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Abstract—Classification techniques for hyperspectral images
based on random forest (RF) ensembles and extended multi-
extinction profiles (EMEPs) are proposed as a means of improv-
ing performance. To this end, five strategies-bagging, boosting,
random subspace, rotation-based, and boosted rotation-based—
are used to construct the RF ensembles. Extinction profiles
(EPs), which are based on an extrema-oriented connected filtering
technique, are applied to the images associated with the first
informative components extracted by independent component
analysis, leading to a set of EMEPs. The effectiveness of the
proposed method is investigated on two benchmark hyperspectral
images, University of Pavia and Indian Pines. Comparative
experimental evaluations reveal the superior performance of the
proposed methods, especially those employing rotation-based and
boosted rotation-based approaches. An additional advantage is
that the CPU processing time is acceptable.

Index Terms—Ensemble learning, Extended multi-extinction
profiles (EMEPs), Hyperspectral Image Classification, Random
Forest (RF).

I. INTRODUCTION

Hyperspectral imaging sensors generate tens or hundreds
of narrow bands with very fine spectral resolution. Therefore,
they can provide excellent discriminability of different mate-
rials [1]. With the development of hyperspectral technology,
the sensors can also make further improvements on spatial
resolution, which allows us to describe the spatial structures
in the scene with clarity.

Supervised classification is one of the most relevant topics
in the analysis of remote sensing images today, making it
widely used in thematic applications such as environmental
mapping [2], [3]. An increase in the number of spectral
bands, when only a limited number of training samples are
available, can potentially cause the ”curse of dimensionality”
(the so-called Hughes phenomenon) [4]. Therefore, there is
an urgent need for advanced techniques, particularly kernel-
based methods [5], [6] and feature extraction/selection [7], [8],
to alleviate this problem.
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Kernel-based methods (e.g., support vector machines, or
SVMs) [5], [9] and deep learning (e.g., convolution neural
networks, or CNNs) [10], [11] are powerful techniques for the
classification of hyperspectral data. For SVMs, the kernels are
empirically defined, and the parameters need to be optimized
by cross-validation techniques. For CNNs, the number of
convolutional and pooling layers should be carefully deter-
mined. The main disadvantage of SVMs and CNNs is high
computational complexity.

Recently, researchers have shown an increased interest in
the random forest (RF) classifiers [12] due to the following
advantages:

• they are insensitive to high-dimensional features;
• they perform out-of-sample prediction rapidly;
• they require only slight parameter tuning; and
• they are capable of ranking the importance of features.

RF is constructed by several individual decision trees (DTs),
in which each tree is trained on a bootstrapped sample,
while randomly selected features are used to split a leaf on
each tree [12]. Researchers have exploited RF on a variety
of remote sensing resources in various applications, such
as hyperspectral data [13], high spatial resolution data [14],
LiDAR datasets [15], and time-series datasets [16].

In order to further improve the performance of RF, many
extensions have been suggested. One is to reduce the original
feature space via feature selection or extraction prior to appli-
cation of the RF classifier [17]. A second extension defines
an efficient aggregation method in RF, such as alternating
decision forests [18]. A third extension defines an ensemble
of RF classifiers by manipulating the training set and training
features. Representative methods for building the ensembles
are bootstrap aggregating (bagging) [19], boosting [20], ran-
dom subspace [21], and rotation-based [22], [23] approaches.
In [24], the rotation-based scheme was proposed to con-
struct the ensemble of RF and an extreme learning machine
(ELM) with extended multi-attribute profiles (EMAPs), which
achieved high classification performance. The main objective
of a rotation-based scheme is related to data transformation
(e.g., principal component analysis, PCA), applied to the
node level in order to identify the best split, which leads to
improvements in accuracy and diversity. Furthermore, in order
to increase the diversity within the ensemble, we proposed a
rotation-based random forest ensemble via kernel PCA [25].
In this work, we propose combining the boosting and rotation-
based methods to improve the performance.
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Due to the spatial variability observed in the image, tradi-
tional pixel-wise classifiers only consider the spectral mea-
surements without spatial regularization, generating a low
classification performance [1]. In order to reduce the labeling
uncertainty and the salt-and-pepper noise appearing on the
classification maps, a joint spectral and spatial classifier is
needed in the analysis. Thus, a reliable approach to exploiting
the spatial information is imperative.

In order to extract spatial information, fixed and adaptive
neighborhood systems are always taken into account. In the
fixed neighborhood system, the center pixel is classified by
considering the information from its neighbors according to
one of a number of approaches, such as Markov random
fields (MRFs) modeling [26]–[28]. Tarabalka et al. [29], Li et
al. [30], and Xia et al. [31] integrated MRFs with probability
SVMs, sparse multinomial logistic regression (SMLR), and
rotation forest (RoF) classifiers, respectively. However, the
main disadvantage of the fixed neighborhood system is that
it does not always accurately reflect information about spatial
structures. To solve the problem delineated above, an adap-
tive neighborhood system, such as morphological processing,
should be taken into account.

Pesaresi and Benediktsson [32] proposed using a sequence
of geodesic opening and closing operations to build a mor-
phological profile (MP), as well as the derivative of the MP.
Furthermore, the extension of MPs [33] is proposed to handle
hyperspectral datasets. The main limitation of MP lies in the
partial analysis that is performed with the computation of
the profile. In order to solve this limitation, Dalla Mura et
al. proposed attribute profiles (APs) [34] and extended APs
(EAPs) [35] by using the sequential application of morpho-
logical attribute filters (AFs), extending the concepts of MPs
and EMPs. A comprehensive survey of MPs, APs, and their
modifications can be found in [36], [37]. The main weakness
of constructing APs is the difficulty of determining the optimal
range of parameters in the filtering step, if no prior knowledge
of the study area is available.

Recently, Ghamisi et al. proposed the concept of extinction
profiles (EPs) to further improve the classification performance
of the APs [38]. EPs are based on extrema-oriented connected
extinction filters. These filtering operators are automatic by
nature and, as a result, they solve the main shortcoming of
the conventional APs, i.e., the manual setting of threshold
values. Specifically, the thresholds used by APs vary greatly
based on the attribute being analyzed, the dataset being used,
and sensor-related information, including spatial resolution.
Therefore, the thresholds for APs are more difficult to set [38].
In addition, EPs are able to preserve the height of the extrema
kept, while attribute filters erode the height of the tree. In
the experiments conducted on panchromatic remote sensing
data using EPs [38], the capability of EPs has been evaluated
through experiments where EPs show better performance than
APs in terms of simplification for recognition and classifica-
tion accuracy. In [39], the concept of EPs has successfully
been generalized to handle hyperspectral data.

