
IEEE TGRS, VOL. X, NO. Y, ZZZZ 1


Abstract— In this paper, we present a domain adaptation

network to deal with classification scenarios subjected to

the data-shift problem (i.e., labeled and unlabeled images

acquired with different sensors and over completely

different geographical areas). We rely on the power of

pretrained convolutional neural networks (CNNs) to

generate an initial feature representation of the labeled

and unlabeled images under analysis, referred as source

and target domains, respectively. Then we feed the

resulting features to an extra network placed on the top of

the pretrained CNN for further learning. During the fine-

tuning phase, we learn the weights of this network by

jointly minimizing three regularization terms, which are

the: i) the cross-entropy error on the labeled source data;

ii) the Maximum Mean Discrepancy (MMD) between the

source and target data distributions; and iii) the

geometrical structure of the target data. Furthermore, to

obtain robust hidden representations we propose a mini-

batch gradient-based optimization method with a dynamic

sample size for the local alignment of the source and target

distributions. To validate the method we use in the

experiments the UC Merced dataset and a new multi-

sensor dataset acquired over several regions of the

Kingdom of Saudi Arabia. The experiments show that: 1)

pretrained CNNs offer an interesting solution for image

classification compared to state-of-the-art methods; 2)

their performances can be degraded when dealing with

datasets subjected to the data-shift problem; and 3) how

the proposed approach represents a promising solution for

effectively handling this issue.

Index Terms— Cross-scene classification, multi-sensor

data, distribution mismatch, pretrained CNN, domain

adaptation.

I. INTRODUCTION

owadays the information about the earth surface is

obtained from a wide variety of earth observation

platforms including satellites, aerial systems and unmanned

aerial vehicles. Thanks to these diverse platforms, the remote

(a) Y. Bazi, E. Othman, H. Alhichri, and N. Alajlan are with ALISR

laboratory, College of Computer and Information Sciences, King Saud
University, Riyadh 11543, Saudi Arabia (e-mail: {ybazi, hhichri,

najlan}@ksu.edu.sa).

(b) Farid Melgani is with the department of Information Engineering and
Computer Science, University of Trento, Via Sommarive 9, I-38123,

Trento, Italy E-mail: melgani@disi.unitn.it

sensing images are increasingly available with different

spectral, spatial, and temporal resolutions. On the other hand,

the availability of such large amount of heterogeneous data

introduces new challenges and thus calls for the development

of advanced methodologies for automatic processing and

analysis.

Besides the commonly pixel-based and object-based

classification methodologies, the scene-level analysis is

currently attracting much interest from the remote sensing

community [1]-[11], [45]-[46]. Unlike the former analysis

methods the latter aims to classify the image based on a set of

semantic categories in accordance to human interpretation.

This task is particularly challenging as it requires the

definition of high-level features for representing the image

content. To this end, several scene-level classification

methods have been proposed, such as the bag of word (BOW)

model [1]–[4], sparse representation [5], compressive sensing

[6], and lately deep learning [7]–[11]. This last yielded state-

of-the-art results on several benchmark remote sensing

datasets confirming the outstanding performances achieved in

many other applications such as natural scene image

classification [12], object recognition [13], face recognition

[14], medical image analysis [15], speech recognition, [16]

and traffic flow prediction [17].

Basically, the idea of deep learning also known as

hierarchical learning is about learning a good feature

representation automatically from the input data [18]–[22].

Typical deep learning architectures include deep belief

networks (DBNs) [23], stacked autoencoder (SAE) [24], and

convolutional neural networks (CNNs), which are actually

perceived as the most effective representation learning

methods for visual recognition tasks when trained on large

labeled datasets [25]. However, when the number labeled

samples is not large enough, specialized solutions should be

developed. To this end, Luus et al. [7] proposed a multi-view

strategy based on multiple view scales for the extraction of

partial input sample patches from the scene. The different

views were generated using data flipping and multiple partial

views of a given input image. Then these views were used to

train a single deep CNN. Zhang et al. [8] proposed a method

called gradient boosting random convolutional network by

fusing many deep CNNs. To reduce the computation

complexity they introduced a modified version called random

CNNs (i.e., tie some of the weights of the CNN ensemble). On

the other side, other approaches based on knowledge transfer

from CNNs pretrained on very large auxiliary labeled data

have been also introduced recently [9]–[11]. In [9] the authors

used a pretrained CNN to generate an initial feature

representation of the remote sensing images under analysis.

Yakoub Bazi, Senior Member, IEEE, Farid Melgani(b), Fellow IEEE, Esam Othman(a), Student Member, IEEE,

Haikel Alhichri, Member, IEEE, Naif Alajlan, Senior Member, IEEE, and Mansour Zuair

Domain Adaptation Network for Cross-Scene Classification

N

mailto:najlan%7d@ksu.edu.sa

IEEE TGRS, VOL. X, NO. Y, ZZZZ 2

This CNN was pretrained on the ImageNet dataset which is

composed of 1.2 million images and 1000 classes’ related to

natural images. After this step, they reshaped the outputs of

the two last fully connected layers into 2D arrays and trained a

new CNN composed of two convolutions and two fully

connected layers followed by a softmax classifier. As

pretrained CNN they used the Overfeat model [26], which is

an improved version of the AlexNet model [27]. By contrast

Esam et al. [10] used the output of the last fully connected

layer of the CNN model proposed by Chatfield et al. [28] as

input to a sparse autoencoder for learning a new feature

representation. Then they tailored the sparse autoencoder to

view the classification problem from discriminative and

reconstruction perspectives. Finally, Fan et al. [11]

investigated the problem of transferring features from CNN

models trained also on very large auxiliary labeled dataset. In

particular, they considered two different scenarios for carrying

out feature extraction. For the first scenario, they used the last

fully connected layer, while for the second one they extracted

dense features from the convolution layer at multiple scales

and then used different encoding techniques to generate the

final representation of the image. For both scenarios, they

used a support vector machine (SVM) classifier for training.

In the experiments, they carried out extensive analysis using

several pretrained CNN models.

The aforementioned developments show that

pretrained CNNs are undoubtedly valuable tools for building

sophisticated classification systems for the analysis of remote

sensing images as noticed also in other fields [29]. Typically,

the knowledge transfer from these models can be made either

by fine-tuning the complete CNN network on the new labeled

data (which is usually not large enough) or simply by

extracting features from the fully connected or convolutional

layers. Then these features are fed into additional fully

connected layers or to the support vector machine (SVM)

classifier for learning. However, this process may not be

sufficient when dealing with images acquired under different

acquisition conditions. Indeed, the occurrence of such

scenarios in the case of remote sensing is inevitable as the

images are continuously acquired with different sensors and

over different locations of the earth surface. Thus it is

expected that simple fine-tuning will fail to produce

acceptable results mainly due to the data-shift problem. For

such purpose, it becomes necessary to develop sophisticated

solutions based on domain adaptation to increase the

generalization ability of the network. It is worth recalling that

domain adaptation has been investigated previously in the

context of remote sensing but for pixel-based classification

and the related solutions were mainly based on shallow

architectures such as kernel methods [30], [31], graph

matching [32], [33] and compressive sensing [34].

To address this challenging problem, this work

proposes a domain adaptation network (DAN) composed of a

pretrained CNN coupled with supplementary fully connected

layers as shown in Figure 1. The weights of these fully

connected layers are learned by simultaneously optimizing

three terms related to discrimination, distributions mismatch

and data geometry, respectively. In detail, the first term is the

usual cross-entropy error computed on the labeled source

examples. The second one is based on the Maximum Mean

Discrepancy (MMD) [37] criterion, which has been

previously adopted by shallow architectures to measure the

distribution mismatch. Usually it is computed as the distances

between the means of source and target examples in a

reproducing Hilbert space spanned by a kernel. In this work,

we express the MMD as the distance between the means of

the source and target representations obtained by the hidden

layers of the network. Finally, the third term uses graph

Laplacian regularization [38] to preserve the geometrical

structure of the unlabeled target data in the new representation

space when reducing the mismatch between the distributions.

