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Abstract— We present in this paper a new methodology for 

spectral unmixing, where a vector of fractions, corresponding to 

a set of endmembers (EMs), is estimated for each pixel in the 

image. The process first provides an initial estimate of the 

fraction vector, followed by an iterative procedure that converges 

to an optimal solution. Specifically, projected gradient descent 

(PGD) optimization is applied to (a variant of) the spectral angle 

mapper (SAM) objective function, so as to reduce significantly the 

estimation error due to amplitude (i.e., magnitude) variations in 

EM spectra, caused by the illumination change effect. To 

improve the computational efficiency of our method over a 

commonly used gradient descent technique, we have derived 

analytically the objective function’s gradient and the optimal step 

size (used in each iteration). To gain further improvement, we 

have implemented our unmixing module via code vectorization, 

where the entire process is "folded" into a single loop, and the 

fractions for all of the pixels are solved for simultaneously. We 

call this new parallel scheme vectorized code projected gradient 

descent unmixing (VPGDU). VPGDU has the advantage of 

solving (simultaneously) an independent optimization problem 

per image pixel, exactly as other pixel-wise algorithms, but 

significantly faster. Its performance was compared to the 

commonly used fully constrained least squares unmixing 

(FCLSU), the generalized bilinear model (GBM) method for 

hyperspectral unmixng, and the fast state-of-the-art methods, 

sparse unmixing by variable splitting and augmented Lagrangian 

(SUnSAL) and collaborative SUnSAL (CLSUnSAL) based on the 

alternating direction method of multipliers (ADMM). Considering 

all of the prospective EMs of a scene at each pixel (i.e., without a 

priori knowledge which/how many EMs are actually present in a 

given pixel), we demonstrate that the accuracy due to VPGDU is 

considerably higher than that obtained by FCLSU, GBM, 

SUnSAL, and CLSUnSAL under varying illumination, and is 

otherwise comparable with respect to these methods. However, 

while our method is significantly faster than FCLSU and GBM, it 

is slower than SUnSAL and CLSUnSAL by roughly an order of 

magnitude. 

 
Index Terms— Hyperspectral imaging, spectral unmixing, 

Gradient methods, Optimization 

 

 
 

I. INTRODUCTION 

IVEN a (hyper)spectral image, the linear mixture model 

assumes that the collected spectra in a given pixel is 

formed as a linear combination of a set of pure spectral 

signatures, known as endmembers (EMs). Only a few pixels in 

an image are essentially "pure" [1], while the rest – especially 

in remotely sensed images – contain more than one material. 

Thus, reliable analysis of acquired spectral data requires the 

process of spectral unmixing, where a vector of fractions 

(abundances), corresponding to the set of EMs, is estimated 

for each pixel in the scene. (See, e.g., [2], [3] and [4] for 

detailed surveys.) The recent growing availability of airborne 

and satellite hyperspectral (HS) remote sensing platforms 

poses new challenges vis-à-vis the utilization of HS imagery 

in a wide range of applications. Such applications may include 

the important processing of urban, agricultural, and natural 

image regions, which requires the detection of a large number 

of biotic, a-biotic, and man-made materials. To distinguish 

between a large number of EMs, one needs to address the 

following main issues that are inherently associated with HS 

imagery: (1) Spectral similarities between different materials 

(with differences only in a few spectral features), (2) 

variations in illumination angles (topographic effects) 

resulting in different spectral reflectance distributions for the 

same surface cover materials, and (3) high processing time as 

the number of prospective EMs increases. 

In tackling the above issues, it is essential to first determine 

the most relevant set of EMs and then employ an appropriate 
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unmixing strategy. Methods for EM finding include, e.g., the 

manual EM selection tool (MEST) [5], as well as various 

automated algorithms, based on multidimensional geometric 

and statistical principles [6]. Early automated methods, e.g., 

the N-FINDR [7] and the improved version presented in [8], 

generally seek pure pixels that represent the EMs, while more 

recent methods [9], [10] do not assume the presence of pure 

pixels and try to estimate, instead, the EM spectra as the 

simplex vertices of the data cloud based on the principle of the 

minimum volume enclosing simplex (MVES). In addition, 

recently developed methods [11], [12] try to overcome the 

problem of non-present pure pixels by using sparse regression 

techniques [13]; a large number of library spectra is used to 

model the mixed pixels and the most suitable subset of EMs is 

found for each pixel during the unmixing process. See [14], 

for a detailed survey of EM extraction methods, and [15]–[17], 

for more recent implementation approaches. 

As noted, once an adequate EM set is determined, an 

appropriate unmixing strategy is employed to find an optimal 

abundance vector in fraction space. Numerous unmixing 

methods have been pursued over the years to meet this 

objective. For example, least squares-based approaches ([18], 

[19]) have been used in an iterative manner to provide fully 

constrained solutions. This was further refined by stepwise 

search strategies, such as quadratic programming [20]–[22], 

gradient descent optimization [23]–[27], and sequential 

quadratic programming (SQP) [28]. One of the disadvantages, 

however, of a typical search algorithm is its low 

computational efficiency. This deficiency can be tackled 

successfully due to [11], [12]. In an attempt to further alleviate 

this issue, it is of interest to derive semi-analytical solutions 

for gradient descent methods. A comprehensive overview of 

unmixing methods with an emphasis on fraction estimation 

can be found in [29], [30]. More recent methods consider 

solution sparsity [31]–[33], spatial information [34], [35], or 

both elements [36], [37] to further enhance the fraction 

accuracy. In addition to the wide use of the LMM in the 

majority of existing methods, nonlinear models have been 

recently introduced in various works. (See, e.g., [38], [39] for 

detailed surveys.) In particular, the generalized bilinear model 

(GBM) presented in [26] is a generalization of the bilinear 

model and the ordinary LMM.  

The choice of an objective function is naturally a crucial 

component of the unmixing process. The Euclidean minimum 

distance (EMD), known for its convenient integration with a 

constrained least squares framework, has been commonly used 

for unmixing. Unfortunately, the performance of EMD 

unmixing is highly affected by the illumination change effect 

(which causes magnitude variations in the reflected spectra 

due to shadow and different topography [40]). Exploiting, on 

the other hand, the special geometric properties of the spectral 

angle mapper (SAM) measure can reduce significantly the 

resulting bias and improve accordingly the unmixing results; 

see, e.g., [28], [41]. We employ in this paper projected 

gradient descent (PGD), which projects the estimate (in each 

iteration) onto the feasible subspace defined by the required 

constraints, for solving efficiently the constrained optimization 

problem in question.  

The use of PGD for constrained optimization problems was 

originally proposed in [42] (some works also refer to [43]). In 

practice, PGD is a subcase of the proximal gradient decent 

methods [44], which are more suitable for non-smooth 

objective functions. It is also considered a subcase of the 

forward-backward splitting algorithm [45], where a forward 

step is applied by a single progress of the ordinary gradient 

descent, and a backward step is applied by projecting the 

result onto the feasible region. (See [46] for a survey and 

detailed discussion on these methods.) In general, the 

performance of gradient-based methods is highly influenced 

by the choice of the step size [46], [47]. Given a function φ  to 

be minimized, with gradient p  at point ,x the ideal (current) 

step size, γ , is the global minimizer (in case of a 

minimization problem) of the univariate function defined by 

[48] 

( ) ( ).ϕ γ φ γ= +x p  

 

Identifying γ  according to the above could be very 

expensive, though, in most cases. An alternative, efficient step 

size computation may be achieved by a backtracking line 

search, subject to the Armijo rule. The latter ensures an 

effective (but not necessarily optimal) reduction at each 

iteration [46], [47], and was found to be satisfactory in terms 

of both processing time and convergence. Still, it would be 

highly desirable to derive an optimal step size for achieving 

maximal progress at each iteration of the process in an 

analytical (non-expensive) manner. 

We employ PGD for spectral unmixing, while providing 

analytical, closed-form expressions for the gradient of the 

SAM-like objective function selected and the step size at each 

iteration, to improve the unmixing process in terms of: (1) 

Robustness to the varying illumination effect, (2) scalability to 

a large number of EMs, and (3) computational speedup. 

Furthermore, the analytic stepwise PGD framework results 

also in a simple parallelization of the entire process by code 

vectorization. (Using vectorized code reduces significantly the 

run-time of the entire process by "loop-unrolling", where in 

the case of image unmixing, all the inner loops of the different 

pixels are run simultaneously using array (instead of scalar) 

operations; it also has the advantage of solving a separate 

optimization problem for each individual pixel within a 

parallel run.)  

In summary, the study presented here aims at developing an 

accurate and computationally efficient approach for unmixing, 

especially under varying illumination, by applying an 

analytical projected gradient descent formulation to a variant 

of the SAM objective function. A detailed formulation of the 

analytical expressions for the objective function's gradient and 

step size in each iteration is provided. We supplement these 

derived expressions with a fast algorithm for projection onto 

the constraint simplex [49] to yield a stepwise analytical 

framework for fully constrained unmixing. The newly derived 

method is highly robust to illumination change, can handle a 
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relatively large number of EMs, and is adaptable to any linear 

fraction constraint. To overcome the high processing time, 

associated typically with gradient descent, we take advantage 

of the closed-form analytical expressions derived and the 

simplicity of the framework's components. As noted, we 

implemented our proposed scheme via code vectorization, 

which results in significant speedup on raster images. We call 

this unmixing scheme vectorized code projected gradient 

descent unmixing (VPGDU). VPGDU performs essentially 

unmixing for a given image by solving simultaneously a 

whole set of independent optimization problems, where each 

problem is associated with an image pixel. Owing to this 

advantage, VPGDU can be invoked simultaneously with 

different parameters at each pixel, e.g., likelihood of purity, a 

good initial fraction estimate, upper and lower bounds of the 

various estimated fractions, different termination criteria (e.g., 

number of iterations and stopping threshold), etc.  