In this paper, we propose advanced classification schemes
based on RF ensembles applied to extended multi-extinction
profiles (EMEPs). EMEPs are produced by applying an

extrema-oriented connected filtering to the images associated
with the first informative components extracted by the inde-
pendent component analysis (ICA) [40]. Although the capabil-
ity of the RF classifier is already proven for the classification
of the features extracted by EAPs and EMEPs [36], [37], its
performance should be further improved by introducing an
ensemble strategy. In particular, five strategies-bagging, boost-
ing, random subspace, rotation-based, and boosted rotation-
based—are used to construct the RF ensembles.

The main innovative features of this new work are as
follows:
• defining spectral-spatial classification techniques based

on the RF ensembles as well as the spatial features
extracted by EMEPs;

• proposing a new strategy (i.e., the boosted rotation-based
method) for building the ensemble of RF classifier; and

• performing a detailed comparison of different RF ensem-
ble strategies.

The proposed classification method is validated on two well-
known datasets, one acquired by the Airborne Visible Infra-
Red Imaging Spectrometer (AVIRIS) sensor over the agricul-
tural area of Indian Pines in northwestern Indiana in the United
States, and the other from the reflective optics spectrographic
imaging system (ROSIS) sensor over the city area of Pavia,
Italy. Experimental results demonstrated that the proposed
framework can classify hyperspectral images effectively and
efficiently in terms of classification accuracies.

The remainder of this paper is structured as follows: Section
II describes the proposed framework, including the specific
components of EMEP construction and RF ensembles. The
experimental results on the two real hyperspectral data sets
are reported in Section III. Section IV contains conclusions
about the presented work and the implications.

II. PROPOSED METHODOLOGY

In the proposed methodology, the hyperspectral image is
transformed by ICA. The first three independent components
(ICs) are used as the base image to construct the EPs. EPs with
area, height, volume, diagonal of bounding box, and standard
deviation attributes are concatenated into a stacked vector to
construct EMEPs. Then, the EMEPs features are classified by
the proposed RF ensembles, i.e., bagging RF (BagRF), boost-
ing RF (BoostRF), random subspace RF (RSRF), rotation-
based RF (RoRF), and boosted rotation-based RF (BRoRF),
and a final classification map is obtained. In the following, the
specific parts of the proposed framework will be detailed.

A. Extended Multi-Attribute Extinction Profiles (EMEPs)

1) Tree representation: This representation increases the
efficiency of the subsequent filtering step by dividing the
transformation process into three steps: (1) tree creation, (2)
filtering, and (3) image restitution. It highlights the inclusion
relation between the connected components of any input gray
scale image (obtained from the upper or lower sets). In
this manner, two components are either nested or disjointed.
Therefore, a set of connected components can construct a tree
whose nodes are the components; the links between nodes are
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the inclusion relations between components. The tree derived
by the components in the upper (resp. lower) level set is
called max-tree (resp. min-tree) [41]. The leaves of such trees
are considered to be regional extremum for any increasing
attribute whose extinction values can be estimated.

2) Extinction values: Extinction values are able to mea-
sure the persistence of extrema (leaves of the trees for any
increasing attribute), which was initially proposed by Vachier
for increasing attributes [42]. Let M represent a regional
maximum of a gray scale image f , and Ψ = (ψλ)λ is a
family of decreasing connected anti-extensive transformations.
The extinction value corresponding to M with respect to Ψ and
denoted by εΨ(M) is the maximal λ value, such that M still is
a regional maxima of ψλ(f). This definition can be expressed
using the following equation:

εΨ(M) = sup{λ ≥ 0|∀µ ≤ λ,M ⊂Max(ψµ(f))}. (1)

3) Extinction filters (EFs) for increasing attributes: This
approach is a connected filter that is able to preserve the
relevant extrema of the image. EFs can be estimated as
follows: let Max(f) = {M1,M2, ...,MN} be the set of
regional maxima of the image f (the leaves of the trees for
any increasing attribute). Each regional maxima Mi has its
corresponding extinction value εi. The EF of f set to preserve
the n maxima with the highest extinction values is estimated
by EFn(f) = Rδf (g) where Rδf (g) is the reconstruction by
dilation [43] of the mask image f from marker image g. The
marker image g is given by g =

n
max
i=1
{M′i} where max is the

pixel-wise maximum operation. M′1 is the maximum with the
highest extinction value, M′2 has the second highest extinction
value, and so on.

4) Extinction filters (EFs) for non-increasing attributes:
Xu et al. [44] proposed a methodology to construct a max-
tree of a max-tree or a max-tree of a tree of shapes [45].
The second tree representation takes the image to the space of
shapes which makes it possible to construct a novel class of
connected operators from the leveling family. After producing
the second max-tree using a non-increasing attribute in the
space of shapes, the height of the attribute used to compute
the second max-tree becomes increasing. As a result, one can
then compute extinction values and EFs for non-increasing
attributes. It should be noted that EFs for non-increasing
attributes do not follow the same extrema preservation prop-
erty of the EFs for increasing attributes. They can also be
considered as second max-tree increasing attribute EFs, which
belong to a class of filters known as shape-based filters [44].

5) Extinction profiles (EPs): In order to extract informative
features from any gray scale image, instead of one filtering
step, a sequence of filtering steps with progressively higher
threshold values can be taken into account. In this way, the
EPs can be produced composed of a sequence of thinning
and thickening transformations defined with a sequence of
progressively stricter criteria. An EP for the input gray scale
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Fig. 1: Construction of EMEPs. First, the number of dimen-
sions is decreased from D to d using ICA. Then, each IC is
considered as one base image to construct its corresponding EP
including five extinction attributes (i.e., area, volume, standard
deviation, diagonal of the bounding box, and height). Finally,
all EEPs extracted from three different ICs are concatenated
to construct the EMEP.

image, f , can be defined as follows:

EP (f) ={φPλs (f), φPλs−1 (f), . . . , φPλ1 (f)︸ ︷︷ ︸
thickening profile

, (2)

f, γPλ1 (f), . . . , γPλs−1 (f), γPλs (f)︸ ︷︷ ︸
thinning profile

},

where Pλ : {Pλi} (i = 1, . . . , s) a set of s ordered predicates.
The terms γ and φ are thinning and thickening operators, re-
spectively. For EPs, the number of extrema can be considered
as the predicates.

