
IEEE TGRS, VOL. X, NO. Y, ZZZZ 1 

 
Abstract— In this paper, we present a domain adaptation 

network to deal with classification scenarios subjected to 

the data-shift problem (i.e., labeled and unlabeled images 

acquired with different sensors and over completely 

different geographical areas). We rely on the power of 

pretrained convolutional neural networks (CNNs) to 

generate an initial feature representation of the labeled 

and unlabeled images under analysis, referred as source 

and target domains, respectively. Then we feed the 

resulting features to an extra network placed on the top of 

the pretrained CNN for further learning. During the fine-

tuning phase, we learn the weights of this network by 

jointly minimizing three regularization terms, which are 

the: i) the cross-entropy error on the labeled source data; 

ii) the Maximum Mean Discrepancy (MMD) between the 

source and target data distributions; and iii) the 

geometrical structure of the target data. Furthermore, to 

obtain robust hidden representations we propose a mini-

batch gradient-based optimization method with a dynamic 

sample size for the local alignment of the source and target 

distributions. To validate the method we use in the 

experiments the UC Merced dataset and a new multi-

sensor dataset acquired over several regions of the 

Kingdom of Saudi Arabia. The experiments show that: 1) 

pretrained CNNs offer an interesting solution for image 

classification compared to state-of-the-art methods; 2) 

their performances can be degraded when dealing with 

datasets subjected to the data-shift problem; and 3) how 

the proposed approach represents a promising solution for 

effectively handling this issue.         
 

Index Terms— Cross-scene classification, multi-sensor 

data, distribution mismatch, pretrained CNN, domain 

adaptation. 

I. INTRODUCTION 

owadays the information about the earth surface is 

obtained from a wide variety of earth observation 

platforms including satellites, aerial systems and unmanned 

aerial vehicles. Thanks to these diverse platforms, the remote  
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sensing images are increasingly available with different 

spectral, spatial, and temporal resolutions. On the other hand, 

the availability of such large amount of heterogeneous data 

introduces new challenges and thus calls for the development 

of advanced methodologies for automatic processing and 

analysis.  

Besides the commonly pixel-based and object-based 

classification methodologies, the scene-level analysis is 

currently attracting much interest from the remote sensing 

community [1]-[11], [45]-[46]. Unlike the former analysis 

methods the latter aims to classify the image based on a set of 

semantic categories in accordance to human interpretation. 

This task is particularly challenging as it requires the 

definition of high-level features for representing the image 

content. To this end, several scene-level classification 

methods have been proposed, such as the bag of word (BOW) 

model [1]–[4], sparse representation [5], compressive sensing 

[6], and lately deep learning [7]–[11]. This last yielded state-

of-the-art results on several benchmark remote sensing 

datasets confirming the outstanding performances achieved in 

many other applications such as natural scene image 

classification [12], object recognition [13], face recognition 

[14], medical image analysis [15], speech recognition, [16] 

and traffic flow prediction [17].     

Basically, the idea of deep learning also known as 

hierarchical learning is about learning a good feature 

representation automatically from the input data [18]–[22]. 

Typical deep learning architectures include deep belief 

networks (DBNs) [23], stacked autoencoder (SAE) [24], and 

convolutional neural networks (CNNs), which are actually 

perceived as the most effective representation learning 

methods for visual recognition tasks when trained on large 

labeled datasets [25]. However, when the number labeled 

samples is not large enough, specialized solutions should be 

developed. To this end, Luus et al. [7]  proposed a multi-view 

strategy based on multiple view scales for the extraction of 

partial input sample patches from the scene. The different 

views were generated using data flipping and multiple partial 

views of a given input image. Then these views were used to 

train a single deep CNN. Zhang et al. [8] proposed a method 

called gradient boosting random convolutional network by 

fusing many deep CNNs. To reduce the computation 

complexity they introduced a modified version called random 

CNNs (i.e., tie some of the weights of the CNN ensemble). On 

the other side, other approaches based on knowledge transfer 

from CNNs pretrained on very large auxiliary labeled data 

have been also introduced recently [9]–[11]. In [9] the authors 

used a pretrained CNN to generate an initial feature 

representation of the remote sensing images under analysis. 
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This CNN was pretrained on the ImageNet dataset which is 

composed of 1.2 million images and 1000 classes’ related to 

natural images. After this step, they reshaped the outputs of 

the two last fully connected layers into 2D arrays and trained a 

new CNN composed of two convolutions and two fully 

connected layers followed by a softmax classifier. As 

pretrained CNN they used the Overfeat model [26], which is 

an improved version of the AlexNet model [27]. By contrast 

Esam et al. [10] used the output of the last fully connected 

layer of the CNN model proposed by Chatfield et al. [28] as 

input to a sparse autoencoder for learning a new feature 

representation. Then they tailored the sparse autoencoder to 

view the classification problem from discriminative and 

reconstruction perspectives. Finally, Fan et al. [11] 

investigated the problem of transferring features from CNN 

models trained also on very large auxiliary labeled dataset. In 

particular, they considered two different scenarios for carrying 

out feature extraction. For the first scenario, they used the last 

fully connected layer, while for the second one they extracted 

dense features from the convolution layer at multiple scales 

and then used different encoding techniques to generate the 

final representation of the image. For both scenarios, they 

used a support vector machine (SVM) classifier for training. 

In the experiments, they carried out extensive analysis using 

several pretrained CNN models.  

The aforementioned developments show that 

pretrained CNNs are undoubtedly valuable tools for building 

sophisticated classification systems for the analysis of remote 

sensing images as noticed also in other fields [29]. Typically, 

the knowledge transfer from these models can be made either 

by fine-tuning the complete CNN network on the new labeled 

data (which is usually not large enough) or simply by 

extracting features from the fully connected or convolutional 

layers. Then these features are fed into additional fully 

connected layers or to the support vector machine (SVM) 

classifier for learning. However, this process may not be 

sufficient when dealing with images acquired under different 

acquisition conditions. Indeed, the occurrence of such 

scenarios in the case of remote sensing is inevitable as the 

images are continuously acquired with different sensors and 

over different locations of the earth surface. Thus it is 

expected that simple fine-tuning will fail to produce 

acceptable results mainly due to the data-shift problem. For 

such purpose, it becomes necessary to develop sophisticated 

solutions based on domain adaptation to increase the 

generalization ability of the network. It is worth recalling that 

domain adaptation has been investigated previously in the 

context of remote sensing but for pixel-based classification 

and the related solutions were mainly based on shallow 

architectures such as kernel methods [30], [31], graph 

matching [32], [33] and compressive sensing [34].  

