16: (θ∗, Emax, Ē) ← EstimateLSM ({Vres, V ′res});
17: for each i from 1 to sizeof (Vdel) do
18: dout ← (Vdel[i], V

′
del[i]);

19: M,M′←CreateTrichotomyMatrix({Vres, V ′res}, dout);
20: if (M == M′) and (E (dout, θ∗) ≤ Emax) then
21: {Vrec, V ′rec} ← AddVertices({Vrec, V ′rec}, dout);
22: end if
23: end for
24: {Vres, V ′res} = {Vres, V ′res} ∪ {Vrec, V ′rec};
25: end while

C. Complexity Analysis and Optimization

The time complexities breakdown for the first iteration of
VTM and RFVTM with initial sets of n correspondences are
as follows:

1) Creating vertex trichotomy descriptor: O
(
C2

n (n− 2)
)
→

O
(
n3
)

2) Removing vertices with maximum disparity of vertex
trichotomy matrix: O (n)

3) Estimating transform errors with respect to the residual
vertices: O (n)

4) Checking candidate outliers: O
(
n2
)

+O (n)

where Ck
n denotes the number of k-combinations from a given

set of n elements, i.e., Ck
n = n(n−1)(n−2)···(n−k+1)

k(k−1)(k−2)···1 .
The iterative time depends on the number of initial points

and proportions of outliers. Candidate outliers are removed and
residual correspondences are decreased during the iterations of
VTM. Besides removing candidate outliers, RFVTM provides
inlier recovery with the recovery criterion mentioned above.



8

Therefore, vertex trichotomy descriptor requires frequently up-
dating along with outlier removals and inlier recoveries. These
can be simplified by decreasing or increasing the values of
corresponding trichotomy matrices related to the vertex which
need to be removed or recovered, rather than reconstructing
the vertex trichotomy descriptors in each iteration.

Similar to most graph based matching methods, the most
time consuming step in VTM and RFVTM is creating ver-
tex trichotomy descriptor. The time complexity of this step
grows in terms of O

(
C2

n (n− 2)
)

= O
(

n(n−1)(n−2)
2

)
. In

order to reduce the time cost in this step, a subdivision for
initial correspondences is explored, which is implemented by
randomly splitting the initial vertices of size n into m groups
distributed over the image. Then, matching iterations for n
vertices are converted into matching n

m correspondences for
m groups respectively, and the time complexity is reduced
to O

(
C2

n
m

(
n
m − 2

)
m
)

= O
(

n(n−m)(n−2m)
2m2

)
. The runtime

analysis is provided in detail in Section V-D.

V. EXPERIMENT AND ANALYSIS

Experiments in this section are conducted to validate the
effectiveness of the proposed algorithms1 in a laptop with
2-GHz CPU and 8-GB RAM (Intel Core i5). First, image
datasets and evaluation criterion are presented respectively.
Secondly, experimental results of VTM and RFVTM are
compared with RANSAC and GTM in terms of their accuracy,
specificity, precision and recall values. Finally, we discuss
the sensitivity of VTM and RFVTM with respect to different
numbers of inliers and subdivisions.

A. Data Set

Fifty remote sensing image pairs are selected as the testing
dataset on the basis of representative problems in remote
sensing image registration. These image pairs are distributed
into three image sets: 1) ImgSet1: 20 images with simulated
large affine transformations; 2) ImgSet2: 20 images with
duplicate patterns; 3) ImgSet3: 10 multispectral/multimodal
images with inconsistent spectral content. Table II depicts the
specifications of typical image pairs in each three image sets,
which are also demonstrated in Fig. 4.

B. Evaluation Criterion

The accuracy, specificity, precision, and recall are explored
as evaluation criterions for the matching results [14], [21],
[40]. The total matches in the initial sets are composed of
residual correct matches (RC), residual false matches (RF),
deleted false matches (DF), and deleted correct matches (DC).

1) racc is the ratio of correctly identifying matches: racc =
RC+DF

RC+DF+DC+RF .
2) rspe is the proportion of those false matches correctly

identified: rspe = DF
DF+RF .

3) rpre is the ratio between the residual correct matches and
the residual matches: rpre = RC

RC+RF .

