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 

Abstract— Nowadays, Unmanned Aerial Vehicles 

(UAV) are viewed as effective acquisitions platforms for 

several civilian applications. They can acquire images with 

an extremely high-level of spatial details compared to 

standard remote sensing platforms. However, these images 

are highly affected by illumination, rotation and scale 

changes, which increases further the complexity of analysis 

compared to those obtained by standard remote sensing 

platforms. In this paper, we introduce a novel 

Convolutional Support Vector Machine (CSVM) network 

for the analysis of this type of imagery. Basically, the 

CSVM network is based on several alternating convolution 

and reduction layers ended by a linear SVM classification 

layer. The convolution layers in CSVM rely on a set of 

linear SVMs as filter banks for feature map generation. 

During the learning phase, the weights of the SVM filters 

are computed through a forward supervised learning 

strategy unlike the backpropagation algorithm widely used 

in standard convolutional Neural Networks (CNNs). This 

makes the proposed CSVM particularly suited to detection 

problems characterized by very limited training sample 

availability. The experiments carried out on two UAV 

datasets related to vehicles and solar panel detection 

issues, with a 2-centimeter resolution, confirm the 

promising capability of the proposed CSVM network 

compared to recent state-of-the-art solutions based on 

pretrained CNNs. 

 

Index Terms— Convolutional SVM filtering, convolutional SVM 

network, extremely high-spatial resolution images, object 

detection, supervised feature generation, UAV platforms. 

I. INTRODUCTION 

nmanned Aerial Vehicles (UAVs) are recognized as 

very effective systems for collecting images from a very 

low altitude. The high flexibility of these small, ecologic 

and silent aerial platforms permits immediate intervention and 

interactive measurements according to customer’s specific 
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needs. Additionally, they allow mapping and monitoring of 

small areas at extremely fine scales and enables multitemporal 

acquisitions over the same area at predefined and desired 

times. These attractive proprieties render them a valid 

alternative or a complementary solution to satellite sensors 

particularly for  

 

small coverage or inaccessible areas. In the beginning, UAVs 

were used exclusively for military applications, but due to 

advancement in technologies and reduction in prices, they 

became a practical solution for many civilian applications 

such as precision farming [1]–[3], anomaly detection in 

archeological sites [4] , and monitoring of urban areas [5], [6]. 

UAVs can acquire images with extremely high-level of 

spatial details compared to standard remote acquisition 

systems such as satellites or airborne. They are very 

appropriate for detecting specific class of objects, which opens 

the door to the development of various interesting recognition 

applications [7]–[12]. Even though promising results have 

been obtained in these recent developments, they mainly rely 

on handcrafted-feature representations. These types of 

representations would limit the performances of the 

recognition system as they work well under restricted 

conditions. Actually, the increase in spatial resolutions (order 

of few centimeters) poses new challenges for automatic 

classification as the objects belonging to the same class will 

simply look very different. Additionally, UAV images are 

highly affected by illumination, rotation and scale changes 

which increases further the complexity of identifying robust 

visual handcrafted features for representing the image content. 

Recently deep convolutional neural networks (CNNs) have 

achieved impressive results on a variety of applications 

including image classification [13]–[16], object detection 

[17]–[20], and image segmentation [21], [22]. Thanks to their 

sophisticated structure, they have the ability to learn powerful 

generic image representations in a hierarchical way compared 

to state-of-the-art shallow methods based on handcrafted 

features. Modern CNNs are made up of several alternating 

convolution and pooling layers followed by some fully 

connected layers. The feature maps produced by the 

convolution layers are usually fed to a nonlinear gating 

function such as the Rectified Linear Unit (ReLU). Then the 

output of this activation function can further be subjected to 

normalization (i.e., local response normalization). The whole 

CNN architecture is trained end-to-end using the 

backpropagation algorithm with dropout regularization [23] to 

reduce overfitting. It is worth recalling that recent deeper 

CNNs (winner of the ImageNet Large-Scale Visual 
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Recognition ILSVRC14 and ILSVRC15 challenges) use inception modules [15] and residual learning [14].  

 
Figure 1. Example of a CSVM network with: three convolution layers; two reduction layers, and a classification layer placed on the top.  