To address this challenging problem, this work 

proposes a domain adaptation network (DAN) composed of a 

pretrained CNN coupled with supplementary fully connected 

layers as shown in Figure 1. The weights of these fully 

connected layers are learned by simultaneously optimizing 

three terms related to discrimination, distributions mismatch 

and data geometry, respectively. In detail, the first term is the 

usual cross-entropy error computed on the labeled source 

examples. The second one is based on the Maximum Mean 

Discrepancy (MMD) [37] criterion, which has been 

previously adopted by shallow architectures to measure the 

distribution mismatch. Usually it is computed as the distances 

between the means of source and target examples in a 

reproducing Hilbert space spanned by a kernel. In this work, 

we express the MMD as the distance between the means of 

the source and target representations obtained by the hidden 

layers of the network. Finally, the third term uses graph 

Laplacian regularization [38] to preserve the geometrical 

structure of the unlabeled target data in the new representation 

space when reducing the mismatch between the distributions. 

In addition, to learn robust representations, we tailor the 

network to align distributions of the two domains in a local 

way via a mini-batch gradient-based optimization method 

with a dynamic sample size, which makes the method suitable 

for large scale problems.  

It is interesting to mention that some domain 

adaptation networks have been proposed in the literature of 

computer vision [47]-[49]. However, our approach convoys 

the following main features: 

 The source and target images are considered to be 

labeled and unlabeled, respectively, while the work 

proposed in [48] assumes also the existence of few 

labeled target images besides the labeled source 

images;  

 DAN carries out domain adaptation using an extra 

network with multiple hidden layers placed on the 

top of a pretrained CNN and integrates graph 

Laplacian and MMD regularization terms besides 

the cross-entropy error. In addition it is based on an 

efficient dynamic minibatch optimization solution 

for the local the alignment of the source and target 

images. The method proposed in [47] uses a 

gradient reversal layer and trains the entire CNN 

network which is computationally demanding. On 

the other side, the method in [49] proposes a 

formulation for a shallow network with only one 

hidden layer and uses a full-batch optimization 

procedure for the global alignment of the 

distribution of the source and target images;  

 In the experiments we will show that DAN is able 

to combat the data-shift problem and allows to 

generate significant improvements in terms of 

classification accuracy compared to the existing 

solutions on a cross-dataset composed of images 

acquired over the Kingdom of Saudi Arabia (KSA) 

and USA, respectively. 

The remainder of the paper is organized as follows: 

Section II will provide a general description of the proposed 

approach. Experimental results will be presented in Section 

III, followed by conclusions and future works in section IV. 
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II. METHODOLOGY 

A. Feature Extraction using Pretrained CNNs  

Deep CNNs are composed of several layers of processing, 

each comprising linear as well as non-linear operators, which 

are learnt jointly, in an end-to-end way, to solve specific tasks 

[25]–[27]. Specifically, Deep CNNs are commonly made up 

of different types of layers, which are convolution; 

normalization, pooling and fully connected. The convolutional 

layer is the core building block of the CNN and its parameters 

consist of a set of learnable filters. Every filter is small 

spatially (along width and height), but extends through the full 

depth of the input image. The output of this layer is called 

feature maps. The feature maps, produced via convolving the 

learnable filters across the input image, are fed to a non-linear 

gating function such as the Rectified Linear Unit (ReLU). 

Then the output of this activation function can further be 

subjected to normalization (i.e., local response normalization) 

to help in generalization. Regarding the pooling layer, it takes 

small rectangular blocks from the convolutional layer and 

subsamples it to produce a single output from each block. 

There are several ways to perform pooling, such as taking the 

average or the maximum, or a learned linear combination of 

the values in the block. After several convolutional and 

pooling layers, the high-level reasoning in the neural network 

is done via fully connected layers. A fully connected layer 

takes all neurons in the previous layer and connects it to every 

single neuron it has. In the case of classification, a softmax 

layer is added at the end of this network and the weights of the 

CNN are learned using back-propagation.  

In this work, we follow the recent approaches for 

exploiting pretrained CNN models by taking the output of the 

last fully connected layer (before the classification layer) to 

represent the image scenes. That is we feed each image 𝐈𝑖 as 

input to the network and generate its corresponding CNN 

feature representation vector 𝒙𝑖 ∈ 
𝑑

 of dimension 𝑑:  

 𝒙𝑖 = 𝑓𝐿−1
CNN (… 𝑓2

CNN (𝑓1
CNN(𝐈𝑖))) , 𝑖 = 1, … , 𝑛𝑠 + 𝑛𝑡   

    (1) 

where 𝑓𝑗
CNN, 𝑗 = 1, … , 𝐿 − 1 represent the functions defining 

the different layers of CNN, 𝐿 is the total number of layers, 

and 𝑛𝑠 and 𝑛𝑡 represent the number of labeled source images 

and unlabeled target images, respectively. 

 

B. Adaptation with one hidden fully connected layer  

For simplicity, we present the method for one hidden 

layer, then we show its generalization to the case of multiple 

hidden layers. Let us refer to 𝐷(s) = {𝒙𝑖 , 𝒚𝑖}𝑖=1
𝑛𝑠  as the labeled 

source data and 𝑦𝑖 ∈ {1,2, . . , 𝐾} is its corresponding class 

label. Similarly, let us define 𝐷(t) = {𝒙𝑗}𝑗=1
𝑛𝑡  as the unlabeled 

target data. In the rest of the paper, we introduce the 

superscripts (s) and (t) whenever it is necessary to distinguish 

between the source and target domains. Our goal is develop a 

DAN approach that jointly learns a shared representation 

between the source and target data and minimizes the training 

error over the source data.  

To achieve this goal, we feed these CNN feature vectors to 

an extra network placed on the top of the pretrained CNN as 

shown in Figure 1. Specifically, this network is composed of 

two fully-connected layers: hidden and softmax regression. 

The hidden layer takes the input 𝒙𝑖 and maps it to another 

representation 𝒉𝑖
(1)

∈ ℜ𝑑(1)
 of dimension 𝑑(1) through the 

nonlinear activation function 𝑓 as follows:  

𝒉𝑖
(1)

= 𝑓(𝑾(1)𝒙𝑖  )                                  (2) 

where 𝑾(1) ∈ ℜ𝑑(1)×𝑑 is the mapping weight matrix. A 

typical choice of the activation function is the sigmoid 

function i.e, 𝑓(𝑣) = 1/(1 + exp(−𝑣)). For simplicity, we 

omit the bias vector in the expression as it can be incorporated 

as an additional column vector in the mapping matrix then in 

that case the feature vector should be appended by the value 1.     