The developed methodology was tested extensively on real 

data, such as the well-known Cuprite reflectance image and an 

AISA image over a mixed natural-urban region, as well as 

synthetic data, e.g., EM signatures extracted 

automatically/manually (from these real images) or selected 

from a spectral library. In particular, it was compared against 

the commonly used FCLSU method [19], the GBM method 

[26], and the fast state-of-the-art methods, SUnSAL [11] and 

CLSUnSAL [11]-[12]. (The latter two methods provide an 

abundance estimate based on the alternating direction method 

of multipliers (ADMM) [50], by solving the so-called 

constrained sparse regression (CSR) problem.)  

The rest of the paper is organized as follows. Section II 

presents the linear mixture model used in this work. Section 

III presents the main concepts of our framework. Section IV 

gives a detailed analytical derivation of the proposed projected 

gradient descent unmixing methodology, including a detailed 

discussion of its parallel implementation via code 

vectorization (VPGDU). Section V presents detailed 

experimental results, including comparative performance 

evaluation of VPGDU versus FCLSU, GBM, SUnSAL, and 

CLSunSAL. Finally, Section VI makes concluding remarks. 

 

II. THE LINEAR MIXTURE MODEL  

Assuming a linear mixture model (LMM), each pixel 

signature, 1[ ,..., ]Tm mλ=m , in a hyperspectral image with λ  

bands, can be expressed as a linear combination of L  EM 

spectra as follows:  

 

 ,m = Ef + n   (1) 

 

where E  is a ( )Lλ ×  matrix whose columns are the EM 

spectral signatures, f  is an ( )1L ×  vector containing the true 

fractions of the EMs, and n  is a ( )1λ ×  vector, assumed to be 

a zero-mean Gaussian representing the system noise. During 

the unmixing process an estimated fraction vector, ˆ,f is 

calculated for each pixel in the image. The LMM represents 

the relation between the EMs, their fractions and the mixture, 

and it constitutes the basis for the mathematical terminology 

and formulations to be used during the unmixing process.  

 

III. FRAMEWORK CONCEPTS  

A. Searching in Endmember Fraction Space for Spectral 

Unmixing 

Let L∈S ℝ  be a scalar field spanned by the orthogonal set

( ) ( ) ( ){ }1 2,0,...,0 , 0, ,...,0 ,..., 0,..., Lf f f , 

where each coordinate axis in S  is represented by a single EM 

fraction. Each point in S  represents a fraction combination 

which reconstructs a different mixture due to (1). A solution of 

the unmixing problem can be achieved by seeking the point 

(i.e., fraction combination) in S that optimally reconstructs the 

pixel’s spectral signature. Ranking points in S  as prospective 

solutions for the spectral unmixing requires a definition of an 

objective function that measures the spectral distance between 

the reconstructed mixture and the pixel signature. Once an 

objective function is defined, an optimal solution can be 

achieved by finding the global maximum/minimum 

(depending on the kind of objective function). Searching for 

an optimal, fully constrained solution should be carried out by 

a examining a solution in the feasible region bounded by the 

non-negativity and sum-to-one constraints. Search methods for 

spectral unmixing should combine an objective function and 

an optimization method; a nonlinear objective function 

requires an initial estimate before applying an iterative search 

process. Although iterative search methods are more flexible 

and adaptive to different conditions and constraints, they tend 

to be very slow, especially when some required parameters are 

determined empirically. Thus the desired goal is to derive an 

analytical stepwise search method that would result in 

enhanced unmixing performance. The following three main 

components will be employed in our methodology:  

 

1. An initial estimate: 

We employ the preprocessing model presented in [51] to 

generate an initial estimate of the fraction vector based on the 

relationship between the fractions and the spectral angle 

mapper (SAM) values between the EMs and the mixture.  

 

2. Objective function:  

The objective function picked is based on the SAM measure 

for its crucial advantage in reducing significantly the 

illumination effect. The parameters of the search process 

presented in this paper will be analytically derived with 

respect to the SAM objective function. 

 

3. Stepwise analytical projected gradient descent with 

vectorized code: 

A projected gradient descent procedure is derived in 

fraction space seeking for a constrained optimal solution. 

Also, code vectorization was implemented for speeding up the 

entire process. 
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The above three components are integrated within a 

stepwise analytical framework, where the initial estimate is 

arrived at empirically. Following the initial estimate, an 

iterative search procedure is employed.  In each step the result 

is assessed with respect to the objective function and the 

fraction change. The search is repeated until the objective 

function is satisfied or the maximal fraction change becomes 

smaller than a pre-defined threshold. Fig. 1 conceptually 

demonstrates the algorithm’s framework. In the next section 

we describe in detail each of these methodological 

components. 

 

 

Fig. 1. Conceptual framework of unmixing methodology. 

 

IV. DETAILED DERIVATION OF STEPWISE ANALYTICAL 

PROJECTED GRADIENT DESCENT SPECTRAL UNMIXING 

 

A. Initial Estimate 

We provide an overview of this stage according to the 

presentation in [51]. Given two spectral signatures 1s  and 2s , 

their SAM  similarity measure is defined as  

 

 ( ) 1, cos ,
T

SAM −
 

=   ⋅ 

1 2
1 2

1 2

s s
s s

s s
  (2) 

 

where ⋅  denotes the 2ℓ -norm. Logically, the larger the 

EM's fraction if  is, the smaller the SAM measure is between 

its signature and the mixture signature. Actually, this 

relationship is a function of all of the EMs and their fractions 

in a given mixture and it can be mapped in order to create a 

basis for generating an initial estimate of the fraction vector. 

Given a pixel signature m  that is a mixture over the set of 

EMs, the normalized SAM of the thi  EM, denoted by iNS , is 

defined as: 

 

 

1

( , )
,

( , )

i
i L

jj

SAM
NS

SAM
=

=

∑
E m

E m
  (3) 

 

where iE  denotes the signature of the thi EM. The relationship 

between a fraction and its NS  value is intrinsic and can be 

described by fitting a linear function whose coefficients can be 

estimated according to [51]. Specifically, we carry out the 

following steps: 

Step 1: Simulate a set of known fractions in the range 

0 1if≤ ≤  and create for each fraction a controlled mixture m  

according to the expression  

 

 
( ) ( ) ( )

,
d dd

i i j j

j i

m f E f E
≠

= +∑   (4) 

where ( )d
m and 

( )d

jE  denote, respectively, the reflectance of 

m  and iE  in the thd spectral band, and the 

jf 's ( j i≠ ) are picked at random subject to 1j i

j i

f f
≠

= −∑ .  

Step 2: For each fraction if  and its corresponding 

controlled mixture, compute a corresponding iNS  according 

to (3). 

Step 3: Fit a linear function to estimate the relationship 

between the true fractions and their corresponding iNS values. 

 

 
Fig. 2. Scatter plot of if  vs. iNS  for several EMs, with fitted linear functions. 

 

Fig. 2 presents the scatter of the fractions versus their 

corresponding NS  values and the estimated linear functions 

for three different EMs taken from a set of EMs to be 

presented (see Fig. 14). Each assessed coefficient is essentially 

a function of the EM set, regardless of the mixture to be 

solved; once preprocessing is applied, its results can be used 

for any mixture containing these EMs. Let 

[ ]1 2, , , Lα α α= …α  and [ ]1 2, , , Lβ β β= …β  denote slope and 

intercept vectors, respectively, where iα and iβ  are the 

estimated coefficients of the fitted linear function for the thi  

EM. Also, let [ ]1 2, , , LNS NS NS=NS …  denote the vector of 

normalized SAMs  computed according to (3) for a given 

mixture m . Using our method, an initial estimate of the 

fraction vector is given by 

 

 0ˆ T= +f NSα β.   (5) 
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As can be seen from Fig. 2, the initial estimate could 

provide negative values for EMs with actual small 

abundances. Since this step provides merely an initial 

estimate, negative values are set to zero. Note that in case the 

objective function is convex, devising a specific initial 

estimate might not be essential, although it would be 

beneficial for faster convergence to the optimal solution.  

 

B. Projected gradient descent for fully constrained spectral 

unmixing  

 

Gradient descent is a standard, commonly used method for 

nonlinear optimization. Using it for the unmixing problem, we 

start with an initial estimate of the fraction vector 
0

f̂ . Then, a 

stepwise computation towards the optimal solution is applied 

according to:     

 ( )1ˆ ˆ ˆ ,k k k
kγ φ+ = + ∇f f f   (6) 

 

where φ  is the objective function, k  is the iteration number, 

kγ  is the optimal step size in the gradient direction (giving a 

maximal change in φ ), and ( )ˆkφ∇ f  is the gradient of φ  at 

ˆk
f , or the derivative of the objective function with respect to 

the fraction vector, i.e., 
ˆ

φ
φ

∂
∇ =

∂f
. For a differentiable 

objective functionφ , φ∇  can be expressed analytically or can 

be calculated numerically. The gradient points in the direction 

which maximizes φ , but the change quantity in φ  itself still 

depends on the step size γ . Finding the optimal step size, i.e., 

the step size that yields the highest change in φ  (for the 

current iteration) is done by solving the optimization problem:

   

 

 arg max{ },kγ ϕ=   (7) 

where 

 ( )( )ˆ ˆ .
k k

kϕ φ γ φ= + ∇f f   (8) 

 

It would be desirable to find an explicit analytical solution 

by solving 0
k

ϕ

γ

∂
=

∂
. Otherwise, a numerical solution may be 

applied.  