 

 

Usually, CNNs perform well for analyzing datasets with 

large labelled data. Yet they are prone to overfitting when 

dealing with datasets with limited labeled data. For these 

scenarios, it is has been shown that it is more appealing to 

transfer knowledge from CNNs (such as AlexNet [16], VGG-

VD [24], GoogLeNet [15], and ResNet [14]) pretrained on an 

auxiliary recognition task with very large labeled data instead 

of training a CNN from scratch [25]–[28]. While the possible 

transfer learning solutions include fine-tuning the pretrained 

CNN on the labeled data of the target dataset or to exploit the 

CNN feature representations with an external classifier. We 

refer the reader to [26] where the authors introduce and 

investigate several factors affecting the transferability of these 

representations. 

In the remote sensing context, some contributions have used 

recently these strategies for handling small datasets acquired 

either by airborne or satellite sensors mainly composed of 

images with spatial resolution up to 30 cm. For instance, in 

[29] the authors used a pretrained CNN to generate an initial 

feature representation of the remote sensing images under 

analysis. After this step, they reshaped the outputs of the two 

last fully connected layers into 2D arrays and trained a new 

CNN composed of two convolutions and two fully connected 

layers followed by a softmax classifier. As pretrained CNN 

they used the Overfeat model [30], which is an improved 

version of the AlexNet model [16]. By contrast Esam et 

al.[31] used the output of the last fully connected layer of the 

CNN model proposed by Chatfield et al. [25] as input to a 

sparse autoencoder for learning a new feature representation. 

Then they tailored the sparse autoencoder to view the 

classification problem from discriminative and reconstruction 

perspectives. Finally, Fan et al. [32] investigated the problem 

of transferring features from different CNN models trained 

also on very large auxiliary labeled dataset. They considered 

two different approaches for carrying out feature extraction. 

For the first approach, they used the last fully connected layer, 

while for the second one they extracted dense features from 

the convolution layer at multiple scales and then used different 

encoding techniques to generate the final representation of the 

image. For both solutions, they used a support vector machine 

(SVM) classifier for training [33] .  

As mentioned previously, UAV images add more challenges 

compared to standard remote sensing images, as they are 

characterized by improved spatial resolutions; large intra-class 

variation; significant differences in image statistics in addition 

to variation in illumination, viewpoint, rotation, and scale 

changes. Thus we expect that a simple fine-tuning of the 

network or feeding the feature representations to an external 

classifier will not easily address this problem, which calls for 

further research developments.  

In this paper, we propose an alternative learning strategy 

based on SVMs for handling these scenarios. SVMs are 

among the most popular supervised classifiers available in the 

literature. They rely on the margin maximization principle 

which makes them less sensitive to overfitting problems. They 

have been intensively used in conjunction with handcrafted 

features for solving various recognition problems. In addition, 

as discussed previously, they are also commonly placed on the 

top of a CNN feature extractor for carrying out the 

classification task [26]. In this work, we extend them to act as 

convolutional filters for the supervised generation of features 

maps. We term this network as convolutional SVM (CSVM). 

Compared to standard CNNs, the CSVM introduces a new 

convolution trick based on SVMs, and does not rely on the 

backpropagation algorithm for training. 

Basically, the CSVM network is based of several alternating 

convolution and reduction layers followed by a classification 

layer (Figure 1). Each convolution layer uses a set of linear 

SVMs as filter banks, which are convolved with the feature 

maps produced by the precedent layer to generate a new set of 

features maps. For the first convolution layer, the SVM filters 

are convolved with the original input images. The SVM 

weights of each convolution layer are computed directly in a 

supervised way by training on patches (extracted from the 
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previous layer) representing the objects of interest. The feature 

maps produced by the convolution layers are then fed to a 

nonlinear gating function such as ReLU. The reduction layer 

in CSVM works in  

 
Figure 2. Training set generation for the first convolutional layer. 

 

 

 
 

Figure 3. Feature maps obtained by the first SVM convolutional layer. 

 

 

a similar way to the pooling layer in CNN. It takes small 

rectangular blocks from the convolutional layer and 

subsamples it to produce a single output from each block. 

Finally, the high level representations obtained by the network 

are fed again to a linear SVM classifier for carrying out the 

classification task.   

  

The major contribution of this work can be summarized as 
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follows: (1) Introduce a novel CSVM network suitable for 

problems with small training data. (2) Extend SVMs to act as 

convolutional filters for generating feature representation 

maps. (3) Present a forward supervised learning strategy for 

computing the weights of the network. (4) In the experiments, 

we validate the method on UAV images with 2-centimeter 

resolution acquired over urban areas related to vehicles and 

solar panels detections. 