The softmax regression performs multiclass classification and 

takes as input the resulting hidden representation 𝒉𝑖
(1)

 and 

produces an estimate of the posterior probability for each class 

label 𝑘 = 1,2, … , 𝐾 as follows:  

𝑝(𝑦̂𝑖 = 𝑘|𝒙𝑖) =
exp ((𝒘𝑘

(2)
)

T
𝒉𝑖

(1)
)

∑ exp ((𝒘𝑗

(2)
)

T

𝒉𝑖

(1)
)𝐾

𝑗=1

        (3)   

Where 𝑾(2) = [𝒘1
(2)

  𝒘2
(2)

… 𝒘𝐾
(2)

] ∈ ℜ𝑑(1)×𝐾  are the weights 

of the softmax regression layer and the superscript (∙)T refers 

to the transpose operation.  

To prevent the network from overfiting and increase its 

generalization ability, we use the recently introduced dropout 

technique [35]. This regularization technique aims to drop 

nodes of the hidden layer with their weights during the 

training phase. It allows generating a thinned network by 

temporarily removing the nodes from the original fully-

connected network, along with all its incoming and outgoing 

connections. The choice of which nodes to drop is usually 

done randomly. Specifically, the dropout regularization 

technique acts by defining 𝒓 ∈ ℛ𝑑(1)
 (same dimension as the 

hidden representation 𝒉𝑖
(1)

) as a vector of independent 

Bernoulli random variables each of which has a probability 𝜌 

(usually set to 0.5) of being 1. At training time, the output of 

the hidden layer after dropout is given as follows:      

{
𝒓 = Bernoulli(𝜌)

𝒉𝑖
(1)

: = 𝒉𝑖
(1)

⨀𝒓
         (4) 

with ⨀ denoting an element-wise product. At test time 

dropout is turned off and all hidden unit are used, however the 

weights are scaled by the retaining probability 𝜌.  

To learn the weights 𝜽 = {𝑾(1), 𝐖(2)} representing the 

complete network structure, we propose to simultaneously 

minimize: i) the training error on the labeled source data; ii) 

reduce the shift between the source and target data domains; 

and iii) maintain the geometry of the unlabeled target data.  

The proposed cost function is then formulated as follows:   

𝐽(𝜽, 𝐷(s), 𝐷(t)) = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐸𝑛𝑒𝑡(𝐷(𝑠)) +

𝜆1𝑀𝑀𝐷(𝐷(𝑠), 𝐷(𝑡)) + 𝜆2𝐿𝑎𝑝(𝐷(𝑡))  (5) 
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where 𝜆1 and 𝜆2 are two regularization parameters. For 

simplicity, we define 0 ≤ 𝜆 ≤ 1 as a new regularization 

parameter balancing between the contribution of both MMD 

and graph terms in the cost function such that 𝜆1   = 𝜆 and 

𝜆2 = 1 − 𝜆.  

 Cross-entropy loss 𝐸𝑛𝑒𝑡(𝐷(s)):  this term 

measures the error between the actual network outputs and the 

desired outputs of the labeled source data. As the outputs of 

the network are probabilistic, we propose to maximize the 

log-posterior probability to learn the network weights, which 

is equivalent to minimizing the so-called cross-entropy error:    

𝐸𝑛𝑒𝑡(𝐷(s)) = −
1

𝑛
∑ ∑ 1(𝑦𝑖 =𝐾

𝑘=1
𝑛𝑠
𝑖=1

𝑘)ln (
exp((𝒘𝑘

(2)
)

T
𝒉𝑘

(1)
)

∑ exp((𝒘𝑗
(2)

)
T

𝒉𝑙
(𝟏)

)𝐾
𝑗=1

)      (6) 

where 1(∙) is an indicator function that takes 1 if the statement 

is true otherwise it takes 0 and the superscript T refers to 

matrix transpose.  

 Maximum Mean discrepancy 𝑀𝑀𝐷(𝐷(s), 𝐷(t)) : 

The MMD has been widely used by shallow methods for 

reducing the mismatch between the source and target 

distributions in the kernel space [30], [36], [37]. In our 

context, we compute it as the difference between the means of 

the two domains obtained by the hidden representation layer 

of the network. So, this term is then given as follows: 

𝑀𝑀𝐷(𝐷(s), 𝐷(t)) =
1

2
‖

1

𝑛𝑠
∑ 𝑾(1)𝒙𝑖

𝑛𝑠
𝑖=1 −

1

𝑛𝑡
∑ 𝑾(1)𝒙𝑗

𝑛𝑡
𝑗=1 ‖

2

2

  

        

=
1

2
𝑇𝑟𝑎𝑐𝑒 [(𝑾(1)𝑿)𝝉𝝉T(𝑾(1)𝑿)

T
]       

 = 
1

2
𝑇𝑟𝑎𝑐𝑒 [(𝑾(1)𝑿)𝑴(𝑾(1)𝑿)

T
]          (7) 

where 𝑿 = [𝒙1 ⋯ 𝒙𝑛𝑠
⋯ 𝒙𝑛𝑠+𝑛𝑡] ∈ ℛ𝑑×(𝑛𝑠+𝑛𝑡) represents 

the labeled source and unlabeled target samples and 𝑴 =
𝝉𝝉T ∈ ℛ(𝑛𝑠+𝑛𝑡)×(𝑛𝑠+𝑛𝑡) is called the MMD matrix and 𝝉 ∈
ℛ(𝑛𝑠+𝑛𝑡) is the target domain indicator vector: 

𝜏𝑖 = {
1 𝑛𝑠⁄ 𝒙𝑖 ∈ 𝐷(𝑠)

−1 𝑛𝑡⁄ 𝒙𝑖 ∈ 𝐷(𝑡)
         (8) 

 Graph regularization 𝐿𝑎𝑝(𝐷(𝑡)): While 

reducing the shift between the source and target distribution, 

we risk to deform the geometrical structure of the unlabeled 

target data unlike the labeled source data, which are controlled 

via the cross-entropy error. To handle this issue, we rely on 

graph theory [38] to constrain the network so that it keeps the 

geometry of the target data in the hidden representation space. 

