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Abstract—A Generative Adversarial Network (GAN) usually 

contains a generative network and a discriminative network in 

competition with each other. The GAN has shown their capability 

in a variety of applications. In this paper, the usefulness and 

effectiveness of GAN for classification of hyperspectral images 

(HSIs) is explored for the first time. In the proposed GAN, a 

convolutional neural network (CNN) is designed to discriminate 

the inputs and another CNN is used to generate so-called fake 

inputs. The aforementioned CNNs are trained together: The 

generative CNN tries to generate fake inputs that are as real as 

possible, and the discriminative CNN tries to classify the real and 

fake inputs. This kind of adversarial training improves the 

generalization capability of the discriminative CNN, which is 

really important when the training samples are limited. 

Specifically, we propose two schemes: (1) a well-designed 

1D-GAN as a spectral classifier, and (2) a robust 3D-GAN is as a 

spectral-spatial classifier. Furthermore, the generated adversarial 

samples are used with real training samples to fine-tune the 

discriminative CNN, which improves the final classification 

performance. The proposed classifiers are carried out on three 

widely-used hyperspectral datasets: Salinas, Indiana Pines, and 

Kennedy Space Center. The obtained results reveal that the 

proposed models provide competitive results compared to the 

state-of-the-art methods. In addition, the proposed GANs open 

new opportunities in the remote sensing community for the 

challenging task of HSIs classification, and also, reveal the huge 

potential of GAN-based methods for the analysis of such complex 

and inherently nonlinear data. 

 

Index Terms—Convolutional neural network (CNN), deep 

learning, generative adversarial network (GAN), hyperspectral 

images classification. 

I. INTRODUCTION 

HYPERSPECTRAL sensors simultaneously capture the 
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spatial and spectral information of the observing target. Such 

data are characterized as a valuable source of information for 

Earth observation, which brings both challenges and 

opportunities to develop new data processing techniques [1]. 

The classification of hyperspectral images (HSIs), which is a 

crucial step for the plethora of applications, tries to assign a 

specific class to each pixel in the scene. HSIs classification is 

widely-used, e.g. urban development, land change monitoring, 

scene interpretation, and resource management. Among 

hyperspectral data processing techniques, classification is one 

of the most vibrant topics in the remote sensing community [2]. 

Most of the supervised methods that have been applied in the 

machine learning community have been explored for 

hyperspectral images classification in the last few decades. In 

general, there are two kinds of data classification methods: 

spectral classifiers and spectral-spatial classifiers.  

Hyperspectral data usually contain hundreds of spectral 

channels of the same scene, which provide abundant spectral 

information. Traditional spectral classification algorithms 

typically include k-nearest-neighbors, maximum likelihood, 

neural network and logistic regression [3]. Most of those 

algorithms dramatically suffer from the so-called curse of 

dimensionality (Hughes phenomenon) [4]. Support vector 

machines (SVMs) have shown their low sensitivity to high 

dimensionality with respect to the number of training samples 

and are unlikely to suffer from the Hughes phenomenon. 

Furthermore, SVM-based classifiers usually obtain good 

classification performance in terms of when a limited number 

of training samples is available compared with other 

widely-used supervised techniques [5] [6]. During the first 

decade of this century, SVMs-based spectral classifiers were 

considered as the state-of-the-art methods in the hyperspectral 

community.  

With the advancement of the sensor and imaging systems, 

the spatial resolution of hyperspectral data is becoming finer 

and finer. With the help of spatial information, which can be 

extracted by diverse methodologies such as filtering or 

segmentation approaches, the classification performance can be 

significantly improved. Among those approaches, 

morphological profiles have been widely-used to extract the 

spatial features of HSIs (usually followed by SVMs or random 

forest to obtain the resulting classification map) [7]. Many 

extensions have been developed for hyperspectral data feature 

extraction based on morphological operators, which 

demonstrate that the morphological profile is still under further 
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development [8]. On the other hand, multiple kernel learning 

has been applied to hyperspectral data classification because of 

its powerful capability to handle heterogeneous spectral and 

spatial features in an efficient manner [9]. Spectral-spatial 

classification approaches are regarded as the mainstream of 

HSI classification. Many methods have been proposed in recent 

years on the spectral-spatial classification of hyperspectrla data. 