In addition, to learn robust representations, we tailor the

network to align distributions of the two domains in a local

way via a mini-batch gradient-based optimization method

with a dynamic sample size, which makes the method suitable

for large scale problems.

It is interesting to mention that some domain

adaptation networks have been proposed in the literature of

computer vision [47]-[49]. However, our approach convoys

the following main features:

 The source and target images are considered to be

labeled and unlabeled, respectively, while the work

proposed in [48] assumes also the existence of few

labeled target images besides the labeled source

images;

 DAN carries out domain adaptation using an extra

network with multiple hidden layers placed on the

top of a pretrained CNN and integrates graph

Laplacian and MMD regularization terms besides

the cross-entropy error. In addition it is based on an

efficient dynamic minibatch optimization solution

for the local the alignment of the source and target

images. The method proposed in [47] uses a

gradient reversal layer and trains the entire CNN

network which is computationally demanding. On

the other side, the method in [49] proposes a

formulation for a shallow network with only one

hidden layer and uses a full-batch optimization

procedure for the global alignment of the

distribution of the source and target images;

 In the experiments we will show that DAN is able

to combat the data-shift problem and allows to

generate significant improvements in terms of

classification accuracy compared to the existing

solutions on a cross-dataset composed of images

acquired over the Kingdom of Saudi Arabia (KSA)

and USA, respectively.

The remainder of the paper is organized as follows:

Section II will provide a general description of the proposed

approach. Experimental results will be presented in Section

III, followed by conclusions and future works in section IV.

IEEE TGRS, VOL. X, NO. Y, ZZZZ 3

II. METHODOLOGY

A. Feature Extraction using Pretrained CNNs

Deep CNNs are composed of several layers of processing,

each comprising linear as well as non-linear operators, which

are learnt jointly, in an end-to-end way, to solve specific tasks

[25]–[27]. Specifically, Deep CNNs are commonly made up

of different types of layers, which are convolution;

normalization, pooling and fully connected. The convolutional

layer is the core building block of the CNN and its parameters

consist of a set of learnable filters. Every filter is small

spatially (along width and height), but extends through the full

depth of the input image. The output of this layer is called

feature maps. The feature maps, produced via convolving the

learnable filters across the input image, are fed to a non-linear

gating function such as the Rectified Linear Unit (ReLU).

Then the output of this activation function can further be

subjected to normalization (i.e., local response normalization)

to help in generalization. Regarding the pooling layer, it takes

small rectangular blocks from the convolutional layer and

subsamples it to produce a single output from each block.

There are several ways to perform pooling, such as taking the

average or the maximum, or a learned linear combination of

the values in the block. After several convolutional and

pooling layers, the high-level reasoning in the neural network

is done via fully connected layers. A fully connected layer

takes all neurons in the previous layer and connects it to every

single neuron it has. In the case of classification, a softmax

layer is added at the end of this network and the weights of the

CNN are learned using back-propagation.

In this work, we follow the recent approaches for

exploiting pretrained CNN models by taking the output of the

last fully connected layer (before the classification layer) to

represent the image scenes. That is we feed each image 𝐈𝑖 as

input to the network and generate its corresponding CNN

feature representation vector 𝒙𝑖 ∈ 
𝑑

 of dimension 𝑑:

 𝒙𝑖 = 𝑓𝐿−1
CNN (… 𝑓2

CNN (𝑓1
CNN(𝐈𝑖))) , 𝑖 = 1, … , 𝑛𝑠 + 𝑛𝑡

 (1)

where 𝑓𝑗
CNN, 𝑗 = 1, … , 𝐿 − 1 represent the functions defining

the different layers of CNN, 𝐿 is the total number of layers,

and 𝑛𝑠 and 𝑛𝑡 represent the number of labeled source images

and unlabeled target images, respectively.

B. Adaptation with one hidden fully connected layer

For simplicity, we present the method for one hidden

layer, then we show its generalization to the case of multiple

hidden layers. Let us refer to 𝐷(s) = {𝒙𝑖 , 𝒚𝑖}𝑖=1
𝑛𝑠 as the labeled

source data and 𝑦𝑖 ∈ {1,2, . . , 𝐾} is its corresponding class

label. Similarly, let us define 𝐷(t) = {𝒙𝑗}𝑗=1
𝑛𝑡 as the unlabeled

target data. In the rest of the paper, we introduce the

superscripts (s) and (t) whenever it is necessary to distinguish

between the source and target domains. Our goal is develop a

DAN approach that jointly learns a shared representation

between the source and target data and minimizes the training

error over the source data.

To achieve this goal, we feed these CNN feature vectors to

an extra network placed on the top of the pretrained CNN as

shown in Figure 1. Specifically, this network is composed of

two fully-connected layers: hidden and softmax regression.

The hidden layer takes the input 𝒙𝑖 and maps it to another

representation 𝒉𝑖
(1)

∈ ℜ𝑑(1)
 of dimension 𝑑(1) through the

nonlinear activation function 𝑓 as follows:

𝒉𝑖
(1)

= 𝑓(𝑾(1)𝒙𝑖) (2)

where 𝑾(1) ∈ ℜ𝑑(1)×𝑑 is the mapping weight matrix. A

typical choice of the activation function is the sigmoid

function i.e, 𝑓(𝑣) = 1/(1 + exp(−𝑣)). For simplicity, we

omit the bias vector in the expression as it can be incorporated

as an additional column vector in the mapping matrix then in

that case the feature vector should be appended by the value 1.

The softmax regression performs multiclass classification and

takes as input the resulting hidden representation 𝒉𝑖
(1)

 and

produces an estimate of the posterior probability for each class

label 𝑘 = 1,2, … , 𝐾 as follows:

𝑝(𝑦̂𝑖 = 𝑘|𝒙𝑖) =
exp ((𝒘𝑘

(2)
)

T
𝒉𝑖

(1)
)

∑ exp ((𝒘𝑗

(2)
)

T

𝒉𝑖

(1)
)𝐾

𝑗=1

 (3)

Where 𝑾(2) = [𝒘1
(2)

 𝒘2
(2)

… 𝒘𝐾
(2)

] ∈ ℜ𝑑(1)×𝐾 are the weights

of the softmax regression layer and the superscript (∙)T refers

to the transpose operation.

To prevent the network from overfiting and increase its

generalization ability, we use the recently introduced dropout

technique [35]. This regularization technique aims to drop

nodes of the hidden layer with their weights during the

training phase. It allows generating a thinned network by

temporarily removing the nodes from the original fully-

connected network, along with all its incoming and outgoing

connections. The choice of which nodes to drop is usually

done randomly. Specifically, the dropout regularization

technique acts by defining 𝒓 ∈ ℛ𝑑(1)
 (same dimension as the

hidden representation 𝒉𝑖
(1)

) as a vector of independent

Bernoulli random variables each of which has a probability 𝜌

(usually set to 0.5) of being 1. At training time, the output of

the hidden layer after dropout is given as follows:

{
𝒓 = Bernoulli(𝜌)

𝒉𝑖
(1)

: = 𝒉𝑖
(1)

⨀𝒓
 (4)

with ⨀ denoting an element-wise product. At test time

dropout is turned off and all hidden unit are used, however the

weights are scaled by the retaining probability 𝜌.

To learn the weights 𝜽 = {𝑾(1), 𝐖(2)} representing the

complete network structure, we propose to simultaneously

minimize: i) the training error on the labeled source data; ii)

reduce the shift between the source and target data domains;

and iii) maintain the geometry of the unlabeled target data.

The proposed cost function is then formulated as follows:

𝐽(𝜽, 𝐷(s), 𝐷(t)) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸𝑛𝑒𝑡(𝐷(𝑠)) +

𝜆1𝑀𝑀𝐷(𝐷(𝑠), 𝐷(𝑡)) + 𝜆2𝐿𝑎𝑝(𝐷(𝑡)) (5)

IEEE TGRS, VOL. X, NO. Y, ZZZZ 4

where 𝜆1 and 𝜆2 are two regularization parameters. For

simplicity, we define 0 ≤ 𝜆 ≤ 1 as a new regularization

parameter balancing between the contribution of both MMD

and graph terms in the cost function such that 𝜆1 = 𝜆 and

𝜆2 = 1 − 𝜆.