The rest of the paper is organized as follows. Section II 

provides a general description of the proposed CSVM 

network. Section III presents the results on two UAV datasets. 

Finally, Section IV presents the conclusions of the work and 

future developments. 

  

II. CSVM NETWORK DESCRIPTION 

A. SVM Convolution layer 

As mentioned previously, the SVM convolution layer is the 

core building of the CSVM network. Specifically this layer 

uses linear SVMs as convolutional filters for generating the 

feature maps. Furthermore, the weights of these filters are 

learned using a forward supervised learning method unlike the 

weights of conventional CNNs, which are computed via 

backpropagation. In the following, we detail this method for 

the first convolution layer. The generalization to the next 

convolution layers is straightforward.   

1) Construction of the Training set: If we let {𝐈𝑖 , 𝑦𝑖}𝑖=1
𝑀  be 

the training set composed of 𝑀 positive and negative RGB 

images with 𝐈𝑖 ∈ 𝓡𝒓×𝒄×𝟑 where 𝑟 and 𝑐 refer the number of 

rows and columns of the image, and 𝑦𝑖 ∈ {+1, −1} denotes 

the class label. The positive images contains the object of 

interest, whereas the negatives ones represent background. 

From each image 𝐈𝑖 ,  we extract a set of patches of size ℎ ×
ℎ × 3  (i.e., three channels) and represent them as feature 

vectors 𝐱𝑖 of dimension 𝑑, where 𝑑 = ℎ × ℎ × 3. After 

processing all images, we obtain a global training set 𝑇𝑟(1) =

{𝐱𝑖 , 𝑦𝑖}𝑖=1
𝑚(1)

  of size 𝑚(1) as shown in Figure 2.   

 

2) Training the SVM filter banks: In this step, we learn a set 

of  SVM filters on different sub-training sets 𝑇𝑟𝑠𝑢𝑏
(1)

=

{𝐱𝑖 , 𝑦𝑖}𝑖=1
𝑙  of size 𝑙 randomly sampled from the global training 

set 𝑇𝑟(1). The weight vector 𝒘 ∈ 𝓡𝒅 and bias 𝑏 ∈ 𝓡 of each 

SVM filter are determined by optimizing the following 

unconstrained optimization problem [34], [35]: 

min
𝒘,𝑏

𝒘𝑇𝒘 + 𝐶 ∑ 𝜉(𝒘, 𝑏; 𝒙𝑖 , 𝑦𝑖)𝑙
𝑖=1        (1) 

where 𝐶 is a penalty parameter.  

 

A common choice for the loss functions 𝜉(𝒘, 𝑏; 𝒙𝑖 , 𝑦𝑖) is the 

hinge loss max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0) and the squared hinge 

loss max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0)2 referring to L1-SVM and L2-

SVM, respectively. In this work, we shall consider L1-SVM, 

though the L2-SVM formulation could be considered as well. 

For simplicity, we omit the bias term and represent the 

weights of the SVM filters obtained after training as  

{𝐰𝑘
(1)

}
𝑘=1

𝒏(1)

 , where 𝐰𝑘
(1)

∈ 𝓡ℎ×ℎ×3  refers to kth-SVM filter 

weight matrix, while 𝑛(1) is the number of filters. Then, the 

complete weights of this convolution layer could be grouped 

into filter bank of four dimensions  𝑾(𝟏) ∈ 𝓡ℎ×ℎ×3×𝑛(1)
. 

 

3) Generation of the convolutional feature maps: In this 

step, we convolve each training image {𝐈𝑖}𝑖=1
𝑀 , with the SVM 

filters to generate a set of 3D hyper-feature maps {𝐇𝑖
(1)

}𝑖=1
𝑀 . 

Here 𝐇𝑖
(1)

∈ 𝓡𝑟(1)×𝑐(1)×𝑛(1)
 is the new feature representation 

of image 𝐈𝑖 composed of 𝑛(1) feature maps (Figure 3). To 

obtain the kth feature map 𝐡𝑘𝑖
(1)

, we convolve the kth SVM 

filter with a set of sliding windows of size ℎ × ℎ × 3 (with a 

predefined stride) over the training image 𝐈𝑖 (Figure 4): 

   𝐡𝑘𝑖
(1)

= 𝑓(𝐈𝑖 ∗ 𝐰𝑘
(1)

) , 𝑘 = 1, … , 𝑛(1)                             (2) 

where ∗ is the convolution operator and 𝑓 is the ReLU 

activation function.  