As an example, in [10], a method, which combines sparse 

representation and Markov random fields, was proposed. The 

method utilizes Markov random fields to explore spatial 

correlation which significantly improves the classification 

performance. Furthermore, a new spectral-spatial classifier 

based on discriminant analysis has been proposed for 

hyperspectral image classification in [11]. The proposed 

method learned a representative subspace from the spectral and 

spatial domains and produced a good classification 

performance. 

Most of the traditional spectral and spectral-spatial 

classifiers do not classify the hyperspectral data in a “deep” 

manner. In [12], it is demonstrated that the classifiers like linear 

SVM and logistic regression can be attributed to single-layer 

classifiers, while decision tree or SVM with kernels are 

believed to have two layers. Deep models, which contain two or 

more hidden layers, tend to extract the invariant and 

discriminant features of the input data. Deep learning methods 

have been actively studied in a wide variety of research areas 

such as image classification, language processing, and speech 

recognition in recent years [13] [14]. Recently, deep learning 

has also been utilized for remote sensing data processing 

including HSI classification. A survey of deep learning-based 

approaches for remote sensing data can be found in [15]. 

In 2014, a deep learning-based method, stacked 

autoencoders, has been proposed for hyperspectral feature 

extraction and classification [16]. Deep belief network, another 

kind of deep models, was introduced and modified for HSI 

classification as well [17] [18]. 

In recent years, lots of deep models, especially deep 

convolutional neural networks (CNNs), have been proposed in 

the remote sensing community. In [19], a deep CNN with five 

layers was employed to extract the spectral features of HSIs 

leading to a promising classification performance. After that, in 

[20], a novel pixel-pair method is proposed as a deep spectral 

classifier, and the model achieved good performance when the 

number of training samples is not sufficient. 

The aforementioned methods in [19] and [20] are spectral 

classifiers. In order to utilize the spatial and spectral 

information of HSIs simultaneously, some spectral-spatial 

classifiers based on deep CNNs have been proposed [21], [22]. 

For example, in [22] a framework based on principal 

component analysis (PCA), deep CNN, and logistic regression 

was used for HSIs classification. HSIs are inherently 3D data, 

so it is reasonable to design 3D CNNs to effectively extract the 

spectral-spatial features of HSIs [23], [24]. On the other hand, 

CNNs can be combined with other techniques such as sparse 

representation approach and morphological profiles. In [25], 

CNN is followed by sparse representation to refine the learned 

features. Recently, a method based on the combination of 

Gabor filtering and CNN was introduced to extract the features 

of HSIs, which leads to a performance improvement [26].  

Furthermore, there are new types of deep models which have 

also been investigated for HSIs classification. Very recently, a 

new deep dictionary learning has been proposed for HSIs 

classification, which has shown its capability under the 

condition of limited training samples [27].  

Although great progress has been achieved in HSI 

classification using deep learning-based methods, deep models 

usually face a serious problem known as overfitting. The reason 

behind this problem is that deep learning-based methods need 

to train a large number of learnable parameters, which requires 

a lot of training samples. The problem becomes serious when 

the number of training samples is limited. Unfortunately, the 

limited availability of training samples is a common situation in 

the remote sensing community since the collection of such data 

is either time demanding or expensive. Deep models are often 

over trained if there are not sufficient training samples available, 

which means the performance is good in the training stage but 

the performance is relatively poor in the test stage. Therefore, 

new and effective training strategies for deep models are 

needed to address the issue of overfitting (the Generative 

Adversarial Network (GAN), which this paper investigates, is 

one of those strategies). Actually, the generator network of 

GAN can be regarded as a regularization method, which can 

mitigate the overfitting phenomena to a great extent.  