 Cross-entropy loss 𝐸𝑛𝑒𝑡(𝐷(s)): this term

measures the error between the actual network outputs and the

desired outputs of the labeled source data. As the outputs of

the network are probabilistic, we propose to maximize the

log-posterior probability to learn the network weights, which

is equivalent to minimizing the so-called cross-entropy error:

𝐸𝑛𝑒𝑡(𝐷(s)) = −
1

𝑛
∑ ∑ 1(𝑦𝑖 =𝐾

𝑘=1
𝑛𝑠
𝑖=1

𝑘)ln (
exp((𝒘𝑘

(2)
)

T
𝒉𝑘

(1)
)

∑ exp((𝒘𝑗
(2)

)
T

𝒉𝑙
(𝟏)

)𝐾
𝑗=1

) (6)

where 1(∙) is an indicator function that takes 1 if the statement

is true otherwise it takes 0 and the superscript T refers to

matrix transpose.

 Maximum Mean discrepancy 𝑀𝑀𝐷(𝐷(s), 𝐷(t)) :

The MMD has been widely used by shallow methods for

reducing the mismatch between the source and target

distributions in the kernel space [30], [36], [37]. In our

context, we compute it as the difference between the means of

the two domains obtained by the hidden representation layer

of the network. So, this term is then given as follows:

𝑀𝑀𝐷(𝐷(s), 𝐷(t)) =
1

2
‖

1

𝑛𝑠
∑ 𝑾(1)𝒙𝑖

𝑛𝑠
𝑖=1 −

1

𝑛𝑡
∑ 𝑾(1)𝒙𝑗

𝑛𝑡
𝑗=1 ‖

2

2

=
1

2
𝑇𝑟𝑎𝑐𝑒 [(𝑾(1)𝑿)𝝉𝝉T(𝑾(1)𝑿)

T
]

 =
1

2
𝑇𝑟𝑎𝑐𝑒 [(𝑾(1)𝑿)𝑴(𝑾(1)𝑿)

T
] (7)

where 𝑿 = [𝒙1 ⋯ 𝒙𝑛𝑠
⋯ 𝒙𝑛𝑠+𝑛𝑡] ∈ ℛ𝑑×(𝑛𝑠+𝑛𝑡) represents

the labeled source and unlabeled target samples and 𝑴 =
𝝉𝝉T ∈ ℛ(𝑛𝑠+𝑛𝑡)×(𝑛𝑠+𝑛𝑡) is called the MMD matrix and 𝝉 ∈
ℛ(𝑛𝑠+𝑛𝑡) is the target domain indicator vector:

𝜏𝑖 = {
1 𝑛𝑠⁄ 𝒙𝑖 ∈ 𝐷(𝑠)

−1 𝑛𝑡⁄ 𝒙𝑖 ∈ 𝐷(𝑡)
 (8)

 Graph regularization 𝐿𝑎𝑝(𝐷(𝑡)): While

reducing the shift between the source and target distribution,

we risk to deform the geometrical structure of the unlabeled

target data unlike the labeled source data, which are controlled

via the cross-entropy error. To handle this issue, we rely on

graph theory [38] to constrain the network so that it keeps the

geometry of the target data in the hidden representation space.

If we consider 𝐺 = (𝑉, 𝐸) a graph with vertices 𝑣 ∈ 𝑉 and

edges 𝑒 ∈ 𝐸 on the unlabeled target data 𝐷(𝑡) = {𝒙𝑗}𝑗=1
𝑛𝑡 . Each

feature vector in 𝐷(𝑡) is associated with a vertex 𝑣𝑗. An edge

spanning two vertices 𝑣𝑗 and 𝑣𝑘 is denoted by 𝑒𝑗𝑘 and the

associated weight is denoted by 𝜔(𝑒𝑗𝑘) or simply 𝜔𝑗𝑘. A

common choice for obtaining these weights is the Gaussian

weighting function. i.e., 𝜔𝑗𝑘 = exp (− ‖𝐱𝑗 − 𝐱𝑘‖
2

𝛽⁄) and 𝛽

is a free parameter (usually set to 1). The degree of a vertex 𝑣𝑗

is 𝑑𝑗 = ∑ 𝜔𝑗𝑘𝑘 for all edges 𝑒𝑗𝑘 incident on 𝑣𝑗. The

combinatorial Laplacian matrix 𝓛 ∈ ℜ𝑛𝑡×𝑛𝑡 indexed by

vertices 𝑣𝑗 and 𝑣𝑘 is given by:

ℒ𝑗𝑘 = {

𝑑𝑗𝑘 if 𝑣𝑗 = 𝑣𝑘 ,

−𝜔𝑗𝑘 if 𝑣𝑗 is among the 𝓂th nearset to 𝑣𝑘 ,

0 otherwise.

 (9)

Then, the graph regularization term can be written as follows:

𝐿𝑎𝑝(𝐷(𝑡)) =
1

2
∑ 𝜔𝑗𝑘‖𝑾(1)𝒙𝑗 − 𝑾(1)𝒙𝑘‖

2

2
𝑒𝑗𝑘∈𝐸

 (10)

which can be written in the following matrix form:

 𝐿𝑎𝑝(𝐷(𝑡)) =
1

2
𝑇𝑟𝑎𝑐𝑒 ((𝑾(1)𝑿(𝑡))𝓛(𝑾(1)𝑿(𝑡))

T
)

 (11)

where 𝑿(𝑡) = [𝒙1 ⋯ 𝒙𝑛𝑡] ∈ ℛ𝑛𝑡×𝑑1
 represents the

unlabeled target samples.

By summing up all above terms, the total cost function 𝐽(𝜽) is

then given by:

𝐽(𝜽, 𝐷(s), 𝐷(t)) = 𝑎𝑟𝑔𝑚𝑖𝑛 −
1

𝑛
∑ ∑ 1(𝑦𝑖 =𝐾

𝑘=1
𝑛𝑠
𝑖=1

𝑘)ln (
exp(𝒘𝑘

(2)T
𝒉𝑘

(1)
)

∑ exp(𝒘𝑗
(2)T

𝒉
𝑗
(1)

)𝐾
𝑗=1

)

+
𝜆

2
𝑇𝑟𝑎𝑐𝑒 ((𝑾(1)𝑿)𝑴(𝑾(1)𝑿)

T
)

+
(1−𝜆)

2
𝑇𝑟𝑎𝑐𝑒 ((𝑾(1) 𝑿(𝑡))𝓛(𝑾(1)𝑿(𝑡))

T
) (12)

C. Generalization to multiple hidden fully connected layers

The above network could be extended to perform domain

adaptation with multiple hidden layers. If we consider ℓ as the

number of hidden layers, then the new cost function can be

given as follows:

𝐽(𝜽, 𝐷(s), 𝐷(t)) = 𝑎𝑟𝑔𝑚𝑖𝑛 −
1

𝑛
∑ ∑ 1(𝑦𝑖 =𝐾

𝑘=1
𝑛𝑠
𝑖=1

𝑘)ln (
exp(𝒘𝑘

(ℓ+1)T
𝒉𝑖

(ℓ)
)

∑ exp(𝒘𝑗
(ℓ+1)T

𝒉
𝑖
(ℓ)

)𝐾
𝑗=1

)

+
𝜆

2
∑ 𝑇𝑟𝑎𝑐𝑒 ((𝑯(𝑙))𝑴(𝑯(𝑙))

T
)ℓ

𝑙=1

+
(1−𝜆)

2
∑ 𝑇𝑟𝑎𝑐𝑒 ((𝑯(𝑙)(𝑡))𝓛(𝑯(𝑙)(𝑡))

T
)ℓ

𝑙=1 (13)

where 𝑯(𝑙) is the hidden representation obtained for both

source and target samples at layer 𝑙 , whereas 𝑯(𝑙)(𝑡) is hidden

representation for the target samples. They are given as 𝑯(𝑙) =

IEEE TGRS, VOL. X, NO. Y, ZZZZ 5

𝑾(𝑙)𝑯(𝑙−1) and 𝑯(𝑙)(𝑡) = 𝑾(𝑙)𝑯(𝑙−1)(𝑡), respectively with

𝑯(0) = 𝑿 and 𝑯(0)(𝒕) = 𝑿(𝑡). In this case, the complete

weights of the network are: 𝜽 = {𝑾(1), … , 𝐖(ℓ), 𝑾(ℓ+1)} with

𝑾(ℓ+1) denoting to the weights of the softmax layer.