 

In the following algorithm, we present a practical 

implementation of this convolutional layer. For more clarity, 

we use Matlab notations.  

 

Algorithm: SVM convolutional layer 

Input:  - Training images  {𝐈𝑖 , 𝑦𝑖}𝑖=1
𝑀  

- Number of SVM filters: 𝑛(1) 

- Filter parameters (width ℎ, and stride) 

- Number of Training patches: 𝑙  

Output: Feature cube:  𝐇(1) ∈ ℛ𝑟(1)×𝑐(1)×𝑛(1)×𝑀 

Start: 

1: 𝑇𝑟(1) = 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔({𝐈𝑖 , 𝑦𝑖}𝑖=1
𝑀 , ℎ); // For example use 

im2col of Matlab to extract the patches. 

2:  𝑾(𝟏) = 𝑙𝑒𝑎𝑟𝑛_𝑆𝑉𝑀_𝑓𝑖𝑙𝑡𝑒𝑟𝑠(𝑇𝑟(1), 𝑛(1), 𝑙) // Train 𝑛(1)-

//SVMs on different sub-trainings 𝑇𝑟𝑠𝑢𝑏
(1)

 of size 𝑙  randomly 

//sampled from 𝑇𝑟(1). Use Libilinear software package for  

// SVM training [34]. 

3: 𝐇(1) = 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛({𝐈𝑖}𝑖=1
𝑀 ,  𝑾(1)); // use vl_nnvonv of 

MatConvNet [36]  

4: 𝐇(1) = 𝑅𝑒𝐿𝑈(𝐇(1)) 

End 

 

 

It is worth recalling that this algorithm is also valid for the 

next convolutional layers except that actual inputs are the 

hyper-feature maps produced by the previous layer as shown 

in Figure 1. 
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Figure 4. Example of a feature map produced by the kth SVM convolutional filter. 

 

 

 

B. Reduction Layer  

Here the spatial reduction layer acts in a similar way to the 

spatial pooling layer in CNNs. It is commonly inserted 

between two successive convolution layers to reduce the 

spatial size of the representation by selecting the most useful 

features for the next layers. Basically, it takes small 

rectangular blocks from the convolutional features maps and 

subsamples them to produce a single output from each block. 

There are several ways to perform spatial reduction, such as 

taking the average or the maximum, or a learned linear 

combination of the values in the block. In this work, we use 

the max pooling operator for carrying out reduction. As for 

CNNs, the output of the reduction layer could be followed by 

a local response normalization (LNR) layer. However, we 

experimentally found that this layer does not affect much the 

results on the two UAV datasets used in the experiments. 

 

C. Feature generation and classification  

After several SVM convolutional and reduction layers, the 

high level reasoning of the network is done by training a 

binary SVM classifier on the high level features extracted 

from the last layer (Figure 1). If we let  {𝐇𝑖
(𝐿)

, 𝑦𝑖}𝑖=1
𝑀  be the 

hyper-feature maps obtained by the last computing layer 𝐿 

(convolution or reduction depending on the network 

architecture). If we suppose also that each hyper-feature map 

𝐇𝑖
(𝐿)

 is composed of 𝑛(𝐿) feature maps. Then a possible 

solution of extracting the high level feature vector 𝒛𝑖 ∈ 𝓡𝒏(𝐿)
 

of dimension 𝑛(𝐿) for the training image 𝐈𝑖 could be simply 

done computing the mean or max value for each feature map. 

We refers to these two types of feature generation in the 

experiments as mean and max spatial pooling, respectively.  

 

III. EXPERIMENTS 

A. Dataset Description  

In the experiments, we assess the proposed CSVM network 

on two UAV datasets related to vehicles and solar panels, 

respectively. The images composing these two datasets were 

acquired at different times over different areas in or near the 

city of Trento, Italy, by means of a UAV equipped with 

imaging sensors spanning the visible range (Figure 5). All 

acquisitions were performed with a picture camera Canon 

EOS 550D characterized by a CMOS APS-C sensor with 18 

megapixels. The obtained RGB images have a spatial 

resolution of approximately 2 cm and 8 bit of radiometric 

resolution. For both datasets, we resize all images to the 

dimension 224×224 pixels commonly used by CNNs.  