6) Extended EPs (EEPs): The concept of EPs was orig-
inally proposed for gray scale images; in [39], it has been
generalized and adapted for spatial information extraction from
hyperspectral data, a method known as extended extinction
profiles (EEP). To produce the EEP, a feature reduction ap-
proach such as PCA or ICA can be performed on the input
data. Then, the most informative features [37] can be preserved
as base images to produce the profiles (in this work, EPs
have been applied to the first three independent components
extracted by ICA). More precisely, the dimensionality of the
image from E ⊆ ZD to E′ ⊆ Zd (d ≤ D) is reduced with
a generic transformation Ψ : E → E′ applied to an input
image f = {fi}Di=1 (i.e., q = Ψ(f)), where q = {qi}di=1). The
EP can then be performed on the most informative features
qi (i = 1, . . . , d) of the transformed image, which can be
mathematically described as follows:

EEP (q) = {EP (q1), EP (q2), . . . , EP (qd)}. (3)

7) Extended multi-EPs (EMEPs): Unlike MPs, which are
only able to extract information about the size and structure
of different objects with respect to the size and shape of
structuring elements, EPs have a more flexible concept and
can model different types of information, such as area, height,
volume, diagonal of bounding box, and standard deviation. By
concatenating all that information into a single stacked vector,
the concept of extended muti-EPs (EMEPs) can be derived, as
shown in Fig. 1, and mathematically defined as follows:
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EMEP (q) =
{
EEPA1

(q), EEP ′A2
(q), . . . , EEP ′Ak

(q)
}
,

(4)
where EEPAi is an EEP built with a set of predicates

evaluating the attribute Ai. To avoid including the input image
{qi} in the EMEPs that are present in each EEP, EEP ′ =
EEP\{qi}i=1,...,d is considered. To generate the EMEP, five
different extinction profiles (k = 5) have been taken into
account [38], including area (a), diagonal of the bounding box
(bb), volume (v), height (h), and standard deviation (std).

The original concept of the EP was applicable to computing
increasing attributes (e.g., a, bb, v, and h). In order to general-
ize the concept of the EP to deal with other types of attributes
(such as std, which is not an increasing attribute), a further
modification is needed. In 2012, Xu et al. [44] proposed an
approach, called space of shapes, to construct max-trees of
tree-based image representations (i.e., to build a max-tree of a
max-tree or a max-tree of a tree of shapes [45]). The second
tree construction takes the image to the space of shapes,
enabling the creation of a novel class of connected operators
from the leveling family and more complex morphological
analysis, such as the computation of extinction values for non-
increasing attributes. More specifically, the attribute used to
build the second tree becomes an increasing attribute in this
space, which enables the computation of extinction values and
extinction filters for non-increasing attributes such as std [38].
It is important to note that the creation of the second max-tree
is much faster than for the first, since the complexity of the
second max-tree construction depends on the number of nodes
in the initial max-tree, while the first max-tree construction
depends on the number of image pixels, which in general is
much higher than the number of max-tree nodes [46].

The extrema values used to generate the profile for different
attributes are automatically set using λ = αj j = 0, 1, ..., s−
1, where s is the number of predicates (thresholds) and α is a
constant value. The total EP size is 2s+ 1, in which s is the
number of threshold values, since the original image is also
included in the profile. As mentioned in [39], the larger the α,
the larger the differences between consecutive images. As the
α becomes smaller, the profile will concentrate on keeping a
few extrema, where most of the image information is usually
present [47]. In this context, if an image is filtered out using an
EF set to preserve 1 extrema and another filter set to preserve
2 extrema, the difference between these two images will be
higher than applying an EF set to preserve 1000 extrema and
the other set to preserve 1001 extrema. That occurs because
the extrema with the highest extinction values are the ones
that contain most of the image structural information [47]. In
summary, our reason for defining the equation for selecting the
values of n was to generate a profile with more images with
few extrema, where most of the changes occur and which have
more information for the classifier to learn, but also keep some
images with a higher number of extrema, where less changes
occur, but nonetheless they contain important information for
the classifier to learn. We suggest using an α between 2 and
5. The size of each EP is 2s+1, which includes the input data
and s filtering steps on the max-tree and s filtering steps on

the min-tree. Since the EMEP used in this paper is composed
of five different profiles, the number of features are 10s+1. In
this paper, we retained only three independent components, as
they include almost all variations of the input data. Therefore,
the total number of features extracted by EMEP is 3(10s+1).
In this paper, we used α = 3, and set s = 7. The profiles have
been computed considering the 4-connected connectivity rule.

B. Random Forest Ensembles

Let S ≡ {1, ..., N} denote a set of integers indexing the N
pixels of a hyperspectral image; let C ≡ {1, ..., C} be a set
of C labels; let x ≡ {x1; ...; xN} ∈ RN×D denote an image
of D− bands; let y ≡ {y1, ..., yN} ∈ C be a set of labels for
the N pixels; and let {X,Y} ≡ {(x1, y1) , ..., (xn, yn)} be the
training set, where n is the number of training samples. The
objective of classification is to assign a label yi ∈ C to each
pixel i ∈ S, based on the vector xi, resulting in an image of
class label yi.

RF is an ensemble of T̂ decision trees developed by
Breiman [12]. During the training stage, decision trees are
independently constructed on a bootstrap training set with
randomly chosen features using bagging and random subspace
selection [12]. Each decision tree is constructed by the follow-
ing steps:
• Selection of subset training samples with replacement

from the original training set S. Out-of-bag (OOB) sam-
ples, which are not included in the bootstrap sample, are
used to estimate the misclassification error and variable
importance;

• Random selection of M ≤ D features and consequent
identification of the best split using the Gini index;

• Growing of the tree to the maximum depth, without
pruning.

During the classification stage, a given sample x∗ is clas-
sified by going through each decision tree until a leaf node
is reached. A classification result (the decision function h)
is assigned to each leaf node. The final class label y∗ is
determined by choosing the class with the most votes:

y∗ = argmax
c∈{1,2,...,C}

T̂∑
t:ht(x∗)=c

1 (5)

In order to further improve the performance of RF, we
propose to construct RF ensembles. Since bagging, boosting,
random subspace, and rotation-based are the typical ensemble
strategies, we create the RF ensemble using the four existing
frameworks. Moreover, we propose combining two different
ensemble methods, boosting and rotation-based, to further
improve the capacity of RF ensembles. In the following, these
five frameworks are discussed in detail (seen in Fig 2).

1) Bagging random forest (BagRF): In the bagging method,
the input training samples are selected at random from an
original training set by replacement, instructive iteration is
exerted to create some different training sets, and each training
set is classified by vote to predict its class [19]. The main steps
of bagging random forest (BagRF) are shown in Algorithm 1.
For the classification phase, a new sample x∗ is run on the
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Fig. 2: Framework of random forest ensembles. Same color
represents independent (different) samples and features. Dif-
ferent colors mean dependent samples with different weights
in the classification process.

Algorithm 1 BagRF
Training phase
Input: {X,Y} = {xi, yi}ni=1: training samples, T : number of RF

classifiers, L: RF classifier.
Output: The ensemble L.

1: for t = 1 : T do
2: bootstrap sample from the original training set to form a new

training set with size of n′, n′ = n.
3: train Lt using a new training set.
4: add the classifier to the current ensemble, L = L ∪ Lt.
5: end for

Prediction phase
Input: The ensemble L = {Lt}Tt=1. A new sample x∗.
Output: class label y∗

1: y∗ = argmax
c∈{1,2,...,C}

T∑
t:Lt(x∗)=c

1

output ensemble and the class with the maximum number of
votes is chosen as the label for x∗.