1The proposed algorithms of VTM and RFVTM are implemented in
MATLAB Release 2013b and tested using images with bmp file format (.bmp).

4) rrec is the proportion of residual correct matches in the
initial correct matches: rrec = RC

RC+DC .
Twenty control point pairs are manually selected to estimate

affine transformation models for each image pair beforehand.
The corresponding point belongs to correct matches if the
point in one image transformed by the affine transformation
model lies within 2 pixels from its matching point in the other
image. Otherwise, it belongs to false matches.

C. Matching Comparisons with Other Algorithms

In this section, VTM and RFVTM are evaluated and com-
pared with RANSAC [29] and GTM [15]. RANSAC is a
nondeterministic algorithm, which iteratively selects random
samples from initial sets to estimate transformation parame-
ters. GTM builds its KNN graph with the restriction of average
distance, and selects the outliers that yields the maximum
difference of KNN graphs. We perform comparisons of these
algorithms on three datasets that correspond to representative
problems in remote sensing images. KNN graphs in GTM
algorithm are generated with an empirically chosen value
of K = 5. SIFT features are extracted and matched by
BBF algorithms [41] as the initial correspondences for all of
experiments. In the example figures of this section, correct
matches in residual correspondences are depicted by yellow
lines, and false matches are represented by red lines.

1) Experiments on Images with Large Transformations
The first image dataset corresponds to combinations of

simulated affine transformation, including 12 simulated image
pairs with rigid transformation (i.e., translation, rotation, scale
deformations) and 8 simulated image pairs with non-rigid
transformation (i.e., shear deformations). All of simulated im-
ages are randomly segmented into the same size as the original
images with partially overlapping areas. The results in this
section are divided into two parts. The first part demonstrates
comparative matching results of RANSAC, GTM, VTM, and
RFVTM for simulated image pairs. The second part compares
the average results of accuracy, specificity, precision, and recall
for the four methods through introducing outliers. Inliers are
reserved by hand, and outliers are randomly added into the
image pairs of the first image dataset. The percentage of
outliers in total number of matches varies from 5% to 95%
for each image pair. The same process is repeated 100 times
for every pair of images and for every percentage of outliers.

Fig. 5 and Fig. 6 demonstrate two visual matching examples
of ImgSp1-1 and ImgSp1-2 respectively. The example of
ImgSp1-1 shown in Fig. 5 consists of the aerial image covering
the seacoast of San Diego and the simulated image with
rotation of 120◦ anti-clockwise and scale factor of 2. Fig. 6
shows the example of ImgSp1-2, which consists of the aerial
image covering the runway of an airport and the sheared image
with h=0.1 and v=0.1. Table III and Table IV summarize
the matching results of the four algorithms for 12 simulated
image pairs with rigid transformations and 8 simulated image
pairs with shear deformations respectively. As presented in
Table III and IV, the matching results of VTM and RFVTM
outperform RANSAC and GTM for both of rigid and non-
rigid transformations. Although RANSAC preserves a large
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TABLE II: SPECIFICATIONS OF TYPICAL IMAGE PAIRS FROM IMAGE DATASET

Pairs Spectrum Sensor Segmented size Resolution Date Descriptions
ImgSp1-1 VI High altitude aerial image from USC 512×512 20m 1977 Simulated: rotate 120◦ and scale 2.2, seacoast of San Diego
ImgSp1-2 VI High altitude aerial image from USC 1024×1024 20m 1979 Simulated: sheared with h=0.1 and v=0.1, runway of an airport
ImgSp2-1 VI Landsat TM Band 2 1890×1890 30m 1988 duplicated pattern

VI Landsat TM Band 2 1890×1890 30m 1988
ImgSp2-2 VI Experiment Satellite Band 1 512×512 20m 2008 duplicated pattern

SWIR Experiment Satellite Band 2 400×400 50m 2008 Shanghai Oriental Pearl TV Tower, China
ImgSp3-1 VI SPOT HRV band XS1 (0.50-0.59m) 278×278 20m 1990 different spectral images from multispectral imagery

SWIR SPOT HRV band XS3 (0.79-0.89m) 278×278 20m 1990
ImgSp3-2 VNIR ASTER L1B Band 1 512×512 15m 1999 different spectral images from different sensors

SAR PALSAR fine mode 512×512 18m 2006 with speckle noise, Tokyo bay, Japan

(a) (b) (c)

(d) (e) (f)
Fig. 4: Typical image samples from dataset. (a) ImgSp1-1. (b) ImgSp1-2. (c) ImgSp2-1. (d) ImgSp2-2. (e) ImgSp3-1. (f) ImgSp3-2.