1) Car dataset: The determination of the number of vehicles 

on roads or in parking lots represents one of the most 

discussed and interesting issues in the field of object detection 

in remotely sensed imagery. It opens the way to solve urban 

problems that could be encountered almost every day. 

Especially in big cities, knowing the concentration of cars in 

roads or in parking lots can be extremely interesting for local 

administrations in order to optimize the urban traffic planning 

and management. This dataset is composed of 200 training 

images (100 car and 100 background) acquired over two 

parking lots inside the city of Trento. On the other side, the 

test set is composed of 1000 images (500 cars and 500 

background) and it was acquired over three parking lots near 

the city. All acquisitions were made at completely different 

times and under different acquisition conditions. Figure 6 

shows sample of images showing individual cars or group of 

cars parked with different orientations.  
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Figure 5. UAV used for the acquisition of the images. 

 

 
 

Figure 6. Car dataset: Example of cars (First fourth rows) and 

backgound (last two rows) acquired over different parking lots over 

the city of Trento. 

2) Solar-Panel dataset: Solar panels are gradually invading 

urban areas to produce clean energy as they do not give 

damaging emissions compared to traditional sources of 

energy. The UAV technology represents an appropriate 

solution to monitor these new types of objects. For this dataset 

also, several acquisitions have been performed to simulate 

different scenarios (Figure 7). As for car dataset, the training 

set is composed of 200 images, whereas the test is composed 

of 1000 images. 

  

 
Figure 7. Solar panel dataset: Example of solar panels (first up to 

foutrh rows) and background (last two rows) acquired over the city of 

Trento.  

 

B. Experiment Setup  

First, we present the preliminary results using small, 

medium and large CSVM networks. Figure 8 details the 

architecture of these networks including the parameters of the 

convolution layer in addition to the reduction and 

classification layers. Specifically, we propose a configuration 

with five convolution layers, three reduction layers and a 

classification layer. For training each SVM filter in the 

convolution layers, we extract randomly 𝑙=200 patches (100 

for object and 100 for background) from the training images 

as shown in the methodological part. For an efficient 

computation of the weights of the SVM filters we use the 

multi-core Liblinear software package [34]. The estimation of 

the penalty parameter 𝐶 for each SVM is done via a three-fold 

cross-validation procedure in the range [10-1, 103]. 

Additionally as usually done for CNNs, we preprocess all 

images by subtracting the average image of all training images 

before feeding them to the network.  

 In the second experiment, we carry out a sensitivity 

analysis to study the effects of the filter sizes on the 

performances of the network. Finally, in the last experiment, 

we compare our results to state-of-the art methods based on 

pretrained CNNs.  
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Figure 8. CSVM network: Small (S), Medium (M) and Large (L). 

 

For performance evaluation, we present the results in terms 

of average accuracy (i.e., 𝐴𝐴 =
𝑈𝐴+𝑃𝐴

2
) where 𝑃𝐴 is the 

producer’s accuracy corresponding to error of omission (i.e., 

𝑃𝐴 =
𝑇𝑃

𝑁𝑜𝑏𝑗
) and 𝑈𝐴 is user’s accuracy corresponding to the 

error of commission (i.e., 𝑈𝐴 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
).  𝑇𝑃 is true positives, 

number of car/solar-panel images correctly identified, 𝐹𝑃 is 

false positives, number of car/solar-panel images incorrectly 

identified, and 𝑁𝑜𝑏𝑗 is the total number of car/solar-panel 

images. All experiments were carried out on a laptop having a 

2.50 GHz Intel(R) Core(TM) i7 processor and a memory 

RAM of 16 GB. 

C. Results 

1) Preliminary results:  Figure 9 provides an illustration of the 

feature maps produced by the different convolution layers of 

two small networks trained on car and solar panel datasets, 

respectively. As can be seen, the SVM filters are able to 

provide different feature maps representation of the 

solar/panel test image. In particular some of these filters yield 

high responses clearly highlighting the presence of the objects 

of interest. In Figures 10 and 11, we report the classification 

accuracies obtained by the small, medium and large networks 

for both datasets, respectively. Besides the network output, 

these figures show also the intermediate results obtained after 

each convolutional layer.  

