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Local Feature-based Attribute Profiles for Optical
Remote Sensing Image Classification
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Abstract—This article introduces an extension of morpholog-
ical attribute profiles (APs) by extracting their local features.
The so-called local feature-based attribute profiles (LFAPs) are
expected to provide a better characterization of each APs’ filtered
pixel (i.e. APs’ sample) within its neighborhood, hence better deal
with local texture information from the image content. In this
work, LFAPs are constructed by extracting some simple first-
order statistical features of the local patch around each APs’
sample such as mean, standard deviation, range, etc. Then, the
final feature vector characterizing each image pixel is formed by
combining all local features extracted from APs of that pixel. In
addition, since the self-dual attribute profiles (SDAPs) has been
proved to outperform the APs in recent years, a similar process
will be applied to form the local feature-based SDAPs (LFSDAPs).
In order to evaluate the effectiveness of LFAPs and LFSDAPs,
supervised classification using both the Random Forest and the
Support Vector Machine classifiers is performed on the very high
resolution Reykjavik image as well as the hyperspectral Pavia
University data. Experimental results show that LFAPs (resp.
LFSDAPs) can considerably improve the classification accuracy
of the standard APs (resp. SDAPs) and the recently proposed
histogram-based APs (HAPs).

Index Terms—Optical remote sensing imagery, attribute pro-
files (APs), self-dual attribute profiles (SDAPs), local feature-
based APs (LFAPs), local feature-based SDAPs (LFSDAPs),
supervised classification

I. INTRODUCTION

CLASSIFICATION of optical remote sensing images is
one of the most crucial tasks in land use and land

cover earth observation. Among a great number of proposed
techniques in the literature (see a review in [1]), morphological
attribute profiles (APs) [2] have been widely used thanks to
their powerful modeling of spatial information from the image
content and their efficient implementation via tree structures.
In the past few years, a lot of studies have been contributed to
exploit and extend the use of APs [3]–[14]. A recent survey of
APs and some of their extensions can be found in [15]. In fact,
APs provide a multi-level image representation obtained by the
sequential application of different filter rules (i.e. attributes)
characterizing the size and shape of objects present in the
image [2]. By well preserving important spatial properties
of regions and objects such as contours, shape, etc., APs
become effective to characterize the contextual information
of the observed scene, hence relevant for classification task.
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Considered as an improved version of APs, the self-dual
attribute profiles (SDAPs) [7], [8] have been proved to out-
perform APs in terms of classification accuracy and compu-
tational cost. By applying a sequence of self-dual attribute
operators based on a tree of shapes (instead of a max-tree and
a min-tree employed by the original APs [2]), this technique
enables us to simultaneously access and model both dark and
bright regions from the image, hence becomes more efficient
for modeling the spatial information and reducing the feature
dimension.

However, the direct exploitation of APs or SDAPs for
classification task may be insufficient for a complete char-
acterization of structural and textural information from the
image, especially when regions and objects become more
heterogeneous in images acquired by very high resolution
(VHR) remote sensing sensors. That is why in [11], the authors
proposed the histogram-based attribute profiles (HAPs) for
another enhancement of APs. HAPs are built by concatenating
the local histograms of attribute filter responses of each pixel.
They have been proved to be more efficient and to better
deal with local textures in VHR images [11]. However, two
limitations of HAPs can be observed involving their very high
dimensionality and their high sensitivity to the number of
histogram bins (more details will be provided in the rest of
the paper). Therefore in this paper, instead of constructing
local histograms, our motivation is to exploit certain statistical
features to characterize the local neighborhood around each
pixel. Similar to HAPs, the proposed local feature-based
attribute profiles (LFAPs) can provide a better description of
local textures in VHR images than the standard APs. By using
some simple first-order local features, LFAPs can overcome
the two aforementioned drawbacks of HAPs. Furthermore, the
construction of LFAPs is not limited to the use of first-order
statistical features, one can take into consideration other kinds
of local features to tackle more complex VHR image scenes.

Analogously, we also propose to build the LFSDAPs by
extracting and combining some first-order local features from
SDAPs. Then, to deal with hyperspectral image data, the
extended versions of LFAPs and LFSDAPs (namely ELFAPs
and ELFSDAPs, respectively) will be also derived. They are
constructed by stacking all the features obtained from some
first image components by using the PCA (i.e. principal
component analysis) technique, as the principle of generating
the extended APs (EAPs) in [3].

The remainder of this paper is organized as follows. Section
II reviews some related studies involving the APs, SDAPs
and HAPs. The proposed LFAP and LFSDAP techniques
together with their extended versions for hyperspectral im-
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ages are described in Section III. In Section IV, supervised
classification results performed on the VHR Reykjavik image
as well as on the hyperspectral Pavia University data yielded
by the proposed methods and some reference approaches
are evaluated and compared in terms of both classification
accuracy and computational cost. Section V finally concludes
the paper and discusses some further work.

II. RELATED WORK

A. APs and SDAPs

The definition of APs is summarized in Fig. 1(a). Let X :
Z2 → R be a grayscale image consisting of N pixels and xi =
X(pi) be the intensity (i.e. gray value) of the ith pixel pi. The
generation of APs on X is achieved by applying a sequence of
attribute thickening {φλ`}L`=1 and attribute thinning {γλ`}L`=1

operations as follows:

AP(X) =
{
XφλL , XφλL−1

, . . . , Xφλ1 , X,

Xγλ1 , . . . , XγλL−1
, XγλL

}
,

(1)

where Xφλ` is the filtered image obtained by applying the
attribute thickening φλ with regard to the threshold λ`. We
denote xφ

λ`

i = Xφλ` (pi) the gray value of the filtered image
Xφλ` at pixel position pi. Similar explanation is made for
Xγλ` . As observed, the resulted AP(X) is a stack of (2L+1)
images including the original image, L filtered images from
the thickening profiles and the other L from the thinning
profiles. For more details about this AP computation, readers
are referred to papers [2], [15].

It should be noted that for each pixel pi (i = 1, . . . , N )
in the definition domain of the image, the following feature
vector can be considered as its AP descriptor which has been
commonly used for classification task:

χAP(pi) =
{
xφ

λL

i , xφ
λL−1

i , . . . , xφ
λ1

i , xi,

xγ
λ1

i , . . . , xγ
λL−1

i , xγ
λL

i

}
.