2) Boosting random forest (BoostRF): Like bagging, boost-
ing is another ensemble scheme for improving the performance
of a weak learner. Adaptive boosting (AdaBoost) processes
data with weights, and the weights of misclassified samples
are increased to concentrate the learning algorithm on specific
samples [20]. Indeed, AdaBoost provides the most informative
training samples by changing their distributions dynamically
for each base learner. In this case, AdaBoost can reduce both
the variance and bias of the classification, leading to reduction
in the smaller upper bound of the testing error. For this reason,
a boosting random forest (BoostRF), which is described in
Algorithm 2, is used in this paper. The classification of
a new sample x∗ in BoostRF is performed on the output
weights obtained from the probabilistic distribution in each
RF classifier.

Algorithm 2 BoostRF

Input: : {X,Y} = {xi, yi}ni=1: training samples, T : number of RF
classifiers, L: RF classifier.

Output: : The ensemble L
1: initialize the same weights to each sample ω0 = 1/n
2: for t = 1 : T do
3: fit a classifier Lt to the training data using ω0

4: the error εt =
∑n
i=1 I (Lt (xi) 6= yi)ωt (xi), where I (a = b)

equals 1 when a equals b, otherwise equals 0.
5: if εt > 0.5 or εt = 0, abort the loop.
6: βt =

εt
1−εt .

7: for i = 1 : n do
8: update the weights ωt (xi) = ωt (xi)× βt.
9: end for

10: normalize weights to make the total weight of ωt equal to 1.
11: add the classifier to the current ensemble, L = L ∪ Lt.
12: end for

Prediction phase
Input: The ensemble L = {Lt}Tt=1. A new sample x∗. The weights

βt
Output: class label y∗

1: y∗ = argmax
c∈{1,2,...,C}

T∑
t:Lt(x∗)=c

1
βt

Algorithm 3 RSRF
Training phase
Input: {X,Y} = {xi, yi}ni=1: training samples, T : number of RF

classifiers, L: RF classifier. F: Feature set.
Output: : The ensemble L.

1: for t = 1 : T do
2: randomly select a subset from F without replacement to form

a new training set composed of M features (M < D).
3: train Lt using a new training set.
4: add the classifier to the current ensemble, L = L ∪ Lt.
5: end for

Prediction phase
Input: The ensemble L = {Lt}Tt=1. A new sample x∗.
Output: class label y∗

1: y∗ = argmax
c∈{1,2,...,C}

T∑
t:Lt(x∗)=c

1

3) Random subspace random forest (RSRF): In the random
subspace approach the training set is also modified, as it is
in bagging. However, this modification is performed in the
feature space [21]. Algorithm 3 shows the main steps of
random subspace random forest (RSRF). For the classification
phase, a new sample x∗ will be run on the output ensemble,
and the class with the maximum number of votes is chosen
as the label for x∗.

4) Rotation random forest (RoRF): Rotation random forest
(RoRF) uses data transformation and random feature selec-
tion to construct RF ensembles [48]. The main training and
prediction steps of RoRF are presented in Algorithm 4.

In the training phase, the feature space is first divided into K
disjoint subspaces. PCA is performed on each subspace with
the bootstrapped samples from 75% of the original training set.
A transformed training set is generated by rotating the original
training set with a sparse matrix Rat . An individual classifier
is trained on this rotated training set. In the prediction phase,
a new sample x∗ is rotated by Rat , where Rat is a rearranged
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Algorithm 4 RoRF
Training phase
Input: {X,Y} = {xi, yi}ni=1: training samples, T : number of RF

classifiers, K: number of subsets (M : number of features in each
subset), L: RF classifier. F: Feature set

Output: The ensemble L
1: for t = 1 : T do
2: randomly split the features F into K subsets Ftk
3: for k = 1 : K do
4: extract from X the new training set Xt,k with the corre-

sponding features Ftk
5: generate a subset X̂t,k by selecting with the bootstrap

algorithm, the 75% of the initial training samples in Xt,k
6: transform X̂t,k to get the coefficients v(1)t,k , ..., v

(Mk)
t,k using

PCA
7: end for
8: sparse matrix Rt is composed of the above coefficients

Rt =


v
(1)
t,1 , ..., v

(M1)
t,1 0 · · · 0

0 v
(1)
t,2 , ..., v

(M2)
t,2 · · · 0

...
...

. . .
...

0 0 · · · v
(1)
t,k, ..., v

(MK )

t,k


9: with respect to the original feature set, rearrange Rt to Rat

10: obtain the new training samples {XRat ,Y}
11: build RF classifier Li using {XRat ,Y}
12: add the classifier to the current ensemble, L = L ∪ Lt.
13: end for

Prediction phase
Input: The ensemble L = {Lt}Tt=1. A new sample x∗. Rotation

matrix: Rat .
Output: class label y∗

1: get the output ensemble with x∗Rat .

2: y∗ = argmax
c∈{1,2,...,C}

T∑
t:Lt(x∗Rat )=c

1

matrix of the rotation matrix Rt with respect to the order of
the original features and t is the index of the ensemble. Then,
the transformed set, i.e., x∗Rat , is classified by the ensemble,
and the class with the maximum number of votes is chosen
as the final class. It is important to note Step 5 in Algorithm
4, in which 75% of the original number of training samples
are selected to avoid obtaining the same coefficients of the
transformed components if the same features are selected, thus
enhancing diversity among the member classifiers.

RoRF can improve the performance of random forest by
introducing further diversity through performing a data trans-
formation within the ensemble, which is beneficial for the
ensemble.

5) Boosted rotation random forest (BRoRF): Both em-
pirical and theoretical studies have demonstrated that the
individual classifiers are accurate, but disagree on some dif-
ferent parts of the input space as much as possible at the
same time [49]. The implication of this finding is that the
member classifiers should be diverse. Performance would not
be improved if the individual classification results were iden-
tical or similar. Boosting and rotation-based methods employ
different perturbation techniques to promote the diversity in
the ensemble. By combining the two perturbation techniques,
we expect to enhance the diversity in order to further improve

Algorithm 5 BRoRF
Training phase
Input: {X,Y} = {xi, yi}ni=1: training samples, T : number of RF

classifiers, K: number of subsets (M : number of features in each
subset), L: RF classifier. J : iterations in Boosting.

Output: The ensemble L
1: for t = 1 : T do
2: randomly split the features F into K subsets Ftk
3: for k = 1 : K do
4: extract from X the new training set Xt,k with the corre-

sponding features Ftk
5: generate a subset X̂t,k by selecting with the bootstrap

algorithm, the 75% of the initial training samples in Xt,k
6: transform X̂t,k to get the coefficients v(1)t,k , ..., v

(Mk)
t,k using

PCA
7: end for
8: sparse matrix Rt is composed of the above coefficients

Rt =


v
(1)
t,1 , ..., v

(M1)
t,1 0 · · · 0

0 v
(1)
t,2 , ..., v

(M2)
t,2 · · · 0

...
...