In general, all these three configurations provide competing 

results. However, by taking into account the computation time 

and the number of weights for each configuration (Table 1), 

the small network appears to be more appropriate. While the 

medium and large networks uses a large number of filters, 

they yield in some cases reduced accuracies. This could be 

explained by the increase in feature dimensions, which needs 

the definition of particular training strategy dealing with the 

resulting curse of dimensionality, which is beyond the scope 

of this work. In the rest of the paper, we shall focus on the 

small network architecture. 

By averaging results obtained for the two datasets, we 

notice that the small network reaches stable results after the 

second convolutional layer with mean pooling, whereas it 

requires four convolutional layers for max pooling. In detail 

using mean pooling, we obtain average accuracies of (92.56%, 

96.03% 95.96%, 96.36% and 96.01%) after each convolution 

layer, whereas for max pooling we obtain accuracies of 

(89.12%, 92.49, 94.27%, 95.23% and 95.11%). These 

preliminary results, a-priori suggest that for these two 

datasets, at least two convolutional layers are needed to 

generate good representative features maps of the object of 

interest. In addition, increasing the number of layers can 

improve the results particularly for solar-panel dataset. For car 

dataset, we observe some variations in the accuracy (but less 

than 1%) when mean pooling is used. 

 

2) Sensitivity analysis:  In this experiment, we analyze further 

the small network architecture by considering different 

parameters for the convolution filters. To this end, we use 

different filter sizes while we keep their number per-layer 

fixed as before. In addition, we set the strides in each 

convolution layer to the new values (2, 1, 1, 1), while they 

were fixed in the previous experiment to (4, 1, 1, 1). This will 

allow us to obtain feature maps with large spatial sizes. For 

feature generation we consider only mean pooling as it yielded 

better results compared to max pooling. Although all 

configurations yielded competing results as shown in Figure 

12, the one using the filters (7 × 7, 1 × 1, 3 × 3, 1 × 1, 1 × 1) 

looks more stable for both datasets. For car dataset, it yields an 

AA of 93.74% and 96.1% for the first and second layers and 

ends with an accuracy 97% at the network output. This 

corresponds to an increase of 1.22% compared to the initial 

configuration proposed in the first experiment with the 

following filters (11 × 11, 5 × 5, 3 × 3, 1 × 1, 1 × 1).  
Regarding solar panel dataset, the first layer leads to an AA 

of 89.3% and the second to 95.59%, and ends with an 

accuracy of 96.97% at the network output. Here again, we 

observe an increase of 0.93% compared to the initial 

configuration. It is worth to note that the network 

corresponding to this configuration uses less SVM weights 

(6.80E04), while the computation time has increased to 7 

minutes. This increase is due to the extra convolution 

operations done on feature maps with increased spatial sizes 

(54×54×24 up to 11×11×128 pixels from the first layer to last 

layer, respectively).  
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Figure 9. Output feature maps for car/solar-panel test images (produced by the first, second and last convolutional layers). 

The last row represents the output feature representation obtained by applying mean pooling to the last convolutional layer. 

 

 

 

 

 

 

 

Input image 

  

(First convolution) 

24 svms 

conv 11×11 

stride 4 

  

 

 

(Second convolution) 

48 svms 

conv 5×5  

stride 1 

  

 

 

(Fifth convolution) 

128 svms 

conv 1×1  

stride 1 

  

 

 

Ouptut feature 

(mean pooling) 

dimension: 128 
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(a) 

 
(b) 

Figure 10. Average classification accuracy obtained by small, 

medium and large CSVMs on car dataset. For each layer, we use a 

simple (a) mean and (b) max pooling for generating the output 

features fed to the SVM classifier.  

 

 

 

3) Comparison with pretrained CNNs:  In this experiment, we 

compare our results to the state-of-the-art solutions based on  

pretrained CNNs. Specifically, we feed the UAV images to 

CNNs (pretrained on a very large labeled dataset such as 

ImageNet [37]) to generate the corresponding feature 

representations and then use linear SVM for training and 

classification. In the experiments, we use different pretrained 

CNNs from MatConvNet [36] including AlexNet [16], 

VGGM [25], VGG-16 [24], GoogLeNet [15], and ResNet 

[13]. The AlexNet network was the winner of the 2012 

ILSVRC (ImageNet Large-Scale Visual Recognition 

Challenge). It is composed of 5 convolutional layers, 3 

pooling layers, and 3 fully-connected layers. The VGGM 

network has the same number of layers as AlexNet but with 

different convolution filter sizes. The VGG16 network has a 

deeper architecture as it is composed of 13 convolutional 

layers, 5 pooling layers, and 3 fully-connected layers.  

