
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— Nowadays, Unmanned Aerial Vehicles

(UAV) are viewed as effective acquisitions platforms for

several civilian applications. They can acquire images with

an extremely high-level of spatial details compared to

standard remote sensing platforms. However, these images

are highly affected by illumination, rotation and scale

changes, which increases further the complexity of analysis

compared to those obtained by standard remote sensing

platforms. In this paper, we introduce a novel

Convolutional Support Vector Machine (CSVM) network

for the analysis of this type of imagery. Basically, the

CSVM network is based on several alternating convolution

and reduction layers ended by a linear SVM classification

layer. The convolution layers in CSVM rely on a set of

linear SVMs as filter banks for feature map generation.

During the learning phase, the weights of the SVM filters

are computed through a forward supervised learning

strategy unlike the backpropagation algorithm widely used

in standard convolutional Neural Networks (CNNs). This

makes the proposed CSVM particularly suited to detection

problems characterized by very limited training sample

availability. The experiments carried out on two UAV

datasets related to vehicles and solar panel detection

issues, with a 2-centimeter resolution, confirm the

promising capability of the proposed CSVM network

compared to recent state-of-the-art solutions based on

pretrained CNNs.

Index Terms— Convolutional SVM filtering, convolutional SVM

network, extremely high-spatial resolution images, object

detection, supervised feature generation, UAV platforms.

I. INTRODUCTION

nmanned Aerial Vehicles (UAVs) are recognized as

very effective systems for collecting images from a very

low altitude. The high flexibility of these small, ecologic

and silent aerial platforms permits immediate intervention and

interactive measurements according to customer’s specific

This work was supported by the Deanship of Scientific Research at King Saud

University through the Local Research Group Program under Project RG-
1435-055.

Yakoub Bazi, is with the Computer Engineering department, College of

Computer and Information Sciences, King Saud University, Riyadh 11543,
Saudi Arabia (e-mail: ybazi@ksu.edu.sa. Farid Melgani is with the

department of Information Engineering and Computer Science, University of

Trento, Via Sommarive 9, I-38123, Trento, Italy E-mail:
melgani@disi.unitn.it.

needs. Additionally, they allow mapping and monitoring of

small areas at extremely fine scales and enables multitemporal

acquisitions over the same area at predefined and desired

times. These attractive proprieties render them a valid

alternative or a complementary solution to satellite sensors

particularly for

small coverage or inaccessible areas. In the beginning, UAVs

were used exclusively for military applications, but due to

advancement in technologies and reduction in prices, they

became a practical solution for many civilian applications

such as precision farming [1]–[3], anomaly detection in

archeological sites [4] , and monitoring of urban areas [5], [6].

UAVs can acquire images with extremely high-level of

spatial details compared to standard remote acquisition

systems such as satellites or airborne. They are very

appropriate for detecting specific class of objects, which opens

the door to the development of various interesting recognition

applications [7]–[12]. Even though promising results have

been obtained in these recent developments, they mainly rely

on handcrafted-feature representations. These types of

representations would limit the performances of the

recognition system as they work well under restricted

conditions. Actually, the increase in spatial resolutions (order

of few centimeters) poses new challenges for automatic

classification as the objects belonging to the same class will

simply look very different. Additionally, UAV images are

highly affected by illumination, rotation and scale changes

which increases further the complexity of identifying robust

visual handcrafted features for representing the image content.

Recently deep convolutional neural networks (CNNs) have

achieved impressive results on a variety of applications

including image classification [13]–[16], object detection

[17]–[20], and image segmentation [21], [22]. Thanks to their

sophisticated structure, they have the ability to learn powerful

generic image representations in a hierarchical way compared

to state-of-the-art shallow methods based on handcrafted

features. Modern CNNs are made up of several alternating

convolution and pooling layers followed by some fully

connected layers. The feature maps produced by the

convolution layers are usually fed to a nonlinear gating

function such as the Rectified Linear Unit (ReLU). Then the

output of this activation function can further be subjected to

normalization (i.e., local response normalization). The whole

CNN architecture is trained end-to-end using the

backpropagation algorithm with dropout regularization [23] to

reduce overfitting. It is worth recalling that recent deeper

CNNs (winner of the ImageNet Large-Scale Visual

Convolutional SVM Networks for Object

Detection in UAV Imagery

Yakoub Bazi, Senior Member, IEEE, and Farid Melgani, Fellow, IEEE

U

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Recognition ILSVRC14 and ILSVRC15 challenges) use inception modules [15] and residual learning [14].

Figure 1. Example of a CSVM network with: three convolution layers; two reduction layers, and a classification layer placed on the top.

Usually, CNNs perform well for analyzing datasets with

large labelled data. Yet they are prone to overfitting when

dealing with datasets with limited labeled data. For these

scenarios, it is has been shown that it is more appealing to

transfer knowledge from CNNs (such as AlexNet [16], VGG-

VD [24], GoogLeNet [15], and ResNet [14]) pretrained on an

auxiliary recognition task with very large labeled data instead

of training a CNN from scratch [25]–[28]. While the possible

transfer learning solutions include fine-tuning the pretrained

CNN on the labeled data of the target dataset or to exploit the

CNN feature representations with an external classifier. We

refer the reader to [26] where the authors introduce and

investigate several factors affecting the transferability of these

representations.