(2)

Instead of calculating the APs based on both max-tree and
min-tree image representation, the SDAPs were proposed in
[7] based on a tree of shapes which possesses a self duality
property. This tree structure allows us to simultaneously model
dark and bright regions from the image content, hence provid-
ing a better simplification with regard to non-dual filtering
operators (i.e. attribute thickening or thinning). For more
details about attribute filters based on max-tree, min-tree as
well as tree of shapes, readers are referred to paper [8]. In
short, as illustrated in Fig. 1(b), the SDAPs of a grayscale
image X are computed by applying the sequence of self-dual
attribute filters {ρλ`}L`=1 as follows:

SDAP(X) =
{
X,Xρλ1 , . . . , XρλL−1

, XρλL
}
. (3)

This time, the resulted SDAP(X) consists of only (L +
1) images, thus reduces the dimensionality of the previous
AP(X) by L. Similar to Eq. (2), the SDAP descriptor of any
pixel pi; i = 1, . . . , N can be extracted:

χSDAP(pi) =
{
xi, x

ρλ1

i , . . . , xρ
λL−1

i , xρ
λL

i

}
, (4)

where xρ
λ`

i = Xρλ` (pi) is the gray value of the filtered image
Xρλ` at pixel position pi.

We note that during the construction of APs or SDAPs,
different attributes can be considered to model the spatial
and structural properties of regions and objects within the
image content. In particularly, there are four attributes which
have been commonly used in most AP-based research studies.
They are 1) area (which models the size of regions); 2)
moment of inertia (which helps to discriminate elongated
objects from compact ones); 3) standard deviation (which
involves the region’s homogeneity); and 4) diagonal of the
region’s bounding box (which also models the region’s size).
In case that more than one attribute is considered, the final APs
(resp. SDAPs) are formed by stacking all APs (resp. SDAPs)
obtained for each single attribute.

B. HAPs

The histogram-based APs (HAPs) have been recently pro-
posed in [11] and proved to be more efficient than APs for
classification of VHR remote sensing images. By modeling
the marginal local distributions of attribute filter responses,
HAPs can provide a better characterization of textural infor-
mation within the image content. Fig. 2 outlines the three-step
generation of HAPs from a grayscale image X . As observed,
the first step is to generate the standard APs (i.e. compute
AP(X) using Eq. (1)). Then, for each sample of each APs’
filtered image, the local histogram is estimated from its local
patch. In the final step, all local histograms obtained at the
same pixel position pi will be concatenated to form the final
HAP descriptor of that pixel as the following equation:

χHAP(pi) =
{
hφ

λL

i , hφ
λL−1

i , . . . , hφ
λ1

i , hi,

hγ
λ1

i , . . . , hγ
λL−1

i , hγ
λL

i

}
,

(5)

where hi (resp. hφ
λ`

i , hγ
λ`

i with ` = 1, . . . , L) is the local
histogram estimated from a local patch around pi from the
image X (resp. Xφλ` , Xγλ` ).

It should be noted that in addition to the attribute and
threshold values needed for AP generation, the HAP method
requires two more parameters which are dedicated to the
computation of local histograms. They are the size of local
patch (i.e. neighborhood) around each APs’ sample (denoted
by w) and the number of histogram bins (denoted by nb).
The choice of w and nb involves a significant influence on
the performance of HAPs in terms of discrimination capacity
as well as computational cost. In fact, one can observe two
drawbacks of HAPs including their very high dimensionality
(which is (2L+1)× nb and leads to the problem of memory
requirement and computation time) and their high sensitivity
to the parameter nb. Readers are invited to the experimental
study of the related paper [11] for more details. We will
get back to discuss the HAPs’ behavior when evaluating and
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Fig. 1. Generation of (a) attribute profiles (APs) and (b) self-dual attribute profiles (SDAPs) from a grayscale image.

comparing their performance to the proposed strategy during
our experimental study in Section IV.

Last but not least, although there has not been a definitive
formulation of the histogram-based SDAPs (denoted by HS-
DAPs) from the literature yet, they can be simply deduced
by applying the above three-step algorithm to the SDAPs.
Therefore, similar to Eq. (5), HSDAP descriptor can be defined
for each pixel pi; i = 1, . . . , N :

χHSDAP(pi) =
{
hi, h

ρλ1

i , . . . , hρ
λL−1

i , hρ
λL

i

}
. (6)

III. PROPOSED METHODOLOGY

Due to the increase in spatial resolution, the appearance of
geometrical and textural information in VHR remote sensing
images becomes more and more significant. Hence, classifi-
cation tasks should take more into account textural features
when dealing with VHR image data. It should be noted that
textures are generally not derived from a single image pixel,
but from a local neighborhood (i.e. local patch) around it.
That is the reason why the direct application of AP or SDAP
feature vector in Eq. (2) or Eq. (4) for classification task may
be not sufficient to account for textures in VHR images. To
this end, replacing each pixel sample from the standard APs
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Fig. 2. Generation of histogram-based attribute profiles (HAPs) from a grayscale image.

or SDAPs with the statistical features extracted from its local
neighborhood appears to be a good strategy to resolve this
issue, which constitutes our motivation for this work.

In the rest of this section, we first describe the construction
of the proposed LFAPs. Then, a similar principle is applied to
form the LFSDAPs. Section III-C finally extends the proposed
methods for hyperspectral images.

A. LFAPs

Local feature extraction has been one of the main ap-
proaches for texture analysis for decades [16]–[19]. First-
order, second-order or higher order statistical features ex-
tracted from the local patch can describe the roughness,
regularity, homogeneity, contrast, etc. of the related texture
[16]. An important remark is that AP images mostly consist
of homogeneous (i.e. flat) regions. Hence, only first-order local
features such as mean, range, variance or standard deviation
can be sufficient to model texture information. That is why
we recommend to exploit only first-order features to construct
LFAPs. Particularly in this work, we propose to use the mean
(µ) and the range (r) thanks to their good representation of
smooth textures, their high performance and fast computation
during our experimentation.