Requiring valid, feasible unmixing results restricts the 

optimization process by the well-known abundance non-

negativity constraint (ANC) and the abundance sum-to-one 

constraint (ASC), i.e., ˆ 0≥f  and ˆ 1,=T
1 f respectively. Given 

an unmixing problem with L EMs, the feasible solution region 

defined by the ANC and ASC constraints is the positive 

simplex of the 1ℓ  ball in 
L
ℝ , e.g., the feasible region for the 

2-EM problem is the line segment joining the points (1,0) and 

(0,1) in 
2
ℝ , and that of the 3-EM problem is the planar 

(triangular) segment defined by the points (1,0,0), (0,1,0) and 

(0,0,1) in 
3
ℝ . The iterative procedure given by (6-8) follows 

the steepest descent direction in each step. However,  
1ˆk+

f  

may not necessarily meet the ANC and ASC constraints. 

Specifically, to keep the solution inside the feasible region in 

each iteration, we apply the following projected gradient 

descent process: 

 ( )( )1ˆ ˆ ˆP ,
k k k

kγ φ+
Ω= + ∇f f f   (9) 

where ( )PΩ=x y  denotes the projection of 
L∈y ℝ  onto the 

convex set Ω  and is defined by 

 

 arg min
∈Ω

= −
x

x x y   (10) 

For the problem in question we will denote 
LΩ = Ω  as the 

canonical simplex defined by   

 

 ( )1 1

1

, :0 1and 1
L

L
L i i

i

x x x x x
Τ

=

  
Ω = = ∈ ≤ ≤ = 

  
∑x ⋯ ℝ  (11) 

 

In other words, although the calculated gradient ( )ˆkφ∇ f  in 

conjunction with the step size kγ  might yield a new point that 

is out of the feasible region, the Euclidean projection 

presented in (9—11) ensures that the next point would belong 

to the feasible region by finding the closest point to the 

simplex defined in (11). Fig. 3 presents a scheme of the 

projected gradient descent process for a general objective 

function φ  and a convex set Ω .  

To solve the minimization problem in (10), we use the very 

fast algorithm presented in [49]. (A related method for 

projection onto a simplex, as part of an FCLSU can be found 

in [52].) Note that by modifying 
LΩ such that 

1

1
L

i

i

x
=

≤∑ , the 

ASC constraint can be easily replaced, if required, by a sum-

less-than-one constraint [53].  

 

 

 
 
Fig. 3. Illustration of the projected gradient descent process for a general 

objective function φ  and convex set Ω . 
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C. The objective function  

 

Among numerous available spectral unmixing methods, the 

objective function used mostly is the Euclidean minimum 

distance (EMD). One drawback of the EMD is its sensitivity 

to change in radiometry. Given that an EM spectral shape is 

fairly consistent while its amplitude varies significantly [54], it 

would be of interest to employ a spectral measure that 

minimizes the amplitude variation effect. A measure that 

meets this requirement is the spectral angle mapper (SAM). 

As indicated before, the beneficial use of the SAM as an 

objective function for the spectral unmixing was proved and 

shown in [28], [28]. In view of the previous assumptions, the 

objective function can be defined as 

 

 ( ) 1
ˆ

ˆ, cos
ˆ

T

SAMψ −
 
 = =
 ⋅
 

m Ef
m Ef

m Ef
  (12) 

subject to  

1

ˆ 1
L

i

i

f
=

≤∑   and  ˆ0 1.if≤ ≤  

An optimal estimation of f̂  can be achieved by minimizing 

ψ . Carrying out a gradient descent optimization requires the 

gradient (at any point) of the objective function. For 

convenience, we write:  

 
1cosψ φ−=   (13) 

The gradient of ψ  can be derived by taking 

 ( )
( )

2

ˆ
ˆ .

ˆ
1

k

k
φψ

ψ
φ

∇∂
∇ = = −

∂ −

f
f

f
  (14) 

We notice that the gradient of ψ  is undefined at the 

minimum, where 1φ = , and so a gradient optimization could 

provide unstable results when applied toψ . Thus, we take φ  

as an alternative objective function, i.e., we want to maximize 

 
ˆ

,
ˆ

T

φ =
⋅

m Ef

m Ef
  (15) 

subject to 

1

ˆ 1
L

i

i

f
=

≤∑   and  ˆ0 1if≤ ≤  

In other words, an optimal estimation of the fractions should 

satisfy 

 ˆ arg max{ }.φ=f   (16) 

To derive the gradient of φ , let us express it as 
µ

φ
ϑ

= , where 

ˆ ˆandTµ ϑ= ⋅ = ⋅m f m EfE . 

It can be easily shown that the derivatives of µ  and ϑ  with 

respect to f̂  are 
ˆ

Tµ∂
=

∂
E m

f
 and 

ˆ

ˆ ˆ

Tϑ∂
= ⋅

∂

E Ef
m

f Ef
, 

respectively. Thus, the gradient of φ  can be derived as 

follows:  

 

( )

( )

2

2

ˆ ˆˆ
ˆ

ˆ
ˆ ˆ

ˆ

.
ˆ

T
T T

µ ϑ
ϑ µ

φ
φ

ϑ

∂ ∂
−

∂ ∂ ∂∇ = =
∂

⋅ ⋅ − ⋅ ⋅

=

⋅

f ff
f

E Ef
E m m Ef m Ef m

Ef

m Ef

  (17) 

 

Simplifying, somewhat, we obtain 

 

 ( )
2

3

ˆ ˆ ˆ
ˆ .

ˆ

T T T

kφ
⋅ − ⋅

∇ =
⋅

E m Ef E Ef m Ef
f

m Ef

  (18) 

 

As mentioned previously, the gradient points in the 

direction that maximizes the objective function; the amount of 

change in the objective function still depends on the step size

γ . An optimal step size can be achieved by differentiating  

( )( )ˆ ˆk k
kϕ φ γ φ= + ∇f f  with respect to kγ  and requiring that 

0
k

ϕ

γ

∂
=

∂
. Following (12), and omitting the index notations, 

such that, ˆ ˆk=f f , kγ γ=  , and ( )ˆkφ∇ = ∇ f , we get 

 

 ( )
( )
( )

ˆ
ˆ .

ˆ

T γ
ϕ φ γ

γ

+ ∇
= + ∇ =

⋅ + ∇

m E f
f

m E f
  (19) 

 

Using the differentiation chain rule, we obtain 

 

 

 
( ) ( )

( )
( )ˆ ˆ ˆ

.
ˆ

φ γ φ γ γϕ

γ γ γγ

∂ + ∇ ∂ + ∇ ∂ + ∇∂
= = ⋅

∂ ∂ ∂∂ + ∇

f f f

f
  (20) 

 

Following (15), and using again the shorthand index notation, 

we obtain the derivative of ϕ  with respect to ( )ˆ γ+ ∇f  as 

 

( )

( ) ( ) ( )

( )

2

3

ˆ

ˆ ˆ ˆ

.
ˆ

T T T

ϕ

γ

γ γ γ

γ

∂
=

∂ + ∇

⋅ + ∇ − + ∇ ⋅ + ∇

⋅ + ∇

f

E m E f E E f m E f

m E f

  (21) 
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Also, the derivative of ( )ˆ γ+ ∇f  with respect to γ  is:  

 

 
( )ˆ

T
γ

γ

∂ + ∇
= ∇

∂

f
 (22)  

Requiring that 0
φ

γ

∂
=

∂
 yields 

 ( ) ( ) ( )
2

ˆ ˆ ˆT T T T Tγ γ γ∇ ⋅ + ∇ = ∇ + ∇ ⋅ + ∇E m E f E E f m E f  (23)  

This can be rewritten as 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
T

T T T T T Tγ γ γ γ 
∇ + ∇ + ∇ = ∇ + ∇ ⋅ + ∇ 

 
E m f E E f E E f m E f  (24)  

Further manipulations give the equations below:  

 

 
( )

( )

2

2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

T T T T T T T T T T

T T T T T T

γ γ γ

γ γ γ

∇ + ∇ + ∇ + ∇ ∇

= ∇ + ∇ + ∇ + ∇ ∇

E m f E Ef E Ef f E E E E

E E m Ef m Ef fm E m Ef

 (25)  

or 

 

2

2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T

γ γ γ

γ γ γ

∇ + ∇ ∇ + ∇ ∇ + ∇ ∇ ∇

= ∇ + ∇ ∇ + ∇ ∇ + ∇ ∇ ∇

E mf E Ef E m E Ef E mf E E E m E E

E Efm Ef E E m Ef E Efm E E E m E

 (26)  

 

Since all of the terms in (23) are scalars, the following hold true: 

 

 

( )

( )

ˆ ˆ ˆ
T

T T T T T T T T T T T

T
T T T T T T T T T T T

∇ ∇ = ∇ ∇ = ∇ ∇

∇ ∇ ∇ = ∇ ∇ ∇ = ∇ ∇ ∇

E mf E E E mf E E E Efm E

E m E E E m E E E E m E

 (27)  

Using these two facts, the last two terms on the left-hand side cancel out the last two terms on the right-hand side in 

(26), respectively, so we are left with the following equation: 

 ˆ ˆ ˆ ˆ ˆ ˆT T T T T T T T T T T T T Tγ γ∇ + ∇ ∇ = ∇ + ∇ ∇E mf E Ef E m E Ef E Efm Ef E E m Ef  (28)  

Finally, we can now extract the following analytical expression for γ : 

 

 

 
ˆ ˆ ˆ ˆ

.
ˆ ˆ

T T T T T T T

T T T T T T T
γ

∇ − ∇
=

∇ ∇ − ∇ ∇

E Efm Ef E mf E Ef

E m E Ef E E m Ef
 (29)  
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The analytically derived framework is described by the 

following pseudo-code: 

 

Algorithm 1: Projected Gradient Descent Unmixing (PGDU) 

Inputs: ( )Lλ ×E : Matrix of set of EMs 

 ( )r c λ× ×H : Cube of spectral image to be unmixed 

 
0ˆ ( )r c L× ×F : Cube of initial estimate of fraction image   

1) for each row in image (r times) 

2)    for each column in image (c times) 

3)          while ( )ˆ ˆmax k k t threshold−− >f f  *       

4)                     Calculate  ( )ˆ kφ∇ f  and kγ  by (18) and  (29),  respectively; 

5)         Set ( )( )1ˆ ˆ ˆPk k k
kγ φ+

Ω= + ∇f f f ;                          

6)         end  

7)    end 

8) end 

* The term ˆ ˆk k t−−f f  indicates the amount of change in fraction values 

during the last t iterations, where t is a predefined parameter  

 

 

A convergence proof of the PGDU method (with supporting 

empirical evidence) is provided in the Appendix. 