In the remote sensing context, some contributions have used

recently these strategies for handling small datasets acquired

either by airborne or satellite sensors mainly composed of

images with spatial resolution up to 30 cm. For instance, in

[29] the authors used a pretrained CNN to generate an initial

feature representation of the remote sensing images under

analysis. After this step, they reshaped the outputs of the two

last fully connected layers into 2D arrays and trained a new

CNN composed of two convolutions and two fully connected

layers followed by a softmax classifier. As pretrained CNN

they used the Overfeat model [30], which is an improved

version of the AlexNet model [16]. By contrast Esam et

al.[31] used the output of the last fully connected layer of the

CNN model proposed by Chatfield et al. [25] as input to a

sparse autoencoder for learning a new feature representation.

Then they tailored the sparse autoencoder to view the

classification problem from discriminative and reconstruction

perspectives. Finally, Fan et al. [32] investigated the problem

of transferring features from different CNN models trained

also on very large auxiliary labeled dataset. They considered

two different approaches for carrying out feature extraction.

For the first approach, they used the last fully connected layer,

while for the second one they extracted dense features from

the convolution layer at multiple scales and then used different

encoding techniques to generate the final representation of the

image. For both solutions, they used a support vector machine

(SVM) classifier for training [33] .

As mentioned previously, UAV images add more challenges

compared to standard remote sensing images, as they are

characterized by improved spatial resolutions; large intra-class

variation; significant differences in image statistics in addition

to variation in illumination, viewpoint, rotation, and scale

changes. Thus we expect that a simple fine-tuning of the

network or feeding the feature representations to an external

classifier will not easily address this problem, which calls for

further research developments.

In this paper, we propose an alternative learning strategy

based on SVMs for handling these scenarios. SVMs are

among the most popular supervised classifiers available in the

literature. They rely on the margin maximization principle

which makes them less sensitive to overfitting problems. They

have been intensively used in conjunction with handcrafted

features for solving various recognition problems. In addition,

as discussed previously, they are also commonly placed on the

top of a CNN feature extractor for carrying out the

classification task [26]. In this work, we extend them to act as

convolutional filters for the supervised generation of features

maps. We term this network as convolutional SVM (CSVM).

Compared to standard CNNs, the CSVM introduces a new

convolution trick based on SVMs, and does not rely on the

backpropagation algorithm for training.

Basically, the CSVM network is based of several alternating

convolution and reduction layers followed by a classification

layer (Figure 1). Each convolution layer uses a set of linear

SVMs as filter banks, which are convolved with the feature

maps produced by the precedent layer to generate a new set of

features maps. For the first convolution layer, the SVM filters

are convolved with the original input images. The SVM

weights of each convolution layer are computed directly in a

supervised way by training on patches (extracted from the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

previous layer) representing the objects of interest. The feature

maps produced by the convolution layers are then fed to a

nonlinear gating function such as ReLU. The reduction layer

in CSVM works in

Figure 2. Training set generation for the first convolutional layer.

Figure 3. Feature maps obtained by the first SVM convolutional layer.

a similar way to the pooling layer in CNN. It takes small

rectangular blocks from the convolutional layer and

subsamples it to produce a single output from each block.

Finally, the high level representations obtained by the network

are fed again to a linear SVM classifier for carrying out the

classification task.

The major contribution of this work can be summarized as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

follows: (1) Introduce a novel CSVM network suitable for

problems with small training data. (2) Extend SVMs to act as

convolutional filters for generating feature representation

maps. (3) Present a forward supervised learning strategy for

computing the weights of the network. (4) In the experiments,

we validate the method on UAV images with 2-centimeter

resolution acquired over urban areas related to vehicles and

solar panels detections.

The rest of the paper is organized as follows. Section II

provides a general description of the proposed CSVM

network. Section III presents the results on two UAV datasets.

Finally, Section IV presents the conclusions of the work and

future developments.

II. CSVM NETWORK DESCRIPTION

A. SVM Convolution layer

As mentioned previously, the SVM convolution layer is the

core building of the CSVM network. Specifically this layer

uses linear SVMs as convolutional filters for generating the

feature maps. Furthermore, the weights of these filters are

learned using a forward supervised learning method unlike the

weights of conventional CNNs, which are computed via

backpropagation. In the following, we detail this method for

the first convolution layer. The generalization to the next

convolution layers is straightforward.

1) Construction of the Training set: If we let {𝐈𝑖 , 𝑦𝑖}𝑖=1
𝑀 be

the training set composed of 𝑀 positive and negative RGB

images with 𝐈𝑖 ∈ 𝓡𝒓×𝒄×𝟑 where 𝑟 and 𝑐 refer the number of

rows and columns of the image, and 𝑦𝑖 ∈ {+1, −1} denotes

the class label. The positive images contains the object of

interest, whereas the negatives ones represent background.

From each image 𝐈𝑖 , we extract a set of patches of size ℎ ×
ℎ × 3 (i.e., three channels) and represent them as feature

vectors 𝐱𝑖 of dimension 𝑑, where 𝑑 = ℎ × ℎ × 3. After

processing all images, we obtain a global training set 𝑇𝑟(1) =

{𝐱𝑖 , 𝑦𝑖}𝑖=1
𝑚(1)

 of size 𝑚(1) as shown in Figure 2.

