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A level-set based image assimilation method:1

applications for predicting the movement of oil2

spills3

Long Li, François-Xavier Le Dimet, Jianwei Ma, and Arthur Vidard4

Abstract5

In this paper, we present a novel method for assimilating geometric information from observed images. Image assimilation6

technology fully utilizes structural information from the dynamics of the images to retrieve the state of a system, and thus to better7

predict its evolution. Additionally, the level set method, which describes the evolution of the geometry shapes of a given system, is8

taken into account to include the dynamics of the images. This method differs from previous methods of image assimilation in that9

it takes advantage of Lagrangian information in an Eulerian numerical framework. In our numerical experiments, we apply this10

technique of image assimilation based on the level set method to an oil pollution problem, to calibrate the initial contours of oil11

pollutants and to identify diffusion coefficients of the model. Topological merging and breaking of oil slicks are well defined and12

easily performed by this proposed approach. The results show good agreement between simulated values and observed images.13

Index Terms14

Image assimilation, Structural information, Level set method, Oil spills.15

I. INTRODUCTION16

OCEANIC oil spills can have a deep impact on both the biology of the ocean as well as the environment on nearby shores.17

Because of this, it is extremely important to be able to predict the evolution of an oil leak not only to optimize rescue18

operations both on the sea and on the ground but also to efficiently guide vessels pumping oil on the ocean’s surface. Currently,19

the movement and evolutions of these oil slicks are simulated by many disparate mathematical models. These models vary in20

their characteristics, for instance some of them makes use of an Eulerian method while others uses a Lagrangian approach to21

solve the advection-diffusion equation.22

Although the equations governing geophysical fluids are well known, the use of a model to predict oil spill movement requires23

knowledge of the spill’s initial condition, boundary condition and its own model parameters. Without an accurate knowledge24

of these data, the model cannot provide quality forecast, because these systems are highly sensitive to small perturbations.25

Therefore it presents an important scientific challenge. Indeed to generate accurate predictions, one has to acquire several distinct26

data sets, heterogeneous in their nature, quality and density. Variational data assimilation (VDA) is a class of techniques that27

combines all available heterogeneous information (i.e., mathematical models based on physical laws, observations and a priori28

knowledge) in an optimality system to retrieve the state of a system [1], [2]. VDA techniques are widely used in operational29

meteorology for instance.30

Image assimilation for pollution can build over pas experience with more general geophysical applications. Indeed over the31

past several decades, a large number of satellites have orbited and observed the Earth, recording a great deal of information.32
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This information is possibly recorded in the form of pixels representing static images or sequences of such images. For example,33

these images record evolutions of large weather bodies, such as hurricanes, which can travel great distances and cause large34

amounts of damages. It is therefore vital to couple these images with numerical models to be able to predict the evolution of35

events.36

First, it was necessary to define what is recorded in these images. It is clear that a large part of the dynamical information37

is contained in the discontinuities or edges of the images, such as fronts, vortexes, and filaments. These discrepancies are38

linked to physical properties within a threshold, such as the condensation of water vapor, or the salinity level in an estuary. It39

is important to use images to reveal the dynamics of a system and identify the underlying physics. For example, in the field40

of meteorology, it is common to consider small cumulus clouds, mainly at tropical latitudes, as Lagrangian tracers, and to41

use estimates of their drift rates to in turn estimate wind speed. This can actually be misleading, for instance “Lenticularis42

Clouds” (as shown in Fig. 1) which are common on mountains, characteristically occur in strong winds, but look almost steady43

state because they are created by a change of phase in the water particles. Therefore if the drift of these clouds were used44

as Lagrangian markers to evaluate winds, the results would be in full disagreement with the true situation. Before coupling45

images and numerical models, it is necessary to identify what physical properties are produced within the images and to ensure46

that they are included in the numerical model.47

Second, it was necessary to mathematically define the images in order to make them compatible with the physical model.48

This task has two constraints:49

1) The discretized images must be compatible with the discretization of the model. In the process of data assimilation, one50

should compare recorded images with artificial images created through the solution of the numerical model. Therefore,51

we must construct mappings from the model toward the images.52

2) To extract information from the evolutions of these images, one needs to include information about the system’s dynamics.53

In recent years, several methods of assimilation making full use of structural information contained within images have54

been proposed. These methods can be divided into two basic categories. The first method estimates motion velocity fields by55

assimilating pseudo-observations of velocity fields produced from image sequences [3], [4]. The drawback to this approach is56

that it only takes into account very little physical information about the underlying processes controlling features in the image.57