D. Optimization of the cost function 𝐽(𝜽, 𝐷(𝑠), 𝐷(𝑡))

To optimize the cost function 𝐽(𝜽, 𝐷(s), 𝐷(t)), we use a

mini-batch Stochastic Gradient Descent (SGD) method, which

is the common choice of deep learning approaches. This last

consists of dividing the labeled set into several mini-batches

of the same size and then learning is performed by updating

the weights for every mini-batch. In our setting, DAN will

learn on both labeled and unlabeled data, respectively. So, for

every mini-batch from the labeled set we should associate

another mini-batch from the target domain. In an ideal

situation, each mini-batch from the target domain would

contain samples belonging to the same classes as those present

in the associated labeled source domain to locally reduce the

mismatch between the two distributions. Under this condition,

one can intuitively expect to obtain an accurate alignment of

the distributions using mini-batches of small size. Since the

true labels of the target samples are not known, we rely on the

predictions provided by DAN during the fine-tuning process

to align source and target mini-batches. But this time using

small mini-batches for aligning the distributions could be

inappropriate as the predictions provided in the early learning

stages are of low confidence due to data-shift problems. To

tackle this issue, we introduce an iterative solution based on

dynamic-size mini-batches. Its basic idea is to start with a

large size to increase the percentage of samples belonging to

the same classes in each pair of source and target mini-

batches. In other words, using large mini-batches will reduce

the risk of aligning samples belonging to completely different

classes as the misclassified target samples would actually

belong to classes that are present in the labeled target mini-

batch anyway. After this step, we expect a reduction in the

distribution mismatch and at the same time an increased

confidence in the target labels prediction. This result will

encourage us to decrease the size of the mini-batch in the next

learning stage to reduce further the shift and at the same

increase the prediction confidence for the target samples. This

process could be repeated many times but with mini-batches

with smaller and smaller sizes. In the experiments, we will

show that this trick is computationally efficient and yields

significant improvement in terms of classification accuracy.

Mathematically, the gradients are typically computed

using the well-known backpropagation algorithm and the

weights of the network are updated as follows:

𝑾(𝑙): = 𝑾(𝑙) −
𝜂

𝑁𝑏
∑

𝑑𝐽(𝜽,𝐷𝑆𝑏

(𝑠)
,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙)

𝑘𝑆𝑏
𝑖=1+(𝑘−1)𝑆𝑏

 (14)

where 𝜂 refers to the learning rate, 𝑆𝑏 and 𝑁𝑏 represent the

size and the number of mini-batches, respectively. 𝐷𝑆𝑏

(𝑠)
 and

𝐷𝑆𝑏

(𝑡)
 are the labeled source and unlabeled target mini-batch

pairs each of size 𝑆𝑏 extracted from 𝐷(𝑠) and 𝐷(𝑡),

respectively. Since the proposed cost function includes new

extra terms related to MMD and graph regularization besides

the standard cross-entropy error, we can rewrite the equation

(14) in a more detailed from as follows:

 𝑾(𝑙): = 𝑾(𝑙) −
𝜂

𝑁𝑏
∑ (

𝑑𝐸𝑛𝑒𝑡(𝜽,𝐷𝑆𝑏

(𝑠)
)

𝑑𝑾(𝑙) +
𝑘𝑆𝑏
𝑖=1+(𝑘−1)𝑆𝑏

𝜆

2

𝑑𝑀𝑀𝐷(𝜽,𝐷𝑆𝑏

(𝑠)
,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) +
(1−𝜆)

2

𝑑𝐿𝑎𝑝(𝜽,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙)) (15)

It can be shown that, the update equations related to the to the

MMD and graph regularizations terms are given as follows:

𝑑𝑀𝑀𝐷(𝜽,𝐷𝑆𝑏

(𝑠)
,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) : = 𝑯𝑆𝑏

(𝑙)
𝑴𝑆𝑏

(𝑯𝑆𝑏

(𝑙−1)
)

T

 (16)

𝑑𝐿𝑎𝑝(𝜽,𝐷𝑆𝑏

(𝑡)
)

𝑑𝑾(𝑙) = 𝑯𝑆𝑏

(𝑙)(𝑡)
𝓛𝑆𝑏

(𝑯𝑆𝑏

(𝑙−1)(𝑡)
)

T

 (17)

where (∙)𝑆𝑏
 means that the variables defined in the previous

sections are evaluated for a mini-batch of size 𝑆𝑏.

It is interesting to notice that more advanced gradient-based

update rules could be used instead of (15), but here for ease of

presentation we have provided this basic implementation. In

the experiments, we will use an alternative version based on

the momentum method [40], [41].

In the following we provide the main steps for

carrying out the adaption with the proposed method and its

nominal parameters:

Algorithm: DAN method

Input: Labeled source images {𝑰𝑖 , 𝒚𝑖}𝑖=1
𝑛𝑠 and unlabeled

target images {𝑰𝑗}𝑗=1
𝑛𝑡

Output: Target Class labels

1: Set 𝐷2𝐴𝑁 parameters:

 𝜆 = 0.5, ℓ ≥ 2,
 #nodes=256 per hidden layer,

 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ = [100 80 60 40 20 10],
 Nearest neighbors 𝓂 for building the local graph on

the target data in the range [5 11];
2: Obtain the CNN feature vectors: {𝒙𝑖}

𝑛𝑠+𝑛𝑡 =

𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝑁𝑁({𝑰𝑖}𝑖=1
𝑛𝑠+𝑛𝑡);

3: Set the initial min-batch size 𝑆𝑏 =
𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ(1) (i.e., 𝑆𝑏 = 100);

4: Optimize 𝐷𝐴𝑁 using backpropagation on the labeled

source data only (MMD and graph regularization terms are

not considered here);

5: Feed the unlabeled target data {𝒙𝑗}
𝑗=1

𝑛𝑡
 to 𝐷𝐴𝑁 and estimate

the corresponding labels;

6: 𝑓𝑜𝑟 𝑗 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ)

6.1: Set the number of mini-batches to: 𝑁𝑏 = 𝑛𝑠 𝑆𝑏⁄ ;

IEEE TGRS, VOL. X, NO. Y, ZZZZ 6

6.2: Shuffle randomly the labeled source samples and

organize them into 𝑁𝑏 groups each of size 𝑆𝑏;

6.3: 𝑓𝑜𝑟 𝑘 = 1: 𝑁𝑏

o Pick mini-batch 𝑘 from the source data:

{𝒙𝑖 , 𝑦𝑖}𝑖=1+(𝑘−1)𝑆𝑏

𝑘𝑆𝑏 ;

o Pick randomly {𝒙𝑗}𝑗=1
𝑆𝑏 samples from the target

data having estimated labels similar to the labeled

samples present in mini-batch 𝑘.

o Build a local graph on the target samples {𝒙𝑗}𝑗=1
𝑆𝑏 ;

o Update the weights of 𝐷𝐴𝑁 using

backpropagation by training on the mini-batches

{𝒙𝒊, 𝑦𝑖}𝑖=1+(𝑘−1)𝑆𝑏

𝑘𝑆𝑏 and {𝒙𝑗}𝑗=1
𝑆𝑏 ;

 𝑒𝑛𝑑 𝑓𝑜𝑟

6.4: Feed the unlabeled target data to the updated 𝐷𝐴𝑁

and estimate the new corresponding labels;

6.5: Set the new batch size as: 𝑆𝑏 =
𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ(𝑗);

 𝑒𝑛𝑑 𝑓𝑜𝑟

III. EXPERIMENTAL RESULTS

A. Dataset Description

1) The University of California (UC) Merced dataset:

This dataset was manually derived by Yang and Newsam [1],

[2] from another data set of large aerial orthoimagery with

pixel resolution of 30 cm. It was downloaded from the U.S.