2) Training the SVM filter banks: In this step, we learn a set

of SVM filters on different sub-training sets 𝑇𝑟𝑠𝑢𝑏
(1)

=

{𝐱𝑖 , 𝑦𝑖}𝑖=1
𝑙 of size 𝑙 randomly sampled from the global training

set 𝑇𝑟(1). The weight vector 𝒘 ∈ 𝓡𝒅 and bias 𝑏 ∈ 𝓡 of each

SVM filter are determined by optimizing the following

unconstrained optimization problem [34], [35]:

min
𝒘,𝑏

𝒘𝑇𝒘 + 𝐶 ∑ 𝜉(𝒘, 𝑏; 𝒙𝑖 , 𝑦𝑖)𝑙
𝑖=1 (1)

where 𝐶 is a penalty parameter.

A common choice for the loss functions 𝜉(𝒘, 𝑏; 𝒙𝑖 , 𝑦𝑖) is the

hinge loss max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0) and the squared hinge

loss max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0)2 referring to L1-SVM and L2-

SVM, respectively. In this work, we shall consider L1-SVM,

though the L2-SVM formulation could be considered as well.

For simplicity, we omit the bias term and represent the

weights of the SVM filters obtained after training as

{𝐰𝑘
(1)

}
𝑘=1

𝒏(1)

 , where 𝐰𝑘
(1)

∈ 𝓡ℎ×ℎ×3 refers to kth-SVM filter

weight matrix, while 𝑛(1) is the number of filters. Then, the

complete weights of this convolution layer could be grouped

into filter bank of four dimensions 𝑾(𝟏) ∈ 𝓡ℎ×ℎ×3×𝑛(1)
.

3) Generation of the convolutional feature maps: In this

step, we convolve each training image {𝐈𝑖}𝑖=1
𝑀 , with the SVM

filters to generate a set of 3D hyper-feature maps {𝐇𝑖
(1)

}𝑖=1
𝑀 .

Here 𝐇𝑖
(1)

∈ 𝓡𝑟(1)×𝑐(1)×𝑛(1)
 is the new feature representation

of image 𝐈𝑖 composed of 𝑛(1) feature maps (Figure 3). To

obtain the kth feature map 𝐡𝑘𝑖
(1)

, we convolve the kth SVM

filter with a set of sliding windows of size ℎ × ℎ × 3 (with a

predefined stride) over the training image 𝐈𝑖 (Figure 4):

 𝐡𝑘𝑖
(1)

= 𝑓(𝐈𝑖 ∗ 𝐰𝑘
(1)

) , 𝑘 = 1, … , 𝑛(1) (2)

where ∗ is the convolution operator and 𝑓 is the ReLU

activation function.

In the following algorithm, we present a practical

implementation of this convolutional layer. For more clarity,

we use Matlab notations.

Algorithm: SVM convolutional layer

Input: - Training images {𝐈𝑖 , 𝑦𝑖}𝑖=1
𝑀

- Number of SVM filters: 𝑛(1)

- Filter parameters (width ℎ, and stride)

- Number of Training patches: 𝑙

Output: Feature cube: 𝐇(1) ∈ ℛ𝑟(1)×𝑐(1)×𝑛(1)×𝑀

Start:

1: 𝑇𝑟(1) = 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔({𝐈𝑖 , 𝑦𝑖}𝑖=1
𝑀 , ℎ); // For example use

im2col of Matlab to extract the patches.

2: 𝑾(𝟏) = 𝑙𝑒𝑎𝑟𝑛_𝑆𝑉𝑀_𝑓𝑖𝑙𝑡𝑒𝑟𝑠(𝑇𝑟(1), 𝑛(1), 𝑙) // Train 𝑛(1)-

//SVMs on different sub-trainings 𝑇𝑟𝑠𝑢𝑏
(1)

 of size 𝑙 randomly

//sampled from 𝑇𝑟(1). Use Libilinear software package for

// SVM training [34].

3: 𝐇(1) = 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛({𝐈𝑖}𝑖=1
𝑀 , 𝑾(1)); // use vl_nnvonv of

MatConvNet [36]

4: 𝐇(1) = 𝑅𝑒𝐿𝑈(𝐇(1))

End

It is worth recalling that this algorithm is also valid for the

next convolutional layers except that actual inputs are the

hyper-feature maps produced by the previous layer as shown

in Figure 1.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Figure 4. Example of a feature map produced by the kth SVM convolutional filter.

B. Reduction Layer

Here the spatial reduction layer acts in a similar way to the

spatial pooling layer in CNNs. It is commonly inserted

between two successive convolution layers to reduce the

spatial size of the representation by selecting the most useful

features for the next layers. Basically, it takes small

rectangular blocks from the convolutional features maps and

subsamples them to produce a single output from each block.

There are several ways to perform spatial reduction, such as

taking the average or the maximum, or a learned linear

combination of the values in the block. In this work, we use

the max pooling operator for carrying out reduction. As for

CNNs, the output of the reduction layer could be followed by

a local response normalization (LNR) layer. However, we

experimentally found that this layer does not affect much the

results on the two UAV datasets used in the experiments.