 

 

Special property of the objective function: 

 

The effect of varying illumination on the measured mixture 

signature is usually represented by scalar multiplication. The 

advantage of the suggested objective function φ  (which is a 

shape similarity measure) is its invariance to scalar 

multiplication as ( ) ( ), ,aφ φ=m Ef m Ef , for any scalar 

0.a ≠ Geometrically, the global maximum of φ , for a given 

unmixing problem, extends along a straight line in fraction 

space (Fig. 4), i.e., all the points on this line represent the 

same fraction combination multiplied by a different scalar. 

Thus, using φ  as an objective function for the unmixing 

process can significantly reduce the bias on the estimated 

fractions. Fig. 4 presents conceptually the advantage of using 

φ  as an objective function compared with a least squares 

solution under varying illumination. 

 

While the results obtained by VPGDU are influenced only 

slightly by the varying illumination effect, the biased results 

(due to the same effect) using SUnSAL are clearly evident 

(see Fig. 4). We further underscore empirically this advantage 

in Section V.    

 

 
 

Fig. 4. Illustration for three pixel solutions obtained by SUnSAL and VPGDU 

under varying illumination effect; shaded triangle 1(ℓ  positive simplex) 

represents the feasible region for solution in 
3
ℝ , and each dashed-dotted line 

( )1 2 3, ,π π π  represents the optimum line of the objective function for a pixel 

in question; green stars represent the true fraction values, and red stars and 

blue circles represent their SUnSAL and VPGDU estimates, respectively.  

 

D. Code vectorization for speedup  

 

A main drawback of standard gradient descent optimization 

is its typical slow convergence. Projected gradient descent 

performs faster since the solution is kept inside the feasible 

region during the entire process. However, the running time of 

our proposed projected gradient descent unmixing (PGDU) is 

still on the same order of FCLSU and GBM, which is 

considerably higher than that of SUnSAL and CLSUnSAL. 

We ran the procedures on 19 synthetic datasets of 200,000 

mixed pixels, where each pixel in a given dataset contains (a 

subset of) 2, 3, …, 20 EMs. This was repeated 10 times (for 

each dataset). 

Fig. 5 shows the median run-times per-pixel obtained 

running Matlab R2012b on a Microsoft 64-bit Windows 8 

operating system with 32GB of RAM. 

 

 
 

Fig. 5. Median run-times per-pixel (over 10 simulations) for FCLSU, GBM, 

SUnSAL, CLSUnSAL, and PGDU algorithms applied to 200,000 mixed 

pixels as a function of number of EMs. 
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Using the basic form of the projected gradient descent 

method, the running time rapidly increases as the number of 

EMs exceeds five. The process applied (to the entire image) 

iterates over the image rows and columns, until a pre-defined 

convergence criterion is met.   

Pixel-wise algorithms as FCLSU, GBM, and PGDU suffer 

from a high computational cost and could prove impractical 

when applied to very large images. On the other hand, 

SUnSAL and CLSUnSAL each solve a single optimization 

problem with respect to the entire image; this coupled with 

efficient optimization considerably reduces their run-times. An 

efficient computation of our projected gradient descent 

method should exploit the analytical expression of the gradient 

and the step size, as well as the method's simple mathematical 

form, which does not involve a complex operation such as 

matrix inversion. Thus, the new module is adaptable to code 

vectorization, which compresses the entire process into a 

single loop of converging iterations; a new fraction vector is 

calculated in each iteration for all of the image pixels 

simultaneously by using the vectorized form of (18) and (29).  

In addition to the gained speedup of the process, the 

suggested vectorized code has the advantage of applying an 

independent optimization problem per pixel in the image 

exactly as the pixelwise algorithm. This advantage can be very 

useful in cases where different constraints are applied on the 

different pixels, what is not over methods that apply a single 

large optimization problem.     

We present below some matrix operations to be used for 

this mechanism: 

 

Let [1,1,...,1]
1

T

l
=

×
1 and let , l s×∈U V R be the matrices 

 

1,1 1,2 1,

2,1 2,2

,1 ,

.

. .

. . . .

. .

s

l l s

u u u

u u

u u

 
 
 =
 
 
  

U     and    

1,1 1,2 1,

2,1 2,2

,1 ,

.

. .

. . . .

. .

s

l l s

v v v

v v

v v

 
 
 =
 
 
  

V  

 

The Hadamard (entry-wise) product is defined as: 

 

 

 

1,1 1,1 1,2 1,2 1, 1,

2,1 2,1 2,2 2,2

,1 ,1 , ,

.

. .

. . . .

. .

s s

l l l s l s

u v u v u v

u v u v

u v u v

 
 
 =
 
 
  

U V�   (30) 

 

 

We now present the following set of array operations for 

vectorizing the code: 

 

Operation 1: Array multiplication ( ).∗ , the same as the 

Hadamard product. 

 

Operation 2: Array right division ( ). / , that is, 

 

1,1 1,2 1,

1,1 1,2 1,

2,1 2,2

2,1 2,2

,1 ,

,1 ,

.

. .
. /

. . . .

. .

s

s

l l s

l l s

u u u

v v v

u u

v v

u u

v v

 
 
 
 
 

=  
 
 
 
 
  

U V  

 

 Operation 3: Array power ( ). ^ , that is, 

 

1,1 1,2 1,

2,1 2,2

,1 ,

.

. .
. ^

. . . .

. .

q q q
s

q q

q q
l l s

u u u

u u
q

u u

 
 
 

=  
 
 
 

U  

 

Creating a row vector containing the sums of matrix 

columns can be simply done as 

 

 ,1 ,2 ,

1 1 1

, , ,
l l l

i i i s

i i i

T
u u u

= = =

 
=  
 
∑ ∑ ∑1 U …   (31) 

 

Converting a row vector into a matrix with the same vector 

duplicated along the rows: Letting [ ]1 2, ,........ sw w w=w , we 

have 

 [ ]

1 2

1 2

1 2

1 2

, , ,1

, , ,1

. , , , . .

. . .

1 , , ,

s

s

s

s

w w w

w w w

w w w

w w w

  
  
  
  = =
  
  
     

1w

…

…

…

…

  (32) 

 

Using the above operations enables code vectorization of 

the gradient descent unmixing process. We are given a 

spectral image (with r  rows, c  columns, and λ  bands), a 

matrix of L  EMs, and a fraction image (with r  rows, c  

columns and L  bands) obtained by the initial estimation 

process. A matrix M  (with λ  rows and r c⋅  columns) can 

then be created by permuting the spectral image as shown in 

Fig. 6. The same operation is applied to the estimated fraction 

image to create the matrix F̂  (with L  rows and r c⋅  

columns); each column in M  and F̂  contains the spectral 

signature and estimated fraction vector of the corresponding 

pixel in the spectral image and the fraction image, 

respectively. 
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Fig. 6. Spectral cube permutation; each pixel in the 3D image is converted to a 

column in a 2D matrix; code vectorization is applied based on matrix 

operations. 

Having defined ,M  ,E  and ˆ ,F  we now implement the 

vectorization code of the projected gradient descent unmixing 

(VPGDU). Specifically, the gradient ( )ˆkφ∇ f  and the optimal 

step size kγ  can be simultaneously calculated for all pixels by 

the following operations: 

 1
T∇ = E M   (33) 

 ( ) ( )( )2
ˆ ˆT k k∇ = ⋅1 1 EF EF�   (34) 

 3
ˆT k∇ = E EF   (35) 

 ( )( )4
ˆT k∇ = ⋅1 1 M EF�   (36) 

 ( ) 0.5
5 . ^T∇ = ⋅1 1 M M�   (37) 

 1 2 3 4n∇ = ∇ ∇ − ∇ ∇� �   (38) 

 ( )1.5
5 2 .^d∇ = ∇ ∇�   (39) 

 

Thus, the gradient for each pixel in the image is given by: 

 

 ˆ . /k n d

entire image

∇ = ∇ ∇
F

  (40) 

To obtain the step size, we compute the following:  

 

 ( )( )1
ˆT k= 1 M EF�Γ   (41) 

 ( )( )ˆ2
ˆ

k
T T k= ∇

F
1 E EF�Γ   (42) 

 ( )( )3
ˆ ˆT k T k= 1 F E EF�Γ   (43) 

 ( )( )ˆ4 k
T T= ∇ ∇

F
1 E E�Γ   (44) 

 ( )( )ˆ5 k
T T= ∇

F
1 E M�Γ   (45) 

 2 1 5 3n = −� �Γ Γ Γ Γ Γ   (46) 

 5 2 4 1d = −� �Γ Γ Γ Γ Γ   (47) 

 

And the step size for each pixel in the image is given by 

 ( ). /k n d= 1Γ Γ Γ   (48) 

The iterative step at each pixel is calculated simultaneously 

by   

 

 ( )1
ˆ

ˆ ˆ
k

k k
k

+
Ω= + ∇

F
F P F �Γ  (49) 

 

We used the vectorized code provided in [49] for the 

projection operator ΩP .   