GAN is a new kind of model, which usually contains 

agenerative model G and a discriminative model D  [28]. The 

models G and D are trained in an adversarial manner, in which

G tries to generate the fake inputs as real as possible, and D

tries to classify the real and fake inputs. In this adversarial game, 

both participants wish to get optimized results (i.e., D can 

achieve the best classification results, and G can generate the 

fake data which possess the most similar distribution with real 

data). Through the adversarial manner and competition of two 

networks, the training process of the discriminator will proceed 

both continuously and effectively instead of getting trapped 

into overfitting immediately when we use a limited number of 

training samples.  

Furthermore, GAN generates samples which can be used as 

virtual samples. The proper usage of the virtual samples 

improves the classification performance. In this paper, the 

generated samples are used to boost the classification accuracy 

and the experimental results prove the effectiveness of the 

usage of such samples. 

Due to the advantages of CNN, deep convolutional GAN is 

well suited for image data processing [29]. GAN can be used in 

a variety of applications such as data synthesis, style transfer, 

image super-resolution and classification [30].  

In this paper, the use of the generative adversarial network 

for hyperspectral data classification is explored for the first 

time. With the help of GANs, the deep CNN achieves better 

performance in terms of classification accuracy and the 

overfitting problem raised by CNNs can be considerably 

mitigated. Two frameworks, 1D-GAN and 3D-GAN, are 

proposed for HSI classification, and the classification results 

obtained by these two frameworks showed that our GANs are 
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superior to traditional convolution neural networks even under 

the condition of limited training samples. In more details, the 

main contributions of the paper are summarized as follows. 

1) The use of GAN for hyperspectral data processing is 

explored for the first time in this paper. The adversarial samples 

including 1D spectra and 3D spectral-spatial patches are 

generated by a well-designed GAN. 

2) Two GANs frameworks including spectral classifiers and 

spectral-spatial classifiers are proposed for HSIs classification. 

The frameworks use well-designed CNNs to classify HSIs, and 

the adversarial training is adopted by a regularization 

technique. 

3) Adversarial samples are used for HSIs classification for the 

first time, which is investigated to fine-tune the aforementioned 

GANs for an improved classification performance. 

4) The proposed methods are tested on three well-known 

hyperspectral datasets under the condition of having limited 

training samples available.  

The rest of the paper is organized as follows. Section II 

presents the background of GAN. Section III presents the 

details of the proposed GAN frameworks including spectral 

and spectral-spatial architectures for HSIs classification, and 

the introduction of adversarial samples for classification. The 

details of experimental results are reported in Section IV. In 

Section V, conclusions and discussions are presented. 

II. BACKGROUND 

Supervised learning methods in machine learning can in 

general be divided into two parts: Generative approaches and 

discriminate approaches. Generative approaches involve the 

learning of distribution parameters from data samples, and they 

can generate new samples according to the learned models. 

Typically, generative methods calculate the distribution 

assumption of the explicit or implicit variables of the real data. 

Then, they can generate new data through the learned 

assumptions, which have a similar distribution as the real data. 

GAN which was proposed by Goodfellow in 2014, is a novel 

way to train a generative mode land a promising method to train 

classifiers. Commonly GAN is composed of two parts: the 

generative network G and the discriminative model D .The 

generator G can capture the potential distribution of real data 

and output the new data while the discriminator D is a binary 

classifier which can judge whether the input samples are real or 

not. The information flow in GAN is a feed forward pass from 

one model generator G , which generates the fake data, to the 

second model discriminator D , which evaluates the output of 

the first model. The architecture of GAN is shown in Fig. 1. 