Thus, we define the LFAP feature vector for each pixel pi
as follows:

χLFAP(pi) =
{
χLFAP
µ (pi), χ

LFAP
r (pi)

}
(7)

in which

χLFAP
µ (pi) =

{
µφ

λL

i , µφ
λL−1

i , . . . , µφ
λ1

i , µi,

µγ
λ1

i , . . . , µγ
λL−1

i , µγ
λL

i

}
,

(8)

χLFAP
r (pi) =

{
rφ

λL

i , rφ
λL−1

i , . . . , rφ
λ1

i , ri,

rγ
λ1

i , . . . , rγ
λL−1

i , rγ
λL

i

}
,

(9)

where µi and ri (resp. µφ
λ`

i and rφ
λ`

i ) are the mean and range
values extracted from the local patch N (pi) of size w × w

from the image X (resp. Xφλ` ):

µi =
1

w2

∑
pj∈N (pi)

xj ,

µφ
λ`

i =
1

w2

∑
pj∈N (pi)

xφ
λ`

j ,

ri = max
pj∈N (pi)

{xj} − min
pj∈N (pi)

{xj},

rφ
λ`

i = max
pj∈N (pi)

{xφ
λ`

j } − min
pj∈N (pi)

{xφ
λ`

j }.

Similar calculations are adopted to extract the mean and
range values from every other APs’ filtered image (i.e. every
Xφλ` , Xγλ` ; ` = 1, . . . , L). The final dimension of a LFAP
feature vector is 2× (2L+ 1).

From Fig. 3, one can observe that the construction of LFAPs
also consists of three steps (similar to that of HAPs). After
generating APs, the selected local features are extracted from
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Fig. 3. Generation of local feature-based attribute profiles (LFAPs) from a grayscale image. In this example, the extracted local feature is the mean (µ) of
local patch.

the local patch of each APs’ sample. They are then combined
to form the final LFAP feature vector. Note that in the figure,
only the mean feature µ is extracted for an illustration. As
defined in Eq. (7), our proposed LFAPs in this paper are
built by combining the mean and the range features. However,
other kinds of local features such as the Haralick features
from the grey level cooccurrence matrix (GLCM) technique
[20], the Gabor filter [21], wavelet transform [22], [23],
pointwise features [24]–[27], local binary pattern (LBP) [28],
morphological descriptors [29], [30], or covariance descriptors
[31], [32], etc. can be also exploited to deal with more complex
textures from VHR image data.

Another remark is that the HAPs (Section II-B) can be con-
sidered as a specific case of LFAPs since the local histogram
is in fact one tool to model and characterize the statistical
distribution of the pixel’s local neighborhood. Thus, one can
write:

χHAP(pi) = χLFAP
h (pi)

=
{
hφ

λL

i , hφ
λL−1

i , . . . , hφ
λ1

i , hi,

hγ
λ1

i , . . . , hγ
λL−1

i , hγ
λL

i

}
.

(10)

We remind that hi (resp. hφ
λ`

i , hγ
λ`

i with ` = 1, . . . , L) is the
local histogram estimated from the local patch N (pi) from X

(resp. Xφλ` , Xγλ` ).
An advantage of the proposed LFAPs compared to HAPs is

that their construction does not require the parameter nb (i.e.
number of histogram bins). We have mentioned the negative
impact of this parameter to the performance of HAPs which

causes their high dimensionality and high sensitivity to nb
in Section II-B. In our work, the extraction of the mean
and range features to form the LFAP descriptor in Eq. (7)
still requires the patch size w. This parameter does exist in
most of the local descriptors in the literature. It represents
the level of exploiting the information from the neighborhood
environment around each pixel. We will study the sensitivity
of the proposed method to this parameter in Section IV-C.

B. LFSDAPs

As previously mentioned in Section II-A, the efficiency
of SDAPs applied to remote sensing image classification
compared to the original APs has been confirmed thanks to its
construction via self-dual filtering operators based on a tree of
shapes [7], [8]. It is motivating to apply the proposed approach
to SDAPs. Hence, by extracting the mean and range features
from the local patch around each SDAP’s sample, the LFSDAP
descriptor of the pixel pi can be similarly defined:

χLFSDAP(pi) =
{
χLFSDAP
µ (pi), χ

LFSDAP
r (pi)

}
, (11)

where

χLFSDAP
µ (pi) =

{
µi, µ

ρλ1

i , . . . , µρ
λL−1

i , µρ
λL

i

}
, (12)

χLFSDAP
r (pi) =

{
ri, r

ρλ1

i , . . . , rρ
λL−1

i , rρ
λL

i

}
. (13)

As a reminder, {ρλ`}L`=1 is the sequence of self-dual attribute
operators considered to generate the SDAPs as in Eq. (3). The
dimension of LFSDAP feature vector equals to 2 × (L + 1),
which is twice of the SDAP dimension.
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C. Extended versions

The extended versions of APs (EAPs) and SDAPs (ES-
DAPs) were proposed in [3] and [9], respectively, for clas-
sification of multi-channel remote sensing data, in particular
hyperspectral images. In general, a feature extraction or feature
selection method is first applied to reduce the dimensionality
and remove redundant information from the image. For exam-
ple, in the original work of EAPs [3], the authors proposed to
first apply the PCA and then compute APs from each of the
first few components. Then, the final EAPs were constructed
by stacking all the obtained APs as follows:

EAP = {AP(PC1),AP(PC2), . . . ,AP(PCK)} , (14)

where K is the number of first PCA images preserved for EAP
construction.

We note that other techniques can be exploited to replace
PCA for the feature reduction task such as the kernel PCA
(KPCA) [33], independent component analysis (ICA) [34],
discriminant analysis feature extraction (DAFE) [35], non-
parametric weighted feature extraction (NWFE) [9], etc. A
survey was conducted in [15]. Also in [14], a vector strategy
based on vector-ordering relation was proposed to adapt the
APs for hyperspectral data. Here in our work, the PCA is
selected as the work of EAPs [3], but any adaptation or
improvement using the above mentioned techniques can be
undoubtedly applied. To this end, we define the extended
versions of LFAPs as well as LFSDAPs by the two following
equations:

ELFAP = {LFAP(PC1),LFAP(PC2),

. . . ,LFAP(PCK)} ,
(15)

ELFSDAP = {LFSDAP(PC1),LFSDAP(PC2),

. . . ,LFSDAP(PCK)} ,
(16)

where K is again the number of preserved principal compo-
nents (PCs).