If we consider 𝐺 = (𝑉, 𝐸) a graph with vertices 𝑣 ∈ 𝑉 and 

edges 𝑒 ∈ 𝐸 on the unlabeled target data 𝐷(𝑡) = {𝒙𝑗}𝑗=1
𝑛𝑡 . Each 

feature vector in 𝐷(𝑡) is associated with a vertex 𝑣𝑗. An edge 

spanning two vertices 𝑣𝑗 and 𝑣𝑘 is denoted by 𝑒𝑗𝑘 and the 

associated weight is denoted by 𝜔(𝑒𝑗𝑘) or simply 𝜔𝑗𝑘. A 

common choice for obtaining these weights is the Gaussian 

weighting function. i.e., 𝜔𝑗𝑘 = exp (− ‖𝐱𝑗 − 𝐱𝑘‖
2

𝛽⁄ ) and 𝛽 

is a free parameter (usually set to 1). The degree of a vertex 𝑣𝑗 

is 𝑑𝑗 = ∑ 𝜔𝑗𝑘𝑘  for all edges 𝑒𝑗𝑘 incident on 𝑣𝑗. The 

combinatorial Laplacian matrix 𝓛 ∈ ℜ𝑛𝑡×𝑛𝑡 indexed by 

vertices 𝑣𝑗 and 𝑣𝑘 is given by: 

ℒ𝑗𝑘 = {

𝑑𝑗𝑘 if 𝑣𝑗 = 𝑣𝑘 ,

−𝜔𝑗𝑘 if 𝑣𝑗  is among the 𝓂th nearset to 𝑣𝑘   ,

0 otherwise.

   

  (9) 

 

Then, the graph regularization term can be written as follows:  

𝐿𝑎𝑝(𝐷(𝑡)) =
1

2
∑ 𝜔𝑗𝑘‖𝑾(1)𝒙𝑗 − 𝑾(1)𝒙𝑘‖

2

2
𝑒𝑗𝑘∈𝐸       

 (10) 

which can be written in the following matrix form:  

                𝐿𝑎𝑝(𝐷(𝑡)) =
1

2
𝑇𝑟𝑎𝑐𝑒 ((𝑾(1)𝑿(𝑡))𝓛(𝑾(1)𝑿(𝑡))

T
) 

    (11) 

where 𝑿(𝑡) = [𝒙1 ⋯ 𝒙𝑛𝑡] ∈ ℛ𝑛𝑡×𝑑1
  represents the 

unlabeled  target samples. 

 

By summing up all above terms, the total cost function 𝐽(𝜽) is 

then given by:   

𝐽(𝜽, 𝐷(s), 𝐷(t)) = 𝑎𝑟𝑔𝑚𝑖𝑛  −
1

𝑛
∑ ∑ 1(𝑦𝑖 =𝐾

𝑘=1
𝑛𝑠
𝑖=1

𝑘)ln (
exp(𝒘𝑘

(2)T
𝒉𝑘

(1)
)

∑ exp(𝒘𝑗
(2)T

𝒉
𝑗
(1)

)𝐾
𝑗=1

)                

+
𝜆

2
𝑇𝑟𝑎𝑐𝑒 ((𝑾(1)𝑿)𝑴(𝑾(1)𝑿)

T
)        

+ 
(1−𝜆)

2
𝑇𝑟𝑎𝑐𝑒 ((𝑾(1)  𝑿(𝑡))𝓛(𝑾(1)𝑿(𝑡))

T
)           (12) 

C. Generalization to multiple hidden fully connected layers  

The above network could be extended to perform domain 

adaptation with multiple hidden layers. If we consider ℓ as the 

number of hidden layers, then the new cost function can be 

given as follows: 

𝐽(𝜽, 𝐷(s), 𝐷(t)) = 𝑎𝑟𝑔𝑚𝑖𝑛  −
1

𝑛
∑ ∑ 1(𝑦𝑖 =𝐾

𝑘=1
𝑛𝑠
𝑖=1

𝑘)ln (
exp(𝒘𝑘

(ℓ+1)T
𝒉𝑖

(ℓ)
)

∑ exp(𝒘𝑗
(ℓ+1)T

𝒉
𝑖
(ℓ)

)𝐾
𝑗=1

)               

+ 
𝜆

2
∑ 𝑇𝑟𝑎𝑐𝑒 ((𝑯(𝑙))𝑴(𝑯(𝑙))

T
)ℓ 

𝑙=1        

+ 
(1−𝜆)

2
∑ 𝑇𝑟𝑎𝑐𝑒 ((𝑯(𝑙)(𝑡) )𝓛(𝑯(𝑙)(𝑡))

T
)ℓ

𝑙=1           (13) 

where 𝑯(𝑙) is the hidden representation obtained for both 

source and target samples at layer 𝑙 , whereas 𝑯(𝑙)(𝑡) is hidden 

representation for the target samples. They are given as 𝑯(𝑙) =
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𝑾(𝑙)𝑯(𝑙−1) and 𝑯(𝑙)(𝑡) = 𝑾(𝑙)𝑯(𝑙−1)(𝑡), respectively with 

𝑯(0) = 𝑿 and 𝑯(0)(𝒕) = 𝑿(𝑡). In this case, the complete 

weights of the network are: 𝜽 = {𝑾(1), … , 𝐖(ℓ), 𝑾(ℓ+1)} with 

𝑾(ℓ+1) denoting to the weights of the softmax layer. 

 

D. Optimization of the cost function 𝐽(𝜽, 𝐷(𝑠), 𝐷(𝑡)) 

To optimize the cost function 𝐽(𝜽, 𝐷(s), 𝐷(t)), we use a 

mini-batch Stochastic Gradient Descent (SGD) method, which 

is the common choice of deep learning approaches. This last 

consists of dividing the labeled set into several mini-batches 

of the same size and then learning is performed by updating 

the weights for every mini-batch. In our setting, DAN will 

learn on both labeled and unlabeled data, respectively. So, for 

every mini-batch from the labeled set we should associate 

another mini-batch from the target domain. In an ideal 

situation, each mini-batch from the target domain would 

contain samples belonging to the same classes as those present 

in the associated labeled source domain to locally reduce the 

mismatch between the two distributions. Under this condition, 

one can intuitively expect to obtain an accurate alignment of 

the distributions using mini-batches of small size. Since the 

true labels of the target samples are not known, we rely on the 

predictions provided by DAN during the fine-tuning process 

to align source and target mini-batches. But this time using 

small mini-batches for aligning the distributions could be 

inappropriate as the predictions provided in the early learning 

stages are of low confidence due to data-shift problems. To 

tackle this issue, we introduce an iterative solution based on 

dynamic-size mini-batches. Its basic idea is to start with a 

large size to increase the percentage of samples belonging to 

the same classes in each pair of source and target mini-

batches. In other words, using large mini-batches will reduce 

the risk of aligning samples belonging to completely different 

classes as the misclassified target samples would actually 

belong to classes that are present in the labeled target mini-

batch anyway. After this step, we expect a reduction in the 

distribution mismatch and at the same time an increased 

confidence in the target labels prediction. This result will 

encourage us to decrease the size of the mini-batch in the next 

learning stage to reduce further the shift and at the same 

increase the prediction confidence for the target samples. This 

process could be repeated many times but with mini-batches 

with smaller and smaller sizes. In the experiments, we will 

show that this trick is computationally efficient and yields 

significant improvement in terms of classification accuracy.  

