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Abstract—Forward-looking ground-penetrating radar 

(FLGPR) has recently been investigated as a remote sensing 

modality for buried target detection (e.g., landmines). In this 

context, raw FLGPR data is beamformed into images and then 

computerized algorithms are applied to automatically detect 

subsurface buried targets. Most existing algorithms are 

supervised, meaning they are trained to discriminate between 

labeled target and non-target imagery, usually based on features 

extracted from the imagery. A large number of features have been 

proposed for this purpose, however thus far it is unclear which are 

the most effective. The first goal of this work is to provide a 

comprehensive comparison of detection performance using 

existing features on a large collection of FLGPR data. Fusion of 

the decisions resulting from processing each feature is also 

considered. The second goal of this work is to investigate two 

modern feature learning approaches from the object recognition 

literature: the bag-of-visual-words and the Fisher vector for 

FLGPR processing. The results indicate that the new feature 

learning approaches outperform existing methods. Results also 

show that fusion between existing features and new features yields 

little additional performance improvements.  

Index Terms— forward-looking, Ground penetrating radar 

(GPR), radar imaging, object detection, image classification, 

feature extraction, feature learning, landmine detection.  

I. INTRODUCTION 

ORWARD-LOOKING ground-penetrating radar 

(FLGPR) is a remote sensing modality that has recently 

been investigated for detecting buried targets (e.g., 

landmines) [1]–[6].  In this context, FLGPR systems generally 

consist of an array of radar transmitters and receivers mounted 

on the front of a vehicle.  As the vehicle travels forward along 

a road or path, radar pulses are emitted towards the ground and 

the receivers measure energy reflected from the surface and 

subsurface.  The raw data is used in a beamforming process to 

synthesize 2-dimensional spatial images of the ground 

(described in Section II.B) [7]–[9]. Pixel intensities in the 

resulting images can be viewed as a crude measure of the 

energy reflected from the ground at that location. Figure 1 

shows an illustration of the FLGPR detection system 

considered in this work.  

Buried targets can be detected in beamformed FLGPR 

images because they often reflect the radar energy differently 

than the surrounding soil and other subsurface clutter (e.g., 

rocks, roots, etc.) [10]. Examples of beamformed images over 
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target and clutter objects are shown in Figure 2. Although the 

targets in Figure 2 are easily detectable, many targets exhibit 

much subtler patterns, and are easily confused with clutter. 

 
This work considers the application of computerized 

algorithms to beamformed images in order to automatically 

detect buried targets. A large body of research has been 

conducted on this topic [3]–[6], [9], [11]–[15]. Such object 

detection algorithms usually employ supervised machine 

learning classifiers (e.g., the support vector machine [16], 

logistic regression [16]) to distinguish between target and non-

target FLGPR imagery.  For image recognition tasks such as the 

one considered here, classifiers operate on image features, 

statistics, or other measures that are computed based on the 

images. The performance of a classifier depends strongly on the 

features it is given, and as a result, a variety of features have 

been investigated for target detection with FLGPR data.  Recent 

examples include SIFT descriptors [15], the 2D FFT of the 

images [3], local image statistics [15], log-Gabor filtering 

statistics [4], and raw pixel intensities [5].  

Although many features have been investigated, it is still 

unclear which features are best for detection in FLGPR.  The 

aforementioned existing features were each examined under 

different conditions: using different data, classifiers, and 

experimental designs. Additionally, several important recent 

advances in feature extraction from the computer vision 

community have yet to be investigated for this problem. 

A. Contributions of this work 

To address the above problems, this work makes two primary 

contributions.  First, a comprehensive comparison of detection 

performance using existing FLGPR features is conducted on a 

large data set using several supervised classifiers. Second, we 
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Figure 1: A diagram of the FLGPR system. This system inspects the ground 
in front of the vehicle; the responses from the antenna array are then formed 

into images for detection. Cross track and down track labels are used to denote 
the axes perpendicular and parallel to the vehicle’s direction of travel, 

respectively. 
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compare the detection performance obtained using existing 

feature sets to performance attained using two recent successful 

feature learning methods: the bag-of-visual words (BOV), and 

the Fisher vector (FV) [17]–[24].  These feature learning 

approaches have become very popular for image recognition 

tasks in recent years, and yield excellent performance in a 

variety of application areas [22], [24], [25].  In addition to 

evaluating each feature’s performance individually, the 

decision-level fusion of features is also considered.  

Experiments were conducted using a large FLGPR dataset 

consisting of 10 passes over three different test lanes with a 

vehicle-mounted FLGPR system (36,000 𝑚2 of total surface 

area scanned).  The results show that the Fisher vector and BOV 

feature learning approaches outperform any individual feature 

set, though that fusing the feature learning decisions with other 

feature sets yields little additional performance improvement. 

An analysis of the results provides insight about which image 

structures in FLGPR data are most indicative of the presence of 

a target.  

The remainder of this paper is organized as follows. Section 

II describes the FLGPR system and the dataset used for the 

detection experiments. Section III summarizes the previous 

features and algorithms used for detection on FLGPR data. 

Section IV presents a description of the proposed feature 

learning approaches, and Section V presents the experimental 

design and results.  Section VI provides conclusions and 

discusses potential future work. 

 

II. THE FLGPR SYSTEM AND DATA 

This section first describes how the raw radar data is 

collected and formed into images (i.e., beamforming), followed 

by a description of the testing dataset. 

A. The FLGPR radar 

The data used in these experiments comes from an FLGPR 

system that employs a bi-static antenna array, and inspects the 

ground using a series of stepped frequency pulses [8], [11], 

[14]. Frequencies are emitted and collected one at a time for 

each transmit – receive antenna pair. The magnitude and phase 

change for each emitted frequency is measured and converted, 

with an inverse Fourier transform, into a corresponding time-

series signal. A collection of time-series are then used to 

synthesize FLGPR images in the beamforming process (Section 

II.B).  