(a) (b) (c)

(d) (e)

Fig. 5: Examples of matching results for ImgSp1-1 with rotation of 120◦ anti-clockwise and scale factor of 2. (a) SIFT. (b) RANSAC. (c) GTM. (d) VTM.
(e) RFVTM.

TABLE III: THE MATCHING RESULTS FOR 12 SIMULATED IMAGE
PAIRS WITH DIFFERENT ROTATION AND SCALE FACTORS

No. rotate scale Initial RANSAC GTM VTM RFVTM
n IC IF RC RF RC RF RC RF RC RF

1 30◦ 1.5 181 124 57 119 8 43 0 89 0 122 0
2 30◦ 2.0 97 58 39 46 11 18 2 39 0 54 0
3 30◦ 3.0 33 12 21 10 14 5 0 7 0 10 0
4 60◦ 1.5 146 82 64 58 19 20 1 29 0 61 0
5 60◦ 2.0 73 46 27 44 7 11 0 11 0 42 0
6 60◦ 3.0 45 19 26 16 12 7 3 10 1 14 0
7 90◦ 1.5 106 74 32 60 11 36 0 39 0 68 0
8 90◦ 2.0 84 51 33 45 13 20 0 27 0 39 0
9 90◦ 3.0 37 18 19 16 6 8 0 12 0 15 0
10 120◦ 1.5 68 39 29 21 10 13 0 19 0 26 0
11 120◦ 2.0 49 30 19 30 7 16 1 17 0 30 0
12 120◦ 3.0 25 9 16 6 13 0 5 5 1 7 0

TABLE IV: THE MATCHING RESULTS FOR 8 SIMULATED IMAGE
PAIRS WITH DIFFERENT SHEAR FACTORS

No. horizontal vertical Initial RANSAC GTM VTM RFVTM
shear shear n IC IF RC RF RC RF RC RF RC RF

1 0.0 0.1 125 73 52 67 19 11 7 48 2 69 0
2 0.0 0.2 94 59 35 45 7 8 2 35 0 58 0
3 0.0 0.3 22 8 14 6 11 0 6 4 1 6 0
4 0.1 0.1 83 61 22 61 8 4 1 34 0 61 0
5 0.1 0.2 42 12 30 10 14 0 8 6 0 10 0
6 0.1 0.3 71 35 36 24 8 8 1 17 0 29 0
7 0.2 0.2 56 19 37 12 11 5 5 10 0 16 0
8 0.3 0.3 34 10 24 7 18 0 5 4 2 8 0

amount of inliers, many outliers still remain in the residual
sets. Compared with other three algorithms, GTM degenerates
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(a) (b) (c)

(d) (e)

Fig. 6: Examples of matching results for ImgSp1-2 with shear deformation factors h=0.1 and v=0.1. (a) SIFT. (b) RANSAC. (c) GTM. (d) VTM. (e) RFVTM.
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Fig. 7: Performance comparison for RANSAC, GTM, VTM, and RFVTM methods under rotation and scale deformations. (a) accuracy plots. (b) specificity
plots. (c) precision plots. (d) recall plots.

much more seriously for matching feature points with shear
deformations. This is because KNN graph structure of GTM
can not keep invariant to shear deformations.

The average performance of the four algorithms with dif-
ferent percentages of outliers are given in Fig. 7 and Fig. 8
respectively. Fig. 7 shows the average accuracy, specificity,
precision, and recall for the 12 simulated image pairs with
rotation and scale deformations. It can be seen that VTM and
RFVTM achieve similar specificity and precision values in
Fig. 7 (b) and (c), both outperform RANSAC and GTM. It
indicates that fewer false matches are reserved in the residual
vertex sets of VTM and RFVTM. RANSAC provides a recall