Mathematically, the gradients are typically computed 

using the well-known backpropagation algorithm and the 

weights of the network are updated as follows: 

𝑾(𝑙): = 𝑾(𝑙) −
𝜂

𝑁𝑏
∑

𝑑𝐽(𝜽,𝐷𝑆𝑏

(𝑠)
,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙)

𝑘𝑆𝑏
𝑖=1+(𝑘−1)𝑆𝑏

    

   (14) 

where 𝜂 refers to the learning rate, 𝑆𝑏 and 𝑁𝑏 represent the 

size and the number of mini-batches, respectively. 𝐷𝑆𝑏

(𝑠)
 and  

𝐷𝑆𝑏

(𝑡)
 are the labeled source and unlabeled target mini-batch 

pairs each of size 𝑆𝑏 extracted from 𝐷(𝑠) and 𝐷(𝑡), 

respectively. Since the proposed cost function includes new 

extra terms related to MMD and graph regularization besides 

the standard cross-entropy error, we can rewrite the equation 

(14) in a more detailed from as follows: 

   𝑾(𝑙): = 𝑾(𝑙) −
𝜂

𝑁𝑏
∑ (

𝑑𝐸𝑛𝑒𝑡(𝜽,𝐷𝑆𝑏

(𝑠)
)

𝑑𝑾(𝑙) +
𝑘𝑆𝑏
𝑖=1+(𝑘−1)𝑆𝑏

𝜆

2

𝑑𝑀𝑀𝐷(𝜽,𝐷𝑆𝑏

(𝑠)
,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) +
(1−𝜆)

2

𝑑𝐿𝑎𝑝(𝜽,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) )   (15) 

It can be shown that, the update equations related to the to the 

MMD and graph regularizations terms are given as follows: 

𝑑𝑀𝑀𝐷(𝜽,𝐷𝑆𝑏

(𝑠)
,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) : = 𝑯𝑆𝑏

(𝑙)
𝑴𝑆𝑏

(𝑯𝑆𝑏

(𝑙−1)
)

T

      (16) 

𝑑𝐿𝑎𝑝(𝜽,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) = 𝑯𝑆𝑏

(𝑙)(𝑡)
𝓛𝑆𝑏

(𝑯𝑆𝑏

(𝑙−1)(𝑡)
)

T

        (17) 

where (∙)𝑆𝑏
  means that the variables defined in the previous 

sections are evaluated for a mini-batch of size 𝑆𝑏.     

It is interesting to notice that more advanced gradient-based 

update rules could be used instead of (15), but here for ease of 

presentation we have provided this basic implementation. In 

the experiments, we will use an alternative version based on 

the momentum method [40], [41]. 

In the following we provide the main steps for 

carrying out the adaption with the proposed method and its 

nominal parameters:   

 

 

Algorithm: DAN method 

 

Input:   Labeled source images {𝑰𝑖 , 𝒚𝑖}𝑖=1
𝑛𝑠  and unlabeled 

target images {𝑰𝑗}𝑗=1
𝑛𝑡  

Output:  Target Class labels    

1: Set 𝐷2𝐴𝑁 parameters: 

 𝜆 = 0.5, ℓ ≥ 2, 
 #nodes=256 per hidden layer, 

 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ = [100 80 60 40 20 10],  
 Nearest neighbors 𝓂 for building the local graph on 

the target data in the range [5   11];  
2: Obtain the CNN feature vectors: {𝒙𝑖}

𝑛𝑠+𝑛𝑡 =

𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝑁𝑁({𝑰𝑖}𝑖=1
𝑛𝑠+𝑛𝑡); 

3: Set the initial min-batch size 𝑆𝑏 =
𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ(1)  (i.e., 𝑆𝑏 = 100); 

4: Optimize 𝐷𝐴𝑁 using backpropagation on the labeled 

source data only (MMD and graph regularization terms are 

not considered here);   

5: Feed the unlabeled target data {𝒙𝑗}
𝑗=1

𝑛𝑡
 to 𝐷𝐴𝑁 and estimate 

the corresponding labels; 

6: 𝑓𝑜𝑟 𝑗 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ)  

6.1: Set the number of mini-batches to:  𝑁𝑏 = 𝑛𝑠 𝑆𝑏⁄ ; 
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6.2: Shuffle randomly the labeled source samples and 

organize them into 𝑁𝑏 groups each of size 𝑆𝑏;  

6.3: 𝑓𝑜𝑟 𝑘 = 1: 𝑁𝑏 

o Pick mini-batch  𝑘 from the source data:  

{𝒙𝑖 , 𝑦𝑖}𝑖=1+(𝑘−1)𝑆𝑏

𝑘𝑆𝑏 ; 

o Pick randomly {𝒙𝑗}𝑗=1
𝑆𝑏  samples from the target 

data having estimated labels similar to the labeled 

samples present in mini-batch  𝑘.  

o Build a local graph on the target samples {𝒙𝑗}𝑗=1
𝑆𝑏 ;  

o Update the weights of 𝐷𝐴𝑁 using 

backpropagation by training on the mini-batches   

{𝒙𝒊, 𝑦𝑖}𝑖=1+(𝑘−1)𝑆𝑏

𝑘𝑆𝑏  and {𝒙𝑗}𝑗=1
𝑆𝑏 ; 

       𝑒𝑛𝑑 𝑓𝑜𝑟 

6.4: Feed the unlabeled target data to the updated 𝐷𝐴𝑁 

and estimate the new corresponding labels; 

6.5: Set the new batch size as: 𝑆𝑏 =
𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ(𝑗); 

  𝑒𝑛𝑑 𝑓𝑜𝑟 

III. EXPERIMENTAL RESULTS 

A.  Dataset Description  

1) The University of California (UC) Merced dataset: 

This dataset was manually derived by Yang and Newsam [1], 

[2] from another data set of large aerial orthoimagery with 

pixel resolution of 30 cm. It was downloaded from the U.S. 

Geological Survey national map of the following U.S. 

regions: Birmingham, Boston, Buffalo, Columbus, Dallas, 

Harrisburg, Houston, Jacksonville, Las Vegas, Los Angeles, 

Miami, Napa, New York, Reno, San Diego, Santa Barbara, 

Seattle, Tampa, Tucson, and Ventura. It consists of 2100 RGB 

images of size  (256 × 256) pixels each, categorized into 21 

classes (100 images per class). The class labels are as follows: 

agriculture, airplane, baseball diamond, beach, buildings, 

chaparral, dense residential, forest, freeway, golf course, 

harbor, intersection, medium-density residential, mobile home 

park, overpass, parking lot, river, runway, sparse residential, 

storage tanks, and tennis court. Sample images of this 

database are shown in Figure 2.  