The second method directly assimilates data from an image into a dynamic numerical model in a process called direct image58

assimilation (DIA). In DIA, image’s pixels can de assimilated as a tracer concentration measurement [5], alternatively, the59

structural information can be extracted from the image for instance by a multiscale sparse transform [6]–[8], and assimilated60

through a model-to-structure operator [9]–[12].61

Going back to the specific topic of this paper, it is well established that geometry is an important aspect of prediction62

models because it can be used to identify polluted areas. This geometry has both a Lagrangian character because the pollution63

spot is advected with the flow and an Eulerian character because the proper physics of the pollutant is taken into account and64

interact with the environment. The geometry of an oil slick can be added to state variables of the model (including velocity,65

sea surface temperature, and elevation of the surface) as well as the concentration of oil. However, images of the ocean’s66

surface can often be obfuscated (by a cloud for instance), in that case one would need to employ an inpainting method to67

reconstruct the shape of oil slick. The geometry of oil slicks is complex. For instance a unique source slick can be divided68

into several slicks, due to the effects of wind and local turbulence on both the atmosphere and the ocean. Lagrangian methods,69

which define an individual interface as an ensemble of particles following their own trajectories, do not adequately describe the70

complex topology of many oil slicks. Currently, the level set method is more suitable for this purpose, as it uses Lagrangian71
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Fig. 1: Lenticular clouds image of Eulerian type (Photo by Dahlia Rudolph at Mt. Rainer, October 5, 2011).

information within an Eulerian numerical framework. With this method, topological merging and breaking are well defined72

and easily performed. The level set method was introduced by Osher and Sethian [13] for the purposes of computing and73

analyzing the motion of an interface in two or three dimensions. Since then, the level set method has been successfully used74

to implicitly track moving interfaces and automatically detect changes in topology [13]–[17].75

In this paper, we attempt to use the level set method to assimilate recorded images. To study the feasibility of this method,76

we have chosen to model oil pollution in the ocean. This is an ideal site of study because, to a first order, oil remains on77

the surface of the ocean, and thus a 2D model can be used to model oil spots. For other oceanographic or meteorological78

applications, what is seen is the integral of the concentration of the contaminant and a 3D information will be necessary.79

The paper is organized as follows. Section 2 describes the theory behind the method, including the application of a80

conventional formulation of variational data assimilation to a pollution transport problem, as well as the level set method81

and the framework of the level-set based DIA method. Section 3 details our use of the proposed method to address a global82

oil spill problem, including the details of our numerical implementation and results. Finally, Section 4 summarizes the main83

results and outlines possible directions of future research.84

II. THEORY85

Since the aim of this paper is to combine variational data assimilation and level set methods, both are presented separately86

in the first two parts of this section. The last part proposes a combined approach tailored for oil spill monitoring.87

A. Formulation of VDA to address a pollution transport problem88

As mentioned in the introduction, VDA is a class of techniques that combines the mathematical information provided by89

equations with the physical information yielded by observational data in an optimal way to retrieve the state of a system. To90

use a VDA method for solving a pollution transport problem, the following components are required [18], [19]:91

A model describing the evolution of the state variable X , which governs flow, and of the concentration C of a given92

contaminant which is defined as:93 

dX

dt
= F(X,V ), t ∈ [t0, tf ]

X(t0) = U,
dC

dt
= G(X,C,Z), t ∈ [t0, tf ]

C(t0) = W.

(1)

A set of control variables: U , V , W , Z. U , W represent the initial conditions, and V , Z are parameters of the models.94
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A set of observations Xobs, Cobs ∈ Oobs. For the sake of simplicity, we will assume that our observations are continuous95

in time. They can be obtained by physical measurements of the system state. However, these observations typically comprise96

partial or indirect measurements of the state variables. For example, The observation space O is not necessarily the same as97

the state space X , and the observation operator H(·) is defined as the mapping operator from space X onto space O. Similarly,98

the operator of observation D(·) maps the space of the concentration variable C onto the other observation space. Note that in99

the specific case of image observation, H(·) and D(·) may include structure extraction operators and become what is called100

model-to-structure operator in the introduction.101

Background estimations U b, V b, W b, Zb of the initial states of model parameters U , V , W , Z. For meteorological102

applications, this background estimation can be deduced from previous forecasts.103

Statistical information. Some estimates of the statistics of errors take the form of a covariance matrix, as with the error104

covariance matrices QX , QC of the observation error and the covariance matrices BU , BV , BW , BZ of the background105

estimation.106

A cost function, J . The cost function contains two terms: the first one, Jo, measures the discrepancy between observations107

and the solution of the model associated with U , V , W , Z. The second term, Jb, is the background term, which requires the108

solution to be located in the vicinity of U b, V b, W b, Zb. This term can be referred to as the Tikhonov regularization, which109

is applied to remedy ill-posed inverse problems [20]. The cost function to be minimized is defined in the continuous case as:110

J(U, V,W,Z) = Jo + Jb, (2)
111

Jo =
1

2

∫ tf

t0

‖H(X, t)−Xobs(t)‖2Q−1
X

dt+
1

2

∫ tf

t0

‖D(C, t)− Cobs(t)‖2Q−1
C

dt, (3)