In this FLGPR system, the ground is inspected with L-Band 

frequencies. Similar to the downward-looking GPR, this 

frequency range was chosen for its ability to penetrate the 

ground as well as reflect from target objects [6], [8], [9]. Using 

a stepped frequency sampling scheme, the L-Band is sampled 

in 2,702 frequency steps [9]. 

The system uses three separate polarization schemes, HH, 

VV, and VH. The first letter in this notation corresponds to the 

transmitted polarization, and the second corresponds to the 

polarization measured by the receiving antenna. Polarization is 

a categorization for the orientation of the electrical component 

of the electromagnetic signal: the horizontal (H) or vertical (V) 

orientation. All the vertical antennas are evenly spaced, in one 

row, across the top of the vehicle. The horizontal antennas are 

split into three rows, evenly stacked vertically; and in each row 

antennas are evenly distributed across the vehicle. 

B. Beamforming to create images 

Beamforming refers to the process of synthesizing images 

from time-series returned by the FLGPR transmit-receive 

antenna pairs. The beamforming process improves the SNR of 

the radar signals by averaging over the returns of multiple 

antenna pairs, as well as providing some information about the 

shape and size of objects [7]. Each beamformed image can be 

thought of (crudely) as a map of the radar energy reflected from 

the ground over some spatial extent in front of the vehicle. In 

this work, we beamform images with similar size and resolution 

to those in [5], [26]. Figure 3 provides three consecutive frames 

of beamformed FLGPR data.   

 

 

 

C. The experimental dataset 

Data used in these experiments was collected at a western 

U.S. Army testing facility. This test site had 245 target (buried 

threat) encounters in 3 unique test lanes, with a total scanned 

area of 36,000𝑚2. The precise location of each buried target 

was recorded so that the detection algorithms could be scored.  

Each buried target is encountered by the FLGPR system 

multiple times in the data collection, because some lanes are 

scanned multiple times in both directions. Table 1 includes 

more details about the lanes and their respective target 

populations. 

 

 
Figure 2: Beamformed images over two different target locations (left 

column), and two different clutter objects (right column). 

 
Figure 3: Sequential frames in the HH polarization, formed as the sensor 

moves forward from the left most image to the right most image. Notice the 
target signature moves towards the bottom of the radar image (closer to the 

sensor array). 
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Table 1: Details about the data collection used in the experiments. The “total” 

column is computed using all passes for each lane. 

 Lane A Lane B Lane C Total 

Lane passes 4 4 2 10 

Lane area (𝒎𝟐) 3,943 3,610 2,961 36,361 

Unique targets 28 23 27 245 

       Metal 9 9 10 90 

       Low-metal 19 14 17 155 

III. BACKGROUND METHODS 

This section presents details of the methods used in the 

experiments presented in Section V. It begins with a description 

of the FLGPR detection processing pipeline used in this work. 

This is followed with a more detailed description of the major 

components in the processing pipeline. Then a brief description 

is provided for each of the existing features and classifiers 

employed in the experiments.  

 

A. Overview of detection processing for FLGPR 

The detection processing pipeline considered in this work is 

shown in Figure 4. This pipeline is representative of those 

employed in many FLGPR studies [3]–[6], [12], [15], [27], 

[28]. The first step of the pipeline is beamforming, which was 

described already in Section II.B. Once the FLGPR data is 

beamformed into radar images, a prescreener is run on the 

beamformed images in order to identify a subset of suspicious 

locations for further, more sophisticated, processing [29], [30].  

The result of prescreening is a list of alarm locations and a 

decision statistic, or confidence value, indicating how likely 

each alarm is to correspond to a target.     

The prescreening step is followed by feature extraction, 

where statistics or other measures are extracted from the 

imagery surrounding each alarm location.  These features are 

provided to the next stage of processing, classification, where a 

trained machine learning classifier is used to assign a new (and 

hopefully improved) confidence to the alarm. The output of the 

classifier stage is a list of alarm locations (the same as the 

prescreener), but now with the assigned classifier confidence.   

The next step of processing is the performance assessment.  

The score for a particular algorithm (i.e., a combination of 

features and a classifier) is computed using receiver operating 

characteristic (ROC) curves. This performance metric is 

commonly used for buried target detection algorithms in 

FLGPR [3]–[6], [9], [11]–[15].  

B. The prescreener 

The prescreener here is based on the work presented in [5], 

and is similar to other prescreeners that have been applied to 

this problem [3]–[6].  It consists of several steps, beginning 

with the RX algorithm [31]. RX is a constant false alarm rate 

(CFAR) detector that identifies anomalous data by comparing 

the statistics of pixels in a foreground window with statistics 

computed in a background window.  This computation is 

repeated at every pixel location, replacing each pixel with a 

confidence, resulting in a “confidence image”. More precisely, 

the confidence value at each pixel location in the new 

confidence image is given by, 𝜆 = (𝜇𝑡 − 𝜇𝑏)2/𝜎𝑏
2 where 𝜇𝑡  is 

the mean of the foreground pixels, 𝜇𝑏 is the mean of the 

background pixels, and 𝜎𝑏
2 is the variance of the background 

pixels. Prescreener alarm declarations are made at local maxima 

locations in the new confidence image.  Windows of 40 x 40 

pixels and 80 x 80 pixels were used for the foreground and 

background statistics, respectively.  The prescreener is applied 

to images of the VV polarization, in similar fashion to previous 

studies [3], [5], [12].  