value close to VTM but degenerates much more seriously
when the proportion of outliers increase to 75%. This is be-
cause RANSAC estimates the parameters of the transformation
model from a set of correspondences containing outliers and
produces reasonable results only within certain proportion of
outliers. Since of the recovery strategy integrated in RFVTM,
inliers mistakenly supported by outliers in previous iterations
can be recovered. It brings the superior of RFVTM to other
algorithms in terms of accuracy and recall values respectively
in Fig. 7 (a) and (d). Fig. 8 shows the average accuracy,
specificity, precision, and recall for the 8 simulated image
pairs with shear deformations. From the plots, it can be
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Fig. 8: Performance comparison for RANSAC, GTM, VTM, and RFVTM methods under shear deformations. (a) accuracy plots. (b) specificity plots. (c)
precision plots. (d) recall plots.

seen that VTM and RFVTM achieve higher precisions than
the other algorithms, which validates their abilities to keep
inliers in the consistent of shear deformations. Compared with
rigid transformation, GTM for shear deformations is much
worse than the other three algorithms in terms of precisions
and returns poor recalls. This can be explained by the fact
that GTM depends on the coherent adjacency relations of
corresponding matches, which are not exactly invariant with
shear deformations.

2) Experiments on Images with Duplicate Patterns

The second image dataset contains twenty image pairs
with duplicate patterns. Fig. 9 and Fig. 10 demonstrate two
matching samples for ImgSp2-1 and ImgSp2-2 respectively.
The image pair of Fig. 9 consists of two remote sensing images
with the same size of 400×400 from Landsat TM Band 2 over
an area with a large amount of similar earth surface. The image
pair of Fig. 10 consists of VI and SWIR images with the size of
512×512 from the ground test data of Experiment Satellites,
which covers a partial area of “Shanghai Oriental Pearl TV
Tower” with many duplicated appearance of the TV tower.
Since similar patterns are duplicated in these images, many
multiple mismatches associated with single feature points
often exist in the similar but not really corresponding areas,
as shown in Fig. 9 (a) and Fig. 10 (a). It can be observed
from Fig. 9 (b)-(d) and Fig. 10 (b)-(d) that VTM and RFVTM
outperform RANSAC and GTM in terms of removing outliers.
Despite of preserving as many inliers as RFVTM, RANSAC
is incapable to remove a large amount of outliers.

Fig. 11 provides the average performance of the four

algorithms with different outliers. Inliers are manually selected
from the initial matching sets for image pairs in the sec-
ond dataset. Outliers are randomly reintroduced in increasing
amounts, and added into each of the initial corresponding sets
for the desired outlier proportions from 5% to 95%. From
Fig. 11, it can be noted that VTM and RFVTM outperform
both RANSAC and GTM in terms of precision and recall
values. Fig. 11 (c) and (d) present the highest precision and
recall among the four algorithms, and have the ability to keep
values above 0.95 even for 75% of outliers. In GTM, the
nearest neighbors of the multiple matches in duplications are
falsely identified by the same feature points corresponding to
multiple matches. It results that inliers with multiple matches
are mistakenly deemed as outliers. Therefore, GTM presents
a low recall value but successfully filters out the outliers as
long as the proportion of outliers is less than 25%.

3) Experiments on Images with Inconsistent Spectral Con-
tent

The third image dataset contains ten image pairs with incon-
sistent spectral content, involving remote sensing optical and
synthetic aperture radar (SAR) images taken at multispectral
and multimodal situations. Fig. 12 and Fig. 13 give two
matching examples for ImgSp3-1 and ImgSp3-2 respectively.
The image pair of Fig. 12 with the same size of 278×278 are
selected from the multispectral imagery SPOT HRV from band
XS1 (0.50-0.59m) and band XS3 (0.79-0.89m) over the same
area. Most appearances are significantly different between
the two images of the same scene, e.g., the river appears
bright in XS1, but dark in XS3. The image pair of Fig. 13
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(a) (b) (c)

(d) (e)
Fig. 9: Examples of matching results for ImgSp2-1 with duplicated patterns. (a) SIFT. (b) RANSAC. (c) GTM. (d) VTM. (e) RFVTM.

