
 

Abstract— Ground penetrating radar (GPR) is one of the most 

popular and successful sensing modalities that has been 

investigated for landmine and subsurface threat detection.   Many 

of the detection algorithms applied to this task are supervised and 

therefore require labeled examples of target and non-target data 

for training.  Training data most often consists of 2-dimensional 

images (or patches) of GPR data, from which features are 

extracted, and provided to the classifier during training and 

testing.  Identifying desirable training and testing locations to 

extract patches, which we term “keypoints”, is well established in 

the literature.  In contrast however, a large variety of strategies 

have been proposed regarding keypoint utilization (e.g., how many 

of the identified keypoints should be used at targets, or non-target, 

locations).  Given the variety keypoint utilization strategies that 

are available, it is very unclear (i) which strategies are best, or (ii) 

whether the choice of strategy has a large impact on classifier 

performance. We address these questions by presenting a 

taxonomy of existing utilization strategies, and then evaluating 

their effectiveness on a large dataset using many different 

classifiers and features.  We analyze the results and propose a new 

strategy, called PatchSelect, which outperforms other strategies 

across all experiments. 

 
Index Terms—training, ground penetrating radar, landmine 

detection 

I. INTRODUCTION 

A popular approach for detecting buried threats, such as 

landmines and other explosive hazards, is the use of remote 

sensing technologies.  One of the most successful modalities for 

remote sensing of buried threats is the ground penetrating radar 

(GPR) [1]–[5].  The typical GPR consists of an array of 

antennas that are directed toward the ground.  An individual 

GPR antenna operates by emitting a radar signal towards the 

ground and then measuring the energy that is reflected back.  

The result of this sensing process is a time-series of energy 

measurements for the given antenna, referred to as an A-scan 

[6]. 

In the context of buried threat detection (BTD), GPR sensors 

collect A-scans at regular spatial intervals as they move across 

the surface of the ground (e.g., on the front of a vehicle as it 

drives forward).   The resulting A-scans, each collected at a 

different spatial location, can then be concatenated to form 

images of the subsurface, termed B-scans [1], [2], [7].  B-scans 

have one spatial axis, and one temporal axis. The signals 

returned from buried threats typically exhibit characteristic 

hyperbolic patterns in the B-scans, which can be leveraged for 

detection [6], [8]–[10].  Figure 1 shows several examples of B-

scans collected over buried threats.   

Although it is possible to manually identify buried threats in 

GPR data, a great deal of published research has focused on 

automating this process with computer algorithms that provide 

a confidence of buried threat presence at each spatial location 

[4], [7], [8], [11]–[16].  Proposed algorithms have employed a 

variety of techniques from statistics [17], [18], computer vision 

[6], [19], [20], and machine learning [7], [21], [22].  The most 

successful approach to date involves the use of supervised 

learning techniques [12], [23]–[27].    

A typical processing pipeline for supervised detection 

algorithms begins with a “prescreening” operation, in which a 

relatively fast algorithm is applied to the full set of GPR data 

(e.g., a 3D volume, or B-scan) in order to identify a smaller 

subset of spatial locations on the ground, which are 

subsequently processed by the supervised algorithms. 

Prescreening is used primarily because it dramatically reduces 

the amount of data required for both training and testing 

supervised algorithms, making it possible to apply such 

algorithms in real-time applications (e.g., on a truck while 

driving).  In the second step of processing, one or more 2D 

patches of GPR data are extracted at each prescreener alarm 

location, and a (trained) supervised algorithm is applied to the 

patches in order to predict whether each alarm location is a 

threat, or non-threat.   

In order to train supervised classifiers, they must be provided 

with examples of data from each class (i.e., threat and non-

threat).  As mentioned, training examples most often consist of 

small image patches that are extracted from B-scans at locations 

in the GPR volume where useful signals (i.e., those 

corresponding to both threats, or suspicious non-threats) are 

estimated to exist [1], [4], [6]–[8], [12], [28]–[32].  In this work, 
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Figure 1: Examples of three B-scans collected over three different buried 

threats.  Each column of this image is the time series of data (i.e., time of 

arrival, the y-axis) collected at a single spatial location.  Consecutive A-

scans, for a single antenna, collected as the vehicle travels down the lane 

(i.e., down track, the x-axis), are shown here as an image.  The target 

signatures in this figure illustrate some of the variability in the response 

that is possible in GPR data.  This includes varying the y-offset of the top 

of the signature, having several independent regions, and extending over 

a very different number of time samples.  