. . .
...

0 0 · · · v
(1)
t,k, ..., v

(MK )

t,k


9: with respect to the original feature set, rearrange Rt to Rat

10: obtain the new training samples {XRat ,Y}
11: initial the same weights to each sample ω0 = 1

n
.

12: for j = 1 : J do
13: the error εj =

∑n
i=1 I (Lj (xiR

a
t ) 6= yi)ωj (xi).

14: If εj > 0.5 or εj = 0, abort the loop.
15: βj =

εj
1−εj

.
16: for i = 1 : n do
17: update the weights ωj (xi) = ωj (xi)× βj .
18: end for
19: normalize weights to make the total weights of ωt equal to

1.
20: end for
21: add L∗t = argmax

∑J
j=1 log

1
βj
I (Cj (xRat ) = y) to the

current ensemble L.
22: end for

Prediction phase
Input: The ensemble L = {L∗t }Tt=1. A new sample x∗.
Output: class label y∗

1: y∗ = argmax
c∈{1,2,...,C}

T∑
t:L∗

t (x∗)=c
1

the classification performance [50].

Under this assumption, we propose the boosted rotation
random forest (BRoRF) method. Compared to RotBoost
in [50], we use random forests instead of decision trees as
the base classifier in BRoRF. Algorithm 5 illustrates the main
procedures. In BRoRF, the new training set is obtained by
procedures used in RoRF (steps 1 to 9); then AdaBoost
(steps 10 to 21) is used to manipulate the obtained training
set to generate the ensemble. It should be noted that the
individual classification results achieved by AdaBoost are
combined to generate the final result in BRoRF, whereas
the base classification results in BagRF, BoostRF, RSRF, and
RoRF are obtained from random forest. Therefore, BRoRF
promotes diversity without decreasing the accuracy of the
member classifiers, which could be expected to improve the
classification performance.
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Fig. 3: (a) Three-band color composite image of ROSIS data.
(b) Reference map.

III. EXPERIMENTAL SETTINGS AND RESULTS

A. Hyperspectral Datasets

Two well-known public hyperspectral datasets were used to
evaluate the performance of the proposed method.

1) Indian Pines AVIRIS: The first dataset was captured
by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over northwestern Indiana in June 1992, with 220 spectral
bands (wavelength range from 400 nm to 2500 nm) and a
spatial resolution of 20 m/pixel. The whole scene (145 × 145)
consists of 16 classes, ranging in size from 20 to 2468 pixels
(shown in Table I). After removing some noisy bands, 200
bands were kept.

2) University of Pavia ROSIS: The second dataset was
acquired over a university area in the city of Pavia, Italy by
the Reflective Optics System Imaging Spectrometer (ROSIS),
with 115 bands (wavelength range from 430 nm to 860 nm)
and a very high spatial resolution of 1.3 m/pixel. It consists
of 610× 340 pixels. As with Indian Pines, 12 noisy bands
were removed, and the remaining 103 bands were used in the
classification. The reference data with nine classes of interest
is composed of 42,776 pixels (shown in Table I). Fig. 3 shows
the three-band color composite image and the reference map
of the University of Pavia data.

B. Experimental settings

In this paper, two input datasets are used in the experi-
ments: (1) with spectral bands, and (2) with EMEPs. The
dimensionality of spectral features are 200 and 103 for In-
dian Pines AVIRIS and University of Pavia ROSIS images,
respectively. The first three components extracted by ICA are
used to construct the EMEPs with different extinction profiles,
including area, diagonal of the bounding box, volume, height,
and standard deviation, which consists of 213 features. The
results reported are achieved by the mean of five Monte Carlo
runs.

For the standard RF, T̂ is set to be 10, and the number of
features in a subset is set to be the default value (square root

TABLE I: Indian Pines AVIRIS and University of Pavia ROSIS
images: class name and number of train and test samples

AVIRIS ROSIS
No. Name Train Test Name Train Test
1 Alfalfa 15 39 Bricks 514 3682
2 Corn-no till 50 1384 Shadows 231 947
3 Corn-min till 50 784 Metal Sheets 256 1345
4 Bldg-Grass-Tree-Drives 50 184 Bare Soil 532 5029
5 Grass/pasture 50 447 Trees 524 3064
6 Grass/trees 50 697 Meadows 540 18649
7 Grass/pasture-mowed 15 11 Gravel 392 2099
8 Corn 50 439 Asphalt 548 6631
9 Oats 15 5 Bitumen 375 1330
10 Soybeans-no till 50 918
11 Soybeans-min till 50 2418
12 Soybeans-clean till 50 564
13 Wheat 50 162
14 Woods 50 1244
15 Hay-windrowed 50 330
16 Stone-steel towers 50 45

of the number of the features used). For all the ensembles, the
number of RFs (T ) is fixed to be 10.

The number of features in a subset (M ) in RSRF is set to
be one-half of the features used. Following the studies in [31]
and [24], the number of features in a subset (M ) in RoRF
and BRoRF is set as follows. For the AVIRIS, M is set to be
100 and 3 for spectral features and EMEPs, respectively. For
the ROSIS, M is set to be 10 and 3 for spectral features and
EMEPs, respectively.

We used the following measures to evaluate the performance
of different classification methods.

• Overall accuracy (OA): The percentage of correctly clas-
sified samples.

• Average accuracy (AA): Average percentage of correctly
classified samples for an individual class.

• Kappa coefficient (κ): The percentage agreement cor-
rected by the level of agreement that could be expected
by chance alone.

• Average of OA (AOA): The percentage average over-
all accuracies of the individual member classifiers. The
member classifier is the decision tree and RF for RF and
RF ensembles, respectively.

• Coincident Failure Diversity (CFD) [51]: The measure of
difference among the member classifiers. A higher value
of CFD represents stronger diversity.

• CPU time (seconds): All methods were implemented in
MATLAB on a computer with Intel Xeon 2 CPUs, 3.2
GHz, and 16 GB of memory. RF implementation was
downloaded from the website http://code.google.com/p/
randomforest-matlab/. Please note that the CPU process-
ing time of EMEPs construction in RF ensemble is not
included in this manuscript.

In addition, we present McNemar’s test (Z) to compare the
classification results. McNemar’s test is calculated by

Z =
f12 − f21√
f12 + f21

, (6)

where f12 means the number of samples correctly classified by
classifier 1 and the number incorrectly classified by classifier
2. If Z > 0, then classifier 1 is more accurate than classifier
2. The difference between classifiers 1 and 2 is statistically
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significant if |Z| > 1.96.