(a) (b) (c)

(d) (e)
Fig. 10: Examples of matching results for ImgSp2-2 with duplicated patterns. (a) SIFT. (b) RANSAC. (c) GTM. (d) VTM. (e) RFVTM.

consists of two images with the size of 512×512 taken by
the sensor of ASTER L1B band 1 and PALSAR fine mode,
covering the bay of Tokyo, Japan. The substantial disparity
according to the visual appearance can be observed between
the optical and SAR images. The SAR image from PALSAR
is inevitably contaminated by the speckle noise and scatter
signals from the earth surface, which bring more challenges
to feature point extraction and matching. The intensities of
the same objects in both of examples are significant different,
so that a large amount of outliers are involved in the initial
correspondences shown in Fig. 12 (a) and Fig. 13 (a). It can
be observed that RANSAC reserves much more outlier than
other three algorithms in the both of two cases. As shown
in Fig. 12 (b) and Fig. 13 (b), few outliers still exist with
the same K Nearest Neighbor structures after GTM matching.
RFVTM outperforms than other three algorithms in terms of
removing outliers and preserving inliers. As shown in Fig. 12
(c)-(d) and Fig. 13 (c)-(d), few outliers that close to the correct
locations cannot be removed by VTM, but can be filtered out
by RFVTM.

Fig. 14 shows the mean accuracy, specificity, precision, and
recall of the four algorithms for the images with inconsistent

spectral content. As the same treatment in the previous ex-
periments, the inliers are reserved and outliers are added to
the inliers in increasing amounts. The percentage of outliers
is changed from 5% to 95%. Fig. 14 (b) shows that, with
less than 30% outliers, RANSAC incorrectly identifies more
than half of them as correct matches. It can be seen from
Fig. 14 (c) and (d) that the precisions of VTM and RFVTM
are significantly higher than GTM when the proportion of
outliers is more than 30%. This is because the local KNN
adopted by GTM has a weaker structures when there are fewer
inliers in the initial sets [14]. Besides that, when there are too
many outliers existing in the K Nearest Neighborhoods, these
inliers would be arbitrarily removed during GTM iterations.
RANSAC provides high recall values for low proportions of
outliers but its recall falls dramatically when the proportion of
outliers is above 60%.

D. Sensitivity Evaluation on VTM and RFVTM

1) Sensitivity With Respect to the Number of Inliers
The four algorithms achieve outlier rejections according to

the spatial relations between feature points. In this part, the
sensitivities with respect to the number of inliers are discussed
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Fig. 11: Performance comparison for RANSAC, GTM, VTM, and RFVTM methods under the ambiguities of duplicate patterns. (a) accuracy plots. (b)
specificity plots. (c) precision plots. (d) recall plots.

(a) (b) (c)

(d) (e)
Fig. 12: Examples of matching results for ImgSp3-1 with inconsistent spectral content. (a) SIFT. (b) RANSAC. (c) GTM. (d) VTM. (e) RFVTM.

in brief. Thirty test image pairs are selected from the three
representative image datasets respectively. The inliers in each
image pair are increased from 10 to 60. The percentage of
added outliers varies from 15% to 95% in increments of 20%.
Fig. 15 demonstrates the comparison of statistical precision
for RANSAC, GTM, VTM, and RFVTM. As depicted in Fig.
15 (a)-(d), the precisions of all of four algorithms increase
substantially with the increase of inliers. When the number of
inliers is less than 20, all algorithms are inferior to the cases
with more than 20 inliers in terms of precisions. However,
comparing to GTM and RANSAC, VTM and RFVTM still
perform more robustly with few inliers. It can be explained

by the fact that the graphs of GTM relying on the nearest
neighborhood have vulnerable local structures consisted of K-
Nearest-Neighbor of points (K=5). The existing inliers only
validate graph structures of their K-Nearest-Neighbors. When
there are only fewer inliers, the graph structures would become
less credible. In contrast to the local structures of GTM, the
graphs of the proposed vertex trichotomy descriptor are com-
posed by all of feature points in the form of three trichotomy
sets. Each of graph structures is validated by overall inliers
in the initial sets. Therefore, the performance of VTM and
RFVTM is less affected by the number of inliers than GTM.
Also, the precisions of GTM and RANSAC drop much more
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(a) (b) (c)

(d) (e)
Fig. 13: Examples of matching results for ImgSp3-2 with inconsistent spectral content. (a) SIFT. (b) RANSAC. (c) GTM. (d) VTM. (e) RFVTM.
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Fig. 14: Performance comparison for RANSAC, GTM, VTM, and RFVTM methods under the ambiguities of inconsistent spectral content. (a) accuracy plots.
(b) specificity plots. (c) precision plots. (d) recall plots.

significantly than those of VTM and RFVTM when outliers
are greater than 55%.