112

Jb =
1

2
‖U − U b‖2

B−1
U

+
1

2
‖V − V b‖2

B−1
V

+
1

2
‖W −W b‖2

B−1
W

+
1

2
‖Z − Zb‖2

B−1
Z

, (4)

where the unknown parameters V , Z are space-dependent control variables. The norm takes the form of ‖X‖2M = 〈MX,X〉,113

where 〈·, ·〉 is an inner product operator in Hilbert space.114

Variational data assimilation defines the optimal initial conditions Ua, W a and model parameters V a, Za which best fit115

observations acquired over the time range [t0, tf ]. To minimize the equation (2), A necessary condition for this optimality is116

expressed by the Lagrange-Euler equation, which requests the gradient of J with respect to U , V , W , Z to be equal to 0.117

However, evaluating this condition (i.e. computing ∇J) is made difficult by the facts that J can be an implicit function of118

these variables and that the size of the problem can be large. Therefore, during the process of variational data assimilation,119

∇J is often computed using the so-called adjoint model:120 

dP

dt
+

[
∂F
∂X

]∗
P +

[
∂G
∂X

]∗
R =

[
∂H
∂X

]∗
Q−1

X (H(X)−Xobs), t ∈ [t0, tf ]

P (tf ) = 0,

dR

dt
+

[
∂G
∂C

]∗
R =

[
∂D
∂C

]∗
Q−1

C (D(C)− Cobs), t ∈ [t0, tf ]

R(tf ) = 0,

(5)

where ∗ denotes the transpose, and P , R represent the so-called adjoint variables. The gradient of the cost function with121
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respect to these control variables is then given by the following equation:122 
∇J(U)

∇J(V )

∇J(W )

∇J(Z)

 =



−P (t0) +B−1
U (U − U b)

−
∫ tf
t0

[
∂F
∂V

]∗Pdt+B−1
V (V − V b)

−R(t0) +B−1
W (W −W b)

−
∫ tf
t0

[
∂G
∂Z

]∗Rdt+B−1
Z (Z − Zb)


. (6)

Finally, Ua, V a, W a, Za are determined by running a descent-type optimization algorithm of the Newton-type or L-BFGS123

variety [21].124

B. Basic level set method125

Mathematically, a given shape (e.g., an oil slick) can be represented by a subdomain Ω(t) ⊂ Rd. Let to define the boundary126

∂Ω(t) as the zero level set of a mapping φ : Rd → R:127

∀x ∈ Rd,


φ(x) < 0, x ∈ Ω

φ(x) = 0, x ∈ ∂Ω

φ(x) > 0, x /∈ Ω̄.

(7)

The function φ(t, x) could be the signed distance from (t, x) to ∂Ω(t, x). It defines the evolution of the shape whose movement128

is governed by some velocity field ~V (t, x) : Rd → Rd. The motion of Ω(t, x) follows the advection equation:129

∂φ

∂t
(t, x) + ~V (t, x) · ∇φ(t, x) = 0, on [t0, tf ]×Rd. (8)

In fact, the motion of Ω(t, x) depends only on v(t, x), the component of ~V (t, x) that is normal to the boundary of Ω(t, x).130

Therefore, the motion of the boundary verifies the Hamilton-Jacobi equation:131

∂φ

∂t
(t, x) + v(t, x)‖∇φ(t, x)‖ = 0, on [t0, tf ]×Rd. (9)

for which we need to provide an initial condition:132

φ(t0, x) = φ0(x). (10)

A more general form of this equation will be introduced in Section II-C2. However, during the evolution of the level set133

equation, the function φ(t) can become very flat or very steep, both of which are undesirable effects that can lead to high134

numerical errors either in the reconstruction of the zero level set or elsewhere in the numerical schemes. An optimal control135

based approach of this important reinitialization aspect is discussed in Appendix B.136

C. Level-set based direct image assimilation137

1) Edge capturing and image observation operators: For considering the problem of pollution within a fluid, the variable Ω138

can be used to represent one or more patches of the pollutant. For adapting our theoretical methodology to analyze pollution,139

we express the size of the visible pollutant spot in terms of the pollutant’s concentration, in which case Ω and the threshold140

function θ(·) are defined as:141

Ω(t, x) = {x(t) ∈ Ω̃|C(t, x) ≥ ε}, (11)
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θ(φobs(t)) =

 φobs(t), C(t, x) ≥ ε

0, C(t, x) < ε
(12)

where C is the concentration of the pollutant, Ω̃ ⊂ R2 is the domain taken into account, φobs is the observation image and ε142

represents the concentration threshold above which the spots of pollutant are visible.143

In this paper, we use the wavelet modulus maximum method [22]–[25] to exploit image edge detection after undergoing144

thresholding. The result obtained after edge detection is expressed as W(θ(φobs)), from which we can distinguish the inside145

and outside edges clearly. Some edge detection methods based on wavelet can refer to [26]–[28]. Following this procedure,146

we apply an edge-based signum operator HW→S(·) to the edge-detected images W(θ(φobs)). The procedure is as follows:147