Testing the running time of VPGDU relatively to FCLSU, 

GBM, SUnSAL, and CLSUnSAL reveals a significant 

improvement. The results are shown in Fig. 7.  

 

 
 

Fig. 7. Median run-times per-pixel (over 10 simulations) for FCLSU, GBM, 

SUnSAL, CLSUnSAL, and VPGDU algorithms applied to 200,000 mixed 

pixels as a function of number of EMs (FCLSU and GBM are not vectorized). 

 

 

The vectorized code of the PGDU algorithm is described by 

the pseudo-code below. 

 

Algorithm 2: Vectorized Code Projected Gradient Descent Unmixing 

(VPGDU)  

Inputs: ( )Lλ ×E : Matrix of set of EMs 

 ( )r c λ× ×H : Cube of spectral image to be unmixed 

 
0ˆ ( )r c L× ×F : Cube of initial estimate of fraction image   

1)  Create M and F̂  by permuting H  and 0
F̂ , respectively;   

2)  while ( )( ) ( )( )ˆ ˆmax
k k t

threshold
−− > ∨ ≠ ∅F F M  

3)          Compute ˆ k∇
F

  and  kΓ    by (33)—(40) and (41)—(48), respectively; 

4)          Set  ( )1
ˆ

ˆ ˆ
k

k k
k

+
Ω= + ∇

F
F P F �Γ ; 

5)          Remove from M  all pixels for which process    converged;  

6)  end 

 

* The term ˆ ˆk k t−−F F  indicates the amount of change in fraction values 

during the last t iterations, where t is a predefined parameter  

 

 

 

The results clearly reveal the superior efficiency of 

SUnSAL and CLSUnSAL, whose run-times are almost 
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invariant with respect to the number of EMs used in the 

unmixing. Thus, these methods can be considered as a 

reference of efficiency with respect to newly proposed 

methods. Although the run-time of VPGDU is considerably 

faster than (the original PGDU and) the standard, off-the-shelf 

FCLSU, it is about an order of magnitude slower than 

SUnSAL and CLSUnSAL. VPGDU, as well as SUnSAL and 

CLSUnSAL use parallel processing to solve for all the image 

pixels. However, whereas the latter solve a single optimization 

problem applied to the entire image, VPGDU solves for each 

pixel an independent optimization problem, running 

concurrently on all pixels. 

 

 

 

V. EXPERIMENTAL RESULTS  

 

A comparative performance evaluation of VPGDU was 

carried out relatively to the standard FCLSU, GBM [25], and 

state-of-the-art SUnSAL [11]1 and CLSUnSAL [11]2. We 

experimented with the following datasets:  

Set A: Contains 20 spectral signatures (with 224 bands) 

selected from the USGS digital spectral library. 

 

Set B: Contains 20 spectral signatures extracted 

automatically, using the fast VCA algorithm [55], from a 

250 190×  sub-image (containing 188  out of 224  bands after 

removal of noisy bands); the image was selected from the 

well-known Cuprite reflectance image acquired by the 

AVIRIS sensor in 1997 (Fig. 13). The data for creating both 

sets A and B are available online from [55]. 

 

Set C: Contains a real 72-band AISA image of size 

234 284×  acquired over Hadera, Israel in 2006 (Fig. 14) and 

14 EMs derived manually from the image itself. 

 

Set D: Contains the Cuprite real reflectance image and 12 

EMs extracted automatically from the image itself, using the 

VCA algorithm [55]. 

 

In addition to experimenting with the real image, four 

different synthetic tests were created using data sets A and B; 

see Fig. 8. 

 

 

1) Experiment 1 

A set of 10,000 synthetic mixed pixels was generated using 

the 20 EMs of Set A. The fractions in each simulated pixel 

follow a Dirichlet distribution [55] and fulfill the ANC and 

ASC constraints. An additive white Gaussian noise was added 

 
1with 'lambda' = 1, 'POSITIVITY' = yes, 'ADDONE' = yes, and 

'AL_ITERS' = 1000  
2 with 'POSITIVITY'=yes, 'ADDONE'=yes, 'lambda'= 3E-4, 

'AL_ITERS'=2000, 'TOL'=1E-8) 

to the mixed spectra with SNRs of 30dB and 20dB. The well-

known root mean square error (RMSE) [56] for each EM was 

calculated as follows: 

 

 ( )
2

, ,

1

1 ˆ ,
N

i i j i j

j

RMSE f f
N =

= −∑   (50) 

 

where i denotes the thi EM, N =10,000 is the number of pixels 

in the set, and ,i jf  and ,
ˆ
i jf  are the true and estimated 

fractions, respectively, of the thi  EM in the
thj pixel. The 

experiment was applied to both Sets A and B; the results are 

presented in Tables I and II. 

 

 

2) Experiment 2 

This experiment is similar to the previous one, except that 

each generated spectral mixture was multiplied by a random 

number between 0.7 and 1 to simulate a varying illumination 

effect. We evaluated again the unmixing performance, for 

each EM, by the RMSE expression in (50). The results are 

presented in Tables III and IV. 

 

 

 

 
 

Fig. 8.  Overview of comparative experimental study. 
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TABLE I 

RMSE values (per each EM from Set A) for FCLSU, GBM, SUnSAL, CLSUnSAL, and VPGDU 

EM# 
SNR=20dB SNR=30dB 

FCLSU GBM SUnSAL CLSUnSAL VPGDU FCLSU GBM SUnSAL CLSUnSAL VPGDU 

1 0.0411 0.0446 0.0411 0.0411 0.0425 0.0193 0.0192 0.0194 0.0193 0.0177 

2 0.0356 0.0362 0.0356 0.0356 0.0353 0.0165 0.0167 0.0165 0.0165 0.0147 

3 0.0357 0.0364 0.0357 0.0357 0.0458 0.0214 0.0214 0.0215 0.0214 0.0219 

4 0.0355 0.0356 0.0355 0.0355 0.0469 0.0192 0.0187 0.0192 0.0192 0.0197 

5 0.0307 0.0306 0.0307 0.0307 0.0329 0.0164 0.0160 0.0164 0.0164 0.0143 

6 0.0331 0.0349 0.0331 0.0331 0.0348 0.0157 0.0159 0.0157 0.0157 0.0143 

7 0.0310 0.0311 0.0310 0.0310 0.0599 0.0186 0.0183 0.0186 0.0186 0.0241 

8 0.0480 0.0484 0.0[]0 0.0480 0.0543 0.0257 0.0255 0.0258 0.0257 0.0239 

9 0.0195 0.0191 0.0195 0.0195 0.0190 0.0100 0.0095 0.0100 0.0100 0.0081 

10 0.0307 0.0310 0.0307 0.0307 0.0334 0.0152 0.0152 0.0152 0.0152 0.0138 

11 0.0344 0.0362 0.0344 0.0344 0.0342 0.0168 0.0167 0.0169 0.0168 0.0157 

12 0.0474 0.0480 0.0474 0.0474 0.0539 0.0279 0.0275 0.0280 0.0279 0.0261 

13 0.0610 0.0605 0.0610 0.0610 0.0711 0.0319 0.0313 0.0320 0.0319 0.0338 

14 0.0482 0.0529 0.0482 0.0482 0.0773 0.0398 0.0440 0.0399 0.0398 0.0429 

15 0.0342 0.0348 0.0342 0.0342 0.0453 0.0193 0.0194 0.0194 0.0193 0.0201 

16 0.0293 0.0306 0.0293 0.0293 0.0368 0.0172 0.0174 0.0173 0.0172 0.0174 

17 0.0269 0.0271 0.0269 0.0269 0.0268 0.0121 0.0122 0.0121 0.0121 0.0105 

18 0.0279 0.0282 0.0279 0.0279 0.0304 0.0132 0.0131 0.0132 0.0132 0.0141 

19 0.0319 0.0338 0.0319 0.0319 0.0344 0.0160 0.0162 0.0161 0.0160 0.0144 

20 0.0355 0.0359 0.0355 0.0355 0.0366 0.0164 0.0167 0.0164 0.0164 0.0168 

mean 0.0359 0.0368 0.0359 0.0359 0.0426 0.0194 0.0195 0.0195 0.0194 0.0192 

 