  



 

we refer to these useful signal locations as “keypoints”. The 

performance of supervised algorithms depends strongly upon 

the training data that the algorithm is provided, and as a result, 

the way in which keypoints are (i) identified and (ii) utilized, 

forms an important design choice for supervised GPR 

algorithms.       

A.  Keypoint identification 

A GPR keypoint consists of a spatial location as well as a 

temporal location (or sometimes depth).  The way in which 

keypoints are identified is fairly consistent in most existing 

GPR-based threat detection research.  The spatial location is 

typically either (i) known in advance because the objects were 

deliberately buried [1], [6] or (ii) it is estimated using a 

detection algorithm (sometimes called a prescreener) that 

precedes supervised classification algorithms [1], [6], [7], [11], 

[12], [33], [34].   

Once the spatial location is obtained, the temporal location 

can be estimated. By far, the most common approach for 

temporal estimation relies on extracting keypoints at locations 

of high energy (e.g., local maxima) in the GPR A-scans [6], [8], 

[20], [29], [35]–[39].  These energy-based methods often yield 

multiple keypoints at each spatial location.  Figure 2 illustrates 

a previously proposed method [37], which we term the max-

smoothed-energy keypoint (MSEK) approach.  MSEK is used 

in this work, and is representative of most existing temporal 

identification approaches, though some others do exist [8], [10], 

[39]–[41]. 

 

B. Keypoint utilization  

Although there is a general consensus in the literature about 

how to identify keypoints (i.e. that regions of high radar 

amplitude are of interest), there is relatively little agreement 

regarding keypoint utilization.  Here, keypoint utilization will 

refer to the process of deciding which keypoints, of those 

identified, that should be provided to the supervised classifiers 

for training, as well as testing.   

Consider first the problem of keypoint utilization for training. 

Keypoint identification approaches, such as MSEK, yield 

multiple keypoints at each spatial location.  As a result, it is 

unclear which keypoints should be retained for training, and 

this ambiguity is evidenced by the large number of keypoint 

utilization approaches that have been proposed in the literature 

(see section II). To date, it is unclear which of these utilization 

strategies are best, or whether there are any generally superior 

approaches at all.     

Similar design choices must be made for keypoint 

identification during algorithm testing as well: given a spatial 

location generated by a prescreener, which temporal locations 

should be evaluated by the (trained) classifier?  Further, given 

multiple decision statistics at each spatial location, how should 

a final, single, statistic be computed?  Similar to utilization for 

training, a large variety of utilization approaches have been 

employed in the literature during testing [9], [18], [34], [35], 

[38], [41], [44], and it is likewise unclear which existing 

strategies, if any, are superior.   

C. Contributions of this work 

In this work we investigate the problem of keypoint 

utilization during both training and testing.  We present a 

taxonomy of existing keypoint utilization strategies, and then 

compare their effectiveness on a large dataset of GPR data using 

several combinations of state-of-the-art classifiers and features. 

The results indicate that keypoint utilization can have a 

significant impact on the classification performance, and that 

some utilization strategies do generally outperform others. 

Further, we introduce and apply a new utilization method that 

was inspired by the comparison of existing methods.  This 

proposed method, called “PatchSelect”, outperforms all 

existing methods across all combinations of features and 

classifiers tested in this work.  As further analysis, we present 

several small-scale experiments that motivated the design of 

PatchSelect, as well as elucidating effective practices for 

keypoint utilization.  In the conclusions section, we also discuss 

limitations of our work, including PatchSelect. 

The remainder of this paper is organized as follows. In 

Section II, we present a taxonomy for the different keypoint 

utilization methods that have been proposed in the literature.  In 

Section III, the experimental design of a large-scale comparison 

of keypoint utilization strategies is explained.  In Section IV, 

the results of the comparison are presented.  In Section V, the 

small-scale experiments motivating PatchSelect are presented.  

In Section VI, conclusions are drawn and recommendations are 

given for the design of future BTD systems. 

II. KEYPOINT UTILIZATION STRATEGIES 

In this section, we present a taxonomy of existing keypoint 

utilization strategies that have been employed in the literature. 