IV. EXPERIMENTAL STUDY

This section describes our experimental study to evaluate
the performance of the proposed methods. Supervised classi-
fication has been carried out on both VHR panchromatic and
hyperspectral image data in order to confirm the effectiveness
of LFAPs and LFSDAPs as well as their extended versions. We
first introduce the two data sets used in our experiments. Next,
the experimental setup is described in details. We then provide
the classification results yielded by the proposed algorithms
compared to some reference methods. Both qualitative and
quantitative assessments will be delivered in terms of classi-
fication accuracy as well as computational cost. Finally, the
experimental study is completed by analyzing the parameter
sensitivity of the proposed approaches.

A. Data Description

1) Reykjavik data set: The first data set is an image of
size 976×640 pixels acquired by the IKONOS Earth imaging
satellite in Reykjavik, Iceland. The original image consists of
a VHR panchromatic image (1-m resolution) and a four-band

multispectral image at lower resolution (4 m). A panshapern-
ing process using the undecimated discrete wavelet transform
method [36] was then applied in order to generate the 1-
m high resolution multispectral product. In our experiments,
the panchromatic (PAN) and the pansharpened multispectral
(MS) images (both have 1-m resolution) were exploited. They
are shown in Fig. 4(a) together with the related ground truth
consisting of six thematic classes.

2) Pavia University data set: The second data set is the
hyperspectral image acquired by the ROSIS airborne sensor
with 1.3-m spatial resolution over the region of Pavia Uni-
versity, Italy. The image consists of 610 × 340 pixels with
103 spectral bands (from 0.43 to 0.86 µm). From the image
scene, nine thematic classes were identified including trees,
asphalt, bitumen, gravel, metal sheets, shadows, meadows,
self-blocking bricks and bare soil. The false-color image (made
by combining the bands 31, 56 and 102) and the dedicated
ground truth are shown in Fig. 4(b).

Small buildings

Thematic classes:

Large buildings

Open area

Large road

Shadow

Street

(a)

Trees

Thematic classes:

Gravel 

Asphalt

Metal sheets

Bitumen

Shadows

Meadows Self-blocking bricksBare soil

(b)

Fig. 4. Two data sets used in our experimental study. (a) The Reykjavik
data (From left to right: panchromatic, false-color image made by bands 1-
2-4 and ground truth including six thematic classes); (b) The hyperspectral
Pavia University data (From left to right: false-color image made by bands
31-56-102, ground truth including nine thematic classes and training set).
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B. Experimental Setup

For the Rekjavik data set, supervised classification results
obtained by exploiting the proposed LFAP and LFSDAP fea-
tures will be evaluated and compared to those yielded by using
the PAN (only panchromatic band), the standard AP, SDAP,
HAP and HSDAP features. The attributes and their threshold
values used for generating all AP-based features are reported
in Table I (second column). This setting was adopted from the
recent work in paper [8] to provide an equivalent comparison.
In details, three attributes including area, standard deviation
and moment of inertia were considered and ten threshold
values were set for each one. For the classification stage,
Random Forest (RF) classifier [37] was employed by setting
the number of trees to 200 and the number of training variables
to the square root of the feature length. We randomly selected
1% of samples from each class for training and the rest for
testing. Then, another experiment scenario was conducted by
using 10% of training samples. All experiments were run
10 times in order to report the mean and standard deviation
of classification accuracy, in terms of overall accuracy (OA),
average accuracy (AA) and kappa coefficient.

For the hyperspectral Pavia University data set, we first
performed the PCA on the image and the first four PCs
(involving more than 99% of the total variance) were preserved
for our experiments. As mentioned, this data set serves for
evaluating the extended version of the proposed methods.
Hence, classification results yielded by the ELFAP and ELFS-
DAP techniques are compared to those produced by the EAP,
ESDAP as well as the extended versions of HAP and HSDAP
(i.e. EHAP and EHSDAP, respectively). The attributes and
their threshold values are reported in the third column of Table
I. Here, four attributes including the previous three plus the
diagonal of bounding box were considered. Four thresholds
were set for each one, similar to the parameter setting from
the original EAP paper [3]. Then, both RF [37] and SVM
[38] were employed for supervised classification stage. As
previously, the number of trees was set to 200 for the RF.
For SVM, we exploited the LIBSVM [39] for implementation.
We note that as recommended by the authors in [11], the
histogram intersection (HI) kernel [40] was adopted for the
two histogram-based approaches (i.e. EHAP and EHSDAP)
while the radial basis function (RBF) kernel [41] was used
for the other methods. The SVM regularization parameter
C and the γ parameter of RBF kernel were estimated by
a grid search method using 5-fold cross validation. We set
C = 2α with α = {−5,−4, . . . , 10} and γ = 2β with
β = {−10,−9, . . . , 5}. The OA, AA and kappa coefficient
were again reported for the evaluation and comparison of
classification performance.

For both data sets, the local patch size (w) used for ex-
tracting the mean and range features (for LFAP and LFSDAP
techniques) as well as for extracting the histogram signature
(for HAP and HSDAP approaches) was tested from 3 to
11 with a step of 2. We also varied the number of bins
(nb) from 5 to 9 for the two histogram-based reference
methods in order to better investigate their performance, due to
their high sensitivity to this parameter. All experiments were

implemented using MATLAB on a standard personal computer
with 3.4GHz CPU and 16GB RAM.

C. Results

1) Performance in terms of classification accuracy:
a) For the Reykjavik data set: Table II reports the

classification results obtained by the proposed LFAPs and
LFSDAPs (w = 7) compared to the reference methods for both
two experimental scenarios (i.e. using 1% and 10% training
samples). From the upper part of the table, only the PAN
image was exploited to generate different feature descriptors.
Moreover, in the table’s lower part, we also provide the results
obtained by using the PAN image to construct the descriptors
and then adding the spectral information from the MS image
(4 bands) into each feature vector (denoted by PAN+MS,
AP+MS, HAP+MS, LFAP+MS, SDAP+MS, HSDAP+MS and
LFSDAP+MS). That is why their dimensions (second column)
were all increased by 4. We note that the vector length of LFAP
(resp. LFSDAP) is twice of that of AP (resp. SDAP) since two
local features (mean and range) were extracted to form these
descriptors. Meanwhile, the dimensions of HAP and HSDAP
are much higher (multiplied by a factor of nb).