TABLE II 

RMSE values (per each EM from Set B) for FCLSU, GBM, SUnSAL, CLSUnSAL, and VPGDU 

EM# 
SNR=20dB SNR=30dB 

FCLSU GBM SUnSAL CLSUnSAL VPGDU FCLSU GBM SUnSAL CLSUnSAL VPGDU 

1 0.0566 0.0627 0.0566 0.0566 0.0593 0.0276 0.0284 0.0277 0.0277 0.0268 

2 0.0904 0.0921 0.0906 0.0904 0.1025 0.0447 0.0450 0.0453 0.0447 0.0477 

3 0.0263 0.0274 0.0263 0.0263 0.0395 0.0133 0.0134 0.0133 0.0133 0.0170 

4 0.0529 0.0606 0.0529 0.0529 0.0559 0.0256 0.0262 0.0256 0.0256 0.0247 

5 0.0549 0.0563 0.0549 0.0549 0.0638 0.0242 0.0243 0.0242 0.0242 0.0251 

6 0.0494 0.0523 0.0494 0.0494 0.0627 0.0222 0.0222 0.0223 0.0222 0.0262 

7 0.0746 0.0754 0.0746 0.0746 0.0743 0.0336 0.0338 0.0336 0.0336 0.0333 

8 0.0760 0.0803 0.0760 0.0760 0.0783 0.0344 0.0348 0.0345 0.0344 0.0342 

9 0.0938 0.0947 0.0937 0.0938 0.0967 0.0487 0.0486 0.0489 0.0487 0.0471 

10 0.0642 0.0664 0.0642 0.0642 0.0708 0.0277 0.0280 0.0277 0.0277 0.0284 

11 0.0906 0.1041 0.0906 0.0906 0.0973 0.0472 0.0493 0.0476 0.0472 0.0488 

12 0.0833 0.0840 0.0833 0.0833 0.0914 0.0372 0.0372 0.0372 0.0372 0.0392 

13 0.0909 0.0938 0.0909 0.0909 0.1060 0.0481 0.0482 0.0483 0.0482 0.0497 

14 0.1079 0.1096 0.1082 0.1079 0.1189 0.0680 0.0696 0.0690 0.0681 0.0612 

15 0.0904 0.0917 0.0903 0.0904 0.0926 0.0474 0.0472 0.0477 0.0474 0.0475 

16 0.1417 0.1419 0.1409 0.1416 0.1358 0.0894 0.0886 0.0958 0.0894 0.0781 

17 0.1213 0.1264 0.1209 0.1213 0.1294 0.0656 0.0656 0.0665 0.0656 0.0650 

18 0.0524 0.0664 0.0523 0.0524 0.0657 0.0274 0.0291 0.0275 0.0274 0.0297 

19 0.1449 0.1470 0.1444 0.1449 0.1443 0.0876 0.0889 0.0994 0.0877 0.0875 

20 0.1364 0.1365 0.1360 0.1364 0.1384 0.0813 0.0813 0.0850 0.0815 0.0785 

mean 0.0849 0.0885 0.0849 0.0849 0.0912 0.0450 0.0455 0.0464 0.0451 0.0448 

.  
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TABLE III 

RMSE values (per each EM from Set A), under varying illumination effect, for FCLSU, GBM, SUnSAL, CLSUnSAL, and VPGDU 

EM# 
SNR=20dB SNR=30dB 

FCLSU GBM SUnSAL CLSUnSAL VPGDU FCLSU GBM SUnSAL CLSUnSAL VPGDU 

1 0.0775 0.0745 0.0775 0.0775 0.0413 0.0737 0.0675 0.0737 0.0737 0.0179 

2 0.0742 0.0741 0.0742 0.0742 0.0375 0.0692 0.0677 0.0692 0.0692 0.0146 

3 0.0892 0.0870 0.0890 0.0892 0.0452 0.0813 0.0777 0.0811 0.0813 0.0222 

4 0.0896 0.0868 0.0896 0.0896 0.0469 0.0841 0.0822 0.0841 0.0841 0.0211 

5 0.0835 0.0776 0.0835 0.0835 0.0329 0.0813 0.0754 0.0813 0.0813 0.0143 

6 0.0719 0.0725 0.0719 0.0719 0.0352 0.0679 0.0679 0.0679 0.0679 0.0138 

7 0.0905 0.0883 0.0905 0.0905 0.0592 0.0837 0.0821 0.0838 0.0837 0.0259 

8 0.1093 0.1093 0.1092 0.1093 0.0551 0.1023 0.1026 0.1022 0.1023 0.0243 

9 0.0572 0.0481 0.0571 0.0572 0.0205 0.0546 0.0471 0.0545 0.0546 0.0081 

10 0.0724 0.0710 0.0724 0.0724 0.0340 0.0680 0.0668 0.0680 0.0680 0.0132 

11 0.0671 0.0627 0.0671 0.0671 0.0354 0.0640 0.0579 0.0640 0.0640 0.0153 

12 0.1240 0.1200 0.1240 0.1240 0.0564 0.1206 0.1171 0.1206 0.1206 0.0265 

13 0.1229 0.1195 0.1229 0.1229 0.0715 0.1164 0.1151 0.1165 0.1164 0.0346 

14 0.2949 0.3224 0.2949 0.2949 0.0770 0.3042 0.3294 0.3040 0.3042 0.0431 

15 0.0947 0.0951 0.0947 0.0947 0.0458 0.0908 0.0912 0.0909 0.0908 0.0201 

16 0.0802 0.0804 0.0802 0.0802 0.0371 0.0741 0.0735 0.0742 0.0741 0.0174 

17 0.0663 0.0680 0.0663 0.0663 0.0279 0.0633 0.0646 0.0633 0.0633 0.0116 

18 0.0714 0.0696 0.0714 0.0714 0.0299 0.0689 0.0665 0.0689 0.0689 0.0147 

19 0.0741 0.0748 0.0741 0.0741 0.0344 0.0710 0.0706 0.0710 0.0710 0.0141 

20 0.0811 0.0791 0.0811 0.0811 0.0369 0.0763 0.0745 0.0763 0.0763 0.0146 

mean 0.0946 0.0940 0.0946 0.0946 0.0430 0.0908 0.0899 0.0908 0.0908 0.0194 

 
TABLE IV 

RMSE values (per each EM from Set B), under varying illumination effect, for FCLSU, GBM, SUnSAL, CLSUnSAL, and VPGDU 

EM# 
SNR=20dB SNR=30dB 

FCLSU GBM SUnSAL CLSUnSAL VPGDU FCLSU GBM SUnSAL CLSUnSAL VPGDU 

1 0.0851 0.0838 0.0851 0.0851 0.0596 0.0790 0.0744 0.0790 0.0790 0.0271 

2 0.1440 0.1416 0.1439 0.1440 0.1028 0.1373 0.1350 0.1373 0.1373 0.0485 

3 0.0609 0.0605 0.0609 0.0609 0.0396 0.0564 0.0561 0.0564 0.0564 0.0175 

4 0.0864 0.0841 0.0863 0.0864 0.0542 0.0801 0.0745 0.0801 0.0801 0.0240 

5 0.0988 0.0983 0.0988 0.0988 0.0634 0.0910 0.0908 0.0910 0.0910 0.0251 

6 0.0890 0.0881 0.0890 0.0890 0.0649 0.0767 0.0757 0.0767 0.0767 0.0263 

7 0.1113 0.1105 0.1112 0.1113 0.0775 0.0980 0.0975 0.0980 0.0980 0.0332 

8 0.1155 0.1109 0.1155 0.1155 0.0765 0.1056 0.0979 0.1056 0.1056 0.0345 

9 0.1388 0.1402 0.1388 0.1388 0.0987 0.1232 0.1213 0.1232 0.1232 0.0460 

10 0.1085 0.1074 0.1085 0.1085 0.0713 0.0997 0.0982 0.0997 0.0997 0.0282 

11 0.1066 0.1187 0.1066 0.1066 0.0975 0.0960 0.0921 0.0960 0.0960 0.0503 

12 0.1170 0.1162 0.1170 0.1170 0.0934 0.0988 0.0985 0.0988 0.0988 0.0401 

13 0.1428 0.1405 0.1428 0.1428 0.1065 0.1352 0.1324 0.1352 0.1352 0.0495 

14 0.4720 0.4748 0.4730 0.4720 0.1163 0.4763 0.4768 0.4772 0.4763 0.0622 

15 0.1452 0.1379 0.1452 0.1452 0.0947 0.1381 0.1291 0.1381 0.1381 0.0476 

16 0.2535 0.2517 0.2530 0.2535 0.1362 0.2473 0.2503 0.2462 0.2472 0.0798 

17 0.1619 0.1611 0.1618 0.1619 0.1290 0.1571 0.1562 0.1570 0.1571 0.0661 

18 0.0858 0.0898 0.0858 0.0858 0.0647 0.0771 0.0721 0.0771 0.0771 0.0312 

19 0.1745 0.1847 0.1721 0.1745 0.1445 0.1622 0.1682 0.1617 0.1621 0.0894 

20 0.1563 0.1561 0.1562 0.1563 0.1379 0.1545 0.1542 0.1546 0.1545 0.0796 

mean 0.1427 0.1429 0.1426 0.1427 0.0915 0.1345 0.1326 0.1345 0.1345 0.0453 
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The RMSE values (per EM) for all the methods seem 

correlative and appear to increase consistently as the SNR 

decreases to 20dB. All of the methods perform in a 

comparable manner; VPGDU is slightly more accurate for 

SNR=30dB. Also, note that the RMSE values of all the 

methods increase considerably when using the EMs of Set B. 

While the RMSE values for VPGDU remain roughly fixed, 

under the varying illumination, those obtained by FCLSU, 

GBM, SUnSAL, and CLSUnSAL increase significantly.  

 

 

3)  Experiment 3 

We generated 19 synthetic image sets, each containing 

10,000 mixed pixels. Each image is associated with a certain 

number of EMs from which the spectral mixture of each pixel 

is composed of. Specifically, the first image consists of pixels 

containing only two EMs, the second image consists of pixels 

containing three EMs, and so on; finally, the 19th image is 

composed of pixels containing all 20 EMs. The fractions in 

each simulated pixel follow a Dirichlet distribution and fulfill 

the ANC and ASC constraints. An additive white Gaussian 

noise was added to the mixed spectra with SNRs of 30dB and 

20dB. We evaluated the unmixing performance, for each 

synthetic image, by the following RMSE measure: 

 

 

 ( )
2

, ,

1 1

1 1 ˆ ,
N L

i j i j

j i

RMSE f f
N L= =

 
 = −
 
 

∑ ∑   (51) 

 

where N = 10,000 is the number of pixels in each synthetic 

image, L = 20 is the number of EMs, and ,i jf  and ,
ˆ
i jf  are 

the true and estimated fractions, respectively, of the thi  EM in 

the
thj pixel. Note that all 20 EMs are utilized during the 

unmixing, while taking into account the effect of non-

participating EMs [57]. The experiment was applied to Sets A 

and B and was repeated by decreasing the number of spectral 

bands from 224/188 to 112/94 to 45/40 (for A/B, 

respectively), while increasing, accordingly, the bandwidth 

from 10 nm  to 20 nm to 50 nm. Fig. 9 and Fig. 10 show the 

RMSE obtained for FCLSU, GBM, SUnSAL, CLSUnSAL, 

and VPGDU as a function of the actual number of 

participating EMs for Sets A and B. 