C. Feature generation and classification

After several SVM convolutional and reduction layers, the

high level reasoning of the network is done by training a

binary SVM classifier on the high level features extracted

from the last layer (Figure 1). If we let {𝐇𝑖
(𝐿)

, 𝑦𝑖}𝑖=1
𝑀 be the

hyper-feature maps obtained by the last computing layer 𝐿

(convolution or reduction depending on the network

architecture). If we suppose also that each hyper-feature map

𝐇𝑖
(𝐿)

 is composed of 𝑛(𝐿) feature maps. Then a possible

solution of extracting the high level feature vector 𝒛𝑖 ∈ 𝓡𝒏(𝐿)

of dimension 𝑛(𝐿) for the training image 𝐈𝑖 could be simply

done computing the mean or max value for each feature map.

We refers to these two types of feature generation in the

experiments as mean and max spatial pooling, respectively.

III. EXPERIMENTS

A. Dataset Description

In the experiments, we assess the proposed CSVM network

on two UAV datasets related to vehicles and solar panels,

respectively. The images composing these two datasets were

acquired at different times over different areas in or near the

city of Trento, Italy, by means of a UAV equipped with

imaging sensors spanning the visible range (Figure 5). All

acquisitions were performed with a picture camera Canon

EOS 550D characterized by a CMOS APS-C sensor with 18

megapixels. The obtained RGB images have a spatial

resolution of approximately 2 cm and 8 bit of radiometric

resolution. For both datasets, we resize all images to the

dimension 224×224 pixels commonly used by CNNs.

1) Car dataset: The determination of the number of vehicles

on roads or in parking lots represents one of the most

discussed and interesting issues in the field of object detection

in remotely sensed imagery. It opens the way to solve urban

problems that could be encountered almost every day.

Especially in big cities, knowing the concentration of cars in

roads or in parking lots can be extremely interesting for local

administrations in order to optimize the urban traffic planning

and management. This dataset is composed of 200 training

images (100 car and 100 background) acquired over two

parking lots inside the city of Trento. On the other side, the

test set is composed of 1000 images (500 cars and 500

background) and it was acquired over three parking lots near

the city. All acquisitions were made at completely different

times and under different acquisition conditions. Figure 6

shows sample of images showing individual cars or group of

cars parked with different orientations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Figure 5. UAV used for the acquisition of the images.

Figure 6. Car dataset: Example of cars (First fourth rows) and

backgound (last two rows) acquired over different parking lots over

the city of Trento.

2) Solar-Panel dataset: Solar panels are gradually invading

urban areas to produce clean energy as they do not give

damaging emissions compared to traditional sources of

energy. The UAV technology represents an appropriate

solution to monitor these new types of objects. For this dataset

also, several acquisitions have been performed to simulate

different scenarios (Figure 7). As for car dataset, the training

set is composed of 200 images, whereas the test is composed

of 1000 images.

Figure 7. Solar panel dataset: Example of solar panels (first up to

foutrh rows) and background (last two rows) acquired over the city of

Trento.

B. Experiment Setup

First, we present the preliminary results using small,

medium and large CSVM networks. Figure 8 details the

architecture of these networks including the parameters of the

convolution layer in addition to the reduction and

classification layers. Specifically, we propose a configuration

with five convolution layers, three reduction layers and a

classification layer. For training each SVM filter in the

convolution layers, we extract randomly 𝑙=200 patches (100

for object and 100 for background) from the training images

as shown in the methodological part. For an efficient

computation of the weights of the SVM filters we use the

multi-core Liblinear software package [34]. The estimation of

the penalty parameter 𝐶 for each SVM is done via a three-fold

cross-validation procedure in the range [10-1, 103].

Additionally as usually done for CNNs, we preprocess all

images by subtracting the average image of all training images

before feeding them to the network.

 In the second experiment, we carry out a sensitivity

analysis to study the effects of the filter sizes on the

performances of the network. Finally, in the last experiment,

we compare our results to state-of-the art methods based on

pretrained CNNs.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Figure 8. CSVM network: Small (S), Medium (M) and Large (L).

For performance evaluation, we present the results in terms

of average accuracy (i.e., 𝐴𝐴 =
𝑈𝐴+𝑃𝐴

2
) where 𝑃𝐴 is the

producer’s accuracy corresponding to error of omission (i.e.,

𝑃𝐴 =
𝑇𝑃

𝑁𝑜𝑏𝑗
) and 𝑈𝐴 is user’s accuracy corresponding to the

error of commission (i.e., 𝑈𝐴 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
). 𝑇𝑃 is true positives,

number of car/solar-panel images correctly identified, 𝐹𝑃 is

false positives, number of car/solar-panel images incorrectly

identified, and 𝑁𝑜𝑏𝑗 is the total number of car/solar-panel

images. All experiments were carried out on a laptop having a

2.50 GHz Intel(R) Core(TM) i7 processor and a memory

RAM of 16 GB.