HO→S(φobs) = HW→S(W(θ(φobs))) =


−1, x ∈ Ω

0, x ∈ ∂Ω

1, x ∈ Ω̃\Ω̄

(13)

where HO→S(·) is the image-to-structure operator, and the structure image is expressed as φS(t) = HO→S(φobs(t)). This148

construction procedure is presented in Fig. 4a-4d. Additionally, we constructed another adapted observation operator, called149

model-to-structure operator. This operator maps the signed distance function toward the signed function, which links variables150

of the level set equation with the structural information of images. This model-to-structure operator is defined as:151

Hφ→S(φ) =


−1, φ < 0

0, φ = 0

1. φ > 0

(14)

This procedure is shown in Fig. 4e-4f.152

2) General level set model: In order to apply the model-to-structure operator one has to know the temporal evolution of153

the edge mapping φ. This can be obtain by application of level set techniques. In general, the motion of the interface ∂Ω(t)154

is analyzed by convecting the level set function φ(t, x, y) with the external velocity field ~V = (u, v) and diffusing along both155

the normal direction by a constant value, a, as well as proportionally to the mean curvature, κ. This elementary equation can156

be expressed as a fully nonlinear second-order partial differential equations:157 
∂φ
∂t + ~V · ∇φ+ a‖∇φ‖ − σκ‖∇φ‖ = 0, on [t0, tf ]× Ω̃

φ(t0) = φ0,
(15)

158

κ = div(
∇φ
‖∇φ‖

) =
(∂φ∂x )2 ∂

2φ
∂y2 − 2∂φ∂x

∂φ
∂y

∂2φ
∂x∂y + (∂φ∂y )2 ∂

2φ
∂x2

‖∇φ‖3
. (16)

If the term contained curvature σ is present, closed curves of arbitrary shape will collapse to a circle and then disappear. Unlike159

the curvature, as it constantly evolves under a, a relatively closed smooth curve will contain sharp edges and the topological160

structures of the curve may change. In practical cases, the values of the diffusion coefficients σ, a depend on the physical161

characteristics of the pollutant. In this model, we adopt a periodic boundary condition.162

3) Continuous variational model and the adjoint model: We use level set equation (15) as the governing equation to predict163

the evolution of oil slicks over time. The method used to determine the structure of the images, φS(t), is described in (13).164

The control variables are the initial condition and diffusion coefficients σ, a. In this case, the total cost function associated165
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with the observed images Jo, the backgrounds for initial conditions Jbφ(t0), and their coefficients Jbσ,a, can be expressed as:166

J = Jo + Jbφ(t0) + Jbσ,a, (17)
167

Jo + Jbφ(t0) =
1

2

∫ tf

t0

‖Hφ→S [Kt(φ(t0), σ, a)]−HO→S [φobs(t)]‖2L2(Ω̃)
dt+

α

2
‖φ(t0)− φ(t0)b‖2

L2(Ω̃)
, (18)

168

Jbσ,a =
β

2
(Rp1,q1(σ) +Rp2,q2(a)), (19)

where Kt(·) presents the forward operator of the differential equation (15) from t0 to t, and the assimilation window is set as169

[t0, tf ]. The variables α, β denote regularization parameters, and the expression φ(t0)b represents the background fields. When170

constructing an adjoint model, an additional difficulty is that of the non-differentiability inherent in mapping Hφ→S(·). Here,171

we modify the edge-based signum function to its differentiable form:172

Hφ→S(φ) =
φ√
φ2 + ε

, (20)

where ε is a small constant, and Section III-A details the method for determining it. The Rp,q(x) is a regularization term for173

σ and a. If the coefficients are defined as being constant values, the regularization term takes the following form:174

Rp,q(x) =


1
2 (x− q)2, x > q

0, p ≤ x ≤ q
1
2 (x− p)2, x < p

(21)

where p, q represent the lower and upper bounds of coefficients, respectively.175

The new cost functions (17)-(19) are the main contribution of this paper. In the following, we will focus on how to compute176

and numerically implement above optimization problem of the cost functions, and apply the new method to oil spill VDA.177

According to the definition of the adjoint operator in Hilbert space and the method of integration by parts, we can obtain a178

continuous adjoint model from the continuous forward model (15):179 

∂R
∂t = ∂(A−u−F )R

∂x + ∂(B−v−G)R
∂y − ∂2CR

∂x2 − ∂2DR
∂y2 + ∂2ER

∂x∂y

+[
∂Hφ→S
∂φ ]∗(Hφ→S(φ)−HO→S(φobs)), on [t0, tf ]× Ω̃

R(tf ) = 0,

R|∂Ω̃ = 0,

(22)

where180

A = σ
2∂φ∂y [(∂φ∂x )2 ∂2φ

∂x∂y − (∂φ∂y )2 ∂2φ
∂x∂y + ∂φ

∂x
∂φ
∂y

∂2φ
∂y2 −

∂φ
∂x

∂φ
∂y

∂2φ
∂x2 ]

‖∇φ‖4
, (23)

B = σ
2∂φ∂x [−(∂φ∂x )2 ∂2φ

∂x∂y + (∂φ∂y )2 ∂2φ
∂x∂y −

∂φ
∂x

∂φ
∂y

∂2φ
∂y2 + ∂φ

∂x
∂φ
∂y

∂2φ
∂x2 ]