 
(a) 

 
(b) 

Figure 11. Average classification accuracy obtained by small, 

medium and large CSVMs solar-panel dataset. For each layer, we use 

a simple (a) mean and (b) max pooling for generating the features fed 

to the SVM classifier. 

 

The GoogLeNet network introduces the idea of inception 

module that acts as multiple convolution filters applied to the 

same input. This network is composed of 9 inception modules 

and replaces the fully-connected layers with average pooling. 

The ResNet network is a more advanced architecture which 

reformulates the layers as learning residual function, with 

reference to the layers input. Here we use the ResNet50 

model, which is composed of 50 layers. It is worth recalling 

that the features obtained from the first three networks are of 

dimensions 4096 whereas they are equal to 1000 when using 

GoogLeNet and ResNet. 

Table 2 presents the results using different training set sizes 

by sampling randomly from the original training set. For 

CSVM, we use the configuration based on the following filters 

(11 × 11, 5 × 5, 3 × 3, 1 × 1, 1 × 1) and (7 × 7, 1 × 1, 3 ×
3, 1 × 1, 1 × 1). The results obtained for five trials (different 

training images) show an interesting behavior of the proposed 

network. 
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TABLE I.  

NUMBER OF CSVM WEIGHTS FOR SMALL, MEDIUM AND LARGE CONFIGURATIONS. 

  Small Medium Large 

Layers 
Filter 

size 

Feature 

size 
Weights 

Feature size 
Weights 

Feature 

size 
Weights 

 

C
o
n
v

o
lu

ti
o

n
  

11×11 363 8736 363 17472 363 34944 

5×5 600 28848 1200 153728 2400 614656 

3×3 432 41568 1152 221376 2304 1180160 

1×1 96 9312 192 37056 512 262656 

1×1 96 12416 192 49408 512 525312 

Classification  1×1 128 129 256 257 1024 1025 

Total weights 1.01E+05  4.79E+05  2.62E+06 

Computation time (Minutes) 3.67  7.37  31.63 

 
TABLE II. COMPARISON OF CSVM AGAINST SEVERAL PRETRAINED CNNS: (A) CAR AND (B) SOLAR PANEL DATASETS. THE RESULTS ARE 

EXPRESSED IN TERMS OF AVERAGE ACCURACY IN (%) AND STANDARD DEVIATION OVER FIVE TRIALS. TRAIN TIMES ARE RELATED TO 

THE SCENARIO WITH 100 TRAINING IMAGES (PER CLASS). TEST TIMES ARE COMPUTED FOR 1000 TEST IMAGES. 
(A) 

Training 

Image/Class 

ResNet- 

50 
ResNet-152 GoogLeNet VGG16 VGGM AlexNet 

CSVM 

(11×11,5×5, 

3×3,1×1,1×1) 

CSVM 

(7×7,1×1, 

3×3,1×1,1×1) 

25 67.07±2.6 64.97±2.1 87.04±1.1 91.98±3.3 86.63±1.4 75.04±5.7 93.86±2.28 94.26±2.1 

50 82.91±0.8 81.81±1.4 88.47±1.3 92.56±2.2 87.15±5.5 81.10±6.5 93.22±0.62  95.13±0.2 

100 91.10 90.05 94.74 95.66 88.34 91.93 95.78 97 

Train/Test 
Time 

(Seconds) 

75 / 274 270 / 1220 126 / 510 235 / 976 45 / 212 42 / 161 130 / 9 185 / 12 

 

(B) 

Training 

Image/Class 

ResNet- 

50 
ResNet-152 GoogLeNet VGG16 VGGM AlexNet 

CSVM 

(11×11,5×5, 
3×3,1×1,1×1) 

CSVM 

(7×7,1×1, 
3×3,1×1,1×1) 

25 54.85±6.7 51.20±0.9 69.64±11.5 71.15±12.2 62.55±16.6 67.20±10.4 91.46±6.08  94.77±1.37 

50 58.71±11.4 52.65±2.6 72.04±18.3 75.85±15.3 64.45±19.4 69.30±16.2 93.32±3.74  96.19±1.9 

100 66.43 66.37 84.45 93.59 95.45 93.01 96.24 96.97 

Train/Test 

Time 

(Seconds) 

81 / 396 289 / 1300 102 / 509 201 / 988 45 / 213 40 / 154 120 / 10 156 / 12 

 

 
TABLE III. COMPARISON OF CSVM AGAINST HANDCRAFTED FEATURES: (A) CAR AND (B) SOLAR PANEL DATASETS. THE RESULTS ARE 

EXPRESSED IN TERMS OF AVERAGE ACCURACY (AA), AND TRAIN AND TEST TIMES. 100 TRAINING IMAGES PER CLASS WERE USED. 