C. Results

1) Preliminary results: Figure 9 provides an illustration of the

feature maps produced by the different convolution layers of

two small networks trained on car and solar panel datasets,

respectively. As can be seen, the SVM filters are able to

provide different feature maps representation of the

solar/panel test image. In particular some of these filters yield

high responses clearly highlighting the presence of the objects

of interest. In Figures 10 and 11, we report the classification

accuracies obtained by the small, medium and large networks

for both datasets, respectively. Besides the network output,

these figures show also the intermediate results obtained after

each convolutional layer.

In general, all these three configurations provide competing

results. However, by taking into account the computation time

and the number of weights for each configuration (Table 1),

the small network appears to be more appropriate. While the

medium and large networks uses a large number of filters,

they yield in some cases reduced accuracies. This could be

explained by the increase in feature dimensions, which needs

the definition of particular training strategy dealing with the

resulting curse of dimensionality, which is beyond the scope

of this work. In the rest of the paper, we shall focus on the

small network architecture.

By averaging results obtained for the two datasets, we

notice that the small network reaches stable results after the

second convolutional layer with mean pooling, whereas it

requires four convolutional layers for max pooling. In detail

using mean pooling, we obtain average accuracies of (92.56%,

96.03% 95.96%, 96.36% and 96.01%) after each convolution

layer, whereas for max pooling we obtain accuracies of

(89.12%, 92.49, 94.27%, 95.23% and 95.11%). These

preliminary results, a-priori suggest that for these two

datasets, at least two convolutional layers are needed to

generate good representative features maps of the object of

interest. In addition, increasing the number of layers can

improve the results particularly for solar-panel dataset. For car

dataset, we observe some variations in the accuracy (but less

than 1%) when mean pooling is used.

2) Sensitivity analysis: In this experiment, we analyze further

the small network architecture by considering different

parameters for the convolution filters. To this end, we use

different filter sizes while we keep their number per-layer

fixed as before. In addition, we set the strides in each

convolution layer to the new values (2, 1, 1, 1), while they

were fixed in the previous experiment to (4, 1, 1, 1). This will

allow us to obtain feature maps with large spatial sizes. For

feature generation we consider only mean pooling as it yielded

better results compared to max pooling. Although all

configurations yielded competing results as shown in Figure

12, the one using the filters (7 × 7, 1 × 1, 3 × 3, 1 × 1, 1 × 1)

looks more stable for both datasets. For car dataset, it yields an

AA of 93.74% and 96.1% for the first and second layers and

ends with an accuracy 97% at the network output. This

corresponds to an increase of 1.22% compared to the initial

configuration proposed in the first experiment with the

following filters (11 × 11, 5 × 5, 3 × 3, 1 × 1, 1 × 1).
Regarding solar panel dataset, the first layer leads to an AA

of 89.3% and the second to 95.59%, and ends with an

accuracy of 96.97% at the network output. Here again, we

observe an increase of 0.93% compared to the initial

configuration. It is worth to note that the network

corresponding to this configuration uses less SVM weights

(6.80E04), while the computation time has increased to 7

minutes. This increase is due to the extra convolution

operations done on feature maps with increased spatial sizes

(54×54×24 up to 11×11×128 pixels from the first layer to last

layer, respectively).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Figure 9. Output feature maps for car/solar-panel test images (produced by the first, second and last convolutional layers).

The last row represents the output feature representation obtained by applying mean pooling to the last convolutional layer.

Input image

(First convolution)

24 svms

conv 11×11

stride 4

(Second convolution)

48 svms

conv 5×5

stride 1

(Fifth convolution)

128 svms

conv 1×1

stride 1

Ouptut feature

(mean pooling)

dimension: 128

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

(a)

(b)

Figure 10. Average classification accuracy obtained by small,

medium and large CSVMs on car dataset. For each layer, we use a

simple (a) mean and (b) max pooling for generating the output

features fed to the SVM classifier.

3) Comparison with pretrained CNNs: In this experiment, we

compare our results to the state-of-the-art solutions based on

pretrained CNNs. Specifically, we feed the UAV images to

CNNs (pretrained on a very large labeled dataset such as

ImageNet [37]) to generate the corresponding feature

representations and then use linear SVM for training and

classification. In the experiments, we use different pretrained

CNNs from MatConvNet [36] including AlexNet [16],

VGGM [25], VGG-16 [24], GoogLeNet [15], and ResNet

[13]. The AlexNet network was the winner of the 2012

ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge). It is composed of 5 convolutional layers, 3

pooling layers, and 3 fully-connected layers. The VGGM

network has the same number of layers as AlexNet but with

different convolution filter sizes. The VGG16 network has a

deeper architecture as it is composed of 13 convolutional

layers, 5 pooling layers, and 3 fully-connected layers.

(a)

(b)

Figure 11. Average classification accuracy obtained by small,

medium and large CSVMs solar-panel dataset. For each layer, we use

a simple (a) mean and (b) max pooling for generating the features fed

to the SVM classifier.

The GoogLeNet network introduces the idea of inception

module that acts as multiple convolution filters applied to the

same input. This network is composed of 9 inception modules

and replaces the fully-connected layers with average pooling.

The ResNet network is a more advanced architecture which

reformulates the layers as learning residual function, with

reference to the layers input. Here we use the ResNet50

model, which is composed of 50 layers. It is worth recalling

that the features obtained from the first three networks are of

dimensions 4096 whereas they are equal to 1000 when using

GoogLeNet and ResNet.