‖∇φ‖4
, (24)

C = σ
(∂φ∂y )2

‖∇φ‖2
, D = σ

(∂φ∂x )2

‖∇φ‖2
, E = σ

2∂φ∂x
∂φ
∂y

‖∇φ‖2
, F = a

∂φ
∂x

‖∇φ‖
, G = a

∂φ
∂y

‖∇φ‖
, (25)

[
∂Hφ→S
∂φ

]∗(·) = (
1√
φ2 + ε

− φ2

(φ2 + ε)
3
2

)(·). (26)
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Then, the gradient can be expressed as:181 
∇J(φ0)

∇J(σ)

∇J(a)

 =


−R(t0) + (φ(t0)− φ(t0)b)

−
∫ tf
t0

∫
Ω̃
κRdΩdt+∇Rp1,q1(σ)∫ tf

t0

∫
Ω̃

((∂φ∂x )2 + (∂φ∂y )2)
1
2RdΩdt+∇Rp2,q2(a)

 . (27)

III. APPLICATIONS TO EVOLUTION OF OIL SPILLS182

A. Numerical implementation183

The evolution of the fluid can be modeled using the state variable X = (u, v, h), whose components verify the shallow184

water equations in the conservative form expressed as:185 

∂h

∂t
+
∂uh

∂x
+
∂vh

∂y
= 0, on [t0, tf ]× Ω̃

∂uh

∂t
+

∂

∂x
(u2h+

gh2

2
) +

∂uvh

∂y
= h(fv − g ∂H

∂x
), on [t0, tf ]× Ω̃

∂vh

∂t
+
∂uvh

∂x
+

∂

∂y
(v2h+

gh2

2
) = h(−fu− g ∂H

∂y
), on [t0, tf ]× Ω̃

(28)

where a numerical simulation is performed on a rectangular domain Ω̃ = [0, 2] × [0, 2]. Additionally, H is the height of the186

orography, h = z−H is the water elevation, and z is the free surface elevation. The variables u(t, x) and v(t, x) represent the187

zonal and meridional components of the current velocity, respectively, and g represents the acceleration due to gravity. In this188

model, the Coriolis parameter on the β-plane is defined as f = f0 + βy. The following numerical values are used for these189

experiments: f0 = 0.25s−1, β = 0.0406m−1s−1, g = 9.81ms−2 and H = 0. We integrate this scheme forwards-in-time using190

the Lax-Wendroff scheme [29], which is accurate to a second-order.191

To discretize the level set equation, we use an upwind scheme for convection term discretization, and employ a central192

difference method for diffusion terms. For the sake of simplicity, time integration is performed using the Euler scheme.193

In applied cases, a third-order accurate TVD Runge-Kutta scheme could also be used. Detailed descriptions of high-order194

discretization schemes for level set equations can be found in the literature [13], [14], [30], [31]. In our model, the domain is195

discretized on a N×M = 81×81 uniform square grid. There are a total of 201 time steps. Each time step ∆t is set to 0.0005s,196

and the assimilation window is [0, 0.1s]. The variable ε, as expressed in (20), is usually defined as (∆x)2. Additionally, in the197

assimilation experiments, we assume that the current velocity fields u, v are known.198

Because the forward model and the observations are both discrete, we can use the discrete adjoint model in this test to obtain199

the gradient of the control variables. The validation of both the tangent linear and the adjoint is of the utmost importance for200

nonlinear models. The methods of producing the discrete adjoint model and testing the gradient are shown in detail in the201

Appendix A.202

In this section, we have contributed directly assimilate the images of the structures of oil pollutants φS(t) into numerical203

models to correct the contours of initial oil pollutants and diffusion coefficients of models. True structure images φS(t) are204

taken at each time step and at every spatial grid point using the image-to-structure operator HO→S(·). In this test, the sequences205

of structure images proceeds according to Hφ→S(φ), where the level set function φ is produced from the forward model. The206

sequences of synthetic structure images can thus be expressed as:207

φS = Hφ→S [Kt(φ(0)t, σt, at)], (29)
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where φ(0)t represents the true initial state of the system. To test the efficiency of this proposed method, we have contributed208

a missing data point at t = 0 to generate the initial image of the structure of the oil slicks, φS(0), which is shown in Fig. 5a.209

To assess the background fields of initial conditions, we assumed the missing oil slick began as a rectangular domain whose210

zero level set is shown as the solid red line in Fig. 6a. The true model parameters are σt = 0.1 and at = 0.5, and weights are211

set at α = 1 and β = 2.212

To assess the performance of the numerical test, we computed the root mean square error (RMSE) of the solution estimated213

relative to the true value. The RMSE is defined as214

RMSEφ(0)a =

√√√√ 1

|Ω̃|

∑
x∈Ω̃

(φ(0, x)a − φ(0, x)t)2, (30)