C. Experimental Results

1) Indian Pines AVIRIS image: The low spatial resolution
and the presence of highly mixed pixels in this scene make
the classification of this dataset a challenging task.

Table II provides the OAs, AAs, κ with standard deviations,
class-specific accuracies, and computational time for RF and
its ensembles.

The OA of RF with spectral information is only 62.38%.
This reveals that the RF classifier is not sufficient to discrimi-
nate between different classes when using hundreds of spectral
bands as the input. All the RF ensemble classifiers yield better
performance than the individual RF classifier. In particular, the
proposed BRoRF shows the best results, where the OA and AA
are 73.60% and 81.45%, which are 11.22 and 8.15 percentage
points higher, respectively, than those of RF.

The accuracies in Table II involving the EMEPs are sig-
nificantly better than those achieved by only the spectral
information, demonstrating the effectiveness of EMEPs. The
OA of RF is 90.31%. BagRF and BoostRF cannot improve
on this performance. However, their AAs are better than that
of RF. The proposed BRoRF gains the highest accuracies.
However, the difference in OA between BRoRF and RF is
reduced to 1.93 percentage points. Boosting techniques and
data transformation in the rotation-based ensemble took a
longer computation time than those of other algorithms. The
computational time of BRoRF is at least 10 times longer than
other RF ensembles. However, the CPU processing time is
acceptable (about 48s).

Generally, it is time-consuming and expensive to prepare
training samples for remote sensing data. Therefore, it is of
great interest for users to see generalization performance of
classifiers using a limited training set. In order to assess the
effectiveness of the RF ensemble for a limited training set, we
randomly extracted 15 samples per class from the training set.
The results are shown in Table III. The proposed BRoRF still
shows the best performance.

With respect to the analysis of AOA and CFD diversities
in Tables II and III, it can be seen that the main reason for
BRoRF’s superior performance is that it provides higher values
of AOA and CFD diversities. We also provide McNemar’s
test between the BRoRF and RF or other RF ensembles in
Table IV. As can be seen, the BRoRF method shows significant
improvement compared to the other methods, except in the
case of BRoRF and RoRF with EMEPs using the standard
training set. Another observation from Tables II and III is that
BRoRF shows stable results (with smaller standard deviations)
than other RF ensembles and the RF classifier.

2) University of Pavia ROSIS image: Table V provides
information related to the classification accuracies of the RF
and its ensembles, as well as the CPU processing time. The
corresponding classification maps can be found in Fig. 4. It can
be seen from Table V that spectral classification with RoRF
and BRoRF improves the OA of RF by about 8 and 9 per-
centage points, respectively. Specifically, the class accuracies
of bare soil and meadows are significantly improved.

By using spectral classification (see the top of Fig. 4), many
samples of meadows and bare soil are misclassified as one
another. The class gravel is incorrectly classified and confused
with the similar classes bricks and asphalt. When the EMEPs
are included in the classification process, the classification
results of these classes are greatly improved, as shown at the
bottom of Fig. 4. The findings are similar to those in the
AVIRIS image. RoRF and BRoRF share the top positions.
The proposed BRoRF is slightly better than RoRF. Also, the
major accuracy difference between RoRF and BRoRF occurs
for class gravel. The computation time of RoRF and BRoRF is
about 20s and 350s. The use of other ensemble methods, such
as BagRF, BoostRF, and RSRF, also leads to high accuracies.

The experimental results shown in Table VI on very limited
training samples (5% samples from the training set) demon-
strate the superior performance of the proposed methods. As
shown in Tables V and VI, the proposed BRoRF produces
higher values of AOAs and diversities than other methods,
leading to better classification results. Also, the BRoRF have
shown significantly better and more stable results than other
RF ensembles (as seen in Table VII).

From the above results, the pros and cons of the RF
ensembles chosen for this study are as follows:

1) BagRF slightly improves the performance over RF and
the computational time is short.

2) BoostRF provides better results than BagRF. However, it
requires longer computational time than BagRF. BagRF
and BoostRF only define the number of RFs (T ).

3) RSRF achieves results that are comparable to BoostRF’s
results; the computational time is shorter than that of
BagRF.

4) RoRF gains better results than BagRF, BoostRF, and
RSRF. The computational time is slightly longer than
that of BoostRF.

5) BRoRF yields the best results among the RF ensembles.
However, the computational time is about 17 times
longer than that of RoRF. In addition to T , we should
set the value of M in RSRF, RoRF, and BRoRF.

D. Study of Effects on Parameter Selection

In this work, the number of trees in RF (T̂ ), the number
of RFs in the ensemble (T ), and the number of features in
a subset (M ) are the essential parameters of the proposed
method. The effects of T̂ and T on the EMEPs are shown in
Figs. 5 and 6. Fig. 5 shows that OA increases as T̂ increases,
although good performance is already achieved with T̂ = 10.
Note that, in the previous subsection, we adopted T̂ = 10 to
reduce the computational burden.

From Fig. 6, we observe that the proposed methods are not
sensitive to values of T̂ when it is greater than 10. Fig. 7
presents the influence of M on the classification performance.
In all cases, RSRF tends to have better performance with a
larger value of M . For the AVIRIS image, RoRF (BRoRF)
with spectral information yields better performance with larger
values of M . The optimal value is 100 in the studied range. For
the ROSIS image, RoRF (BRoRF) with spectral information
first increases the OA and then decreases it when the value of
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TABLE II: Classification accuracies obtained for the Indian Pines AVIRIS image using different ensemble classifiers.

Class Spectral EMEPs
RF BagRF BoostRF RSRF RoRF BRoRF RF BagRF BoostRF RSRF RoRF BRoRF

1 70.97 83.87 80.65 70.97 80.65 80.65 82.37 93.55 93.55 93.55 93.55 93.55
2 46.52 45.72 37.45 47.17 61.39 59.87 85.13 78.66 76.71 82.58 85.27 82.87
3 51.15 50.38 52.31 53.85 58.46 57.05 95.72 90.38 82.95 86.92 88.21 89.36
4 67.38 68.98 69.52 67.91 87.17 88.24 96.30 97.33 97.33 97.33 96.79 96.79
5 82.68 84.99 86.37 85.91 83.14 87.07 89.85 97.00 96.07 96.54 96.54 96.30
6 80.44 86.18 86.32 87.35 87.79 88.53 84.62 89.56 91.62 91.47 92.06 92.94
7 84.62 76.92 84.62 84.62 84.62 84.62 84.62 92.31 92.31 92.31 92.31 92.31
8 90.42 89.49 89.95 92.52 95.09 95.79 100.00 100.00 100.00 100.00 100.00 100.00
9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 61.39 67.14 58.57 73.43 74.62 72.78 82.75 80.26 82.43 83.08 82.00 82.00
11 48.52 62.25 61.00 62.49 61.95 64.49 89.52 90.02 91.60 91.52 92.77 93.93
12 56.54 60.04 64.09 65.56 84.53 81.40 91.71 93.92 93.92 93.37 93.92 95.40
13 90.97 94.19 93.55 92.90 94.19 94.84 99.35 99.35 99.35 99.35 99.35 99.35
14 87.08 86.91 88.97 88.07 90.86 92.84 99.18 99.18 99.34 99.18 99.18 99.18
15 54.17 47.92 52.98 57.44 56.85 55.06 99.40 99.11 99.70 99.70 100.00 99.70
16 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA 62.38 66.76 65.34 68.90 73.17 73.60 90.31 90.27 90.13 91.30 92.08 92.24
±2.95 ±2.02 ±1.45 ±1.21 ±0.74 ±0.34 ±0.91 ±0.82 ±0.76 ±0.75 ±0.74 ±0.51