TEST TIMES ARE COMPUTED FOR 1000 TEST IMAGES. 
(A) 

Method HOG H-Gradients  LBP BOW 

CSVM 

(11×11,5×5, 

3×3,1×1,1×1) 

CSVM 

(7×7,1×1, 

3×3,1×1,1×1) 

AA (%) 67.44 75.59 79.39 72.72 95.78 97 

Train/Test 
Time 

(Seconds) 

16 / 30 23 / 50 11 / 15  237 / 254 130 / 9 185 / 12 

 

(B) 

Method HOG H-Gradients  LBP BOW 

CSVM 

(11×11,5×5, 
3×3,1×1,1×1) 

CSVM 

(7×7,1×1, 
3×3,1×1,1×1) 

AA (%) 85.73 50.27 59.96 75.87 96.24 96.97 

Train/Test 

Time 

(Seconds) 

46 / 84 47 / 107 10 / 15 225 / 213 120 / 10 156 / 12 
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(a) 

 

(b) 

Figure 12. Results obtained using different filter sizes for: (a) car and (b) solar-panel datasets. The following strides are used for the five 

convolution layers: (2, 1, 1, 1, 1). The filters (11×11, 5×5, 3×3, 1×1, 1×1) represent the initial configuration proposed for small CSVM. 

 

 

It provides better results for all scenarios particularly for 

reduced training set sizes compared to the solutions based on 

pretrained CNNs. For example for car dataset, the CSVMs 

using the mentioned filters, yield accuracies of (95.78%, 

93.22% and 93.98%) and (95.78%, 93.22%, and 93.86%) for 

the scenarios (100, 50, and 25 training images). The closest 

pretrained CNN is the one based on VGG-16, which provides 

accuracies (95.66%, 92.56% and 91.98%) while the other 

networks perform poorly. These promising results are also 

confirmed for solar panel dataset where the CSVM network 

exhibits clearly a better behavior for all three cases.  

 For further analysis, we have compared the results of 

CSVM to some popular handcrafted feature methods such as: 

1) histogram of oriented gradients (HOG) [39], which describe 

an image based on its local gradients; 2) local binary patterns 

(LBP) [40], which are simple yet efficient binary descriptors 

for coding pixel-wise information in textured images; 3) bag-

of-visual-words (BOVW) [41], which aim to represent an 

image by means of a codebook generated from the training 

images. The occurrence of each visual word is observed in 

each target image to produce an image signature consisting of 

the frequencies of all the codebook elements. Finally, high-

order gradients (H-gradients) [12], which combine image 

gradient features at different orders, have also been considered 

for comparison. After generation, each type of handcrafted 

features has been exploited to feed a proper linear SVM 

classifier as in CSVM. Table III reports the best results 

obtained by tuning the related parameters of these feature 

extraction methods. Here again, CSVM clearly exhibits a 

better behavior in terms of classification accuracy and 

computation time. 

IV. CONCLUSION 

In this paper, we have proposed a novel CSVM network for 

the classification of UAV imagery. This network features the 

following important proprieties: 1) it exploits state-of-the art 

SVM classifiers as filters for feature map generation; and 2) it 

uses a forward supervised learning strategy for computing the 

weights of these filters. The results obtained on two UAV 

datasets acquired over urban areas related to vehicles and solar 

panels confirmed its efficiency compared to state-of-the-art 

methods in terms of accuracy and computation time. In 

addition, it can provide better results compared to recent 

solutions based on knowledge transfer from pretrained CNNs 

in particular when the number of training images is limited. 

Future directions to improve the network performances could 

be defined in many ways such as: 1) the exploration of other 

sophisticated architectures based on inception and residual 
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layers used in recent CNNs; 2) its extension to handle 

multiclass classification problems; and finally 3) the 

application to other classification problems with small 

numbers of labeled images. 
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