Geological Survey national map of the following U.S.

regions: Birmingham, Boston, Buffalo, Columbus, Dallas,

Harrisburg, Houston, Jacksonville, Las Vegas, Los Angeles,

Miami, Napa, New York, Reno, San Diego, Santa Barbara,

Seattle, Tampa, Tucson, and Ventura. It consists of 2100 RGB

images of size (256 × 256) pixels each, categorized into 21

classes (100 images per class). The class labels are as follows:

agriculture, airplane, baseball diamond, beach, buildings,

chaparral, dense residential, forest, freeway, golf course,

harbor, intersection, medium-density residential, mobile home

park, overpass, parking lot, river, runway, sparse residential,

storage tanks, and tennis court. Sample images of this

database are shown in Figure 2.

2) KSA dataset: This multi-sensor dataset was

acquired over different cities of KSA (i.e., Riyadh, Al-

Qassim, Al-Rajhi farms, Al-Hufuf and Jeddah) by three

different VHR sensors including IKONOS-2, GeoEye-1 and

WorldView-2 with spatial resolutions of 1 m, 0.5 m and 0.5

m, respectively. This dataset consists of 3250 RGB images of

size 256 × 256 pixels categorized into 13 classes (250 images

per class). The class labels are as follows: agriculture, beach,

cargo, chaparral, dense residential, dens trees, desert, freeway,

medium-density residential, parking lot, sparse residential,

storage tanks, and water. Sample images of this multi-sensor

dataset are shown in Figure 3.

3) Cross-dataset: This last dataset will be mainly used for

assessing the performances of the method when the

distribution of the source data is different from the target data

on which the model will be applied. Typically, this cross-

dataset is composed of the 8 common classes between Merced

and KSA identified by visual inspection. These classes are:

agriculture, beach, chaparral, dense residential, forest,

freeway, parking lot, and storage tanks. Thus the number of

images selected from Merced is equal to 800 (100 image per

class), whereas for KSA it is equal to 2000 (250 images per

class). From this cross-dataset, we build two scenarios termed

as KSA→Merced and Merced→KSA referring to

source→target data.

B. Experimental Setup

Pretrained CNN: For generating the convolutional

features, we use the pretrained CNN model of Chatfield et al.

[28] composed of 8 layers however any other recent

pretrained CNN model could be used as well. Specifically this

deep CNN uses five convolutional filers of the following

dimensions: (number of filters × filter height × filter width:

96×7×7, 256×5×5, 512×3×3, 512×3×3, and 512×3×3) and

three fully connected layers with number of hidden nodes:

(fc1: 4096, fc2: 4096, and softmax: 1000). This model was

trained on the ILSVRC-12 challenge dataset [39] composed of

1.2 million RGB images of size 224 × 224 pixels belonging

to 1000 classes. These classes describe general images such as

beaches, dogs, cats, cars, shopping carts, minivans, etc. As

can be seen, this auxiliary domain is completely different

from the remote sensing datasets used in the experiments. For

extracting the CNN features, we resize the images of both

datasets to 224 × 224 and then feed them to this deep CNN

(without the sotmax layer) and take the output of the last fully

connected fc2 which produces a feature vector of dimension

𝑑 = 4096.

Extra Network architecture: In the experiments, we

follow the practical recommendations for training deep neural

networks [40], [41]. We use one hidden layer and set the

#nodes to 256. For dropout, we use the standard value 0.5.

For the mini-batch gradient method, we use a batch size 𝑆𝑏 of

variable size: {100, 80, 60, 40, 20, and 10} samples per mini-

batch during the adaptation phase. We fix the learning rate

and momentum to the values of 1 and 0.5, respectively. In

addition, we set the regularization parameters 𝜆 to 0.5,

respectively (i.e., balanced weights for graph and MMD

terms). For building the local graph, we fix the Gaussian

weighting function to the value 1 and set the number of

neighbors to 7. It is worth recalling, that we will carry out in

the experiments a detailed sensitivity analysis with respect to

the most important parameters of the network.

C. Results

1) Results on Merced and KSA datasets: In Figures 4 we

provide a general view of the distributions in the 2D space of

the features learned by the hidden layer of the extra network

for both datasets. As can be seen, this feature visualization

computed by the t-SNE method [42] indicates a-priori a good

discrimination between the different classes. In Tables I and

II, we provide the classification results obtained by the

proposed DAN without and with adaptation, respectively. In

the first phase, we run DAN to optimize only the cross-

entropy error using a fixed mini-batch of size 100 samples.

Then, in the second phase we fine-tune the network by

IEEE TGRS, VOL. X, NO. Y, ZZZZ 7

including the MMD and graph regularization terms (i.e. 𝝀 =
𝟎. 𝟓). For Merced dataset, the OA is equal to 96.75% and

94.61% for the fivefold and the twofold validations schemes

without adaptation. Regarding KSA dataset, the OA is 95.08%

and 94.95% for both validation schemes, respectively. As can

be seen adding the adaptation terms didn’t affect much the

accuracies as the OA became 96.54% and 94.51%, for Merced

and 95.33% and 94.36% for KSA. These results indicates that

the shift between the distributions of the training and test data

is not significant for both datasets. This observation is further

supported by the outcomes of t-SNE feature visualization

method shown in Figure 5 where the distributions looks very

close. In Tables I and II, we compare also our results against

several state-of-the-art methods. As can be seen these

preliminary results show that: i) DAN performs clearly better

than state-of-the-art methods based on handcrafted features

confirming the recent findings of the literature; ii) it is

competing with other deep learning approaches based on

pretraining strategies; and iii) it is computationally efficient.

2) Results on the cross-dataset: For this dataset the

situation is completely different as the source and target

images were acquired over two different continents and with

different sensors. Indeed, the difference in the acquisition

conditions makes the data-shift problem apparent as shown in

Figure 6(a) and Figure 7(a) for both scenarios. In this case,

our proposed DAN without adaptation besides the existing

pretraining strategies yield low classification accuracies as

shown in Table III. To get the whole picture, we report in

Table IV the accuracies for the different classes composing

this cross dataset. For the scenario KSA→Merecd, DAN

without adaptation yields an OA of 73.25%, with three classes

under 70%. Regarding Merced→KSA it yields an OA of

69.95%, with 5 classes having accuracies less than 70%. By

contrast, running DAN with adaptation reduces progressively

the shift between the source and target distributions while

maintaining a good discrimination ability between the

different classes as shown in Figure 6 and Figure 7,

respectively. At the end of the optimization process, it yields

for KSA→Merecd an OA of 91.50% corresponding to a

significant increase of 18.25% and with clear improvements

for all classes. Regarding, Merced→KSA, the OA become

85.20% corresponding also to a significant improvement of

15.25%. These results show that the transfer KSA→Merecd is

better than Merced→KSA. Actually, this situation was

expected as the number of labeled source data in the first

scenario is greater than the second one (i.e., 2000 imagers

versus 800 images). In addition, the KSA dataset is more

representative as it is composed from images acquired with

different sensors.

3) Analysis of the method: As mentioned previously, to

assess further the performances of the proposed DAN method,

we provide in the next subsections a detailed sensitivity

analysis with respect to the following parameters: the mini-

batch size 𝑆𝑏; the regularization parameter 𝜆 ; the number of

#nodes in the hidden layer; and the number of hidden layers ℓ.

 Mini-batch size effect: To illustrate the importance of

fine-tuning the alignment between the source and target data

using a mini-batch with a dynamic size, we repeat the above

experiments by setting 𝑆𝑏 to a fixed value for the entire

optimization process. First, we run DAN under an optimal

selection scheme. That is for every mini-batch from the source

data we associate samples having the same labels from the

target data (true labels). The results reported in Figure 8,

indicate that using a small mini-batch is the ideal choice for

reducing the shift between the source and target data. By

contrast, increasing the size of the mini-batch leads to a

decrease in the accuracy. Regarding our proposed solution

based on label estimation, we observe a different behavior. In

particular, the OA exhibits a behavior similar to the Hughes

effect widely encountered in the case of hyperspectral images.