From the table, we observe that the proposed LFAP tech-
nique has produced better classification performance (in terms
of OA, AA and kappa) than the standard AP and the HAP
(with 3 different values of nb). Analogously, LFSDAP has
outperformed SDAP and HSDAP. LFSDAP has been also
more efficient than LFAP, which shows a similar behavior
to their standard SDAP and AP versions. In case of using
10% training samples, the best classification result on the
PAN image in terms of OA was achieved by LFSDAP with
98.24%, better than 97.18% yielded by LFAP. The standard
AP and SDAP have produced an OA of 91.68% and 92.53%.
Therefore, LFAP and LFSDAP have improved 5.5% and 5.7%
from AP and SDAP, respectively. The results of HAP and
HSDAP are quite sensitive to the number of bins. HAP has
attained its highest OA equal to 96.13% with nb = 7, while
the best OA of 95.01% has been recorded by HSDAP with
nb = 9. HAP has also outperformed the original AP (as
proved in [11]). However, when using nb = 5, HSDAP has
obtained a considerably inferior OA compared to SDAP (i.e.
85.34% compared to 92.53%). This remark again emphasizes
the significant dependence of the histogram-based approaches
to the number of bins, which causes one of their disadvantages
compared to our local feature-based approaches. For a qualita-
tive comparison, Fig. 5 shows the related classification maps.
We observe that the thematic maps yielded by the proposed
LFAP and LFSDAP [Fig. 5(d)-(h)] are more accurate than
the original AP and SDAP [Fig. 5(b)-(f)] and quite close
to the reference ground truth [Fig. 5(a)]. These results are
smoother since the neighborhood information (from the local
patch of each filtered pixel) was taken into account. The two
histogram-based approaches also yielded smooth classification
maps but still involved more noisy points within objects, which
reduced their classification accuracy. Hence, the mean and
range features used by LFAP and LFSDAP methods seem to
provide better characterization of homogeneous textures within
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TABLE I
ATTRIBUTES AND THRESHOLD VALUES CONSIDERED IN THE EXPERIMENTS.

Attribute Reykjavik Pavia University
Area 25, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000, 150000 100, 500, 1000, 5000

Standard deviation 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40 20, 30, 40, 50
Moment of inertia 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 0.55, 0.6, 0.65 0.2, 0.3, 0.4, 0.5

Length of the diagonal - 10, 25, 50, 100

TABLE II
CLASSIFICATION ACCURACY OF THE REYKJAVIK DATA SET OBTAINED BY DIFFERENT METHODS USING RF CLASSIFIER WITH 200 TREES.

Method Dimension 1% training samples 10% training samples
OA (%) AA (%) Kappa*100 OA (%) AA (%) Kappa*100

Using only panchromatic (PAN) image
PAN 1 50.93± 0.44 52.61± 0.48 40.67± 0.54 52.62± 0.13 54.34± 0.12 42.74± 0.14

AP 63 84.81± 0.51 85.23± 0.48 81.65± 0.62 91.68± 0.12 90.84± 0.11 89.96± 0.15

HAP(nb=5) 315 84.91± 0.42 85.16± 0.43 81.77± 0.51 92.93± 0.07 93.06± 0.07 91.46± 0.09

HAP(nb=7) 441 88.25± 0.30 88.59± 0.32 85.81± 0.36 96.13± 0.07 96.28± 0.07 95.33± 0.08

HAP(nb=9) 567 87.40± 0.31 87.71± 0.31 84.79± 0.38 95.83± 0.10 95.92± 0.10 94.96± 0.12

LFAP 126 89.44 ± 0.44 89.66 ± 0.44 87.26 ± 0.53 97.18 ± 0.13 97.19 ± 0.13 96.60 ± 0.16
SDAP 33 88.12± 0.32 88.30± 0.34 85.65± 0.39 92.53± 0.12 92.63± 0.12 90.98± 0.14

HSDAP(nb=5) 165 80.29± 0.31 79.71± 0.31 76.22± 0.38 85.34± 0.11 84.59± 0.12 82.30± 0.14

HSDAP(nb=7) 231 89.96± 0.47 90.00± 0.46 87.88± 0.57 94.91± 0.13 94.84± 0.17 93.85± 0.16

HSDAP(nb=9) 297 88.22± 0.47 88.22± 0.45 85.78± 0.57 95.01± 0.13 94.94± 0.12 93.98± 0.15

LFSDAP 66 92.68 ± 0.34 92.78 ± 0.32 91.16 ± 0.41 98.24 ± 0.09 99.21 ± 0.09 97.87 ± 0.11
Using panchromatic (PAN) + multispectral (MS) images

PAN+MS 1+4 68.98± 0.30 69.07± 0.29 62.53± 0.36 75.31± 0.09 75.50± 0.09 70.18± 0.11

AP+MS 63+4 88.10± 0.27 88.15± 0.31 85.63± 0.33 94.41± 0.09 94.39± 0.0.08 93.25± 0.11

HAP(nb=5)+MS 315+4 88.24± 0.39 88.37± 0.44 85.80± 0.48 95.01± 0.13 95.06± 0.13 93.98± 0.16

HAP(nb=7)+MS 441+4 90.38± 0.53 90.54± 0.54 88.39± 0.65 96.92± 0.09 96.99± 0.09 96.28± 0.11

HAP(nb=9)+MS 567+4 89.67± 0.35 89.84± 0.34 87.53± 0.42 96.45± 0.16 96.49± 0.16 95.71± 0.19

LFAP+MS 126+4 90.98 ± 0.53 91.13 ± 0.49 89.12 ± 0.64 97.36 ± 0.09 97.36 ± 0.07 96.82 ± 0.09
SDAP+MS 33+4 90.26± 0.33 90.27± 0.33 88.24± 0.40 95.30± 0.06 95.26± 0.06 94.33± 0.07

HSDAP(nb=5)+MS 165+4 88.49± 0.40 88.25± 0.44 86.11± 0.48 93.85± 0.13 93.63± 0.13 92.58± 0.16

HSDAP(nb=7)+MS 231+4 92.18± 0.29 92.18± 0.30 90.57± 0.35 96.99± 0.05 96.96± 0.05 96.37± 0.06

HSDAP(nb=9)+MS 297+4 91.99± 0.33 91.98± 0.33 90.33± 0.40 97.09± 0.06 97.05± 0.06 96.48± 0.08

LFSDAP+MS 66+4 93.53 ± 0.23 93.59 ± 0.22 92.19 ± 0.28 98.35 ± 0.04 98.33 ± 0.04 98.00 ± 0.05

AP filtered images than the local histogram descriptors (which
in fact consist of many zeros [11]). Furthermore, we will
analyze later the significant benefit of the proposed descriptors
compared to those histogram-based approaches in terms of
computational time.