As noted above, due to the multi-look nature of the 

beamformed images, each area of the ground appears in the 

beamformed imagery multiple times as the vehicle moves down 

the lane. This means that the prescreener will often return 

multiple alarms for a single object (e.g., buried targets, clutter, 

etc.) seen by the radar. To exploit this multi-look information, 

the alarms are clustered according to their spatial location (i.e., 

Universal Transverse Mercator coordinates). For this purpose, 

a clustering algorithm is used that enforces a limit on cluster 

radius, in order to maintain the locality of alarms. DP (Dirichlet 

Process) means is an extension of K-means that can enforce a 

limit on the cluster radius [32], and is implemented here, with a 

cluster radius of 1 meter.  Each cluster center is retained as an 

alarm, and the confidence of each alarm is given by the 𝑙2-norm 

of the cluster member confidences [5], [26].   

C. Feature Extraction  

All features were extracted from patches beamformed at 

prescreener alarm locations. A 3𝑚 x 3𝑚 patch was beamformed 

centered over each prescreener alarm, at a down-track distance 

of 5 meters, and with a spatial resolution of 3𝑐𝑚/pixel. These 

specifications are similar to those in previous FLGPR studies 

[4], [5], [15].     

 
Figure 4: Processing chain for the FLGPR system. Each block represents a 
major step in the processing pipeline.  To the left of each step is a illustration 

of the neighboring processing step. 
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Before features are extracted from an image patch, 𝑋 , each 

patch is normalized by the local background statistics [4], [5], 

[15]. A normalized patch, denoted 𝑋′, is computed by 

 

𝑋 
′ =

|𝑋| − 𝜇𝑏𝑔 

𝜎𝑏𝑔

, 

 

(1) 

where 𝜇𝑏𝑔 is the mean of the background, and 𝜎𝑏𝑔 is the 

standard deviation of the background. The background consists 

of all of the pixels in the patch, but outside of a 1.5m x 1.5m 

window centered at the alarm location.  All features in this work 

are extracted on 𝑋 
′ unless it is stated otherwise. 

D. Statistical classifiers 

In this work we considered three classifiers: a linear support 

vector machine (SVM) [33], a partial least squares discriminant 

analysis (PLSDA) classifier [34], and a nonlinear SVM [33]. 

Both of the SVM classifiers are used because they accompanied 

one (or more) of the features in the publication where those 

features were originally introduced. The non-linear SVM has 

been used with the 2D FFT and log-Gabor statistical feature [4]. 

This non-linear SVM uses a radial basis function with the 

default parameters settings C = 1 and 𝛾 =
1

# 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
. The 

linear SVM is the conventional classifier with the proposed 

feature learning approaches as well as being previously used 

with the following features: raw pixels [5], SIFT [15], and 

LSTAT [15]. The PLSDA classifier is considered because we 

found that it generally achieves similar, or better, performance 

on all of the features, as demonstrated by the results in Section 

V.A, while having much less computationally cost than either 

SVM. 

E. Detection scoring metrics 

The detection algorithms in this work (i.e., the various 

feature-classifier combinations) are compared using receiver 

operating characteristic (ROC) curves.  ROC curves provide a 

measurement of the tradeoff between the target detection rate, 

𝑃𝑑, and the false alarm rate, FAR, as the sensitivity of the 

classifier is varied. Here 𝑃𝑑 refers to the proportion of observed 

targets that are detected by the algorithm, and FAR refers to the 

number of false detections that the algorithm returns per square 

meter of observed lane area.  

A related performance metric is also used in these 

comparisons, called the partial area under the ROC curve 

(pAUC) [35], [36].  The pAUC is a summary statistic for the 

ROC curve, and allows us to more succinctly compare many 

different algorithms. The pAUC measure is the normalized area 

under the ROC curve from the origin of the x-axis to a specific 

FAR. For these experiments a pAUC is measured to a FAR of 

0.02 FA/𝑚2, which corresponds to one false alarm every 50 𝑚2. 

The pAUC is normalized so that the minimum and maximum 

attainable values are 0 and 1, respectively. As the area under an 

ROC curve increases it reflects the ability of that algorithm to 

detect more targets, within the specified range of FAR values.  

Both the ROC curve, and the pAUC statistic, have frequently 

been used to evaluate the performance of buried target detection 

algorithms for the FLGPR [5], [6], [12], [15], [37].   

F. Previously proposed FLGPR features 

In this section we present a brief review of each of the 

previously proposed FLGPR features that we investigated in 

this work. Throughout this section, we will use 𝜓 to denote the 

feature vectors that are delivered to a classifier for each method. 

1) Raw pixels 

This feature consists of rasterizing the pixels in 𝑋 
′, and 

treating them as a feature vector. More precisely, the raw pixel 

feature is given by 𝜓𝑅𝑎𝑤(𝑋′ ) = vec(𝑋 
′), where the vec(∙)  

operator refers to the vectorization of a matrix.  This type of 

feature is often used as a simple benchmark in image 

recognition tasks [17], [20] and has previously been applied to 

FLGPR [5], [6], [26]. 

2) Scale invariant feature transform (SIFT) 

The SIFT feature aggregates the gradients over regions in an 

image into a histogram [38]. The first step in computing the 

SIFT descriptor involves calculating the gradient magnitudes 

and orientations (of pixel intensities) at each location in the 

radar image, 𝑋 
′. Below, (2) and (3) show the gradient 

magnitude, 𝑀(𝑖, 𝑗), and gradient orientation, 𝜃(𝑖, 𝑗), 

calculations with 𝑖, and 𝑗 indexing the pixels of the image.  

𝑀(𝑖, 𝑗) = √
(𝑋 

′(𝑖 + 1, 𝑗) − 𝑋 
′(𝑖 − 1, 𝑗))

2
+

 (𝑋 
′(𝑖, 𝑗 + 1) −  𝑋 

′(𝑖, 𝑗 − 1))
2

 
 

 

(2) 

𝜃(𝑖, 𝑗) = tan−1
(𝑋 

′(𝑖, 𝑗 + 1) −  𝑋 
′(𝑖, 𝑗 − 1))

(𝑋 
′(𝑖 + 1, 𝑗) −  𝑋 

′(𝑖 − 1, 𝑗))
 (3) 

With these gradient calculations, the orientations are then 

aggregated into 4 by 4 non-overlapping cells. In each 

aggregation cell, the histogram of orientations is computed. 