215

RMSEσa = |σa − σt|, (31)
216

RMSEaa = |aa − at|, (32)

where φ(0)a, σa, aa represent optimal solutions.217

B. Numerical results218

To illustrate the level set method, we first show the numerical results, the level set function φ(t), produced from the forward219

model (15) at three different moments in Fig. 2. The level set function at the first moment derives from a synthetic oil spot220

image, which is obtained by constructing a signed distance function based on the oil spot edges. In this paper, we only take221

into account the affect of the shear flow fields provided by the shallow water equation (28). Fig. 3 presents the zero level set222

of φ(t) at corresponding moments of Fig. 2, representing the point set (x(t), y(t)) at which φ(x(t), y(t), t) = 0. The zero223

level sets express the edges of oil slicks. The changes of the contours reveal the evolution of the shapes of the polluted areas,224

which drifted on the surface of the water at a velocity determined by the current and the wind in practical cases.225

In the framework of level-set based DIA, we need two observation operators for the purpose of mapping the numerical226

solutions and the observations into the same structure space. One is the so-called image-to-structure operator HO→S(·),227

the other is the model-to-structure operator Hφ→S(·). This construction procedure is presented in Fig. 4. First, a synthetic228

observation image φobs with noise is given displayed in Fig. 4a. The light gray part in the image indicates the oil pollution.229

Edge detection result W(φobs) by the method of wavelet modulus maximum is shown in Fig. 4b. Indeed, this method can230

balance noises and edges. Fig. 4c-4d depict the structure and modified structure image (i.e. the edge-based signum function231

and smoothing signum function image ϕS = HO→S(φobs)). This can show the structure information of edge clearly. From232

the aspects of variables from the forward model, the level set function φ and the structure image ϕS = Hφ→S(φ) are shown233

in Fig. 4e-4f. As a result, Fig. 4d approximately equals to Fig. 4f.234

Fig. 5 displays portions of the structure image sequences φS(t) constructed by the method defined in (29), which are used235

as true observations in numerical implementation. In order to test the efficiency of the proposed method, the structure image236

sequences include a missing image at t = 0. In practical cases, it can be considered as an image obfuscated by clouds.237

To clearly compare numerical results, we can examine the zero level set of the analysis value φ(0)a (shown as a solid238

red line in Fig. 6b) and the first guess or background fields φ(0)b (shown as a solid red line in Fig. 6a), with respect to the239

corresponding true initial states φ(0)t (shown as dashed black line in Fig. 6a and 6b). Fig. 6b suggests that the optimal solution240

will eventually converge to true values with increasing numbers of iterations. A part of the first observation is missing, the241
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proposed method is capable of recovering it. Additionally, the evolution of the l2 norm of the gradient and its cost function242

are shown in Fig. 6c, in which the l2 norm of the gradient gradually moves closer to zero.243

Fig. 7 displays the evolution of the estimated coefficients σ, a, as well as their gradients and cost function. This shows that244

the optimal coefficients will be close to the true values with increasing numbers of iterations.245

Finally, Table I and II list the results of our numerical tests, including the RMSE, gradients and cost function values, which246

change with increasing numbers of iterations. These results suggest that our proposed method performs well.247

IV. CONCLUSIONS AND FUTURE WORK248

A. Conclusions249

In this paper, we propose a level-set based image assimilation method for assimilating geometric information from the250

observed images into numerical models. We present numerical experiments which can be applied to better predict oceanic251

oil spill dispersion. In general, our method takes into account both the complex topological structures of oil slicks and the252

geometric shape of the polluted areas to avoid delaying cleanup efforts by making inaccurate predictions from observations.253

This method represents a key step to better predict the evolutions of oil spill. Furthermore, the adapted edge-based signum254

observation operator could eventually link the data from the level set function to the structural information contained in satellite255

images. Our assimilation test yielded promising results.256

B. Future work257

In this paper it is assumed that both the external velocity and the concentration field are known. In practice they have to be258

estimated as well. This can be done sequentially with the proposed approach, but for the sake of consistency one may prefer259

to use a more integrated approach called splitting method for global oil spill problem. We first need to define the framework260

of optimal control.261

1) Model and control variables:262

• A model of flow: F(X,U) = 0, where X is the state variable describing the evolution of the flow and initial conditions263

X(t0) = U is a control variable.264

• An equation of concentration: G(X,C,W )= 0, where C is the concentration of pollutant and C(t0) = W is a control265

variable.266

• An equation for the evolution of an image: K(X,C, I, φ0, λ) = 0, where I is the image and φ0 is a control variable267

defining the initial level set associated with the spot of pollution. λ is an additional parameter (e.g., the viscosity of oil268

on the ocean’s surface). In this paper, λ represents (σ, a).269

2) Optimal control: The goal of this problem is to determine (Ua,W a, φa0 , λ
a) while minimizing the cost function; this is270

expressed as:271

J(U,W, φ0, λ) = JF + JG + JI =
1

2

∫ tf

t0

‖ΓXX −Xobs‖2 + ‖ΓCC − Cobs‖2 + ‖ΓII − Iobs‖2dt, (33)

where ΓX , ΓC and ΓI are observation operators. Throughout the process of quantifying minimum values, Un ,Wn, (φ0)n can272

be obtained from the iterative formula:273

• Un+1 minimizes JF with the constraint F(X,U) = 0,274

• Wn+1 minimizes JG with the constraint G(Xn+1, C,W ) = 0,275
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• ((φ0)n+1, λn+1) minimizes JI with the constraint K(Xn+1, Cn+1, I, φ0, λ) = 0.276