Keypoint utilization strategies, as defined here, consist of two 

components: one component for training, and one component 

for testing.  We will present a taxonomy of existing methods 

based on a few characteristic differences they have during both 

training, and testing.  Table 1 in this section presents the 

 
Figure 2: the process of identifying the temporal location of GPR 

keypoints with MSEK.  In MSEK, (a) the raw data is (b) depth 

normalized, (c) the central A-scan is squared and smoothed and keypoints 

are identified by the maximum values in the transformed, central A-scan.  

At the top maxima locations, indicated by stars in (c), patches are 

extracted, where the three examples shown in (d) correspond to the data 

in the red boxes drawn in (b). 

 

  



 

taxonomy of each existing method, as well as our proposed 

method, PatchSelect.   

A. Strategies for training 

 During training, there are two main characteristics that 

differentiate existing keypoint utilization strategies: the number 

of keypoints extracted at each spatial location, denoted by 𝐾, 

and how this number varies between target locations and non-

target locations.  

For example, many strategies utilize keypoints at the top 𝐾 

energy locations, where 𝐾 is the same for both target and non-

target cases [2], [6], [9], [18], [20], [34], [37]–[40].   In contrast, 

in [29], [42], [43], a different 𝐾 is used for target and non-target 

cases.  Other strategies use energy keypoints for target  cases 

but extract data for non-target cases at regular or random 

intervals down the A-scan (i.e., no estimation of non-target data 

localization is performed) [7], [19], [27], [42], [43], [44].  

Finally, in [27], every time point is considered in training as a 

keypoint for both classes.  These methods are listed in Table 1 

where each method’s keypoint utilization strategy for target and 

non-target is listed.   

B. Strategies for testing 

The characteristics that differentiate utilization strategies 

during testing are very different than those during training.  The 

primary reason for this is that, during testing, the primary goal 

of utilization is to obtain a single decision statistic for each 

spatial location.  Every spatial location consists of many 

potential keypoints (one keypoint at each temporal location), 

and therefore we must decide: (1) how many total keypoints, 

denoted by 𝐿, should be utilized to compute a final decision 

statistic at that location; and (2) upon what criteria (e.g., energy) 

we should choose these keypoints.   In the remainder of this 

section we explain the common approaches existing utilization 

methods take to address these questions, and we include these 

into our taxonomy in Table 1.   

Existing strategies typically choose which keypoints to 

utilize based on one of two ordering criteria.  The first ordering 

criterion is to utilize keypoints at maximum energy locations, 

in the same way it is done during training [8], [10], [35], [39], 

[45].  This is denoted as “En” in Table 1.  The second ordering 

criterion is to utilize the largest classifier decision statistics, 

denoted as “DS” in Table 1.  In this scenario, the classifier is 

applied at regular intervals along the A-scan and keypoints at 

the 𝐿 locations with the largest classifier decision statistics are 

utilized [6], [7], [11], [28].  The strategies in [8], [10], [20], [35], 

[36], [39], [45] set 𝐿 = 𝐾, so that the same number of keypoints 

are utilized in training and testing.   

Once an ordering criterion for the set of 𝐿 testing keypoints 

is chosen, a final decision statistic must be computed.  At a 

spatial location, the strategy’s ordering criterion (i.e., En/DS) is 

used to organize the decision statistics in to a decreasing 

sequence 𝐷 = {𝑑(𝑗); 𝑗 = 1 … 𝐿} from which a final decision 

statistic 𝐷𝑓 is computed.  Several approaches are taken toward 

obtaining a final decision statistic.  First, if En is the ordering 

criterion, then 𝐷𝑓 = max 𝐷 for all such methods listed in Table 

1 [2], [5], [8], [39].  Second, if DS is the ordering criterion, a 

function 𝑔 is typically defined to compute 𝐷𝑓.  Several different 

options for 𝑔 have been considered such as: max, sum over all 𝑇 

(all time points), or mean of the top 3 decision statistics [9], 

[18], [34], [6], [16], [27], [29], [43], [46], [47].  Note that these 

three options for 𝑔 can be parametrized.  If 𝑔 is defined by 

 

𝑔(𝐷, 𝐿) =  ∑ 𝑑(𝑗)

𝐿

𝑗=1

 (1) 

then for 𝐿 = 1, 𝑔(𝐷, 1) = 𝑑1 = max (𝐷).  Similarly, if 𝐿 = 𝑇, 

then 𝑔(𝐷, 𝑇) =  ∑ 𝑑(𝑡)𝑇
𝑡=1 = sum(𝐷).  Finally, if 𝐿 = 3, 

then 𝑔(𝐷, 3) = 𝑑(1) + 𝑑(2) + 𝑑(3).  This is not the same 

numeric value as the average of the top 3 confidences, but every 

output of 𝑔 is a constant scaling factor from the average (i.e., 

off by a factor of 3) and such a factor does not affect the 

probability of detection and of false alarm.  Because of the 

similarity of the three different methods employed in the 

literature, they are listed in their parametrized form in Table 1. 