This histogram separates angles into 8 bins between 0 and 360 

degrees. The histogram count for each angle bin is computed 

within each cell and is based on the magnitude of the gradients. 

There are 16 total cells and 8 angle bins resulting in a 128-

dimentional descriptor vector, 𝜓𝑆𝐼𝐹𝑇(𝑋 
′). The final feature 

vector is this SIFT descriptor computed over the whole alarm 

image. 

The SIFT descriptor has two roles in this work.  First, it is 

employed in the feature learning approaches described in 

Section IV.A. We also use it here as a proxy feature for the 

Histogram of Oriented Gradients (HOG) features due to their 

similarity. The HOG feature has been previously applied to 

FLGPR data for buried target detection [5], [15], and therefore 

it is included here (via SIFT).  

3) Local statistics (LSTAT) 

Local statistics over an alarm patch are often used in the 

natural object detection literature [39] and has previously been 

applied to FLGPR data [15]. To compute an LSTAT feature, 

the patch is divided into a 3 by 3 grid of non-overlapping 

regions. The feature vector consists of the mean and variance of 

the pixel intensities in each of the grid regions.  Mathematically 

this can be expressed by,    

𝑋 
′ = [

𝑥1
′ 𝑥2

′ 𝑥3
′

𝑥4
′ 𝑥5

′ 𝑥6
′

𝑥7
′ 𝑥8

′ 𝑥9
′

], (4) 
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𝜓𝐿𝑆𝑇𝐴𝑇(𝑋 
′) = {[𝔼{𝑥𝑟

′ }, 𝑉𝑎𝑟{𝑥𝑟
′ }];  𝑟 = 1, … ,9 }. (5) 

4) 2-Dimensional fast Fourier transform (2D FFT)  

This feature consists of the upper right quadrant of the 2D 

FFT of the FLGPR alarm patch [3], [4], [40].  In contrast to the 

other features, the 2D FFT is computed on the complex patch, 

𝑋′ . Before the 2D FFT, a Hamming window (𝐻) is applied to 

𝑋′ , and the real component is taken. Equation (6) precisely 

defines the final feature. 

𝜓𝐹𝐹𝑇(𝑋′ ) = vec( |𝐹𝐹𝑇2𝐷{𝑅𝑒(𝐻 ∘ 𝑋′)}|), (6) 

where 𝐹𝐹𝑇2𝐷 refers to the 2D FFT of an image, and vec(∙) 

refers to the vectorization of a matrix. 

5) Log-Gabor statistical feature 

The log-Gabor filter bank is intended to localize frequency 

information in an image [41]. These filters were applied to the 

FLGPR data to potentially improve upon other frequency based 

features such as the 2D-FFT [4]. The implementation for 

FLGPR data uses statistics about the log-Gabor filter responses 

to build the feature vector for a given observation. Here we 

provide a brief summary of the log-Gabor features, the full 

details can be found in [4], The log-Gabor filter bank consists 

of six orientations and six scales, resulting in 36 different filters. 

The response of an observation, 𝑋′, to the 𝑖th log-Gabor filter is 

denoted by 𝑆𝑖(𝑋′). Statistics are extracted over 3 by 3 non-

overlapping regions for each filtered image. Mathematically we 

note these grid regions as, 

 

𝑆𝑖(𝑋) = [

𝑠1
𝑖 𝑠2

𝑖 𝑠3
𝑖

𝑠4
𝑖 𝑠5

𝑖 𝑠6
𝑖

𝑠7
𝑖 𝑠8

𝑖 𝑠9
𝑖

] (7) 

 

Statistics about these regions are then taken, 

𝑓𝐿𝐺(𝑠𝑟
𝑖 )

= [𝔼{𝑠𝑟
𝑖 }, Var{𝑠𝑟

𝑖 },Kurt{𝑠𝑟
𝑖 },Skew{𝑠𝑟

𝑖 }, ‖𝑠𝑟
𝑖 ‖] 

(8) 

The statistics from each region in the log-Gabor responses 

are then concatenated to form the final log-Gabor feature 

vector. 

𝜓𝐿𝐺(𝑋) = {𝑓𝐿𝐺(𝑠𝑟
𝑖 );  𝑟 = 1, … ,9 ; 𝑖 = 1 … 36 }  (9) 

IV. APPLIED FEATURE LEARNING APPROACHES 

This section presents the two feature learning approaches we 

investigate in this work: bag-of-visual-words (BOV) and Fisher 

vector (FV).  In contrast to the previously proposed features, 

these methods automatically infer parameters using training 

data, and therefore must be trained. Figure 5 provides a high-

level overview of the training/testing process, which is similar 

for both of the two approaches that were investigated. 

   

 
 

Details of the steps in Figure 5 are described further in the 

subsequent subsections. First, we will describe the (two) types 

of dense descriptors extracted in the images. Next, we describe 

the clustering and encoding processes for each of the two 

methods, BOV and FV, respectively. Lastly, we provide some 

additional implementation details, explaining the specific 

design choices we made to adapt the BOV and FV approaches 

to work effectively for target detection on FLGPR data.   

A. Local image descriptors 

The feature learning techniques in this work are used with 

local descriptors that are densely sampled over the alarm 

patches. In this section, we define an observation (i.e., an 

FLGPR patch) as a set of local descriptors, X = {xt ∈ ℝ𝐷;  t =
1, . . . , T}. The local descriptors for this work are sampled 

densely around the image in overlapping sub-patches, as shown 

in Figure 5. Two popular local descriptors, from the BOV and 

FV literature, are considered in this work: raw pixels (“Raw”), 

and SIFT (“SIFT”) descriptors [18], [20], [25], [38], [42], [43]. 