The two first formulae are well known in the VDA community [18], [19]. This splitting method solves large numerical problems277

using a sequence and iteration of smaller, simpler problems. In the numerical experiments of this paper, we focus on the third278

part of this algorithm.279

Additionally, in the future we would like not only to further consider the physical properties controlling the movements of280

oil spills but also to utilize real satellite images of oil slicks.281

APPENDIX A282

THE DISCRETE ADJOINT MODEL AND THE GRADIENT OF THE CONTROL VARIABLES283

We consider the cost function J as follows:284

J(u0, ν) =
1

2
∆t

N∑
n=1

〈(H(un)− unobs), (H(un)− unobs)〉+
1

2
〈(u0 − ub), (u0 − ub)〉, (34)

where the discrete model is defined as follows:285

un+1 =M(un, ν), (35)

where u0 represents the initial condition, having been arranged in a column vector, and ν is a parameter of the model. The286

variables unobs, n = 1, · · · , N represent the observations sampled at t = n∆t, and ub is the background field or the first guess.287

H(·) represents a nonlinear observation operator which combines the model variables with observations. M(·) is the discrete288

operator of the forward model from the moment t = n∆t to t = (n+ 1)∆t.289

The Gatéaux derivative of J in the direction of perturbation δu0, δν is defined as:290

Ĵ(u0, ν, δu0, δν) = lim
α→0

J(u0 + αδu0, ν + αδν)− J(u0, ν)

α

= 〈δu0, (u0 − ub)〉+ ∆t

N∑
n=1

〈û, (∂H
∂u

(un))∗(H(un)− unobs)〉
, (36)

where ∗ denotes the transpose. We can obtain the discrete tangent linear equation (DTLE) from the discrete model given in291

(35):292

ûn+1 =
∂M
∂u

(un, ν)ûn +
∂M
∂ν

(un, ν)ν̂. (37)

Then, we can take the scalar products of (37) with the adjoint variable pn+1 and sum them all in time:293

N∑
n=1

〈ûn+1, pn+1〉 =

N∑
n=1

〈(∂M
∂u

(un, ν)ûn), pn+1〉+

N∑
n=1

〈(∂M
∂ν

(un, ν)ν̂), pn+1〉, (38)

which is the same as:294

N∑
n=1

〈ûn, pn〉 − 〈û1, p1〉+ 〈ûN+1, pN+1〉 =

N∑
n=1

〈ûn, (∂M
∂u

(un, ν))∗pn+1〉

+

N∑
n=1

〈ν̂, (∂M
∂ν

(un, ν))∗pn+1〉.

(39)

Next, we can assumes that pN+1 is 0 and use the fact that û1 = δu0. This yields the following equation:295

N∑
n=1

〈ûn, (pn − (
∂M
∂u

(un, ν))∗pn+1)〉 = 〈δu0, p
1〉+

N∑
n=1

〈ν̂, (∂M
∂ν

(un, ν))∗pn+1〉. (40)
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The Gatéaux derivative of J can be expressed as:296

Ĵ(u0, ν, δu0, δν) = 〈δu0,∇u0
J〉+ 〈ν̂,∇νJ〉

= 〈δu0, (u0 − ub)〉+ ∆t

N∑
n=1

〈û, (∂H
∂u

(un))∗(H(un)− unobs)〉.
(41)

If the so-called variable p is the solution of the following equation,297

pn − (
∂M
∂u

(un, ν))∗pn+1 = ∆t(
∂H
∂u

(un))∗(H(un)− unobs), (42)

then298

〈δu0,∇u0
J〉+ 〈ν̂,∇νJ〉 = 〈δu0, (u0 − ub)〉+ 〈δu0, p

1〉+

N∑
n=1

〈ν̂, (∂M
∂ν

(un, ν))∗pn+1〉

= 〈δu0, ((u0 − ub) + p1)〉+

N∑
n=1

〈ν̂, (∂M
∂ν

(un, ν))∗pn+1〉.