AA 73.30 75.31 75.40 76.89 81.33 81.45 92.89 93.79 93.55 94.18 94.50 94.61
±2.34 ±2.11 ±2.07 ±1.96 ±0.88 ±0.62 ±0.74 ±0.89 ±0.64 ±0.63 ±0.51 ±0.45

κ
57.70 62.32 60.78 64.80 69.67 70.09 88.91 88.87 88.71 90.05 90.93 91.12
±2.87 ±1.96 ±1.47 ±1.24 ±0.81 ±0.37 ±0.86 ±0.83 ±0.71 ±0.78 ±0.65 ±0.47

AOA 54.24 57.47 55.34 61.31 64.38 64.42 87.28 86.25 87.12 88.28 89.37 89.54
CFD 0.44 0.48 0.46 0.50 0.56 0.57 0.67 0.64 0.66 0.68 0.70 0.71

Time (s) 0.39 2.48 4.23 1.84 5.14 48.92 0.31 2.24 3.80 1.61 4.89 47.48

TABLE III: Classification accuracies obtained for the Indian Pines AVIRIS image using different ensemble algorithms with a
very limited training set.

Class Spectral EMEPs
RF BagRF BoostRF RSRF RoRF BRoRF RF BagRF BoostRF RSRF RoRF BRoRF

OA 51.17 55.64 56.82 56.67 60.87 62.79 83.78 84.62 85.17 84.22 86.09 88.11
±1.78 ±1.75 ±1.46 ±1.28 ±1.74 ±1.42 ±1.84 ±1.65 ±1.57 ±1.48 ±1.14 ±1.01

AA 63.73 67.73 68.14 68.02 73.04 74.28 88.78 89.15 89.24 89.01 90.15 90.72
±1.63 ±1.12 ±1.96 ±1.81 ±1.15 ±1.12 ±1.78 ±1.62 ±1.54 ±1.64 ±1.12 ±1.01

κ
45.26 50.98 51.02 52.11 54.28 56.17 78.11 79.14 79.67 79.01 80.18 81.54
±1.84 ±1.54 ±1.14 ±1.01 ±1.76 ±1.04 ±1.51 ±1.63 ±1.52 ±1.24 ±1.01 ±1.04

AOA 43.64 48.18 48.21 49.98 52.17 53.11 79.14 80.89 81.74 81.27 83.11 83.52
CFD 0.40 0.44 0.44 0.44 0.46 0.48 0.55 0.57 0.58 0.57 0.61 0.63

TABLE IV: Statistic of McNemar’s test for Indian Pines
AVIRIS image using the RF ensembles.

Z
Standard training set Limited training set
Spectral EMEPs Spectral EMEPs

BRoRF vs. RF 17.28 5.36 20.84 10.15
BRoRF vs. BagRF 13.85 5.98 19.65 8.27

BRoRF vs. BoostRF 14.98 60.21 10.25 6.12
BRoRF vs. RSRF 7.64 4.23 9.32 8.25
BRoRF vs. RoRF 1.98 1.54 4.11 3.02

M increases. Thus, the optimal value is 10. However, when
we include EMEPs in the classification process, a small value
of M is preferred for the RoRF (BRoRF). Indeed, the better
performance is achieved by the above-mentioned parameters
(i.e., T , T̂ and M ) with higher diversity. The influences of
parameters on the performance can be deeply analyzed by
using the the evolution of CFD diversities, as we did in [52].
Finally, we can conclude the general recommendation of M

for the new dataset:
1) for the RF classifier, the default value of M is recom-

mended;
2) for the RSRF, M is recommended to be set to one-half

of the number of features used;
3) for the RoRF (BRoRF) with spectral information, one-

half of the number of the features used or a small number
(e.g., 10) is recommended to configure M ;

4) for the RoRF (BRoRF) with EMEPs, a very small value
(e.g., 3) of M is recommended.

E. Comparisons with State-of-the-Art Methods

In this section, we compare the proposed method with some
state-of-the-art algorithms in terms of OAs and AAs in order to
demonstrate the capability of the combination of RF ensembles
(especially the RoRF and BRoRF) and EMEPs. Tables VIII
and IX report the OAs and AAs for state-of-the-art methods,
such as SVM+WH [53], SVMMSF [54], SVMMRF-E [29],
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TABLE V: Classification accuracies obtained for University of Pavia ROSIS image using different ensemble classification
algorithms.

Class Spectral EMEPs
RF BagRF BoostRF RSRF RoRF BRoRF RF BagRF BoostRF RSRF RoRF BRoRF

1 89.57 91.55 90.66 90.39 93.07 93.86 99.08 99.51 99.38 99.57 99.38 99.54
2 97.15 98.63 98.52 98.31 99.58 99.79 100.00 100.00 100.00 99.89 100.00 100.00
3 97.92 99.03 98.81 98.96 99.48 99.48 99.93 99.93 99.93 99.93 99.93 99.93
4 78.25 76.62 76.32 79.08 95.11 94.97 90.28 96.92 98.25 98.01 98.53 98.87
5 98.73 98.69 98.53 98.60 98.56 98.60 96.51 99.09 99.12 98.83 99.58 99.15
6 56.13 55.12 57.96 54.81 64.86 67.01 91.44 93.77 94.83 93.88 94.73 94.18
7 53.26 50.88 52.17 51.55 56.69 57.22 87.37 83.52 85.37 85.28 85.33 92.81
8 78.21 79.31 79.69 80.12 85.24 84.30 95.84 96.37 96.38 96.55 96.38 96.76
9 84.36 85.11 87.44 84.44 89.62 90.53 99.92 99.85 99.85 99.92 99.85 99.85

OA 70.72 71.04 72.02 70.90 78.64 79.55 93.52 95.43 96.14 95.71 96.16 96.36
±0.98 ±0.72 ±0.63 ±0.64 ±0.52 ±0.41 ±0.45 ±0.41 ±0.38 ±0.37 ±0.31 ±0.29

AA 81.51 81.66 82.23 81.81 86.91 87.31 95.60 96.55 97.01 96.87 97.08 97.90
±0.82 ±0.74 ±0.71 ±0.65 ±0.52 ±0.48 ±0.64 ±0.52 ±0.53 ±0.48 ±0.41 ±0.40

κ
64.02 64.40 65.45 64.30 73.50 74.53 91.54 94.02 94.93 94.38 94.96 95.24
±0.94 ±0.75 ±0.66 ±0.62 ±0.50 ±0.43 ±0.41 ±0.43 ±0.37 ±0.39 ±0.33 ±0.30

AOA 64.89 65.78 66.17 65.01 72.89 73.08 90.87 92.27 93.64 93.01 94.12 94.28
CFD 0.51 0.52 0.53 0.51 0.60 0.61 0.73 0.75 0.76 0.75 0.76 0.77

Time (s) 1.18 11.15 27.52 9.02 17.24 300.35 1.59 15.12 32.34 11.45 20.56 354.15

TABLE VI: Classification accuracies obtained for University of Pavia ROSIS image using different ensemble algorithms with
a very limited training set.