 

C. PatchSelect 

The training and testing strategies described in this section 

are summarized in Table 1, along with the proposed PatchSelect 

method.  PatchSelect consists of training on the top 4 energy 

keypoints for targets and on patches extracted at small, regular 

intervals along the central A-scan for non-targets.  In testing, 

the sum of the top 12 decision statistics is reported as the final 

confidence. 

To determine the specific design choices for the PatchSelect 

strategy, a series of experiments were conducted (described in 

Table 1: A table of existing keypoint utilization strategies, including 

the proposed method, PatchSelect. In training, the number of patches 

for targets and non-targets are given.  In both cases, if no parenthesis 

is written, then the locations are chosen using an energy-based 

temporal localization method (e.g., MSEK).  The demarcation of “reg” 

means that that number of patches were extracted at regular intervals, 

and “rand” means that they were extracted at random.  In testing, the 

number 𝑳 specifies the number of decision statistics used to obtain a 

final confidence.  The column “En/DS” denotes whether the locations 

from which the decision statistic is taken depends on its (top 𝑳) 

maximum energy locations, “En”, or whether the top 𝑳 decision 

statistics, “DS”, are used.  Method 𝟗 is unique in that a sliding window 

operation is first performed on the decision statistics where the 7 

consecutive confidences are summed.   

  Train Testing 

Index Reference #target #non-

target 

En/DS 𝑳 

1 [6] 3 3 DS 3 

2 [8], [39] 2 2 En 2 

3 [42]–[44] 1 5 

(reg) 

DS 3 

4 [29] 1 5 

(rand) 

DS 𝑇 

5 [36] 1 1 DS 12 

6 [20] 1 1 DS 1 

7 [21] 5 

(reg) 

5 

(rand) 

DS 𝑇 

8 [5] 3 3 En 1 

9 [11] 1 1 DS sliding 

max 

10 [2] 1 1 En 1 

11 PatchSelect 4 reg DS 12 

 



 

Section V) to identify which utilization characteristics tend to 

yield better performance.  In particular, we investigate the 

impact of several of the characteristics in Table 1 that we used 

to taxonomize existing methods (e.g., how many 𝐻0𝑠 to use in 

training).  The results of these experiments reveal good general 

practices for keypoint utilization, and motivated our design of 

PatchSelect.  

III. EXPERIMENTAL SETUP 

In this section we present an experimental method used for 

comparing the keypoint utilization strategies shown in Table 1.  

The utilization strategies are compared by evaluating the 

performance of several state-of-the-art feature sets and 

classifiers when each of the keypoint utilization strategies are 

employed during training and testing.   

 

A. Evaluation dataset 

The data used in this work was collected using a downward 

looking GPR (similar to the one described in [33]), at a western 

U.S. test site over a total area of 167,167.3 m2.  The data was 

collected over 8 test lanes for a total of 75 runs over all of the 

lanes.  The dataset includes 1,967 target encounters.  From this 

collection of data, spatial and temporal locations must be 

identified to act as training and testing data for targets and non-

targets.  

To identify spatial locations of interest for targets and non-

targets, a prescreener can be used [1], [8], [27], [32], [43].  To 

correspond alarms with targets, GPS data is collected along 

with the GPR data, where the GPS locations of buried threats is 

known a priori.  The remaining alarms correspond to non-

targets and are used for training the algorithm to recognize non-

targets, because those are the instances it will have to classify 

at test time.  In this work, the energy-based F1V4 prescreener 

[48] is used, which identifies locations with anomalous energy 

profile compared to the relatively unchanging background.  A 

sensitivity threshold is set for the prescreener which yields a 

dataset of 1,771 target alarms and 640 non-target alarms.  This 

threshold was chosen to achieve the highest possible probability 

of detection with this prescreener at an operationally feasible 

false alarm rate (number of false alarms per unit area). 