For KSA→Merced, the best result is obtained for 𝑆𝑏 = 80

and the OA is equal to 83.75%, whereas for Merced→KSA it

is obtained for 𝑆𝑏 = 40 with an OA of 79.1%. These results

suggest that using a small mini-batch for aligning the

distributions is not a good solution as the confidence of the

target labels is low in the initial stage. In addition, the

utilization of the whole data for globally aligning the

distributions as usually done in shallow architectures seems to

be inefficient. Here arises the importance of the solution based

on a dynamic mini-batch which starts with large sizes to

tackle the confidence issue in the initial stages. Figure 8,

shows clearly that using a DAN with a fixed mini-batch size

results in improvement compared to the no-adaption case but

these improvements are not competing with those obtained

with the proposed dynamic mini-batch size solution.

 Regularization parameter 𝜆 and #nodes in the hidden

layer: Figure 9 depicts the classification accuracies obtained

for both scenarios by varying the regularization parameter 𝜆 in

the range [0 1] and for different #nodes of the hidden layer

(i.e., 64, 128, 256, 512 and 1024). These results confirm the

gain of including graph regularization while reducing the shift

between the distributions of source and target data. In general

selecting 𝜆 in the range [0.1 0.6] leads to quit stable results.

By contrast, giving more power to MMD regularization 𝜆 >
0.6 tends to decrease the improvements and leads to unstable

behaviors. We recall that in the experiments, we presented the

results using 𝜆 = 0.5 (equal weights for MMD and graph

regularization terms). In addition the choice of #nodes =256

represents a good compromise between classification

accuracy, stability and computation time.

 Number of hidden layers ℓ: In this experiment, we

evaluate the method with respect to number of hidden layers

ℓ. We vary number of hidden layers ℓ from 1 to 4 and train

the network in in a greedy layer-size manner [18] on both

source labeled and unlabeled target data. That is we start by

training the network using only one hidden layer (i.e., ℓ = 1)

by optimizing the cost function in (12) as done in the previous

experiments. Then we augment the network with an additional

hidden layer and initialize its weights to small values in the

range [-0.005 0.005] and retrain again the complete network

by optimizing the cost function in (13). We repeat this

learning process by adding one layer each time until reaching

the desired number of hidden layers fixed to ℓ = 4. To

understand further the effect of the number of hidden layers,

Table V shows the results obtained for different percentages

of the labeled source data (i.e., 25%, 50%, 100%, and 200%,

respectively). We note that the scenario 200% is generated

using rotation and flipping augmentation techniques. As can

IEEE TGRS, VOL. X, NO. Y, ZZZZ 8

be seen, the accuracies reported in Table V confirm clearly the

value of adaptation using multiple hidden layers instead of

using one hidden layer. In details, for KSA→Merced, the

average results obtained through all scenarios show that DAN

without adaptation yields 70.72%. By contrast, the adaptation

with one hidden layer results in accuracy of 85.63%

(corresponding to an improvement of 14.91%). Increasing the

number of hidden layers improves further the results reaching

an accuracy of 91.32% using four hidden layers. The same

behavior happens with the dataset Merced→KSA as DANN

without adaptation provides an accuracy of 67.63% whiles it

provides an accuracy of 79.87% with adaptation using one

hidden layer (corresponding to an improvement of 12.24%).

Then the accuracy increases to 85.21% when applying

adaptation using four hidden layers. In general these results

suggest that using DAN with two hidden layers represents a

good compromise between accuracy and computation time.

III. CONCLUSIONS

This paper has presented a DAN method for tackling the

challenging data-shift problem in remote sensing imagery.

DAN has the following attractive proprieties: 1) it uses a

pretrained CNN to generate an initial feature representation of

both labeled source and unlabeled target images; 2) its second

building block based on fully connected layers takes as input

the CNN features and learn the weights by reducing the

mismatch between the distributions of the source and target

data while maintaining the discrimination ability of the

labeled data and the geometrical structure of the target data; 4)

it uses a mini-batch gradient optimization method with

dynamic sample size to learn robust hidden representations;

which makes it suitable for large scale problems. The

experiments carried out on a non-GPU unit and on two real

datasets acquired over two different geographical areas and

with different sensors confirmed its computational efficiency

and its ability in providing improved classification results

compared to several state-of-the-art methods. In the future we

plan to improve this network by including several

enhancements such as: 1) introducing appropriate confidence

measures for selecting samples from the unlabeled set; 2)

fusing several pretrained CNN models; and 3) estimating the

optimal number of hidden layers of the extra network in an

automatic way.

ACKNOWLEDGEMENTS

The authors would like to extend their sincere appreciation to

Deanship of Scientific Research at King Saud University for

funding this Research group No. (RG-1435-050). The Authors

would like to thank A. Vedaldi and K. Lenc for making

available the software MatConvNet [50] used in the context of

this work.

.

REFERENCES

[1] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial

extensions for land-use classification,” Proc. 18th ACM

SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., San Jose, CA,

USA, 2010, pp. 270–279, 2010.

[2] Y. Yang and S. Newsam, “Spatial pyramid co-occurrence for

image classification,” In Proc. IEEE Int. Conf. Comput. Vis.,

pp. 1465–1472, 2011.

[3] S. Chen and Y. Tian, “Pyramid of spatial relatons for scene-

level land use classification,” IEEE Trans. Geosci. Remote

Sens., 2015, vol. 53, no. 4, pp. 1947–1957, 2015.

[4] L.-J. Zhao, P. Tang, and L.-Z. Huo, “Land-Use Scene

Classification Using a Concentric Circle-Structured Multiscale

Bag-of-Visual-Words Model,” IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens., vol. 7, no. 12, pp. 4620–4631, Dec. 2014.

[5] A. M. Cheriyadat, “Unsupervised Feature Learning for Aerial

Scene Classification,” IEEE Trans. Geosci. Remote Sens., vol.

52, no. 1, pp. 439–451, Jan. 2014.

[6] M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, “Land-

Use Classification With Compressive Sensing Multifeature

Fusion,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 10, pp.

2155–2159, Oct. 2015.

[7] F. P. S. Luus, B. P. Salmon, F. Van Den Bergh, and B. T. J.

Maharaj, “Multiview Deep Learning for Land-Use

Classification,” IEEE Geosci. Remote Sens. Lett., vol. 12, no.

12, pp. 2448–2452, 2015.

[8] F. Zhang, B. Du, and L. Zhang, “Scene Classification via a

Gradient Boosting Random Convolutional Network

Framework,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3,

pp. 1793–1802, Mar. 2016.

[9] D. Marmanis, M. Datcu, T. Esch, U. Stilla, and S. Member,

“Deep Learning Earth Obsevation Classification Using

ImageNet Pretrained Networks,” IEEE Geosci. Remote Sens.

Lett., vol. 13, no. 1, pp. 1–5, 2015.

[10] E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani,

“Using convolutional features and a sparse autoencoder for

land-use scene classification,” Int. J. Remote Sens., vol. 37, no.

10, pp. 1977–1995, 2016.

[11] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring Deep

Convolutional Neural Networks for the Scene Classification of

High-Resolution Remote Sensing Imagery,” Remote Sens., vol.

7, no. 11, pp. 14680–14707, Nov. 2015.

[12] M. Hayat, M. Bennamoun, and S. An, “Deep Reconstruction

Models for Image Set Classification,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. PP, no. 99, pp. 1–1, 2014.

[13] J. Bai, Y. Wu, J. Zhang, and F. Chen, “Subset based deep

learning for RGB-D object recognition,” Neurocomputing, vol.

165, pp. 280–292, 2015.

[14] S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, “Single Sample

Face Recognition via Learning Deep Supervised

Autoencoders,” IEEE Trans. Inf. Forensics Secur., vol. 10, no.

10, pp. 2108–2118, Oct. 2015.

[15] T. Brosch and R. Tam, “Efficient training of convolutional deep

belief networks in the frequency domain for application to

high-resolution 2D and 3D images.,” Neural Comput., vol. 27,

no. 1, pp. 211–27, Jan. 2015.