Table 2 presents the results using different training set sizes

by sampling randomly from the original training set. For

CSVM, we use the configuration based on the following filters

(11 × 11, 5 × 5, 3 × 3, 1 × 1, 1 × 1) and (7 × 7, 1 × 1, 3 ×
3, 1 × 1, 1 × 1). The results obtained for five trials (different

training images) show an interesting behavior of the proposed

network.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

TABLE I.

NUMBER OF CSVM WEIGHTS FOR SMALL, MEDIUM AND LARGE CONFIGURATIONS.

 Small Medium Large

Layers
Filter

size

Feature

size
Weights

Feature size
Weights

Feature

size
Weights

C
o
n
v

o
lu

ti
o

n

11×11 363 8736 363 17472 363 34944

5×5 600 28848 1200 153728 2400 614656

3×3 432 41568 1152 221376 2304 1180160

1×1 96 9312 192 37056 512 262656

1×1 96 12416 192 49408 512 525312

Classification 1×1 128 129 256 257 1024 1025

Total weights 1.01E+05 4.79E+05 2.62E+06

Computation time (Minutes) 3.67 7.37 31.63

TABLE II. COMPARISON OF CSVM AGAINST SEVERAL PRETRAINED CNNS: (A) CAR AND (B) SOLAR PANEL DATASETS. THE RESULTS ARE

EXPRESSED IN TERMS OF AVERAGE ACCURACY IN (%) AND STANDARD DEVIATION OVER FIVE TRIALS. TRAIN TIMES ARE RELATED TO

THE SCENARIO WITH 100 TRAINING IMAGES (PER CLASS). TEST TIMES ARE COMPUTED FOR 1000 TEST IMAGES.
(A)

Training

Image/Class

ResNet-

50
ResNet-152 GoogLeNet VGG16 VGGM AlexNet

CSVM

(11×11,5×5,

3×3,1×1,1×1)

CSVM

(7×7,1×1,

3×3,1×1,1×1)

25 67.07±2.6 64.97±2.1 87.04±1.1 91.98±3.3 86.63±1.4 75.04±5.7 93.86±2.28 94.26±2.1

50 82.91±0.8 81.81±1.4 88.47±1.3 92.56±2.2 87.15±5.5 81.10±6.5 93.22±0.62 95.13±0.2

100 91.10 90.05 94.74 95.66 88.34 91.93 95.78 97

Train/Test
Time

(Seconds)

75 / 274 270 / 1220 126 / 510 235 / 976 45 / 212 42 / 161 130 / 9 185 / 12

(B)

Training

Image/Class

ResNet-

50
ResNet-152 GoogLeNet VGG16 VGGM AlexNet

CSVM

(11×11,5×5,
3×3,1×1,1×1)

CSVM

(7×7,1×1,
3×3,1×1,1×1)

25 54.85±6.7 51.20±0.9 69.64±11.5 71.15±12.2 62.55±16.6 67.20±10.4 91.46±6.08 94.77±1.37

50 58.71±11.4 52.65±2.6 72.04±18.3 75.85±15.3 64.45±19.4 69.30±16.2 93.32±3.74 96.19±1.9

100 66.43 66.37 84.45 93.59 95.45 93.01 96.24 96.97

Train/Test

Time

(Seconds)

81 / 396 289 / 1300 102 / 509 201 / 988 45 / 213 40 / 154 120 / 10 156 / 12

TABLE III. COMPARISON OF CSVM AGAINST HANDCRAFTED FEATURES: (A) CAR AND (B) SOLAR PANEL DATASETS. THE RESULTS ARE

EXPRESSED IN TERMS OF AVERAGE ACCURACY (AA), AND TRAIN AND TEST TIMES. 100 TRAINING IMAGES PER CLASS WERE USED.

TEST TIMES ARE COMPUTED FOR 1000 TEST IMAGES.
(A)

Method HOG H-Gradients LBP BOW

CSVM

(11×11,5×5,

3×3,1×1,1×1)

CSVM

(7×7,1×1,

3×3,1×1,1×1)

AA (%) 67.44 75.59 79.39 72.72 95.78 97

Train/Test
Time

(Seconds)

16 / 30 23 / 50 11 / 15 237 / 254 130 / 9 185 / 12

(B)

Method HOG H-Gradients LBP BOW

CSVM

(11×11,5×5,
3×3,1×1,1×1)

CSVM

(7×7,1×1,
3×3,1×1,1×1)

AA (%) 85.73 50.27 59.96 75.87 96.24 96.97

Train/Test

Time

(Seconds)

46 / 84 47 / 107 10 / 15 225 / 213 120 / 10 156 / 12

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

(a)

(b)

Figure 12. Results obtained using different filter sizes for: (a) car and (b) solar-panel datasets. The following strides are used for the five

convolution layers: (2, 1, 1, 1, 1). The filters (11×11, 5×5, 3×3, 1×1, 1×1) represent the initial configuration proposed for small CSVM.