 
B. MSEK for keypoint identification  

Given spatial locations generated by the F1V4 prescreener, 

keypoint identification was performed using the MSEK 

algorithm which was first introduced in [37] and has been 

employed in many studies [6], [19], [21], [36], [49].  The 

process of obtaining temporal keypoints using MSEK is 

illustrated in Figure 2.  In MSEK, the data is depth normalized, 

the central A-scan is squared and smoothed and keypoints are 

identified at the maximum values in the transformed A-scan.  A 

patch of data can then be extracted surrounding at each 

maximum location, examples of which are shown in Figure 3.  

While other methods exist for temporal keypoint localization, 

MSEK is representative of methods relying on the measured 

amplitudes, and is simple to implement and use.  For this 

reason, only MSEK is used for keypoint identification with this 

data set. 
 

C. Feature sets and classifiers 

The different keypoint utilization approaches that are 

summarized in Table 1 are evaluated using several 

combinations of features and classifiers to investigate which 

methods tend to be the most effective.  Following the approach 

for evaluating a BTD algorithm described in [6], features are 

extracted at each keypoint and are used to train and test 

classifiers.  These features and classifiers were chosen because 

they have been used frequently in the GPR buried threat 

detection literature [6], [8], [19], [28], [38].  The resulting 

feature and classifier combinations are referred to as BTD 

algorithms. 

In this study, we consider several sets of features that have 

recently been applied for BTD with GPR: the raw data 

(rasterized) (e.g., [24], [50]), histogram of oriented gradients 

(HOG) features (e.g. [6], [8], [51]), and edge histogram 

descriptor (EHD) features (e.g., [7], [28], [52]).  The data 

patches on which features are extracted are of size 18 × 18 

pixels and rescaled to have values between −1 and 1.  To match 

the results from [6], the parameter choices for HOG and EHD 

are kept the same: the HOG feature is computed in cells of 6 ×
6 pixels, normalized in blocks of 3 × 3 cells, and 9 angle bins 

and the EHD feature is computed with a threshold of 0.15.  The 

threshold for declaring a gradient as “no-edge” in EHD depends 

on the scaling of the data.   

We used two classifiers in this work: a radial basis function 

SVM [53] and a random forest (RF) classifier (100 trees, 2 

variable splits at nodes, with central axis projection) [54].  

These two classifiers were chosen because of their recent 

application to GPR resulting in state-of-the-art detection 

performance [6], [8], [12], [36], [45], [55], [56]. 

 

D. Cross-Validation and performance metrics 

In this work we trained and tested each classifier using four-

fold cross-validation. This is a common approach for evaluating 

the performance of machine learning algorithms, and has been 

employed previously for BTD with GPR data [6], [20], [28].  

Additional care had to be taken in our experiments because the 

GPR data is collected over the same lane multiple times.  As a 

result, all alarms within a certain spatial distance were clustered 

and assigned to the same fold, to avoid training and testing over 

the same physical area.  To properly handle the issues 

associated with proper cross-validation on this type of data set, 

 
Figure 3: Examples of extracted patches at keypoint locations at known 

target locations.  The patches capture some part of the target signature 

which is used during training as an example of general target signature 

appearance. 

  



 

researchers at the University of Florida developed software 

which is used here and has been used in many previous studies 

[1], [6], [7], [11], [29], [34]. 

To compare the detection performance of each trained 

classifier, receiver operating characteristic (ROC) curves are 

used.  ROC curves are a common metric for comparing machine 

learning algorithms, and they are likewise popular in the BTD 

algorithm research literature [1], [6], [7], [11], [29], [34].  ROC 

curves plot the relationship between the false detection rate (x-

axis) and true detection rate (y-axis) of a detection algorithm, 

as the sensitivity of the algorithm is varied.  In the BTD 

literature, it is common to scale the x-axis of the ROC curve to 

report the false alarm rate in terms of false alarms per square 

meter [1], [11], [56], and we adopt this practice here.  

The ROC curve can also be summarized with a single 

statistic.  One commonly-used statistic for this purpose is the 

partial area under the ROC curve (pAUC).  This metric is 

obtained by computing the area under the ROC curve between 

two false alarm rate (FAR) values (e.g., 0 and 0.005 FAR). 

pAUC is frequently used for performance comparisons in the 

BTD literature [33], [37], [55], [57], [58].        

IV. COMPARISON OF KEYPOINT UTILIZATION STRATEGIES 

This section presents the results from the comparison of the 

eleven keypoint utilization strategies listed in Table 1 and 

discussed above.   