Similar remarks can be observed from the table in case of
using 1% training samples, which provides no doubt inferior
classification accuracy compared to the 10% training scenario.
Then, by adding the complementary spectral information from
the MS image, all methods have slightly improved their per-
formance but not very significantly. For example, LFAP+MS
and LFSDAP+MS have achieved their OA of 97.36% and
98.35%, which in fact provided an enhancement of 0.18%
and 0.11% from the previous case using only the PAN image,
respectively. In general, the behavior of all descriptors remains
quite consistent when switching from 1% to 10% training
samples, with or without using the MS image. That is, the local
feature-based methods significantly improve the classification
accuracy from the standard AP and SDAP; slightly enhance
the performance from the histogram-based approaches but
consisting of a fixed and fewer number of features. Further
discussions about the time consumption will be provided in

Section IV-C2.
b) For the Pavia University data set: The classification

results obtained by the proposed ELFAP and ELFSDAP
(w = 7) compared to reference methods including the 4
PCs (exploiting directly the first 4 PCA bands), the EAP,
EHAP, ESDAP and EHSDAP are shown in Table III. The
results yielded by RF and SVM classifiers can be observed
from the middle and the right side of the table, respectively.
Also, we enrich the experimental study by providing the
performance of all descriptors in case of using 1) only the area
attribute; 2) only the moment of inertia attribute; and 3) all
four attributes. We remind that when using SVM classifier, the
HI kernel was exploited for EHAP and EHSDAP approaches,
as recommended by the authors in [11], while the RBF kernel
was used for the others. In fact, our experiments also showed
that the HI kernel are more relevant and can produce better
performance for these two histogram-based techniques than
the RBF kernel.

As observed from the table, the classification results yielded
by the proposed methods are more accurate compared to
reference approaches. Again, ELFAP and ELFSDAP have
performed a great improvement from their standard versions
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(a) Ground truth (b) AP
(OA = 91.68%)

(c) HAP (nb=7)
(OA = 96.13%)

(d) LFAP
(OA = 97.18%)

(e) PAN
(OA = 52.62%)

(f) SDAP
(OA = 92.53%)

(g) HSDAP (nb=7)
(OA = 94.91%)

(h) LFSDAP
(OA = 98.24%)

Fig. 5. Classification maps of the Reykjavik image obtained by different methods using a RF classifier with 200 trees and 10% training samples.

(i.e. EAP and ESDAP). Compared to the histogram-based
approaches (i.e. EHAP and EHSDAP), they have also been
more efficient with a slight enhancement when using the RF or
a more considerable enhancement when using the SVM. The
highest accuracy was adopted by ELFSDAP with its OA, AA
and kappa coefficient respectively equal to 95.13%, 94.57%
and 93.46% yielded by RF; and 98.01%, 97.35% and 97.37%
yielded by SVM, in case of considering only the area attribute.
In fact, during our experiments, the area attribute provided the
superior performance compared to the three other attributes.
We can observe this behavior from the table by comparing
the results obtained by the area against those obtained by
the moment of inertia. This observation also explains why,
when combining all four attributes, the performance of all
descriptors has been slightly decreased. For example, OA of
ELFSDAP reached 94.27% (with RF) and 97.79% (with SVM)
when considering four attributes, thus 0.86% and 0.22%,
respectively, lower than the case using only the area. That is to
say, for this data set, using only the area attribute can provide
more interesting and competitive performance than combining
all the four, not only in terms of classification accuracy, but
also in terms of feature dimensionality.

For qualitative analysis of classification results, Fig. 6
illustrates the classified images yielded by different descrip-
tors in case of considering all four attributes and using RF

classifier. Compared to the reference ground truth in Fig. 6(a),
the result yielded by EAP [Fig. 6(b)] (OA= 89.08%) still
consists of many noisy points. Other results, except the 4 PCs,
are smoother thanks to the use of neighborhood information
extracted from local patch (here w = 7). Despite its pretty high
OA of 93.45%, EHSDAP [Fig. 6(g)] seems to over-smooth
the self-blocking bricks (orange color) which may cause the
loss of some small structures or details. Meanwhile, the results
provided by the two proposed methods, i.e. ELFAP and ELFS-
DAP [Fig. 6(d)-(h)], are very promising by better smoothing
homogeneous regions and preserving small structures. In terms
of OA, an increase of 3.05% and 1.88% has been achieved
compared to the standard EAP and ESDAP, respectively. In
case of using SVM, this improvement is even more significant
(i.e. 3.26% and 5.57%). Consequently, all experiments on
this Pavia University data set confirm the effectiveness of the
proposed LFAP and LFSDAP techniques in term of classifi-
cation performance when extended to hyperspectral data. In
the following subsection, we provide a detailed comparison in
terms of computational time.

2) Performance in terms of calculation time: Tables IV and
V provide the computational time required by each method to
produce the classification results shown in the previous sub-
section. Here, we separate the time necessary for the feature
extraction stage from the time required by the classification
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TABLE III
CLASSIFICATION ACCURACY OF THE PAVIA UNIVERSITY DATA SET OBTAINED BY DIFFERENT METHODS USING RF AND SVM CLASSIFIERS.