Class Spectral EMEPs
RF BagRF BoostRF RSRF RoRF BRoRF RF BagRF BoostRF RSRF RoRF BRoRF

OA 60.25 61.75 62.59 61.27 69.71 70.82 85.14 85.99 86.28 86.29 89.96 91.02
±1.28 ±1.27 ±1.18 ±1.19 ±1.07 ±1.05 ±0.98 ±0.95 ±0.93 ±0.92 ±0.90 ±0.88

AA 72.52 73.05 73.82 73.08 80.24 81.78 89.17 90.25 90.38 90.26 92.17 93.24
±1.15 ±1.16 ±1.11 ±1.07 ±1.07 ±1.02 ±0.82 ±0.81 ±0.82 ±0.79 ±0.64 ±0.61

κ
55.14 56.73 56.99 56.01 63.49 64.28 81.69 82.12 82.73 82.78 85.01 86.72
±1.45 ±1.33 ±1.37 ±1.29 ±0.89 ±1.01 ±0.99 ±0.97 ±0.96 ±0.95 ±0.88 ±0.89

AOA 53.21 54.04 54.78 55.12 63.78 64.25 81.21 82.01 81.99 82.07 83.82 84.17
CFD 0.41 0.44 0.44 0.45 0.48 0.50 0.63 0.65 0.66 0.66 0.68 0.70

TABLE VII: Statistics of McNemar’s test of University of
Pavia ROSIS image using the RF ensembles.

Z
Standard training set Limited training set
Spectral EMEPs Spectral EMEPs

BRoRF vs. RF 37.25 10.24 32.16 20.54
BRoRF vs. BagRF 32.67 7.51 29.62 18.62

BRoRF vs. BoostRF 28.64 3.26 25.31 15.64
BRoRF vs. RSRF 35.64 5.92 27.53 17.28
BRoRF vs. RoRF 7.24 2.81 6.84 10.12

RoF-MRF [31], RoRF+EMPs [55], and RoRF+EMAPs [56],
in both standard and limited training set cases. Please refer
to the original references for a better understanding of the
compared methods. It can be seen from the table that the
proposed methods provide competitive classification results
compared to the other investigated methods.

Since there is no need to initialize the parameters in the
construction of EMEPs, users might select a very small value
(e.g., 3) of M , as in our case, to achieve better performance
because higher diversity is obtained.

TABLE VIII: Comparisons with state-of-the-art approaches for
Indian Pines AVIRIS image.

Methods Standard training set Limited training set
OA AA OA AA

RoRF+EMEPs 92.08 94.50 86.09 90.15
BRoRF+EMEPs 92.24 94.61 88.11 90.72
SVM+WH [53] 86.63 91.61 71.24 75.67
SVMMSF [54] 91.80 94.28 72.78 77.38

SVMMRF-E [29] 91.83 95.69 73.12 75.83
RoF-MRF [31] 90.45 94.17 74.18 82.42

RoRF+EMPs [55] 87.32 91.38 80.11 84.56
RoRF+EMAPs [56] 91.34 93.25 85.14 86.21

IV. CONCLUSIONS

In this paper, we developed a framework to classify hyper-
spectral images. Our framework uses random forest ensembles
for the classification with spatial information modeled by
EMEPs. The proposed methods were tested on two benchmark
hyperspectral datasets: Indian Pines AVIRIS and University
of Pavia ROSIS images. Different strategies were used to
construct RF ensembles, and the results compared in terms
of classification accuracies and CPU time.

Experimental results indicate good generalization perfor-
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Fig. 4: Classification maps of University of Pavia ROSIS image using RF, BagRF, BoostRF, RSRF, RoRF and BRoRF with
spectral features (a)-(f) and EMEPs (g)-(l).

mance of RF ensembles on EMEPs features. Particular at-
tention should be paid to the BRoRF classifier, which shows
the best results due to its property of generating the ensemble
with high accuracy of member classifiers as well as diversity.
Moreover, the proposed methods achieve better performance
than other spectral-spatial classifiers with accepted CPU pro-
cess time.

In our future studies, we will apply the proposed methodol-
ogy to other types of data (e.g., multispectral remote sensing
data) and extend our framework for the classification of multi-
sensor datasets, i.e., hyperspectral and LiDAR datasets. In
addition, parallel implementations will be introduced in our
framework to further decrease CPU processing times.
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Fig. 5: Sensitivity to the change of number of trees in the RF
(T̂ ) for (a) Indian Pines AVIRIS and (b) University of Pavia
data with EMEPs.

20 40 60 80 100

Number of RFs in the ensemble

88

88.5

89

89.5

90

90.5

91

91.5

92

92.5

93

 O
A

(%
)

RF

BagRF

BoostRF

RSRF

RoRF

BRoRF

(a)

20 40 60 80 100

Number of RFs in the ensemble

92

92.5

93

93.5

94

94.5

95

95.5

96

96.5

97

 O
A

(%
)

RF

BagRF

BoostRF

RSRF

RoRF

BRoRF

(b)

Fig. 6: Sensitivity to the change of number of RFs in the
ensemble (T ) for (a) Indian Pines AVIRIS and (b) University
of Pavia data with EMEPs.

TABLE IX: Comparisons with state-of-the-art approaches for
University of Pavia ROSIS image.

Methods Standard training set Limited training set
OA AA OA AA

RoRF+EMEPs 96.16 97.08 89.95 92.17
BRoRF+EMEPs 96.36 97.90 91.02 93.24
SVM+WH [53] 85.42 91.31 72.48 82.59
SVMMSF [54] 91.08 94.76 75.96 83.67

SVMMRF-E [29] 87.63 93.41 76.21 84.52
RoF-MRF [31] 92.15 93.06 80.29 87.68

RoRF+EMPs [55] 90.20 92.76 84.21 88.96
RoRF+EMAPs [56] 95.47 97.02 88.24 91.24
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