 

A. Performance of keypoint utilization strategies 

Results of this evaluation are shown in Figure 4 where the 

pAUC of the 10 strategies from the literature and PatchSelect 

are grouped by their performance under the different feature 

and classifier combinations.  We make several observations of 

the outcome indicated by these results. 

First, the choice of keypoint utilization strategy can have a 

large impact on performance.  For example, choosing 

PatchSelect over strategy 3 for the Raw SVM feature and 

classifier combination yields a pAUC improvement of 0.058.  

Furthermore, if strategy 6 is used for keypoint utilization, the 

Raw SVM BTD algorithm would be considered among the 

worst performers among the 6 algorithms, whereas with 

PatchSelect it is the best performer across all conditions.  The 

variance in performance for a single feature and classifier 

combination suggests that choosing a poor performing keypoint 

utilization strategy could negatively bias the results of a new 

BTD algorithm that may have merit when accounting for the 

training and testing variance.  

Second, certain strategies are consistently among the top 

performers (e.g., strategies 3, and 5).  The average rank of top 

performing strategies such as 3 and 5 across the 6 BTD 

algorithms is 3 and 3.7 respectively.  This suggests that certain 

practices are generally good for keypoint utilization when 

training and testing BTD algorithms. This result is important 

because it implies that by using those good practices as a 

strategy for keypoint utilization, the possible loss in 

performance will be due to the algorithm design and not due to 

how it is trained.  Thus, using identified best practices 

simplifies evaluating the performance of BTD algorithms. 

Third, Figure 4 shows that PatchSelect outperforms all other 

strategies for the 6 BTD algorithms except for HOG RF where 

strategy 3 and PatchSelect are tied.  We developed PatchSelect 

by identifying best practices among other existing strategies 

and incorporating them into a single training and testing 

strategy.  The practices suggested by PatchSelect seem to 

provide generally stable results even if the approach is changed 

slightly, as described in section V.  The limitations of this 

comparison and these conditions are discussed in the 

conclusions section. 

Fourth, some strategies in the above comparison seem to 

consistently perform at the bottom.  A caveat about these 

methods (in particular [21], [29], strategies 7 and 4 

respectively) is that they were designed for a different 

classification paradigm than the one used in this work, namely, 

Multiple Instance Learning. 

 

B. Performance sensitivity to varying pAUC measures 

The pAUC measures presented in Figure 3 are computed 

over a specific range of FAR values (i.e., 0 to 0.005 FAR).   This 

metric summarizes the performance of each classification 

algorithm only over the aforementioned FAR range, and 

therefore the results may not hold for a different FAR range.   In 

 
 

Figure 4: pAUC of the 11 utilization strategies listed in Table 1 are shown with pAUC calculated up to a FAR of 0.005.  Each group of 11 bars represents 

a separate feature and classifier combination (listed on the x axis) where the random forest is denoted as “RF”.  The 11 bars can be compared for their 

effectiveness within group and bars of the same color, representing the same strategy, can be compared across condition. 

  



 

this section we evaluate the pAUC of the classification models 

as we vary the FAR range in the pAUC computation.   In 

particular, we vary the larger of the two FAR values, which we 

term 𝐹𝐴𝑅2, and compute the average pAUC of each keypoint 

utilization approach.  These results are shown in Figure 5.   

The results of this analysis indicate that the rank order of the 

different strategies remains relatively unchanged as the FAR 

range is varied.   Further, for each FAR value, the pAUC of 

PatchSelect (strategy #11) is higher than that of any other 

strategy.  

 

V. MOTIVATION FOR THE PATCHSELECT STRATEGY  

To understand the specific parameter choices for PatchSelect 

given in Table 1, a study of the design choices of existing 

methods is conducted in this section.  As discussed in section II, 

each strategy defines a particular way to train (e.g., use 3 

keypoints at maximum energy locations for both classes) and a 

particular way to test (e.g., sum the top 3 decision statistics).  

The experiments in this section address the sensitivity in 

performance associated with these choices.  For brevity, the 

results of these questions are shown here using the HOG feature 

with the random forest classifier (denoted HOG-RF).  This 

choice is somewhat arbitrary, but it was chosen because trends 

exhibited by HOG-RF are fairly consistent across other features 

and classifiers.  Additionally, PatchSelect was shown in Figure 

4 to outperform other methods consistently across all tested 

BTD algorithms, suggesting that the conclusions drawn from 

HOG-RF are indeed general.  Further, the comparison of 

performance as a function of the final FAR threshold in 

section IV.B suggested that the rank ordering of the results is 

relatively insensitive to that threshold.  For this reason, the 

results of these experiments are shown for a pAUC computed 

to a FAR of 0.005. 