 

 

4) Experiment 4 

This experiment is similar to the previous one, except that 

each generated spectral mixture was multiplied by a random 

number between 0.7 and 1 to simulate a varying illumination 

effect. As before, we evaluated the unmixing performance, for 

each synthetic image, in terms of the RMSE expression in 

(51). Fig. 11 and Fig. 12 show the RMSE obtained for 

FCLSU, GBM, SUnSAL, CLSUnSAL, and VPGDU as a 

function of the actual number of participating EMs for the Sets 

A and B, respectively. 

 
 

Fig. 9. RMSE (using Set A) for FCLSU, GBM, SUnSAL, CLSUnSAL, and 

VPGDU vs. actual number of EMs at two SNR levels and three spectral 

resolutions (bandwidth: 10, 20, and 40 nm). 

 

 

 

 
 

Fig. 10. RMSE (using Set B) for FCLSU, GBM, SUnSAL, CLSUnSAL, and 

VPGDU vs. actual number of EMs at two SNR levels and three spectral 

resolutions (bandwidth: 10, 20, and 40 nm). 

 

 

 

 

The RMSE values for the five methods increase 

consistently as the SNR and the spectral resolution decrease. 

The results for all the methods are highly correlative. FCLSU, 

GBM, SUnSAL, and CLSUnSAL are slightly advantageous 

for SNR=20dB (especially for low spectral resolution). As in 

the previous experiments, the RMSE values for the five 

methods are considerably higher when using the spectra of Set 

B. This could be attributed mainly to the higher collinearity 

between the spectra of Set B (compared to the one between the 

spectra of Set A). 
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Fig. 11. RMSE (using Set A), under varying illumination, for FCLSU, GBM, 

SUnSAL, CLSUnSAL, and VPGDU vs. actual number of EMs at two SNR 

levels and three spectral resolutions (bandwidth: 10, 20, and 40 nm). 

 

 
 

Fig. 12. RMSE (using Set B), under varying illumination, for, FCLSU, GBM, 

SUnSAL, CLSUnSAL, and VPGDU vs. actual number of EMs at two SNR 

levels and three spectral resolutions (bandwidth: 10, 20, and 40 nm). 

 

As can be seen from Fig. 11 and, Fig. 12 the robustness of 

VPGDU to illumination change yields RMSE values that are 

fairly fixed. Note, on the other hand, the increased RMSE 

values obtained for FCLSU, GBM, SUnSAL, and 

CLSUnSAL. In other words, VPGDU significantly 

outperforms these methods under varying illumination. 

 

 

 

 

 

 

 

 

5) Experiment 5 (using real data) 

FCLSU, GBM, SUnSAL, CLSUnSAL, and VPGDU were 

applied to the real Cuprite image (Fig. 13), taking into account 

12 EMs extracted from it automatically via VCA and to the 

real AISA image (Fig. 14), taking into consideration 12 of the 

14 EMs selected from it manually. 

 
 

 
 

Fig. 13. RGB composite (left) and reflectance spectra (right) of the 12 EMs 

automatically extracted from the Cuprite image using VCA. 

 

 
 
Fig. 14. RGB composite (left) and reflectance spectra (right) of the 14 EMs 

selected from the 2006 AISA image, containing 4 vegetation types, 4 soil/rock 

types, 3 kinds of pavement, and 3 roof types. 

 

 

Fig. 15 and Fig. 16, and Fig. 17 and Fig. 18 below show the 

estimated fraction maps for all EMs obtained by FCLSU, 

SUnSAL, and VPGDU for both the AISA and Cuprite images, 

respectively. (These results are comparable to those obtained 

by GBM and CLSUnSAL, which are available from our 

supplementary material.)   
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Fig. 15. Abundance fraction images for EMs 1, 2, 3, 4, 5, and 6 as estimated 

by FCLSU, SUnSAL, and VPGDU applied to AISA image. 

 

 
Fig. 16. Abundance fraction images for EMs 7, 8, 9, 10, 11, and 12 as 

estimated by FCLSU, SUnSAL, and VPGDU applied to AISA image. 

 
Fig. 17. Abundance fraction images for EMs 1, 2, 3, 4, 5, and 6 as estimated 

by FCLSU, SUnSAL, and VPGDU applied to Cuprite image 

 
Fig. 18. Abundance fraction images for EMs 6, 7, 8, 9, 10, and 12 as estimated 

by FCLSU, SUnSAL, and VPGDU applied to Cuprite image. 
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As can be observed, the results obtained by FCLSU and 

SUnSAL are fairly close; also, they largely agree with those 

obtained by VPGDU for both images, modulo some 

differences in a few EM fractions. For example, in the AISA 

image, FCLSU and SUnSAL tend to overestimate the 

fractions of the second Asphalt type in areas of dark soil, as 

can be noticed in the fraction maps of EM #2 (Fig. 15 (d), (e), 

and (f)). On the other hand, VPGDU overestimates the 

fractions of Concrete, especially along the main road; see the 

fraction maps of EM #11 (Fig. 16 (m), (n), and (o)). The 

results obtained by all the methods for the Cuprite image are 

even more correlated, except for minor differences in EM #1 

and EM #3 (Fig. 17 (a), (b), and (c) and (g), (h), and (i)) and a 

difference in EM #9 (Fig. 18 (g), (h), and lower-left corner of 

(i)). 

     

VI. CONCLUSION AND FUTURE WORK  

 

In this study, we presented a novel methodology for a fully 

constrained spectral unmixing, the vectorized code projected 

gradient descent unmixing (VPGDU). The newly proposed 

scheme performs iterative search in EM fraction space, based 

on analytical projected gradient descent optimization with 

respect to a variant of the SAM similarity measure as an 

objective function. The detailed derivation determines also 

analytically the optimal step size in each iteration and employs 

a projection onto a simplex to fulfill the required constraints 

imposed on the fractions. The entire scheme was implemented 

using code vectorization, which is basically a special form of 

parallel computing. In particular, we showed how to "fold" the 

computational process (applied to an entire image) into a 

single loop of matrix operations. This results in a considerably 

more efficient performance of the fully constrained spectral 

unmixing proposed. 

The methodology presented is capable of applying the 

unmixing process to a (relatively) large number of EMs, 

thereby taking advantage of the numerous amounts of 

available hyperspectral imagery.  

A comprehensive assessment of the proposed scheme was 

done relatively to FCLSU, GBM, and the fast state-of-the-art 

SUnSAL and CLSUnSAL methods using simulated and real 

data, including the well-known Cuprite image, an AISA 

spectral image, and EM signatures extracted 

automatically/manually from these real images or selected 

from a spectral library. The experimental results indicate that 

the fractions obtained by the new methodology are in good 

agreement with those obtained by FCLSU, GBM, SUnSAL, 

and CLSUnSAL for all data sets tested, especially in the case 

of SNR = 30dB. Moreover, the unmixing performance, under 

varying illumination, is greatly enhanced due to the inherent 

advantage of the SAM-based objective function used by our 

VPGDU scheme.  

The suggested framework can be easily adapted to other 

objective functions, especially if they are differentiable with 

respect to the fraction vector, so that the gradient and the step 

size can be analytically formulated. Otherwise, the gradient 

and step size should be calculated numerically, but the running 

time is likely to increase, of course. Also, the VPGDU 

framework could be easily modified to handle any linear 

constrains that might be imposed on the fractions. For 

example, we show in [58], [59] how to determine first a subset 

of EMs that are actually present in each pixel using novel 

spatial-spectral preprocessing; VPGDU is then applied with 

predefined fraction upper bounds of 0 to EMs non-present in a 

given pixel. In summary, the algorithmic framework is rather 

modular and its components are easy to understand and 

implement. 

As part of future research, it would also be of interest to 

reduce further the run-time (beyond that obtained by code 

vectorization). This could be done, for example, by applying 

VPGDU simultaneously to a number of image sub-regions via 

parallel multi-core computing. In an attempt to improve the 

rate of convergence, it would also be of interest to apply, for 

example, the conjugate gradient optimization to the objective 

function presented and compare the accuracy and run-time 

obtained to those of VPGDU. Finally, one could investigate 

the influence of initialization on the unmixing performance.   

 

 

APPENDIX 

CONVERGENCE OF PROJECTED GRADIENT DESCENT UNMIXING 

(PGDU)  

 

We provide here a convergence proof of our PGDU 

method, which draws on previous works on the convergence 

of projected gradient descent (PGD). The optimization in 

question is presented usually as a minimization problem. 

Thus, to keep this discussion consistent with the relevant 

literature regarding gradient descent optimization, we will 

minimize ( )φ− f , instead of maximizing ( )φ f  according to 

Eq. (16), as ( ){ } ( )max min{ }φ φ= −
ff

f f . That is, we will 

consider the minimization problem  

 

 ( )min{ | ,
f

Lφ− ∈ Ωf f  (52) 

 

where ( )φ− f  is a generalized convex function [60], which is 

continuously differentiable on the convex set L LΩ ⊆ ℝ . 