The Raw descriptor is simply a vector containing the raw pixel 

intensities in each sub-patch. The SIFT descriptor was 

described in Section III.F.2), and measures local gradient 

information. Specific details about the implementation of both 

local image descriptors are provided in Section IV.D. 

 
Figure 5: A high-level diagram for the type of feature learning used in this work. 

First, in both training and testing, each approach requires that descriptors are 

densely extracted in small overlapping windows over each FLGPR image.  
During training, these descriptors are clustered to learn a codebook, or 

dictionary, of common patterns encountered in the data.  The dictionary is then 

used to “encode” each individual FLGPR image, and this encoding acts as the 
feature vector for that image.  This same procedure is repeated during testing to 

extract a feature vector, except that no clustering is needed. 
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B. Bag-of-visual-words (BOV) 

Our implementation of BOV is based on Coates and Ng, 

2012 [18], but is adapted for target detection in FLGPR data. 

There are two main components of the BOV implementation: 

the dictionary creation, and the encoding of observations. 

To train the BOV algorithm, local descriptors from all 

training observations are clustered using Spherical K-means. 

This yields a set of representative data signals, referred to as a 

dictionary, 𝒟 ∈ ℝ𝐾×𝐷. Following the suggestion of [18], the 

descriptors are whitened with zero component analysis (ZCA) 

before applying spherical K-means. ZCA whitens by projecting 

the descriptors onto an orthogonal basis. This tends to result in 

more independent dictionary elements, a desired trait in BOV 

[18].  

The BOV encoding (i.e., feature vector) consists of a 

similarity measurement of 𝑋 to the learned clusters, or 

dictionary elements. The similarity measure is given by 

𝛾𝑡(𝑘) = 𝒟𝑘𝑥𝑡 ,  (10) 

where 𝒟𝑘 is the 𝑘th element of the dictionary. The feature vector 

for an FLGPR image is 𝐾 dimensional, and the 𝑘𝑡ℎ feature 

value consists of the maximum inner product across all 

descriptors for the given FLGPR image, this is given by  

𝜓𝐵𝑂𝑉(𝑋 |𝒟) = {max
𝑡

 { 𝛾𝑡(𝑘) } ; 𝑘 = 1 … 𝐾}. (11) 

Notice that the encoding in (12) does not encode any 

information about the spatial location of descriptors, and 

therefore the BOV descriptor only encodes what is in the image, 

not where it is.  Spatial information can be included in the 

encoding using spatial pooling, discussed in Section IV.D. 

C. Fisher vector 

Similar to BOV, the FV is designed to measure the 

occurrence of learned structures in a single observation.  The 

FV, as implemented here, is based on Sanchez et al., 2013 [25]. 

Similar to BOV, during training, the FV begins with a 

clustering operation on the densely extracted local descriptors.  

Rather than K-means however, FV employs a K-component 

Gaussian Mixture Model (GMM). Inferring the parameters of 

the GMM requires finding the means and covariances for each 

cluster: 𝜇𝑘 ∈ ℝ1×𝐷, and Σ𝑘 ∈ ℝ𝐷×𝐷 . Here the subscript 𝑘 refers 

to the 𝑘th component in the GMM. Following common practice, 

we constrain the covariance matrix to be diagonal, implying 

that the elements of the local descriptor are independent. A 

single component of the GMM is given by 

𝑢𝑘 ≜ 𝒩(𝜇𝑘, Σ𝑘), (12) 

and the GMM is expressed as 

𝑢𝜆 ≜ ∑ 𝑤𝑘𝑢𝑘

𝐾

𝑘 = 1

, (13) 

where 𝑤𝑘 refers to the probability of each cluster (and therefore 

∑ 𝑤𝑘𝑘 = 1), and 𝜆 denotes the set of parameters learned for the 

GMM.  In other words, 𝜆 =  {𝑤𝑘 , 𝜇𝑘, Σ𝑘;  𝑘 = 1, . . . , 𝐾 }.  

Once the codebook (i.e., trained GMM) is available from 

training, it can be used to encode (i.e., compute a feature vector) 

for a new observation.  The encoding (roughly) consists of 

computing first and second order differences between each of 

the 𝑇 descriptors, 𝑥𝑡, and the cluster centers.  This computation 

is given by equations (14) and (15) below:  

  

ℊ𝜇𝑘

𝑋 =
1

√𝑤𝑘

 ∑ 𝛾𝑡(𝑘) (
𝑥𝑡 − 𝜇𝑘

𝜎𝑘

)

𝑇

𝑡=1

, 
(14) 

  

ℊ𝜎𝑘

𝑋 =
1

√𝑤𝑘

 ∑ 𝛾𝑡(𝑘)
1

√2
[
(𝑥𝑡 − 𝜇𝑘)2

𝜎𝑘
2 − 1]

𝑇

𝑡=1

. 
(15) 

 

 

The function 𝛾𝑡(𝑘) in the preceding two equations is given by 

 

𝛾𝑡(𝑘) =
𝑤𝑘𝑢𝑘(𝑥𝑡)

∑ 𝑤𝑗𝑢𝑗(𝑥𝑡)𝐾
𝑗=1

. (16) 

In (15) and (16), and given a particular value of 𝑘, the terms 

ℊ𝜇𝑘

𝑋  and ℊ𝜎𝑘

𝑋  are each vectors of length 𝐷, where 𝐷 is the 

dimensionality of the input descriptor (e.g., Raw or SIFT).  The 

final FV feature is given by 

𝜓𝐹𝑉(𝑋|𝑢𝜆) = {ℊ𝜇𝑘

𝑋 , ℊ𝜎𝑘

𝑋 , 𝑘 = 1. . 𝐾}, (17) 

and its dimensionality is 2DK.  