2) KSA dataset: This multi-sensor dataset was 

acquired over different cities of KSA (i.e., Riyadh, Al-

Qassim, Al-Rajhi farms, Al-Hufuf and Jeddah) by three 

different VHR sensors including IKONOS-2, GeoEye-1 and 

WorldView-2 with spatial resolutions of 1 m, 0.5 m and 0.5 

m, respectively. This dataset consists of 3250 RGB images of 

size 256 × 256 pixels categorized into 13 classes (250 images 

per class). The class labels are as follows: agriculture, beach, 

cargo, chaparral, dense residential, dens trees, desert, freeway, 

medium-density residential, parking lot, sparse residential, 

storage tanks, and water. Sample images of this multi-sensor 

dataset are shown in Figure 3.  

3) Cross-dataset: This last dataset will be mainly used for 

assessing the performances of the method when the 

distribution of the source data is different from the target data 

on which the model will be applied. Typically, this cross-

dataset is composed of the 8 common classes between Merced 

and KSA identified by visual inspection. These classes are: 

agriculture, beach, chaparral, dense residential, forest, 

freeway, parking lot, and storage tanks. Thus the number of 

images selected from Merced is equal to 800 (100 image per 

class), whereas for KSA it is equal to 2000 (250 images per 

class). From this cross-dataset, we build two scenarios termed 

as KSA→Merced and Merced→KSA referring to 

source→target data. 

 

B.  Experimental Setup 

 

Pretrained CNN: For generating the convolutional 

features, we use the pretrained CNN model of Chatfield et al. 

[28] composed of 8 layers however any other recent 

pretrained CNN model could be used as well. Specifically this 

deep CNN uses five convolutional filers of the following 

dimensions: (number of filters × filter height × filter width: 

96×7×7, 256×5×5, 512×3×3, 512×3×3, and 512×3×3) and 

three fully connected layers with number of hidden nodes: 

(fc1: 4096, fc2: 4096, and softmax: 1000). This model was 

trained on the ILSVRC-12 challenge dataset [39] composed of 

1.2 million RGB images of size 224 × 224 pixels belonging 

to 1000 classes. These classes describe general images such as 

beaches, dogs, cats, cars, shopping carts, minivans, etc. As 

can be seen, this auxiliary domain is completely different 

from the remote sensing datasets used in the experiments. For 

extracting the CNN features, we resize the images of both 

datasets to 224 × 224 and then feed them to this deep CNN 

(without the sotmax layer) and take the output of the last fully 

connected fc2 which produces a feature vector of dimension 

𝑑 = 4096.  

Extra Network architecture: In the experiments, we 

follow the practical recommendations for training deep neural 

networks [40], [41]. We use one hidden layer and set the 

#nodes to 256. For dropout, we use the standard value 0.5.  

For the mini-batch gradient method, we use a batch size 𝑆𝑏 of 

variable size: {100, 80, 60, 40, 20, and 10} samples per mini-

batch during the adaptation phase. We fix the learning rate 

and momentum to the values of 1 and 0.5, respectively.  In 

addition, we set the regularization parameters 𝜆 to 0.5, 

respectively (i.e., balanced weights for graph and MMD 

terms). For building the local graph, we fix the Gaussian 

weighting function to the value 1 and set the number of 

neighbors to 7. It is worth recalling, that we will carry out in 

the experiments a detailed sensitivity analysis with respect to 

the most important parameters of the network.  

 

C. Results 

 

1) Results on Merced and KSA datasets: In Figures 4 we 

provide a general view of the distributions in the 2D space of 

the features learned by the hidden layer of the extra network 

for both datasets. As can be seen, this feature visualization 

computed by the t-SNE method [42] indicates a-priori a good 

discrimination between the different classes. In Tables I and 

II, we provide the classification results obtained by the 

proposed DAN without and with adaptation, respectively. In 

the first phase, we run DAN to optimize only the cross-

entropy error using a fixed mini-batch of size 100 samples. 

Then, in the second phase we fine-tune the network by 
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including the MMD and graph regularization terms (i.e. 𝝀 =
𝟎. 𝟓). For Merced dataset, the OA is equal to 96.75% and 

94.61% for the fivefold and the twofold validations schemes 

without adaptation. Regarding KSA dataset, the OA is 95.08% 

and 94.95% for both validation schemes, respectively. As can 

be seen adding the adaptation terms didn’t affect much the 

accuracies as the OA became 96.54% and 94.51%, for Merced 

and 95.33% and 94.36% for KSA. These results indicates that 

the shift between the distributions of the training and test data 

is not significant for both datasets. This observation is further 

supported by the outcomes of t-SNE feature visualization 

method shown in Figure 5 where the distributions looks very 

close. In Tables I and II, we compare also our results against 

several state-of-the-art methods. As can be seen these 

preliminary results show that: i) DAN performs clearly better 

than state-of-the-art methods based on handcrafted features 

confirming the recent findings of the literature; ii) it is 

competing with other deep learning approaches based on 

pretraining strategies; and iii) it is computationally efficient. 

2) Results on the cross-dataset: For this dataset the 

situation is completely different as the source and target 

images were acquired over two different continents and with 

different sensors. Indeed, the difference in the acquisition 

conditions makes the data-shift problem apparent as shown in 

Figure 6(a) and Figure 7(a) for both scenarios. In this case, 

our proposed DAN without adaptation besides the existing 

pretraining strategies yield low classification accuracies as 

shown in Table III. To get the whole picture, we report in 

Table IV the accuracies for the different classes composing 

this cross dataset. For the scenario KSA→Merecd, DAN 

without adaptation yields an OA of 73.25%, with three classes 

under 70%. Regarding Merced→KSA it yields an OA of 

69.95%, with 5 classes having accuracies less than 70%. By 

contrast, running DAN with adaptation reduces progressively 

the shift between the source and target distributions while 

maintaining a good discrimination ability between the 

different classes as shown in Figure 6 and Figure 7, 

respectively. At the end of the optimization process, it yields 

for KSA→Merecd an OA of 91.50% corresponding to a 

significant increase of 18.25% and with clear improvements 

for all classes. Regarding, Merced→KSA, the OA become 

85.20% corresponding also to a significant improvement of 

15.25%. These results show that the transfer KSA→Merecd is 

better than Merced→KSA. Actually, this situation was 

expected as the number of labeled source data in the first 

scenario is greater than the second one (i.e., 2000 imagers 

versus 800 images). In addition, the KSA dataset is more 

representative as it is composed from images acquired with 

different sensors.  

3) Analysis of the method: As mentioned previously, to 

assess further the performances of the proposed DAN method, 

we provide in the next subsections a detailed sensitivity 

analysis with respect to the following parameters: the mini-

batch size 𝑆𝑏; the regularization parameter 𝜆 ; the number of 

#nodes in the hidden layer; and the number of hidden layers ℓ.   