Method Dimension RF classifier SVM classifier
OA (%) AA (%) Kappa*100 OA (%) AA (%) Kappa*100

4 PCs 4 70.70 80.63 68.89 75.79 81.33 69.01
Area attribute

EAP 36 90.09 91.27 86.85 92.20 94.58 89.84
EHAP(nb=5) 180 90.13 89.01 86.89 89.57 89.32 86.11
EHAP(nb=7) 252 91.32 89.08 88.44 91.01 89.79 88.15
EHAP(nb=9) 324 89.84 90.94 86.66 90.76 90.89 87.56
ELFAP 72 92.15 91.66 89.56 96.28 95.57 95.09
ESDAP 20 92.45 91.59 89.92 89.69 94.18 86.80
EHSDAP(nb=5) 100 95.08 94.30 93.41 94.99 95.05 93.35
EHSDAP(nb=7) 140 93.70 92.09 91.54 93.68 93.13 91.53
EHSDAP(nb=9) 180 94.53 93.71 93.02 96.12 95.85 94.81
ELFSDAP 40 95.13 94.57 93.46 98.01 97.35 97.37

Moment of Inertia attribute
EAP 36 80.52 89.48 75.25 92.69 93.51 90.28
EHAP(nb=5) 180 89.87 89.39 86.45 91.75 91.55 88.98
EHAP(nb=7) 252 90.42 91.02 87.23 91.68 92.57 89.02
EHAP(nb=9) 324 89.99 90.06 86.64 90.53 91.23 87.47
ELFAP 72 91.72 91.82 88.94 93.15 93.21 90.84
ESDAP 20 86.01 90.35 81.90 91.75 92.49 89.15
EHSDAP(nb=5) 100 85.19 84.50 80.82 83.32 81.96 78.28
EHSDAP(nb=7) 140 88.76 89.76 85.37 88.47 90.41 85.03
EHSDAP(nb=9) 180 88.29 89.62 84.92 87.02 90.71 83.40
ELFSDAP 40 90.14 88.23 86.82 94.92 93.62 93.25

All 4 attributes
EAP 36× 4 89.08 91.34 85.57 91.45 92.98 88.76
EHAP(nb=5) 180× 4 91.77 90.90 89.03 92.79 92.45 90.35
EHAP(nb=7) 252× 4 91.78 91.51 89.04 91.57 92.87 89.03
EHAP(nb=9) 324× 4 90.87 91.10 87.86 90.55 91.65 87.47
ELFAP 72× 4 92.13 91.54 89.49 94.71 94.09 91.61
ESDAP 20× 4 92.39 92.12 89.96 92.22 95.74 89.96
EHSDAP(nb=5) 100× 4 93.12 93.10 91.49 94.91 95.18 93.42
EHSDAP(nb=7) 140× 4 93.98 92.11 91.95 93.91 93.50 91.88
EHSDAP(nb=9) 180× 4 93.45 92.75 91.26 94.97 95.89 93.09
ELFSDAP 40× 4 94.27 93.64 92.31 97.79 96.76 97.07

TABLE IV
COMPARISON OF FEATURE DIMENSION AND CALCULATION TIME OF DIFFERENT METHODS. EXPERIMENTS WERE CONDUCTED ON THE PANCHROMATIC

REYKJAVIK IMAGE USING RF CLASSIFIER WITH 200 TREES.

Method Feature extraction RF Classification
1% training sample 10% training sample

Dimension Time Training Testing Training Testing

AP 63 8.4s 2.7s 2.8s 41.0s 3.3s
HAP(nb=5) 315 3m 10.6s + 8.4s 12.1s 5.5s 3m 30.4s 6.6s
HAP(nb=7) 441 3m 14.3s + 8.4s 17.1s 5.9s 5m 01.2s 7.6s
HAP(nb=9) 567 3m 20.2s + 8.4s 22.0s 6.6s 6m 26.9s 8.3s
LFAP 126 48.7s + 8.4s 5.0s 3.4s 1m 24.7s 4.1s
SDAP 33 7.2s 1.5s 2.3s 20.7s 2.7s
HSDAP(nb=5) 165 1m 35.9s + 7.2s 6.2s 4.1s 1m 43.6s 4.6s
HSDAP(nb=7) 231 1m 37.3s + 7.2s 8.8s 4.8s 2m 33.1s 5.6s
HSDAP(nb=9) 297 1m 40.1s + 7.2s 12.2s 5.8s 3m 24.4s 6.5s
LFSDAP 66 35.3s + 7.2s 2.8s 2.5s 44.1s 2.9s

stage (which includes in fact the training and testing phases).
From the two tables, the first observation is that all SDAP-
based techniques require less computational time than AP-
based techniques, for both feature extraction and classification
stages. This behavior can be observed from several literature
studies which performed a comparative study of APs and
SDAPs such as [7]–[9]. In fact, by only constructing the tree
of shapes instead of both min-tree and max-tree, the extraction

time of SDAPs is lower than APs (7.2s compared to 8.4s in
Table IV, or 10.6s compared to 17.7s in Table V). We note
that these time results were obtained with the Matlab code
provided by the authors of [8]. Then, since the SDAP feature
dimension is lower, their corresponding classification stage is
again less costly (for both training and testing phases; both RF
and SVM). That is why between our two proposed methods,
LFSDAP is completely more efficient than LFAP in terms
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(a) Ground truth (b) EAP
(OA = 89.08%)

(c) EHAP (nb=9)
(OA = 90.87%)

(d) ELFAP
(OA = 92.13%)

(e) 4 PCs
(OA = 70.70%)

(f) ESDAP
(OA = 92.39%)

(g) EHSDAP (nb=9)
(OA = 93.45%)

(h) ELFSDAP
(OA = 94.27%)

Fig. 6. Classification results of the Pavia University data obtained by different methods using a RF classifier with 200 trees.

TABLE V
COMPARISON OF FEATURE DIMENSION AND CALCULATION TIME OF DIFFERENT METHODS. EXPERIMENTS WERE CONDUCTED ON THE PAVIA

UNIVERSITY DATA USING BOTH THE RF AND SVM CLASSIFIERS.