(43)

Finally, we can obtain the gradient:299

∇u0
J = (u0 − ub) + p1, (44)

300

∇νJ =

N∑
n=1

(
∂M
∂ν

(un, ν))∗pn+1. (45)

Next, we can use the test of the gradient to validate both the tangent linear and the adjoint models. The test of the gradient301

is based on the Taylor expansion of the cost function, which is written as follows:302

J(x + αδx) = J(x) + α〈∇xJ(x), δx〉+ O(α‖δx‖), (46)

where J is the cost function and x is a symbolic representation of the initial condition or the parameters of the models.303

Rearranging (46) leads to the following expression:304

lim
α→0

J(x + αδx)− J(x)

α〈∇xJ(x), δx〉
= 1. (47)

APPENDIX B305

THE REINITIALIZATION BASED OPTIMAL CONTROL306

In this section, we take into account the process of reinitialization mentioned in Section II-B in the framework of level-set307

based DIA. In order to maintain the numerical stability of (9), one needs to reinitialize the level set function so that, after a308

period of time, it moves closer to the signed distance function of the actual shape. This reinitialization procedure is expressed309

as [14]:310 
∂ψ

∂τ
= sgn(φ)(1− ‖∇ψ‖), on [τ0, τf ]×Rd

ψ(τ0) = φ(t),
(48)

where sgn(·) is the signum function and the variable ψ is called renormalized level set function. This makes possible the311

computation of ψ by setting ‖∇ψ(τf )‖ = 1 as the long-time limit τf →∞, related to the corresponding evolution equation.312

Then φ(t) will be substituted by ψ(τf ).313

For numerical implementation, we denote the discrete equation (15) and (48) respectively as:314

φn+1 = A(φn), (49)
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ψm+1 = B(ψm), ψ1 = φn+1, (50)

where A(·) and B(·) are discrete forward operators from the moment t = n∆t to t = (n+1)∆t and t = m∆t to t = (m+1)∆t.315

Rd in (48) is set to Ω̃. And the process of initialization is used for each time step. We can obtain the DTLE from the discrete316

model given in (49) and (50):317

φ̂n+1 =
∂A
∂φ

(φn)φ̂n, (51)

318

ψ̂m+1 =
∂B
∂ψ

(ψm)ψ̂m, ψ̂1 = φ̂n+1. (52)

Then we have:319

ψ̂m+1 =
∂B
∂ψ

(ψm) · · · · · ∂B
∂ψ

(ψ1)ψ̂1 =
∂B
∂ψ

(ψm) · · · · · ∂B
∂ψ

(ψ1)φ̂n+1 =
∂B
∂ψ

(ψm) · · · · · ∂B
∂ψ

(ψ1)
∂A
∂φ

(φn)φ̂n. (53)

The variable ψ̂m+1 represents the updated φ̂n+1. In addition, the adjoint of the operator B = ∂B
∂ψ (ψm) · · · · · ∂B∂ψ (ψ1)∂A∂φ (φn)320

used in the adjoint model (42) will be expressed as follows:321

(B)∗ = [
∂B
∂ψ

(ψm) · · · · · ∂B
∂ψ

(ψ1)
∂A
∂φ

(φn)]∗ = [
∂A
∂φ

(φn)]∗[
∂B
∂ψ

(ψ1)]∗ · · · · · [∂B
∂ψ

(ψm)]∗. (54)

Because of the linearity of the Jacobian matrix, the adjoint of the operator is equivalent to its transpose. In practical cases, the322

number m is fixed in each iteration, which represents the duration of the reinitialization. For the sake of simplicity, we will323

not take this procedure into account in this paper.324
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TABLE I: ASSIMILATION RESULTS OF INITIAL CONDITIONS

Iterations RMSEφ(0) ‖∇J(φ(0))‖ J(φ(0))

70 3.5748e-02 1.3687e-01 1.0920

TABLE II: ASSIMILATION RESULTS OF COEFFICIENTS

Iterations RMSEσ RMSEa ‖∇J(σ)‖ ‖∇J(a)‖ J(a, σ)

30 1.7118e-02 9.5625e-02 6.9408e-04 3.9667e-03 3.5445e-01

60 4.9719e-03 2.7232e-02 1.9990e-04 1.1045e-03 2.2405e-01

120 4.2778e-04 2.3226e-03 1.7104e-05 9.2939e-05 2.1261e-01
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Fig. 2: Level set function φ(t) at three moments produced by forward model. (a) Initial moment t = 0. (b) After 100 time
steps. (c) Final moment t = 0.1s.
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Fig. 3: Zero level set of φ(t) at three moments produced by forward model. (a) Initial moment t = 0. (b) After 100 time steps.
(c) Final moment t = 0.1s.
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Fig. 4: (a) Synthetic observation image φobs. (b) Edge detection result W(φobs). (c) Structure image. (d) Modified structure
image ϕS = HO→S(φobs). (e) Signed distance function image φ. (f) Modified structure image ϕS = Hφ→S(φ).
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Fig. 5: Portions of the sequences of structure images φS(t) including a missing image at t = 0. (a) Initial moment t = 0. (b)
t = 0.05s. (c) Final moment t = 0.1s.
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Fig. 6: Assimilation results of initial conditions φ(0). (a) Comparison before assimilation. (b) Comparison after assimilation.
(c) Evolution of the l2 norm of the gradient and its cost function.
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Fig. 7: Assimilation results of coefficients. (a) Evolution of coefficients σ, a estimated with the iterations (σt = 0.1, at = 0.5).
(b) Evolution of the l2 norm of the gradients and cost function.
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