 Mini-batch size effect:   To illustrate the importance of 

fine-tuning the alignment between the source and target data 

using a mini-batch with a dynamic size, we repeat the above 

experiments by setting 𝑆𝑏  to a fixed value for the entire 

optimization process. First, we run DAN under an optimal 

selection scheme. That is for every mini-batch from the source 

data we associate samples having the same labels from the 

target data (true labels). The results reported in Figure 8, 

indicate that using a small mini-batch is the ideal choice for 

reducing the shift between the source and target data. By 

contrast, increasing the size of the mini-batch leads to a 

decrease in the accuracy. Regarding our proposed solution 

based on label estimation, we observe a different behavior. In 

particular, the OA exhibits a behavior similar to the Hughes 

effect widely encountered in the case of hyperspectral images. 

For KSA→Merced, the best result is obtained for 𝑆𝑏 = 80 

and the OA is equal to 83.75%, whereas for Merced→KSA it 

is obtained for 𝑆𝑏 = 40 with an OA of 79.1%. These results 

suggest that using a small mini-batch for aligning the 

distributions is not a good solution as the confidence of the 

target labels is low in the initial stage. In addition, the 

utilization of the whole data for globally aligning the 

distributions as usually done in shallow architectures seems to 

be inefficient. Here arises the importance of the solution based 

on a dynamic mini-batch which starts with large sizes to 

tackle the confidence issue in the initial stages. Figure 8, 

shows clearly that using a DAN with a fixed mini-batch size 

results in improvement compared to the no-adaption case but 

these improvements are not competing with those obtained 

with the proposed dynamic mini-batch size solution. 

 Regularization parameter 𝜆 and #nodes in the hidden 

layer: Figure 9 depicts the classification accuracies obtained 

for both scenarios by varying the regularization parameter 𝜆 in 

the range [0 1] and for different #nodes of the hidden layer 

(i.e., 64, 128, 256, 512 and 1024). These results confirm the 

gain of including graph regularization while reducing the shift 

between the distributions of source and target data. In general 

selecting 𝜆 in the range [0.1 0.6] leads to quit stable results. 

By contrast, giving more power to MMD regularization 𝜆 >
0.6 tends to decrease the improvements and leads to unstable 

behaviors. We recall that in the experiments, we presented the 

results using 𝜆 = 0.5 (equal weights for MMD and graph 

regularization terms). In addition the choice of #nodes =256 

represents a good compromise between classification 

accuracy, stability and computation time. 

 Number of hidden layers ℓ: In this experiment, we 

evaluate the method with respect to number of hidden layers 

ℓ. We vary number of hidden layers ℓ from 1 to 4 and train 

the network in in a greedy layer-size manner [18] on both 

source labeled and unlabeled target data. That is we start by 

training the network using only one hidden layer (i.e., ℓ = 1) 

by optimizing the cost function in (12) as done in the previous 

experiments. Then we augment the network with an additional 

hidden layer and initialize its weights to small values in the 

range [-0.005 0.005] and retrain again the complete network 

by optimizing the cost function in (13). We repeat this 

learning process by adding one layer each time until reaching 

the desired number of hidden layers fixed to ℓ = 4. To 

understand further the effect of the number of hidden layers, 

Table V shows the results obtained for different percentages 

of the labeled source data (i.e., 25%, 50%, 100%, and 200%, 

respectively). We note that the scenario 200% is generated 

using rotation and flipping augmentation techniques. As can 
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be seen, the accuracies reported in Table V confirm clearly the 

value of adaptation using multiple hidden layers instead of 

using one hidden layer. In details, for KSA→Merced, the 

average results obtained through all scenarios show that DAN 

without adaptation yields 70.72%. By contrast, the adaptation 

with one hidden layer results in accuracy of 85.63% 

(corresponding to an improvement of 14.91%). Increasing the 

number of hidden layers improves further the results reaching 

an accuracy of 91.32% using four hidden layers. The same 

behavior happens with the dataset Merced→KSA as DANN 

without adaptation provides an accuracy of 67.63% whiles it 

provides an accuracy of 79.87% with adaptation using one 

hidden layer (corresponding to an improvement of 12.24%). 

Then the accuracy increases to 85.21% when applying 

adaptation using four hidden layers. In general these results 

suggest that using DAN with two hidden layers represents a 

good compromise between accuracy and computation time. 

 

III. CONCLUSIONS 

This paper has presented a DAN method for tackling the 

challenging data-shift problem in remote sensing imagery. 

DAN has the following attractive proprieties: 1) it uses a 

pretrained CNN to generate an initial feature representation of 

both labeled source and unlabeled target images; 2) its second 

building block based on fully connected layers takes as input 

the CNN features and learn the weights by reducing the 

mismatch between the distributions of the source and target 

data while maintaining the discrimination ability of the 

labeled data and the geometrical structure of the target data; 4) 

it uses a mini-batch gradient optimization method with 

dynamic sample size to learn robust hidden representations; 

which makes it suitable for large scale problems. The 

experiments carried out on a non-GPU unit and on two real 

datasets acquired over two different geographical areas and 

with different sensors confirmed its computational efficiency 

and its ability in providing improved classification results 

compared to several state-of-the-art methods. In the future we 

plan to improve this network by including several 

enhancements such as: 1) introducing appropriate confidence 

measures for selecting samples from the unlabeled set; 2) 

fusing several pretrained CNN models; and 3) estimating the 

optimal number of hidden layers of the extra network in an 

automatic way.  
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Figure 1. Flowchart of the proposed DAN approach: DAN is composed of a pretrained CNN coupled with an extra network. The 

weights of the network are leaned by simultaneously optimizing there criteria related to discrimination, shift-between source and 

target data, and geometrical structure of the target data.   
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Figure 2. UC Merced dataset: aerial images with spatial resolution of 0.3 m acquired over USA. The dataset contains 21 classes 

(with 100 images per class). 

 
Figure 3. KSA multi-sensor dataset: acquired over KSA, with INKONOS-2, GeoEye-1, and Worldview-1 sensors with spatial 

resolutions of 1 m, 0.5 m and 0.5 m, respectively. The dataset contains 13 classes (250 images per class).   
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(a)                                                          (b) 

Figure 4. Visualization of the features learned by the hidden layer of the extra network:  (a) Merced (with 21 classes); and (b) 

KSA (with 13 classes).   

 

 
(a)                                                        (b) 

Figure 5. Feature visualization for: (a) Merced; and (b) KSA datasets. Both figures show that the data- shift problem is not 

relevant.   