 

A. How keypoints should be chosen at test time: energy or 

classifier confidence?  

Strategies differ in their use of keypoints at test time, between 

energy and classifier decision statistics.  In this section we try 

to examine whether one of these two approaches tends to be 

superior to the other. To do this, we compared these two general 

approaches while controlling for many other experimental 

factors (e.g., different training strategies for targets and non-

targets).  The results of this comparison are presented in Figure 

6, which suggest that using the top decision statistics 

outperforms using decision statistics at maximum energy 

locations.   

 

B. How many testing keypoints should be used? 

In each strategy, the number of testing keypoints, 𝐿, has to be 

specified.  In this section, we examine how to determine that 

number.  This number depends on whether energy maxima, or 

decision statistics, are needed.  The results presented in Figure 

6 suggest that using 𝐿 = 4 for energy maxima works best 

whereas, 6 ≤ 𝐿 ≤ 12 is more suitable when decision statistics 

are used.  

 
C. How should non-target training keypoints be chosen? 

While all existing utilization strategies train on data from 

maximum energy locations for targets, this is not the case for 

non-targets.  The methods compared in Table 1 utilize 

keypoints extracted at the top 𝐾 locations (the same 𝐾 is used 

for target data) or at 5 regularly spaced indexes.  In this section, 

we examine the choices for providing non-target training data 

to a classifier. 

We note that there are 2 main differences between the two 

proposed 𝐻0 approaches.  The first is that extracting data at 

energy locations is a physics-based criterion which may be 

superior to extracting data at regular intervals (this may include 

data at regions outside non-target signatures and thereby 

negatively biasing the classifier).  The second is that the 

approaches that extract data at regular intervals do so with more 

patches (5) than the energy based methods (the most is 4 

patches). Thus, performance improvements may be solely on 

the basis that more patches are being provided to the classifier 

when using the strategy of extracting data at regular intervals.  

For this reason, a third training condition is added where non-

target patches are taken down the depth at every fourth location 

down the A-scan (82 patches per non-target observation in 

total) which corresponds to approximately 75% overlap 

between consecutive patches.  This condition is added to test 

whether more data would improve classification performance. 

 
Figure 5: Average pAUC across the 6 conditions of features and classifiers 

of each strategy is computed in each column at an increasing maximum 

FAR value.  

 
Figure 6: Performance comparison between two different strategies for 

obtaining a final confidence: using the top 𝑳 decisions (dashed line) or 

using the 𝑳 decisions at top energy-locations (solid line).  The 2 subplots 

refer to two different non-target training strategies: (a) training on the top 

𝑲 energy locations (b) at 5 regularly extracted patches.  In both plots, each 

curve represents the average performance when varying then number of 

target patches used in training.  The error bars show the range of 

performance obtained across the different target training strategies (i.e., 

training with 1-4 patches for targets).   

  



 

To present this comparison, the final confidence is computed 

on the top decision statistics, as this was shown in section V.A 

to be superior.  In Figure 7, the three methods for choosing 

training data representing non-target data are compared.  

During testing, the final confidence is obtained by summing the 

top 𝐿 decision statistics.  For all values of 𝐿, the strategy of 

providing more non-target data to the classifier improves 

performance (i.e., “Down Depth” method). 

 
D. How should target training keypoints be chosen? 

The final design question we considered regards the number 

of target patches that should be used in training.  In this section, 

we address this question in the context of the answers obtained 

in previous sections.  Therefore we train on non-target data 

extracted at small regular intervals; and during testing, we 

summed the top 𝐿 confidences.  The results suggest that the best 

performance is achieved using 𝐾 = 4 for target data. 

The results of these experiments are shown in Figure 8.  The 

results indicate that training with 4 patches, extracted at energy 

maxima locations, performs best.  As was explained in 

section III.B, MSEK chooses local maxima and in our data, the 

temporal extent of target signatures does not typically extend 

beyond having 4 local energy maxima.  This suggests that 

training on patches with some portion of the target signature is 

beneficial for the classifier.   