It provides better results for all scenarios particularly for

reduced training set sizes compared to the solutions based on

pretrained CNNs. For example for car dataset, the CSVMs

using the mentioned filters, yield accuracies of (95.78%,

93.22% and 93.98%) and (95.78%, 93.22%, and 93.86%) for

the scenarios (100, 50, and 25 training images). The closest

pretrained CNN is the one based on VGG-16, which provides

accuracies (95.66%, 92.56% and 91.98%) while the other

networks perform poorly. These promising results are also

confirmed for solar panel dataset where the CSVM network

exhibits clearly a better behavior for all three cases.

 For further analysis, we have compared the results of

CSVM to some popular handcrafted feature methods such as:

1) histogram of oriented gradients (HOG) [39], which describe

an image based on its local gradients; 2) local binary patterns

(LBP) [40], which are simple yet efficient binary descriptors

for coding pixel-wise information in textured images; 3) bag-

of-visual-words (BOVW) [41], which aim to represent an

image by means of a codebook generated from the training

images. The occurrence of each visual word is observed in

each target image to produce an image signature consisting of

the frequencies of all the codebook elements. Finally, high-

order gradients (H-gradients) [12], which combine image

gradient features at different orders, have also been considered

for comparison. After generation, each type of handcrafted

features has been exploited to feed a proper linear SVM

classifier as in CSVM. Table III reports the best results

obtained by tuning the related parameters of these feature

extraction methods. Here again, CSVM clearly exhibits a

better behavior in terms of classification accuracy and

computation time.

IV. CONCLUSION

In this paper, we have proposed a novel CSVM network for

the classification of UAV imagery. This network features the

following important proprieties: 1) it exploits state-of-the art

SVM classifiers as filters for feature map generation; and 2) it

uses a forward supervised learning strategy for computing the

weights of these filters. The results obtained on two UAV

datasets acquired over urban areas related to vehicles and solar

panels confirmed its efficiency compared to state-of-the-art

methods in terms of accuracy and computation time. In

addition, it can provide better results compared to recent

solutions based on knowledge transfer from pretrained CNNs

in particular when the number of training images is limited.

Future directions to improve the network performances could

be defined in many ways such as: 1) the exploration of other

sophisticated architectures based on inception and residual

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

layers used in recent CNNs; 2) its extension to handle

multiclass classification problems; and finally 3) the

application to other classification problems with small

numbers of labeled images.

ACKNOWLEDGMENT

The Authors would like to thank A. Vedaldi and K. Lenc for

making available the software MatConvNet [36] used in the

context of this work.

REFERENCES

[1] J. A. J. Berni, P. J. Zarco-Tejada, L. Suárez, E. Fereres, L.

Suarez, and E. Fereres, “Thermal and narrowband

multispectral remote sensing for vegetation monitoring from

an unmanned aerial vehicle,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 47, no. 3. pp. 722–

738, 2009.

[2] D. Li, H. Guo, C. Wang, W. Li, H. Chen, and Z. Zuo,

“Individual Tree Delineation in Windbreaks Using

Airborne-Laser-Scanning Data and Unmanned Aerial

Vehicle Stereo Images,” IEEE Geosci. Remote Sens. Lett.,

vol. 13, no. 9, pp. 1330–1334, 2016.

[3] K. Uto, H. Seki, G. Saito, and Y. Kosugi, “Characterization

of rice paddies by a UAV-mounted miniature hyperspectral

sensor system,” IEEE J. Sel. Top. Appl. Earth Obs. Remote

Sens., vol. 6, no. 2, pp. 851–860, 2013.

[4] A. Y. M. Lin, A. Novo, S. Har-Noy, N. D. Ricklin, and K.

Stamatiou, “Combining GeoEye-1 satellite remote sensing,

UAV aerial imaging, and geophysical surveys in anomaly

detection applied to archaeology,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens., vol. 4, no. 4, pp. 870–876, 2011.

[5] B. Kršák et al., “Use of low-cost UAV photogrammetry to

analyze the accuracy of a digital elevation model in a case

study,” Meas. J. Int. Meas. Confed., vol. 91, pp. 276–287,

2016.

[6] S. Li et al., “Unsupervised Detection of Earthquake-

Triggered Roof-Holes from UAV Images Using Joint Color

and Shape Features,” IEEE Geosci. Remote Sens. Lett., vol.

12, no. 9, pp. 1823–1827, 2015.

[7] S. Malek, Y. Bazi, N. Alajlan, H. AlHichri, and F. Melgani,

“Efficient framework for palm tree detection in UAV

images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,

vol. 7, no. 12, pp. 4692–4703, Dec. 2014.

[8] K. Liu and G. Mattyus, “Fast Multiclass Vehicle Detection

on Aerial Images,” IEEE Geosci. Remote Sens. Lett., vol. 12,

no. 9, pp. 1938–1942, 2015.

[9] T. Moranduzzo and F. Melgani, “Detecting cars in UAV

images with a catalog-based approach,” IEEE Trans. Geosci.

Remote Sens., vol. 52, no. 10, pp. 6356–6367, 2014.

[10] T. Moranduzzo and F. Melgani, “Automatic car counting

method for unmanned aerial vehicle images,” IEEE Trans.

Geosci. Remote Sens., vol. 52, no. 3, pp. 1635–1647, 2014.

[11] T. Moranduzzo, F. Melgani, M. L. Mekhalfi, Y. Bazi, and N.

Alajlan, “Multiclass Coarse Analysis for UAV Imagery,”

IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp.