 

 

 

 

  
(a)                                                                  (b) 
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(c)                                                                                  (d) 

Figure 6. Mismatch reduction of the distributions during the adaptation process for the scenario KSA→Merced: (a) without 

adaptation (the data shift problem is significant); (b) and (c) intermediate results; and (d) Final result.     

 

 

  

  
(a)                                                              (b) 

  
(c)                                                                              (d) 

Figure 7. Mismatch reduction of the distributions during the adaptation process for the scenario Merced→KSA: (a) without 

adaptation (the data shift problem is significant); (b) and (c) intermediate results; and (d) Final result.     
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(a) 

 

  
(b) 

Figure 8. Sensitivity analysis with respect to the minibatch size for: (a) KSA→Merced; and (b) Merced→KSA. 

 

 

      
(b) 

Figure 9. Sensitivity analysis with respect to the regularization parameter 𝜆 and the number of #nodes in the hidden layer for: (a) 

KSA→Merced; and (b) Merced→KSA. No-adapt refers to the result obtained without including both MMD and graph 

regularization terms.   
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TABLE I 

Classification results obtained for Merced dataset. 

Method OA [%] 
Time 

[m] 
Validation 

Spatial BOVW [1] 81.19 --- 

5-fold 

Sparse Coding [13] 81.70 --- 

Bag of SIFT [10] 88.00 --- 

Second order visual features [11] 94.30 --- 

Pyramid of Spatial Relations [2] 89.10 --- 

CS Multifeature Fusion [4] 94.33 20.10 

Salient Unsupervised Learning [9] 82.80 --- 

Multiview deep learning [12] 93.48 --- 

Gradient boosting RCN [15] 94.53 --- 

Pretrained CNN +SAE [10] 97.19 5.60 

Pretrained CNN +SVM  95.09 8.60 

Pretrained CNN +CNN [9] 92.40 --- 

DAN (without adaptation) 96.75±0.36 0.81 

DAN (with adaptation) 96.51±0.36 9.01 

Concentric Multiscale BOVW [3] 86.64 --- 

2-fold 

CS Multifeature Fusion [4] 91.10 27.33 

Pretrained CNN +SAE [10] 95.10 4.72 

Pretrained CNN +SVM  92.83 4.45 

DAN (without adaptation) 94.61±0.11 0.54 

DAN (with adaptation) 94.54±0.15 6.06  

 

 

TABLE II 

Classification results obtained for KSA dataset. 

Method OA [%] Time [m] Validation 

CS Multifeature Fusion [4] 90.77 57.10 

5-fold 

Pretrained CNN+SAE [10] 94.92 10.20 

Pretrained CNN+SVM  94.46 12.26 

DAN (no-adaptation) 95.08±0.27 1.27 

DAN (with adaptation) 95.33±0.79 14.50 

CS Multifeature Fusion [4] 91.69 70.31 

2-fold 
Pretrained CNN+SAE [10] 94.77 9.40 

Pretrained CNN+SVM  94.52 6.86 

DAN (no-adaptation) 94.95±0.53 0.91 

DAN (with adaptation) 94.36±0.41 9.57  
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TABLE III 

Classification results obtained for KSA→Merced and Merced→KSA datasets. 

Cross-dataset Method OA [%] Time [m] 

KSA → Merced 

Pretrained CNN+SAE [10] 70.35 4.11 

Pretrained CNN+SVM [11]  63.63 5.36 

DAN (no-adaptation) 73.25 0.73 

DAN (with adaptation) 91.50 4.07 

Merced → KSA 

Pretrained CNN+SAE [10] 70.75 4.81 

Pretrained CNN+SVM [11] 66.9 5.21 

DAN (no-adaptation) 69.95 0.27 

DAN (with adaptation) 85.20 1.77 

 

TABLE IV 

Class-by-class accuracies obtained by DAN for KSA→Merced and Merced→KSA datasets. 

Cross-dataset DAN 
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ta
n
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OA 

[%] 

KSA→ Merced 
no adaptation 43 92 84 59 36 99 93 80 73.25 

with adaptation 86 100 100 86 80 99 98 83 91.50 

Merced→ KSA 
no adaptation 52 62 78 84.8 65.6 54.4 66.4 96.4 69.95 

with adaptation 82.8 74.4 82.4 98.8 88.4 74 84.8 96 85.20 
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TABLE V 

Sensitivity analysis of DAN with respect to the number of hidden layers  

for (A) KSA→Merced and (B) Merced→KSA datasets. 

(A) 

  Size of labeled source images  

ℓ #nodes 25% 50% 100% 200% Average 

 
(without 

adaptation) 
65.50±1.31 70.25±1.20 73.25 73.87±0.90 70.72±0.85 

1 [256] 76.00±1.37 83.25±1.23 91.50 91.75±0.87 85.63±0.86 

2 [256 256] 82.50±1.50 91.00±1.01 93.12 93.75±0.71 90.09±0.80 

3 
[256 256 

256]  
84.50±1.07 90.25±1.25 93.25 95.50±0.95 90.87±0.81 

4 
[256 256 

256 256]  
84.25±1.19 91.87±1.07 93.55 95.62±0.97 91.32±0.81 

 

(B) 

  Size of labeled source images  

ℓ #nodes 25% 50% 100% 200% Average 

 
(without 

adaptation) 
61.35±1.01 67.35±0.90 69.95 71.85±0.81 67.63±0.68 

1 [256] 72.45±0.95 75.55±0.75 85.20 86.35±0.67 79.89±0.68 

2 [256 256] 76.30±0.84 80.90±0.67 87.25 88.40±0.71 83.21±0.55 

3 
[256 256 

256]  
78.55±0.82 83.95±0.59 87.45 88.45±0.45 84.60±0.46 

4 
[256 256 

256 256]  
77.60±0.97 85.90±0.80 87.95 89.40±0.53 85.21±0.57 

 

 

TABLE VI 

Comparison with other domain adaption methods. 

Cross-dataset Domain Adaptation methods OA [%] Time [m] 

KSA→Merced 

TCA [36] 71.10 3.46 

GFK [43] 72.40 1.90 

mSDA [44] 69.90 9.13 

DaNN [49] 75.25 4.80 

DAN (one hidden layer) 91.50 4.07 

 DAN (two hidden layer) 93.12 7.60 

 DAN (four hidden layer) 93.55 15.21 

Merced→ KSA 

TCA [36] 68.10 2.00 

GFK [43] 67.25 1.23 

mSDA [44] 71.38 7.25 

DaNN [49] 68.05 2.10 

DAN (one hidden layer) 85.20 1.77 

 DAN (two hidden layer) 87.25 3.10 

 DAN (four hidden layer) 87.95 8.50 
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