VI. CONCLUSIONS AND UTILIZATION RECOMMENDATIONS 

In this work, the question of how to choose training and 

testing data for supervised GPR BTD algorithms is addressed.  

Training and testing data consist of small patches of GPR 

imagery, which we refer to here as “keypoints”.  While most 

algorithms in the GPR literature identify keypoints in a very 

similar fashion, there is much variability in how they are 

utilized once they are identified.  In this context, utilization 

refers to several design questions: choosing, among identified 

keypoints, which keypoints should be provided to supervised 

classifiers (during training); to which keypoints the classifier 

should be applied during testing; and how a final decision 

statistic (or confidence) should be computed using the 

keypoints. A large variety of methods have been proposed in 

the literature for this purpose, and it is unclear which 

approaches are best, or whether any methods are superior to 

others.    

In order to address these questions, we compared the 

effectiveness of many existing keypoint utilization approaches 

on a large GPR dataset, and using a variety of different 

classifiers and features from the GPR literature.  We also 

proposed a new method, called PatchSelect, which was 

designed based on insights from our experiments in this work.  

Based on the results, several conclusions can be drawn: 

 

 The choice of utilization strategy has a significant 

impact on the detection performance of the resulting 

supervised algorithm.   

 There are utilization practices that generally yield 

better results.   

 We combined the best identified practices to create the 

PatchSelect strategy, which (in our experiments) is 

always superior. 
 

In addition to our large-scale comparison, we also conducted 

several smaller experiments (Section V) to elucidate which 

utilization practices yield the best results.  These experiments 

also motivated the design of PatchSelect.  In the last subsection 

here, we make a few additional recommendations and 

comments for keypoint utilization, based on the results of our 

smaller experiments Section V.  

 

A. General recommendations for keypoint utilization and 

applying PatchSelect 

The goal of this investigation was to identify best practices 

during training and testing of GPR BTD systems.  This was 

identified as an important problem because the comparison in 

section IV.A shows the possible variance of a single method 

across conditions and the change in rank ordering between 

methods across conditions.  PatchSelect represents the set of 

practices that were found to be best on a large collection under 

several conditions.  There are, however, some limitations which 

are addressed in this section. 

The first limitation is the possible computational burden from 

training with the PatchSelect training dataset.  PatchSelect 

entails training on the top 4 energy locations for targets and 

training down the depth for non-targets.  The results in 

section V.C suggest that training on non-target patches with a 

 
 

Figure 7: Non-target training strategies are compared using the 

confidences obtained using the top 𝑲 decision statistics.  The error bars 

represent the variance in training on 1-4 patches per target alarm and the 

plotted line represents the average performance. 

 
 

 

Figure 8: Performance when training on 1-4 patches per target alarm.  

This comparison is performed when training on non-target patches 

extracted at small, regular intervals and the final confidence relies on the 

top 𝑳 confidence locations. 



 

bit less than 75% overlap would not degrade performance too 

much.  Similarly, the results in section V.D suggest that the 

difference between choosing 3 or 4 target patches is very slight.  

In both cases, the difference in pAUCs is < 0.007 for the 6 

features and classifier combinations tested here.  The most 

important factor seems to be to sum the top decision statistics 

during testing.  However, the results suggest that if more 

training data is needed for a particular algorithm, those 

additional patches are suitable. 

A second limitation of this work is its use of MSEK as a 

temporal localization method.  In [49], the energy related to 

target signatures was shown to be relatively localized, which 

suggests that data only around the energy maximum should be 

used in training and testing.  However, the performance of this 

approach is consistently less than summing the top 𝐿 decision 

statistics.  Experimentally, we note that summing decision 

statistics rather than the decisions at energy maxima works best 

when the data from training is representative of the data that 

observed at test time.  In this context, this means to train on data 

down the depth if testing is done down the depth.  Balancing 

the dataset in this way is an important principle in designing 

training and testing sets [59].  This result motivates an 

investigation into MSEK whose locations may be inconsistent 

between training and testing.  In this work, because the sum of 

the top decision statistics is more stable and generally performs 

best, it is recommended. 

A third limitation is the dataset which was used in this work.  

Although six different feature and classifier combinations were 

compared and their pAUC is computed at several FAR values, 

the alarms in the dataset remain the same.  While trends exist in 

the presented results, the conclusions may depend upon the 

specific choice of keypoint identification methods used in this 

work. 
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