[16] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A.

Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B.

Kingsbury, “Deep Neural Networks for Acoustic Modeling in

Speech Recognition: The Shared Views of Four Research

Groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97,

Nov. 2012.

[17] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic

Flow Prediction with Big Data: A Deep Learning Approach,”

IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 1–9, 2014.

[18] Y. Bengio, A. Courville, and P. Vincent, “Representation

learning: a review and new perspectives,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–828, Aug. 2013.

[19] Xue-Wen Chen and Xiaotong Lin, “Big Data Deep Learning:

Challenges and Perspectives,” IEEE Access, vol. 2, pp. 514–

525, 2014.

IEEE TGRS, VOL. X, NO. Y, ZZZZ 9

[20] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of

unsupervised feature learning and deep learning for time-series

modeling,” Pattern Recognit. Lett., vol. 42, pp. 11–24, Jun.

2014.

[21] J. Schmidhuber, “Deep learning in neural networks: An

overview,” Neural Networks, vol. 61, pp. 85–117, Oct. 2014.

[22] G. E. Hinton and R. R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks.,” Science, vol.

313, no. 5786, pp. 504–7, Jul. 2006.

[23] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning

Algorithm for Deep Belief Nets,” Neural Comput., vol. 18, no.

7, pp. 1527–1554, Jul. 2006.

[24] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,

“Extracting and Composing Robust Features with Denoising

Autoencoders,” in Proceedings of the 25th International

Conference on Machine Learning, 2008, pp. 1096–1103.

[25] C. Farabet, C. Couprie, L. Najman, and Y. Lecun, “Learning

hierarchical features for scene labeling,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 35, no. 8, pp. 1915–29, Aug. 2013.

[26] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and

Y. LeCun, “OverFeat: Integrated Recognition, Localization and

Detection using Convolutional Networks,” arXiv:1312.6229,

Dec. 2013.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,” in

Advances in Neural Information Processing Systems, 2012, pp.

1097–1105.

[28] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman,

“Return of the Devil in the Details: Delving Deep into

Convolutional Nets,” May 2014.

[29] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S.

Carlsson, “Factors of Transferability for a Generic ConvNet

Representation,” pp. 1–12, 2014.

[30] J. Li, “Learn Multiple-Kernel SVMs for Domain Adaptation in

Hyperspectral Data,” IEEE Geosci. Remote Sens. Lett., vol. 10,

no. 5, pp. 1224–1228, Sep. 2013.

[31] E. Othman, Y. Bazi, N. Alajlan, H. AlHichri, and F. Melgani,

“Three-Layer Convex Network for Domain Adaptation in

Multitemporal VHR Images,” IEEE Geosci. Remote Sens.

Lett., vol. 13, no. 3, pp. 1–5, 2016.

[32] D. Tuia, J. Munoz-Mari, L. Gomez-Chova, and J. Malo, “Graph

Matching for Adaptation in Remote Sensing,” IEEE Trans.

Geosci. Remote Sens., vol. 51, no. 1, pp. 329–341, Jan. 2013.

[33] D. Tuia, M. Volpi, M. Trolliet, and G. Camps-Valls,

“Semisupervised Manifold Alignment of Multimodal Remote

Sensing Images,” IEEE Trans. Geosci. Remote Sens., vol. 52,

no. 12, pp. 7708–7720, Dec. 2014.

[34] M. Roy, F. Melgani, A. Ghosh, E. Blanzieri, and S. Ghosh,

“Land-Cover Classification of Remotely Sensed Images Using

Compressive Sensing Having Severe Scarcity of Labeled

Patterns,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp.

1257–1261, Jun. 2015.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: a simple way to prevent neural

networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,

pp. 1929–1958, Jan. 2014.

[36] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain

adaptation via transfer component analysis.,” IEEE Trans.

Neural Netw., vol. 22, no. 2, pp. 199–210, Feb. 2011.

[37] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and

A. Smola, “A kernel two-sample test,” J. Mach. Learn. Res.,

vol. 13, no. 1, pp. 723–723–773–773, Jan. 2012.

[38] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold

Regularization: A Geometric Framework for Learning from

Labeled and Unlabeled Examples,” J. Mach. Learn. Res., vol.

7, pp. 2399–2434, Dec. 2006.

[39] R. Socher, “ImageNet: A large-scale hierarchical image

database,” in 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009, pp. 248–255.

[40] Y. Bengio, "Practical Recommendations for Gradient-Based

Training of Deep Architectures", in: G. Montavon, G.B. Orr,

K.-R. Müller (Eds.), Neural Netw. Tricks Trade, Springer

Berlin Heidelberg, 2012: pp. 437–478.

[41] G. Montavon, G. B. Orr, and K.-R. Müller, “Neural Networks:

Tricks of the Trade: Second Edition,”, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 421–436.

[42] L. van der Maaten, and G. E. Hinton, “Visualizing data using t-

Sne,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

[43] K. G. B. Gong, Y. Shi, and F. Sha, “Geodesic flow kernel for

unsupervised domain adaptation,” in 2012 IEEE Conference on

Computer Vision and Pattern Recognition, 2012, pp. 2066–

2073.

[44] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized

Denoising Autoencoders for Domain Adaptation,” Jun. 2012.

[45] X. Zhang, S. Du, and Y.-C. Wang, “Semantic classification of

heterogeneous urban scenes using intrascene feature similarity

and interscene semantic dependency,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens., vol. 8, no. 5, pp. 2005–2014, May

2015.

[46] F. Hu, G.-S. Xia, Z. Wang, X. Huang, L. Zhang, and H. Sun,

“Unsupervised feature learning via spectral clustering of

multidimensional patches for remotely sensed scene

classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote

Sens., vol. 8, no. 5, pp. 2015–2030, May 2015.

 [47] G. Yaroslav, and V. Lempitsky. "Unsupervised domain

adaptation by backpropagation." ICML-15, vol. 37, pp.

1180.1189, July 2015.

[48] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko,

“Simultaneous deep transfer across domains and tasks,”

Proceedings of the IEEE International Conference on Computer

Vision (ICCV), pp. 4068-4076, Dec. 2015.

[49] M. Ghifary, W.B. Kleijn, and M. Zhang, "Domain adaptive

neural networks for object recognition," PRICAI 2014: Trends

in Artificial Intelligence. Springer International Publishing, vol.

8862, pp. 898-904, May 2014.

[50] Vedaldi, A., and K. Lenc. 2014. “Matconvnet - Convolutional

Neural Networks for MATLAB.” Proceedings of the ACM

International Conference on Multimedia.

IEEE TGRS, VOL. X, NO. Y, ZZZZ 10

Figure 1. Flowchart of the proposed DAN approach: DAN is composed of a pretrained CNN coupled with an extra network. The

weights of the network are leaned by simultaneously optimizing there criteria related to discrimination, shift-between source and

target data, and geometrical structure of the target data.

Shift
reduced

Unlabeled

Labeled

Labeled

Graph

Unlabeled

fc4
256

fc3
256

2
256

4096

4096

Data-shift
problem

IEEE TGRS, VOL. X, NO. Y, ZZZZ 11

Figure 2. UC Merced dataset: aerial images with spatial resolution of 0.3 m acquired over USA. The dataset contains 21 classes

(with 100 images per class).

Figure 3. KSA multi-sensor dataset: acquired over KSA, with INKONOS-2, GeoEye-1, and Worldview-1 sensors with spatial

resolutions of 1 m, 0.5 m and 0.5 m, respectively. The dataset contains 13 classes (250 images per class).

IEEE TGRS, VOL. X, NO. Y, ZZZZ 12

(a) (b)

Figure 4. Visualization of the features learned by the hidden layer of the extra network: (a) Merced (with 21 classes); and (b)

KSA (with 13 classes).

(a) (b)

Figure 5. Feature visualization for: (a) Merced; and (b) KSA datasets. Both figures show that the data- shift problem is not

relevant.