Table V presents the average execution time for each
algorithm with 20, 40, and 60 inliers. The running time of
RANSAC is close to GTM, VTM, and RFVTM when the
percentage of outlier is below 35%, but increases much faster
when the percentage of outliers is above 55%. The number of
iterations in RANSAC relies on the probability to randomly
select three correct matches from the initial sets, so that
the average running time of RANSAC increases significantly
with a high percentage of outliers. Compared to VTM and
RFVTM, GTM is more computationally expensive than VTM

and RFVTM. This is because GTM requires to reconstruct the
KNN graphs with the changed KNN feature points at each
iteration.

2) Sensitivity to Subdivision for Initial Correspondence
Section IV-C propose an optimization for vertex trichotomy

descriptor to subdivide the initial vertices of size n into
m groups and implement VTM and RFVTM with n/m
correspondences for m groups respectively. In this section,
we select ten image pairs from dataset to present a brief
discussion with the performance of subdivision. Table VI
shows the performance of VTM and RFVTM with three
different subdivision, i.e, m = 1, m = 5, and m = 10.
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Fig. 15: Performance comparison of average precision for RANSAC, GTM, VTM, and RFVTM methods for different number of inliers. (a) RANSAC. (b)
GTM with K=5. (c) VTM. (d) RFVTM

TABLE V: THE AVERAGE EXECUTION TIME FOR THE FOUR ALGORITHMS WITH DIFFERENT NUMBERS OF INLIERS

Outlier Time with 20 inliers (sec) Time with 40 inliers (sec) Time with 60 inliers (sec)
(%) RANSAC GTM VTM RFVTM RANSAC GTM VTM RFVTM RANSAC GTM VTM RFVTM
15 0.032 0.039 0.023 0.035 0.086 0.094 0.061 0.812 0.116 0.187 0.119 0.152
35 0.079 0.048 0.030 0.042 0.267 0.206 0.106 0.198 0.643 0.462 0.204 0.315
55 0.344 0.193 0.052 0.067 1.230 0.381 0.192 0.265 4.866 1.081 0.576 0.732
75 2.803 0.486 0.143 0.219 6.094 2.705 0.874 1.590 10.639 3.764 1.407 2.186
95 10.747 6.941 3.752 4.851 24.110 14.863 8.305 10.741 42.004 21.263 11.018 15.190

“IC” and “IF” represent the initial correct correspondences and
initial false correspondences respectively. The following can
be observed from Table VI: 1) Compared with non-subdivided
cases (m=1), the time complexities of VTM and RFVTM with
subdivisions are reduced. The more subdivisions, the lower
time complexities are achieved. 2) The matching results of
VTM with subdivisions are inferior to the corresponding cases
without subdivisions in terms of “RC” and “RF”, especially
when the numbers of initial inliers are small. It can be
explained by the fact that the number of inliers in each group
decreases with subdivisions, and the matching performance
will be degenerated with the decrease of inliers as we dis-
cussed in the above section. 3) With the same subdivisions,
RFVTM suffers a less performance loss than VTM, since
that the mistakenly removed inliers in each subgroup have
the probability to be recovered by the recovered and filtering
strategy.

VI. CONCLUSION

In this paper, a graph-based feature point matching approach
called RFVTM is presented to establish reliable and sufficient

matches for remote sensing images. The global spatial rela-
tions are described by vertex trichotomy descriptor, which
is invariant for images with affine transformations includ-
ing rigid and non-rigid deformations. The candidate outliers
are determined by comparing the disparity of corresponding
vertex trichotomy descriptors. On the basis of VTM and
two restoration restrictions, the recovery and filtering strategy
is designed to reserve sufficient inliers and reject stubborn
outliers. The matching results in the experiments have in-
dicated the superiority of RFVTM. Future work includes
incorporating intensity features into graph matching, as well
as reliable image segmentations applied in image registrations
for multispectral/multimodal images.
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