6394–6406, 2015.

[12] T. Moranduzzo, F. Melgani, Y. Bazi, and N. Alajlan, “A fast

object detector based on high-order gradients and Gaussian

process regression for UAV images,” Int. J. Remote Sens.,

vol. 36, no. 10, pp. 2713–2733, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid

Pooling in Deep Convolutional Networks for Visual

Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

37, no. 9, pp. 1904–1916, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” Arxiv.Org, vol. 7, no. 3,

pp. 171–180, 2015.

[15] C. Szegedy et al., “Going Deeper with Convolutions,” 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,”

in Advances in Neural Information Processing Systems,

2012, pp. 1097–1105.

[17] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object

Detection Networks on Convolutional Feature Maps,” vol.

8828, no. c, pp. 1–9, 2016.

[18] R. Girshick, J. Donahue, S. Member, T. Darrell, and J.

Malik, “Region-Based Convolutional Networks for Accurate

Object Detection and Segmentation,” vol. 38, no. 1, pp.

142–158, 2016.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN :

Towards Real-Time Object Detection with Region Proposal

Networks,” vol. 8828, no. c, pp. 1–14, 2016.

[20] W. Ouyang et al., “DeepID-Net : Object Detection with

Deformable Part Based Convolutional Neural Networks,”

Pattern Anal. Mach. Intell. IEEE Trans., vol. 39, no. 7, pp.

1320–1334, 2017.

 [21] C. Couprie, L. Najman, and Y. Lecun, “for Scene Labeling,”

Pattern Anal. Mach. Intell. IEEE Trans., vol. 35, no. 8, pp.

1915–1929, 2013.

[22] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional

Networks for Semantic Segmentation,” Pattern Anal. Mach.

Intell. IEEE Trans., vol. 39, no. 4, pp. 640–651, 2017.

 [23] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov, “Dropout : A Simple Way to Prevent

Neural Networks from Overfitting,” J. Mach. Learn. Res.,

vol. 15, pp. 1929–1958, 2014.

[24] K. Simonyan and A. Zisserman, “Very Deep Convolutional

Networks for Large-Scale Image Recognition,” Int. Conf.

Learn. Represent., pp. 1–14, 2015.

[25] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman,

“Return of the Devil in the Details: Delving Deep into

Convolutional Nets,” Proc. Conf. BMVC, May 2014.

[26] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S.

Carlsson, “Factors of Transferability for a Generic ConvNet

Representation,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 38, no. 9, pp. 1790–1802, 2016.

[27] R. F. Nogueira, R. de Alencar Lotufo, and R. C. Machado,

“Fingerprint Liveness Detection using Convolutional

Networks,” Ieee Trans. Inf. Forensics Secur., vol. 11, no. 6,

pp. 1206–1213, 2016.

[28] C. Gao, P. Li, Y. Zhang, J. Liu, and L. Wang, “People

counting based on head detection combining Adaboost and

CNN in crowded surveillance environment,”

Neurocomputing, vol. 208, pp. 1–9, 2016.

[29] D. Marmanis, M. Datcu, T. Esch, U. Stilla, and S. Member,

“Using ImageNet Pretrained Networks,” vol. 13, no. 1, pp.

105–109, 2016.

[30] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun, “OverFeat: Integrated Recognition,

Localization and Detection using Convolutional Networks,”

arXiv:1312.6229, Dec. 2013.

[31] E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani,

“Using convolutional features and a sparse autoencoder for

land-use scene classification,” Int. J. Remote Sens., vol. 37,

no. 10, pp. 1977–1995, 2016.

[32] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring Deep

Convolutional Neural Networks for the Scene Classification

of High-Resolution Remote Sensing Imagery,” Remote

Sens., vol. 7, no. 11, pp. 14680–14707, Nov. 2015.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

[33] C. Cortes and V. Vapnik, “Support-Vector Networks,”

Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995.

[34] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin, “LIBLINEAR: A Library for Large Linear

Classification,” J. Mach. Learn. Res., vol. 9, no. 2008, pp.

1871–1874, 2008.

[35] K. Chang and C. Lin, “Coordinate Descent Method for

Large-scale L2-loss Linear Support Vector Machines,” vol.

9, pp. 1369–1398, 2008.

[36] A. Vedaldi and C. V May, “MatConvNet Convolutional

Neural Networks for MATLAB.”

[37] R. Socher, “ImageNet: A large-scale hierarchical image

database,” in 2009 IEEE Conference on Computer Vision

and Pattern Recognition, 2009, pp. 248–255.

[38] K. He, “Deep Residual Learning (ResNet),” 2015.

[39] N. Dalal and B. Triggs, “Histograms of Oriented Gradients

for Human Detection,” in IEEE Conf. Comput. Vis. Pattern

Recog, 2005, pp. 886–893.

[40] S. Member and T. Ma, “Multiresolution Gray-Scale and

Rotation Invariant Texture Classification with Local Binary

Patterns,” vol. 24, no. 7, pp. 971–987, 2002.

[41] S. Xu, S. Member, T. Fang, D. Li, and S. Wang, “Object

Classification of Aerial Images With Bag-of-Visual Words,”

vol. 7, no. 2, pp. 366–370, 2010.