The point f
L∗ ∈Ω  is called a stationary point, i.e., an 

optimal solution of the problem in (52), if  

 

  ( )( ) ( ), 0, ,
Lφ ∗ ∗∇ − − ≥ ∀ ∈ Ωf f f f  (53) 

 

where ,⋅ ⋅  denotes an inner product, and the gradient is  

( )( ) ( )φ φ∗ ∗∇ − = −∇f f . 

Recall that the iterative update of the projected gradient 
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descent to minimize ( )φ− f  is  

 

 ( )( )1ˆ ˆ ˆP
k k k

kγ φ+
Ω= − ∇f f f . (54) 

Thus, we need to show that  

 

 ˆlim k L

k

∗

→∞
= ∈ Ωf f . (55) 

 

Due to space limitation, we only provide a proof of 

convexity of the objective function ( )φ− f  and of the set 
LΩ . 

We then refer to relevant works, which provide a complete 

convergence proof of PGD under similar conditions to those 

of our PGDU algorithm.      

We first prove the concavity of ( )φ f , i.e., the convexity of 

( )φ− f .  

 

Definition 1: 

A function ( )g x  is strictly quasi-concave, if for all 1 2x x≠  

and 0 1θ< < , the following holds:    

 

 ( ) ( ) ( )1 2 1 2(1 ) min{ , }g x x g x g xθ θ− + >  (56) 

 

Proposition 1: 

The function ( )φ f  is strictly quasi-concave, i.e., for all 

1 2≠f f and 0 1θ< < , we have 

 

 ( ) ( ) ( )1 2 1 2(1 ) min{ , }.φ θ θ φ φ− + >f f f f  (57) 

 

Proof: 

The value of ( )iφ f  is the cosine of the angle between the 

vectors ( )1λ ×m  and ( )( )( 1)i L Lλ × ×Ef  in 0
λ
≥ℝ  Euclidean 

space (Fig. 19). Let v
⌢

 denote the normalized vector v , i.e.,  

=
v

v
v

⌢
. Thus, 

 ( ) �T
iiφ =f m Ef

⌢
 (58) 

 

where =
m

m
m

⌢
 and � i

i

i

=
Ef

Ef
Ef

 are the normalized vectors 

of m  and iEf , respectively. Accordingly, ( )iφ f  is the length 

of the arc (on a great circle), which connects these two vectors 

on the surface of the 2ℓ  unit sphere (in cosine units). Assume 

that ( ) � ( ) ( ){ }11 1 2min ,
Tφ φ φ= =f m Ef f f
⌢

 and let 

1 2(1 )θ θ θ= − +f f f . We need to show the following strict 

inequality: 

 

 ( ) � � ( )1 1
T T

θθφ φ= > =f m Ef m Ef f
⌢ ⌢

. (59) 

Let 1,2π
(Fig. 19) denote the line segment joining 1Ef

 and 

2Ef . The point θEf  must lie on 1,2π , and can thus be 

expressed as 

 

 ( )1 2 1 2(1 ) (1 ) .θ θ θ θ θ= − + = − +Ef E f f Ef Ef  (60) 

 

Analogously, if we let 1,2π  (Fig. 19) denote the line segment 

joining �1Ef  and � 2Ef , then the corresponding point of θEf , 

denoted by θEf , must lie on 1,2π , i.e., it can be expressed as: 

 

 � � � � �( )1 2 1 2 1(1 ) ,θ δθ δθ δθ= − + = + −Ef Ef Ef Ef Ef Ef  (61) 

 

where the parameter 0δ >  depends on the angle between the 

lines 1,2π  and 1,2π . (According to the Intercept Theorem, if 

1,2 1,2π π� ,  then  1δ = .) 

 

Definition 2: 

Let ( ),ω = −x y x y  denote the Euclidean distance metric 

in 0
λ
≥ℝ . Then the open unit ball 1( )B o  and the unit sphere 

1( )S o  centered at the origin point o  are defined, respectively, 

as  

( ){ }1 0( ) , 1B λ ω≥= ∈ <o x x oℝ  

and 

( ){ }1 0( ) , 1S λ ω≥= ∈ =o x x oℝ .  

 

In practice, 1( )S o  is the convex hull of 1( )B o ; however, 

1( )S o  itself is a non-convex set. Accordingly, 

� �{ }1 2 1, ( )S∈Ef Ef o  but 1( )Sθ ∉Ef o , and 1( )Bθ ∈Ef o  while 

�
1( )S

θ
θ

θ

= ∈
Ef

Ef o
Ef

. Therefore, 	 1θ θ≤ =Ef Ef  and thus 

�
θ θη=Ef Ef , where 1 η< . Next, we write  

 

 

( ) �

� �( )
� � �( )( )
� � �( )

1 2

1 2 1

1 2 1

(1 )

T T

T

T

T T T

θ θθφ η

η δθ δθ

η δθ

η ηδθ

= =

= − +

= + −

= + −

f m Ef m Ef

m Ef Ef

m Ef Ef Ef

m Ef m Ef m Ef

⌢ ⌢

⌢

⌢

⌢ ⌢ ⌢

 (62) 

 

Assigning ( ) �T
iiφ =f m Ef

⌢
, we have 

 

 ( ) ( ) ( ) ( )( )1 2 1 .θφ ηφ ηδθ φ φ= + −f f f f  (63) 

 

Recall that ( ) ( )1 2φ φ<f f  and that η , δ , and θ  are all 

positive. Thus,  ( ) ( )( )2 10 ηδθ φ φ< −f f  and 
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 ( ) ( )1 .θφ ηφ>f f  (64) 

 

Finally, since 1 η<  we have  

 

 ( ) ( ) ( ) ( ) ( )1 1 1 2min{ , },θφ ηφ φ φ φ= > =f f f f f  (65) 

 

i.e., ( )iφ f  is strictly quasi-concave and ( )φ− f  is strictly 

quasi-convex. QED. 

 

We now prove that the set 
LΩ  is convex.  

 

Proposition 2: Given  

{ }1 2

1

, : 0 1 and 1,  1,2,
L

L j j
i i

j

i
=

∈ Ω ≤ ≤ = =∑f f f f  

The following holds: 

( ) 1 2: 1L
θ θ θ θ∈ Ω = − +f f f f  with 0 1θ≤ ≤ . 

 

Proof:  

We may assume, without loss of generality, that 

{ }1 1 2min ,
j j j=f f f . Thus, we can write 2 1

j j δ= +f f  and 

( ) ( )1 1 11
j j j j

θ θ θ δ θδ= − + + = +f f f f  with 0 δ≤ . Recall that 

1
L∈Ωf , and accordingly, 10

j≤ f . Since 0 θδ≤ , it must hold 

that 1 10
j j j

θ θδ≤ ≤ = +f f f . Analogously, we can easily show 

that 1 1
j ≤f , i.e., 0 1

j
θ≤ ≤f . 

 

To prove the sum-to-one property of  θf  we start by writing 
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 (66) 

Recalling that { }1 2, L∈Ωf f , i.e., 1

1

1
L

i

i=

=∑f  and 2

1

1
L

i

i=

=∑ f , we 

may write 

 

 ( ) ( )1 2

1 1 1

1 1 1 1 1
L L L

i i i

i i i

θ θ θ θ θ
= = =

= − + = − + =∑ ∑ ∑f f f . (67) 

 

We showed that 0 1
j

θ≤ ≤f  and 
1

1
L

i

i

θ
=

=∑ f , and accordingly, 

( ) 1 2: 1L
θ θ θ θ∈Ω = − +f f f f , i.e., the set 

LΩ  is convex. QED. 

The convergence of gradient descent for unconstrained 

minimization of a quasi-convex function was addressed in 

[61]. The fact that ( )φ− f  is strictly quasi-convex ensures that 

every local minimum of the function is also a global minimum 

[62]. Accordingly, in view of the nature of gradient descent 

optimization, which is based on first order differentiations 

only, the difference between a convex and a strictly quasi-

convex objective function is negligible.  

The convergence of PGD has been addressed in several 

works, considering both the type of the objective function and 

the choice of a step size. As can be expected, in general, the 

convergence is highly affected by the step size. Specifically, to 

guarantee convergence of the entire process, the chosen step 

size must satisfy a sufficient reduction at each iteration of the 

objective function in question. The analytical derivation in our 

case of an optimal step size (i.e., a step size that guarantees a 

maximal reduction in the objective function of Eq. (52)), 

bodes well with the above premise. A complete convergence 

proof of PGD for a convex objective function and a step size 

determined by the Armijo rule is provided in [62]. A 

convergence analysis of PGD for a generalized convex 

function (i.e., a quasi-convex/pseudo-convex function) is 

given in [63]—[65]. 

Finally, a comprehensive discussion of PGD with an exact 

line search (as in the PGDU case) and a detailed proof of 

convergence are given in [64], [65]. 

 

 
 

Fig. 19. Geometric interpretation of objective function and relations between 

different associated vectors. 

 

 

To gain more insight to the convergence of PGDU, we 

created 1000 simulated mixtures with the same true simulated 

fractions using 20 EMs. An additive white noise was added 

separately to each of the mixtures. The estimation error of the 

estimated fraction vector, f̂ , with respect to the true fraction 

vector, ,∗
f defined as ˆ ∗−f f , was computed for each 

iteration of the process. Fig. 20 depicts the estimation error 

and the objective function value as a function of the iteration 

number for the best, worst, and median cases (i.e., simulated 

pixels with the smallest, largest, and median error, 

respectively). 
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Fig. 20. Illustration of PGDU convergence: (a) Estimation error and (b) 

objective function vs. iteration number (of best, worst, and median cases), 

using 1000 simulated mixtures of 20 EMs. 

 

Both the theoretical analysis and the empirical evidence 

provide a good indication as to the convergence of PGDU.  
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