In order to learn the generator’s distribution gp over data x , 

we supposed that the true samples are equipped with data 

distribution  xp and the input noise variable has a prior  zp

The generator accepts a random noise z as input and produces a 

mapping to data space  zG .The  xD estimates the probability 

that x  is the true sample from training data [31]. In the 

optimized procedure the discriminator D is trained to maximize

  xDlog which is the probability of assigning the correct labels 

to the correct sources while the generator G is trained to 

minimize    zGD1log . Therefore, the ultimate aim of the 

optimization is to solve the minimax problem: 
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where E is the expectation operator. Through the calculation 

and evaluation, one found that when the discriminator D has a 

high probability distribution of real samples, the gradients in D

may disappear and cause the training process to stop. To make 

sure that the generator has proper gradients when the 

classification accuracy for the discriminator is high, the 

generator’s loss function is usually formulated to maximize the 

probability of classifying a sample as true instead of 

minimizing the probability of it to be classified as false [30]. 

Therefore, the modified loss function can be written in the 

following optimization form: 
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The parameters update of G is based on the back-propagation 

of D instead of directly using the real data samples. In addition, 
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                                                                               Fig. 1.  The architecture of GAN 
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there is no requirement that the latent code has any specific 

dimensionality nor on the generator net being invertible. GANs 

can learn models that generate points only on a thin manifold 

that goes near the data, so the GAN framework can train any 

kind of generator net.  

On one hand, the adversarial model is most straightforward 

when the G and D are both multiply perceptrons [28]. On the 

other hand, the shallow multiply perceptrons usually have 

limited capabilities in coping with complex data. Recently, 

deep learning methods have achieved a substantial success and 

they can build a network with several layers instead of having 

shallow net layer connections [33]. Therefore, they can 

leverage the nonlinear mapping abilities and capture more 

crucial features of input data (i.e., especially in coping with the 

complicated and inherently nonlinear data) [34] [35]. As a 

special type of deep learning-based method, the convolution 

network (i.e., CNN) [36], which is inspired by neuroscience 

[37], utilizes two important strategies which make it different 

from other deep learning methods. Those two strategies are 

local connections and shared weights. In more details, in the 

CNN, the local correlation information is explored by 

considering the local connectivity between nearby neurons, 

instead of the full connection of all neural units as in other deep 

methods. In this context, CNNs can reduce the computational 

complexity and redundancy in exploiting the data features. 

Especially, CNNs can alleviate the overfitting phenomenon   in 

the deep learning process. Recently, the deep methods and 

CNNs have shown their excellent performance in hyperspectral 

images classification and feature extraction [23].  

Although GANs have shown their promising usages in 

varieties of aspects, they also suffer from stability issues due to 

its adversarial idea [28]. To solve this issue, some techniques 

for stabilizing the training process of the GAN have been 

developed. Among those approaches, the convolution network 

can address the instability issue to some extent. Recently, the 

deep convolutional generative adversarial network (DCGAN) 

architecture, which uses deep convolution networks in G and 

D was proposed [29]. The generator G , which takes a uniform 

noise distribution z and class labels c as input and output, 

respectively, can be reshaped into a three-dimensional tensor. 

The discriminator D has a similar architecture to common 

CNNs except that the pooling layers are replaced with stride 

convolutions and all the activation functions are the leaky 

rectified linear unit (LeakyReLU) [38]. Although GANs have 

shown promising performance in image synthesis [39] and 

many other aspects [40], as unsupervised generative models, 

the D networks of the original GANs only estimate whether the 

input samples are either true or fake. Therefore, they are not 

suitable for the purpose of multi-class image classification. 

Recently, the concept of GAN has been extended to be a 

conditional model with semi-supervised methods. In [41], the 

authors proposed Semi-GAN whose labels of true training data 

were imported to the discriminator D . 

Furthermore, the conditional GAN requires some additional 

information for both G and D where the extra information can 

be class labels or other data modalities [42]. Therefore, the 

conditional GAN can leverage the generative adversarial nets 

to generate the specific labels. In addition, Odena presented 

auxiliary classifier GAN (AC-GAN), which can be used in 

image classifications, whose discriminator D is modified to be a 

softmax classifier that can output multi-class labels 

probabilities [43]. 