(a) (b)

IEEE TGRS, VOL. X, NO. Y, ZZZZ 13

(c) (d)

Figure 6. Mismatch reduction of the distributions during the adaptation process for the scenario KSA→Merced: (a) without

adaptation (the data shift problem is significant); (b) and (c) intermediate results; and (d) Final result.

(a) (b)

(c) (d)

Figure 7. Mismatch reduction of the distributions during the adaptation process for the scenario Merced→KSA: (a) without

adaptation (the data shift problem is significant); (b) and (c) intermediate results; and (d) Final result.

IEEE TGRS, VOL. X, NO. Y, ZZZZ 14

(a)

(b)

Figure 8. Sensitivity analysis with respect to the minibatch size for: (a) KSA→Merced; and (b) Merced→KSA.

(b)

Figure 9. Sensitivity analysis with respect to the regularization parameter 𝜆 and the number of #nodes in the hidden layer for: (a)

KSA→Merced; and (b) Merced→KSA. No-adapt refers to the result obtained without including both MMD and graph

regularization terms.

7
3
.2
5

9
7
.8
7

9
6
.8
7

9
4
.7
5

9
4
.1
2

9
3
.3
7

9
1
.2
5

8
4

7
5
.2
5

7
6
.8
7

7
9
.6
2

8
2
.2

8
0
.5 8
3
.7
5

8
0
.2
5

7
6
.1
2

9
1
.5

50

55

60

65

70

75

80

85

90

95

100

N O -
A D A P T

1 0 2 0 4 0 6 0 8 0 1 0 0 2 0 0 F U L L -
D A T A

D Y N A -
M I C

O
A

 [
%

]

MINIBATCH SIZE

Optimal Proposed

6
9
.9
5

9
0
.4
5

8
6

8
3
.3

8
0
.8

7
8
.3

7
7
.5

7
3
.0
5

6
8
.0
5

7
6
.4 7
8
.7
5

8
0
.9

7
2
.9
5 7
6
.6
5

7
2
.7
5

7
1
.4
5

8
5
.2

50

55

60

65

70

75

80

85

90

95

100

N O -
A D A P T

1 0 2 0 4 0 6 0 8 0 1 0 0 2 0 0 F U L L -
D A T A

D Y N A -
M I C

O
A

 [
%

]

MINIBATCH SIZE

Optimal Proposed

IEEE TGRS, VOL. X, NO. Y, ZZZZ 15

TABLE I

Classification results obtained for Merced dataset.

Method OA [%]
Time

[m]
Validation

Spatial BOVW [1] 81.19 ---

5-fold

Sparse Coding [13] 81.70 ---

Bag of SIFT [10] 88.00 ---

Second order visual features [11] 94.30 ---

Pyramid of Spatial Relations [2] 89.10 ---

CS Multifeature Fusion [4] 94.33 20.10

Salient Unsupervised Learning [9] 82.80 ---

Multiview deep learning [12] 93.48 ---

Gradient boosting RCN [15] 94.53 ---

Pretrained CNN +SAE [10] 97.19 5.60

Pretrained CNN +SVM 95.09 8.60

Pretrained CNN +CNN [9] 92.40 ---

DAN (without adaptation) 96.75±0.36 0.81

DAN (with adaptation) 96.51±0.36 9.01

Concentric Multiscale BOVW [3] 86.64 ---

2-fold

CS Multifeature Fusion [4] 91.10 27.33

Pretrained CNN +SAE [10] 95.10 4.72

Pretrained CNN +SVM 92.83 4.45

DAN (without adaptation) 94.61±0.11 0.54

DAN (with adaptation) 94.54±0.15 6.06

TABLE II

Classification results obtained for KSA dataset.

Method OA [%] Time [m] Validation

CS Multifeature Fusion [4] 90.77 57.10

5-fold

Pretrained CNN+SAE [10] 94.92 10.20

Pretrained CNN+SVM 94.46 12.26

DAN (no-adaptation) 95.08±0.27 1.27

DAN (with adaptation) 95.33±0.79 14.50

CS Multifeature Fusion [4] 91.69 70.31

2-fold
Pretrained CNN+SAE [10] 94.77 9.40

Pretrained CNN+SVM 94.52 6.86

DAN (no-adaptation) 94.95±0.53 0.91

DAN (with adaptation) 94.36±0.41 9.57

IEEE TGRS, VOL. X, NO. Y, ZZZZ 16

TABLE III

Classification results obtained for KSA→Merced and Merced→KSA datasets.

Cross-dataset Method OA [%] Time [m]

KSA → Merced

Pretrained CNN+SAE [10] 70.35 4.11

Pretrained CNN+SVM [11] 63.63 5.36

DAN (no-adaptation) 73.25 0.73

DAN (with adaptation) 91.50 4.07

Merced → KSA

Pretrained CNN+SAE [10] 70.75 4.81

Pretrained CNN+SVM [11] 66.9 5.21

DAN (no-adaptation) 69.95 0.27

DAN (with adaptation) 85.20 1.77

TABLE IV

Class-by-class accuracies obtained by DAN for KSA→Merced and Merced→KSA datasets.

Cross-dataset DAN

A
g

ri
cu

lt
u

re

B
ea

ch

C
h

a
p

a
rr

a
l

D
en

se

re
si

d
en

ti
a

l

F
o

re
st

F
re

ew
a

y

P
a

rk
in

g

S
to

ra
g

e

ta
n

k
s

OA

[%]

KSA→ Merced
no adaptation 43 92 84 59 36 99 93 80 73.25

with adaptation 86 100 100 86 80 99 98 83 91.50

Merced→ KSA
no adaptation 52 62 78 84.8 65.6 54.4 66.4 96.4 69.95

with adaptation 82.8 74.4 82.4 98.8 88.4 74 84.8 96 85.20

IEEE TGRS, VOL. X, NO. Y, ZZZZ 17

TABLE V

Sensitivity analysis of DAN with respect to the number of hidden layers

for (A) KSA→Merced and (B) Merced→KSA datasets.

(A)

 Size of labeled source images

ℓ #nodes 25% 50% 100% 200% Average

(without

adaptation)
65.50±1.31 70.25±1.20 73.25 73.87±0.90 70.72±0.85

1 [256] 76.00±1.37 83.25±1.23 91.50 91.75±0.87 85.63±0.86

2 [256 256] 82.50±1.50 91.00±1.01 93.12 93.75±0.71 90.09±0.80

3
[256 256

256]
84.50±1.07 90.25±1.25 93.25 95.50±0.95 90.87±0.81

4
[256 256

256 256]
84.25±1.19 91.87±1.07 93.55 95.62±0.97 91.32±0.81

(B)

 Size of labeled source images

ℓ #nodes 25% 50% 100% 200% Average

(without

adaptation)
61.35±1.01 67.35±0.90 69.95 71.85±0.81 67.63±0.68

1 [256] 72.45±0.95 75.55±0.75 85.20 86.35±0.67 79.89±0.68

2 [256 256] 76.30±0.84 80.90±0.67 87.25 88.40±0.71 83.21±0.55

3
[256 256

256]
78.55±0.82 83.95±0.59 87.45 88.45±0.45 84.60±0.46

4
[256 256

256 256]
77.60±0.97 85.90±0.80 87.95 89.40±0.53 85.21±0.57

TABLE VI

Comparison with other domain adaption methods.

Cross-dataset Domain Adaptation methods OA [%] Time [m]

KSA→Merced

TCA [36] 71.10 3.46

GFK [43] 72.40 1.90

mSDA [44] 69.90 9.13

DaNN [49] 75.25 4.80

DAN (one hidden layer) 91.50 4.07

 DAN (two hidden layer) 93.12 7.60

 DAN (four hidden layer) 93.55 15.21

Merced→ KSA

TCA [36] 68.10 2.00

GFK [43] 67.25 1.23

mSDA [44] 71.38 7.25

DaNN [49] 68.05 2.10

DAN (one hidden layer) 85.20 1.77

 DAN (two hidden layer) 87.25 3.10

 DAN (four hidden layer) 87.95 8.50

IEEE TGRS, VOL. X, NO. Y, ZZZZ 18

IEEE GRSL, VOL. X, NO. Y, ZZZZ 19