Method Feature extraction RF Classification SVM Classification
Dimension Time Training Testing Training Testing

EAP 36× 4 17.7s 8.4s 3.3s 0.5s 21.3s
EHAP(nb=5) 180× 4 2m 13.1s + 17.7s 46.1s 6.4s 2m 34.8s 27m 24.6s
EHAP(nb=7) 252× 4 4m 01.2s + 17.7s 1m 06.5s 6.7s 2m 54.7s 33m 13.4s
EHAP(nb=9) 324× 4 4m 07.1s + 17.7s 1m 27.2s 6.9s 3m 21.7s 38m 10.3s
ELFAP 72× 4 1m 35.6s + 17.7s 18.3s 3.9s 0.7s 43.9s
ESDAP 20× 4 10.6s 4.3s 2.3s 0.3s 11.4s
EHSDAP(nb=5) 100× 4 1m 14.0s + 10.6s 21.6s 4.2s 1m 28.5s 15m 47.0s
EHSDAP(nb=7) 140× 4 1m 15.1s + 10.6s 30.2s 4.7s 2m 01.3s 20m 21.9s
EHSDAP(nb=9) 180× 4 1m 16.8s + 10.6s 44.3s 5.2s 2m 08.4s 22m 45.2s
ELFSDAP 40× 4 11.9s + 10.6s 9.2s 3.0s 0.5s 28.0s

of computational cost, as well as in terms of classification
accuracy as previously remarked.

The second observation is that, the calculation time of LFAP
is higher than the standard AP but much lower than HAP.
Similarly, LFSDAP requires more time than SDAP but less
than HSDAP. And the same remarks can be given for their

extended versions (Table V). This behavior can be easily
explained by the fact that extracting the mean and range
features from a pixel patch requires less time that constructing
a local histogram (with a predefined number of bins). Then, the
computational cost of classification stage significantly depends
on the feature dimension of the exploited descriptor. From
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(b) Sensitivity of LFSDAP to w

Fig. 7. Sensitivity of the proposed methods to the patch size w in terms of
overall accuracy (%) and local feature extraction time (s). Experiments were
performed on the panchromatic Reykjavik image using the RF classifier with
10 runs, 200 trees and 10% training samples.

now, one can understand why the use of HAP or HSDAP
may be limited due to their high dimensionality. In particular
when applying the HI kernel within the SVM, a great amount
of time needs to be considered for those histogram-based
approaches. For example from Table V, the testing time of
SVM algorithm for EHAP with nb equal to 5, 7 and 9 is
more than 27, 33 and 38 minutes, respectively. Similarly,
more than 15, 20 and 22 minutes of SVM testing is required
by EHSDAP. By exploiting the RBF kernel, ELFAP and
ELFSDAP only require 43.9s and 28s, respectively, for SVM
testing phase. We also note that classification stage using RF is
less costly but always confirms the behavior: AP<LFAP<HAP
(resp. SDAP<LFSDAP<HSDAP). To this end, although the
computation time required by LFAP (resp. LFSDAP) is higher
than AP (resp. SDAP), the amount of time difference is
not very significant compared to the HAP (resp. HSDAP).
However, by providing competitively superior classification
results, the proposed methods can be considered as an effective
improvement of the standard AP or SDAP, especially more
promising than the histogram-based approaches.

3) Sensitivity to parameter: This subsection finally aims
at studying the sensitivity of the proposed methods to the

patch size w used for extracting local features. Fig. 7 shows
the performance of LFAP and LFSDAP obtained by vary-
ing w from 3 to 11. Experiments were conducted on the
PAN Reykjavik image using RF classifier with 10 runs, 200
trees and 10% training samples. Here, both the classification
accuracy (in terms of OA) and the feature extraction time
are investigated. From the figure, we remark that LFSDAP
generally provides higher OA and requires less calculation
time than LFAP. However, they all perform a similar behavior
when w varies. First, a quite stable performance is provided by
LFSDAP with an OA from 96.35% to 98.24%, and by LFAP
with an OA varying from 94.12% to 97.18%. The variation of
OA involves 2 stages. When w increases from 3 to 7, OA is
enhanced to reach the highest value (98.24% for LFSDAP and
97.18% for LFAP). Then, when w continues to increase from
7 to 11, OA starts to be reduced. Here is our explanation.
As previously mentioned, the parameter w represents how
much information from the neighborhood environment will
be taken into consideration to characterize textural features
at each pixel position. Within the first stage, increasing the
patch size can provide more useful information to enhance the
texture discrimination capacity of the two methods. Hence,
OA is improved. If we continue to increase w, although
more neighborhood information is exploited, we may lose the
notion of local features and signal stationarity, which normally
causes the over-smoothing issue. The classification accuracy
is therefore decreased. In terms of feature extraction time, the
more the patch size increases, the higher the computation time
is required for extracting local features. However, since only
simple first-order features (mean and range) are exploited, the
amount of increasing time is not significant. This issue again
makes the proposed strategy very effective and competitive in
terms of both classification accuracy and computational cost.
In conclusion, Fig. 7 shows that the proposed techniques are
not very sensitive to w. A stable classification performance
can be adopted by setting w ∈ {3, . . . , 11}.

V. CONCLUSION AND PERSPECTIVES

We have presented novel extensions to attribute profiles:
local feature-based attribute profiles and local-feature based
self-dual attribute profiles with the end of improving their
pixel description capacity. Instead of using the pixels’ values
across progressive filtering, our approach exploits relatively
simple statistical properties of local pixel neighborhoods. More
specifically, we have explored the potential of two simple first-
order features: the mean and the range, that have both proved
to be of practical interest.

We have conducted an experimental study encompassing
two widely used data sets, and compared their classification
performance against known approaches. Both LFAPs and LFS-
DAPs have systematically outperformed their counterparts.
Moreover, they have accomplished this through both shorter
feature vector lengths (w.r.t. HAPs) and lower computational
cost.

Besides not having to deal with the histogram bin parameter
of HAPs, the presented approaches can be combined with any
arbitrary local texture descriptor, hence possessing a high level
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of application and dataset specific customization potential. All
the same, the strategies under consideration still depend on
the patch size and the particular choice of attributes; for the
threshold selection of which unsupervised methods have been
reported.

Future work will focus on the investigation of alternative
and computationally efficient local texture descriptors, such as
local binary patterns and morphological descriptors, that are
expected to further improve performance. We also intend to
explore the extraction of LFAPs from alternative hierarchical
tree representations such as partitioning trees (alpha trees,
omega trees, etc.) as well as vector strategies during the
construction of their extended versions. Last but not least, a
more complete study on spatial-spectral incorporation of extra
spatial processing by LFAPs (and LFSDAPs) with nonlinear
feature extraction techniques such as KPCA, DAFE, or NWFE
for multispectral and hyperspectral image classification will be
quite prospective.
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