It is important to notice that each encoding ℊ𝜇𝑘

𝑋  and 

ℊ𝜎𝑘

𝑋 consist of a weighted sum, or “pooling”, of contributions 

from individual descriptor differences.  This implies that the 

spatial location of each descriptor is lost in the computation of 

the FV feature.  Consequentially, and similar to the BOV 

encoding, the FV feature only encodes information about what 

is in each FLPGR image, but not where it exists in the image.  

This is addressed through a technique called spatial pooling, 

which we describe next in Section IV.D. 

D. Additional implementation details 

This section presents some additional details about our 

implementation of BOV and FV in order to adapt them to target 

detection in the FLGPR imagery.  We first describe the details 

of the local descriptor extraction.  Second, we describe the 

number of clusters, or components, used for these feature 

learning methods.  Lastly, we describe our application of spatial 

pooling to enhance the performance of both the BOV and FV 

features.  

 In this work the BOV and FV methods are each applied 

using two types of local descriptors. First, raw radar image 

intensities of 11 x 11 pixel regions were densely sampled over 

the FLGPR images, with a stride of 7 pixels. These sizes were 

chosen because they performed the best for both BOV and FV.  

This first descriptor will be referred to as BOV (Raw) and FV 

(Raw). The other local descriptor tested was SIFT, which was 

extracted every 8 pixels, and over 8 x 8 pixel regions, for each 

background normalized magnitude alarm patch.  This size and 

stride were also chosen to maximize performance in cross-

validation. Once again, the same settings yielded the best results 
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for both the FV the BOV features.  The SIFT-based BOV and 

FV features will be denoted as BOV (SIFT) and FV (SIFT), 

respectively. 

For each encoding scheme 30 component clustering was 

used, and this was done for both types of descriptors:  SIFT and 

Raw. We found that changing the number of components for 

both BOV and FV in the 10 – 50 component range yielded very 

similar performance. 

Spatial pooling is also applied to BOV and FV for both types 

of local descriptors. As described in Sections IV.B and IV.C, 

the BOV and FV features primarily encode what is in the image, 

but not where it is.  This is a well-known limitation of the BOV 

and FV approaches [20] and, similar to other recognition tasks, 

we discovered that spatial information is important for 

identifying buried threats in FLGPR data.  As a result, we 

adopted a technique called “spatial pooling” [44], which can be 

used to augment the feature encodings with spatial information. 

Figure 6 illustrates the concept of spatial pooling, as well as the 

way we applied it in this work.  We found that spatial pooling 

using a 2 by 2 non-overlapping grid (as shown in Figure 6) 

resulted in substantial performance improvements, for both 

feature learning methods (BOV and FV), and for both local 

descriptors (raw and SIFT). 

 

V. EXPERIMENTAL DESIGN AND RESULTS 

In this section we present the experimental results.  We begin 

by reporting results (in terms of pAUC) for each combination 

of polarization, feature set, and classification model. After this, 

we present results where we used a greedy feature selection 

approach to select a good subset of feature sets for use in 

decision fusion. Finally, we present an analysis of the results, 

providing additional insight about the features. 

All of the subsequent experimental results were conducted 

using patches extracted at alarm locations declared by the 

prescreener described in Section III.B. This prescreener yielded 

15,750 alarms (i.e., patches) over the entire dataset. The 

classification algorithms were tested using a lane-based cross-

validation procedure. There were three distinct lanes in our 

dataset and thus, three-fold cross-validation was used.   

A. The performance of individual feature sets 

In this section we present performance results, in terms of 

pAUC, for each possible combination of (i) radar polarization, 

(ii) feature set, and (iii) a classifier (e.g., 2D FFT feature of an 

HH image with the RBF SVM classifier).  We refer to such 3-

tuples as “algorithms”, for ease of discussion. For each 

algorithm we report an average pAUC, and a 95% confidence 

interval based on bootstrap aggregation [45]–[48].  Specifically, 

for each training fold, we created ten different datasets by 

taking bootstrap samples of the training data (i.e., sampling the 

original training data, with replacement, until a new equally 

large dataset is created). A classifier is trained on each of the 

ten datasets, and then applied to the test set to obtain predictions 

on the same test set.  These ten trials permit us to measure the 

mean and variance of the performance for each algorithm, 

which help indicate the consistency and robustness of the 

algorithm performance.  The results of these experiments are 

presented in three separate figures, where each figure 

corresponds to a polarization: HH (Figure 7), VV (Figure 8), 

and HV (Figure 9). 

The results reveal a clear trend in the detection performance 

on each polarity. The HH polarity yields the best mean 

detection performance across all combinations of features and 

classifiers, without any exceptions. This is followed by the VV 

polarity which, in turn, always outperforms the VH polarity.      

The results also indicate that there are general differences in 

the performance of the classifiers. Among the linear classifiers, 

PLSDA almost always outperforms the linear SVM.  The only 

exceptions to this occur for the SIFT features, and this is 

mitigated by the overall poor performance of SIFT features. We 

believe PLSDA produces superior performance due to its 

ability to deal with collinearity (i.e., redundancy) in the features 

[34]. Many of the feature sets investigated here are very high 

dimensional, and occasionally the dimensionality is much 

greater than the number of observations (e.g., the FV features). 

This high dimensionality tends to increase the redundancy of 

the features, likely making PLSDA a more suitable classifier.  

In contrast to the linear SVM, the (non-linear) RBF SVM 

performs similarly to PLSDA.  The RBF SVM is nonlinear, and 

therefore it can model more complex relationships between the 

features than PLSDA. The performance similarity of the RBF 

SVM and PLSDA suggests that the greater complexity of the 

RBF SVM yields few benefits. This further suggests that the 

patterns in this data are relatively simple. We provide further 

qualitative support for this assertion in Section V.D.  Although 

PLSDA and the RBF SVM perform similarly, the RBF SVM is 

much more computationally expensive (i.e., slower) than 

PLSDA, during both training and testing, and so we generally 

favor PLSDA.   

For the remaining discussion we will only consider results 

with the RBF SVM and PLSDA, since they both (almost) 

always outperform the linear SVM. When comparing 

individual features, the results reveal several trends.  First, 

many algorithms are outperformed by the raw pixel features.  

Secondly, overall the best performing features tend to be the 

FV-based features, raw, and LSTAT. The best overall mean 

performance is achieved with FV (SIFT) for the RBF SVM. 

 
Figure 6: Illustration of different spatial pooling techniques for BOV and FV. 

In all cases, local descriptors are densely extracted over the FLGPR image.  In 
the original pooling scheme (left), one encoding is computed over the entire 

image.  The encoding discards information about where objects exist in the 

image.  In order to encode this information, we applied spatial pooling in which 
BOV and FV encodings can be computed on different sub-regions of the image.  

The resulting encodings (e.g., four in the illustration) are concatenated together 

to form one long feature vector, where each of the four segments encodes 
information about the image content in its respective spatial region.  In this 

work we applied a 2 by 2 non-overlapping pooling scheme (as shown), which 

substantially improved performance.  



 8 

 
 

 
 

 

B. Decision-level fusion 

In decision fusion we aim to combine the predictions (i.e., 

confidence values output by a classifier) from the different 

algorithms in Section V.A in order to further improve detection 

performance [49]. Decision fusion was also investigated 

recently for FLGPR in [50], and we build on this work by using 

a larger collection of data and a greater variety of image feature 

sets. 

In order to fuse the algorithm predictions, we treat them as 

features that are input into a second PLSDA classifier, which is 

then trained to make a final prediction. For simplicity, in these 

experiments we only consider fusing the PLSDA classifier 

predictions, but we consider all polarities and feature sets. It is 

unlikely that all of these feature sets are useful for fusion, and 

so we attempt to select a good subset of them for fusion. To 

select this subset we used the sequential forward search 

algorithm (SFS) [51]. This algorithm begins with the predictors 

(i.e., the PLSDA predictions) for the single best feature set, and 

then adds a new predictor one at a time, based on which one 

increases the performance the most.  The SFS is only allowed 

to select new predictors based upon the training data in each 

fold, in order to avoid positive performance bias. Therefore, in 

order to obtain performance measures for each candidate fusion 

model, we perform a random five-fold cross-validation using 

only the training data. This yields a pAUC that SFS can use to 

build the final fusion model.    

In our experimental design we control the total number of 

predictors that SFS is allowed to select for fusion, denoted 𝑁𝑓 . 

Figure 10 presents the results of our feature fusion experiment 

as we vary 𝑁𝑓. Each point in Figure 10 represents the mean of 

the pAUCs, and the error bars report the 95% confidence 

interval [48]. This interval is computed after repeating each 

experiment ten times to account for the randomness introduced 

by the 5-fold cross-validation within each training fold. The 

results show a sharp performance increase at 𝑁𝑓 = 2 then a 

steady rise until 𝑁𝑓 ≅ 20. 

 

 
 

To estimate overall performance for the SFS algorithm we 

conducted an experiment using an auto-stopping criteria to 

select 𝑁𝑓. The algorithm would stop increasing 𝑁𝑓 when the 

pAUC within that fold started to decrease. The pAUC is 

determined from the random five-fold cross-validation 

performed within each training set, thus this experiment was 

repeated 10 times to better estimate the performance. In  Figure 

11 the vertically averaged ROC [52] and 95% confidence 

intervals are reported for the SFS auto-stopping algorithm and 

the FV (SIFT) with the RBF SVM, along with the performance 

of the prescreener. The decision fusion and best individual 

feature set yield very similar performance at any given point on 

the ROC curve. 

 
Figure 7: pAUC, computed to a false alarm rate of 0.02 false alarms per 𝑚2 for 

each feature set on the HH polarization using each considered classifier. Feature 
learning approaches are bolded. The mean pAUC and 95% confidence intervals 

for 10 bootstrap trials are reported. 

 
Figure 8:  pAUC, computed to a false alarm rate of 0.02 false alarms per 𝑚2 for 
each feature set on the VV polarization using each considered classifier. Feature 

learning approaches are bolded. The mean pAUC and 95% confidence intervals 

for 10 bootstrap trials are reported. 

 
Figure 9: pAUC, computed to a false alarm rate of 0.02 false alarms per 𝑚2 for 
each feature set on the HH polarization using each considered classifier. Feature 

learning approaches are bolded. The mean pAUC and 95% confidence intervals 

for 10 bootstrap trials are reported. 

 
Figure 10: pAUC for decision fusion over a varying number of features for the 
sequential forward search. Each point if the mean performance for that number 

of feature and the error bars are the 95% confidence intervals over multiple runs 

of the same experiment; for each of the number of features we ran the 
experiment 10 times. Notice the leveling of performance after allowing two 

features to be selected; adding more features past this only slightly increases 

overall performance. 
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C. Learned filters 

Feature learning algorithms can be analyzed by visualizing 

the resulting filters from the clustering, and this is done here in 

Figure 12 for the BOV (Raw) algorithm on the HH polarization. 

We analyze BOV (Raw) because (i) it was nearly the best 

performing algorithm and (ii) it uses the raw pixel descriptor 

which results in more interpretable visualizations. During 

feature extraction the resulting BOV encodings are based on the 

similarity between each observation’s descriptors and these 

cluster centers. We can surmise that these cluster centers are 

useful in discrimination because of the relatively good BOV 

(Raw) classification performance; that is to say, the space 

derived with these cluster centers produces a fairly 

discriminative representation. Notice the “blob-like” learned 

cluster center, and how many of the clusters are shifted versions 

of the same shape. This, along with knowing that performance 

did not increase when introducing more available clusters 

implies that there are not many cues beyond concentrations of 

high energy that indicate the presence of a target in FLGPR 

data. 

 

D. What characteristics of FLGPR images indicate the 

presence of a target? 

For the many computer vision algorithms, including feature 

learning, it can often be difficult to understand which 

components of the observation images are useful in 

classification. In an effort to analyze this we developed a 

“confidence map” visualization based on the feature learning 

encodings and trained classifier. The subsequent visualizations 

show the magnitude image and a BOV (Raw) “confidence map” 

of four target examples over a range of classification 

confidences. Again, BOV (Raw) on the HH polarization is used 

here due to its overall good classification performance and the 

visual interpretability of using raw pixel descriptors. 

The “confidence maps” illustrate where, spatially, the BOV 

(Raw) features indicated target-like characteristics in the image. 

Figure 13 shows the process for obtaining this visualization. As 

the process shows, the dense descriptors (i.e., raw patches) in 

the image are encoded using a sliding window, where four 

descriptors are encoded at a time. This corresponds to spatial 

pooling of the BOV encodings (see Section IV.D) over very 

small image regions. Each encoding is then classified (i.e., 

assigned a confidence) using a trained BOV(Raw) PLSDA 

classifier. This process results in a map of confidence values 

across the image, indicating how much the local descriptors 

indicate the presence of a target.   

 

 
For each example in Figure 14, the magnitude images, BOV 

(Raw) confidence maps, and confidence percentile are given. 

The confidence percentile denotes the confidence a target was 

given by the classifier but normalized in relation to the other 

observations to fit between 0% and 100% (100% confidence 

 
Figure 11: ROC curve (probability of detection vs. false alarm rate) for 

prescreener (PS), the single best feature (FV Raw – RBF SVM), and the 

sequential forward search (SFS) decision level fusion results. 

 
Figure 12: Learned K-means cluster centers for the BOV on raw pixel local 
descriptors in the HH polarization. With this visualization, it becomes evident 

that the learned filters are measuring the different “blob-like” characteristics of 

the data. 

 
Figure 13: Description of how the BOV (Raw) confidence map is computed for 
each example observation. Using the learned quadrant PLSDA filters and BOV 

encodings for 2 by 2 overlapping windows of the local descriptor, a measure of 

target likeness is calculated for local regions around the observation. In order 
to encode the extracted descriptors, we used the same K-means clusters that 

were trained as described in Section V.A. Obtaining an appropriate classifier 

for the local BOV encodings was more difficult.  For this purpose, we used the 
PLSDA classifier that was trained as in Section V.A, however, that classifier 

was trained using 2 by 2 non-overlapping pooling. Recall that this pooling 

scheme yielded one BOV encoding for each quadrant of the image.  If the total 

BOV (Raw) dimensionality is given by 𝐷, then the PLSDA classifier consisted 

of 4𝐷 weights: one set of 𝐷 weights each of the four quadrants. Therefore, for 
our discriminability map, if a local BOV encoding was located in the top right 

quadrant, then the 𝐷 PLSDA filters weights from that quadrant were applied to 
the encoding in order to assign a confidence. In the confidence maps, the 

brighter areas correspond to very target like locations. 
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percentile being the highest confidence observation). The 

visualizations in Figure 14 reveal several interesting 

characteristics about the FLGPR images. First, it appears that 

the BOV (Raw) feature is largely cuing on high energy “blobs”, 

of varying shape and size, to identify the presence of a target. 

As expected with the spatial invariance introduced by 

“bagging” in BOV, the algorithm is able to assign a high 

confidence to an off-center target response, like that for the 

(95.6% confidence percentile example. In the last column 

example (1.3% confidence percentile) there are high confidence 

locations around a target response but not enough to outweigh 

the large amount of background present in the image. The 

example with a 14.0% confidence percentile illustrates a very 

weak target response, and while some of the response appears 

target like it is not strong enough for the BOV (Raw) algorithm 

to classify well. 

 

VI. CONCLUSIONS 

In this paper, two contributions to the FLGPR research were 

presented: a comprehensive comparison of existing features’ 

performance on a large consistent data collection, and the 

application of feature learning to the FLGPR radar images using 

the BOV and FV methods. Through these experiments a 

number of observations were made about the FLGPR. First, that 

the best performance balanced with computational complexity 

for any polarization and individual feature set occurs for the 

BOV with Raw pixel descriptors on the HH polarization. 

Feature learning in general performed well, but did not 

outperform all previous feature sets for all polarizations. 

Analysis of the classification results showed that amorphous 

“blob-like” structures were the strongest cue for the presence of 

a target. Second, by fusing the feature decision confidences 

together, little improvement in classification is achieved.  A 

summary of these conclusions are: 

 Using many classifiers and features, the HH 

polarization imagery consistently yields substantially 

better performance than imagery based on the VV and 

VH polarizations. 

 Feature learning (Fisher Vectors with the SIFT 

descriptor, and BOV with Raw pixels) generally yields 

better performance compared to existing features.  

 A linear classifier, PLSDA, which was previously 

unused in the FLGPR context, consistently yields 

better performance than a linear SVM.  It consistently 

achieves comparable performance to a nonlinear 

SVM, but with much less training time and model 

complexity. 

 Decision fusion across polarities and features resulted 

in only slightly improved detection performance.  

 

Future work in this area can advance in several directions. 

First, while we found that it is not very beneficial to combine 

feature sets at the decision level, this does not necessarily 

portend that combining feature sets before classification (i.e., 

feature level fusion) will not lead to greater performance 

improvements. This may also reveal that there is benefit to 

fusing different polarities, even though we did not see benefits 

here when fusing at the decision level. 
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