III. PROPOSED METHOD 

A. The framework of the proposed method  

Our networks are shaped with respect to the theory of 

AC-GAN while the objective function is modified to take into 

account the likelihood of the correct source and likelihood of 

the correct HSI classes. The parameters are optimized 

depending on the multi-classification loss so they can optimize 

the loss function more appropriately than traditional GANs. 

The labeled information is regarded as the input of both 

generator and discriminator, and the discriminator D contains 

an auxiliary decoder network which can output the respective 

training data labels. Definitely, the extra-label information can 

leverage both the classification abilities of discriminator D and 

generative abilities of generator G . The architecture of our 

method is shown in the Fig. 2.  

From the original GAN, we can see that in training process, 

the discriminator D receives both real training data and fake 

data generated by the generator G and outputs the probability 

distribution    XDXSP | . Therefore, the aim of the D
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Fig. 2.  The general architecture of proposed method 
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network is to try to maximize the log-likelihood of the right 

source: 
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Similarly, the aim of the G network is to try to minimize the 

same quantity. 

In the network, we can see that the generator G also accept 

hyperspectral image class labels c
pc ~ in addition to the noise z

the output of G can be defined by  zGfakeX  . The real 

training data with corresponding class labels and the fake data 

generated by G are regarded as the input of the discriminator D , 

The probability distribution over sources  XSP | along with the 

probability distribution over class labels  XCP | are fed into  

the network D .The objective function contains two parts: the 

log-likelihood of the right source of input data sL and the 

log-likelihood of the right class labels cL : 
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so D is optimized to maximize the 
CS

LL  while G is optimized 

to maximize SC LL   

In this experiment, the two frameworks (i.e., the combination 

of the spectral vector and the spectral-spatial information) are 

designed, while the former is called 1D-GAN and the latter is 

called 3D-GAN. The G and D in the aforementioned two 

frameworks are both in the form of convolutional networks. 

The proposed GANs are not only used to classify the real and 

fake inputs but also to predict the corresponding labels of the 

input data. G has the form of fractionally-stride convolutional 

neural network and D adopts convolution neural networks. 

Finally, the discriminator D is followed by sigmoid classifier 

and softmax classifiers applied in parallel, which are used to 

classify the real/fake samples and the HSIs, respectively. 

With the continuation of the training process, both G and D

will theoretically achieve the most optimized results when G

can generate fake data that are most similar to real data and D

can-not distinguish between fake data and real data. In this 

manner, we can prove that the whole network achieves the 

Nash equilibrium condition, and the adversarial behavior and 

competition between two networks can promote the 

classification performance. Therefore, the crucial idea of GAN 

lies in the adversarial training and through the continuous 

competition we can obtain superior classification results in 

comparison to traditional CNN methods. 

B. 1D-GAN 

The main framework of 1D-GAN is shown in Fig. 3, which 

is built based on HSI spectral features only where all the input 

noise and training data are spectral vectors. 

Due to the availability of hundreds of bands in original HSI, 

which means the input has high dimensions, it is difficult to 
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Fig. 3.  The framework of 1D-GAN for HSIs classification 
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train the generator G  (i.e., the training stage is not stable). In 

the other words, the generator cannot effectively imitate the 

real data because of high redundancy. Thus, we extract the 

spectral features of HSIs based on principal component 

analysis (PCA) [44]. PCA can condense the whole image by 

reducing the spectral dimensions to a suitable scale, and it is a 

crucial step to formulate a robust GAN.  

Pertinently, in order to promote the generator to exert 

superior abilities on capturing crucial features and generating 

realistic-looking samples as the best possible and preserve most 

important spectral information of original HSI bands, we 

preserve 10 principal components, which contain the 99.99% 

energy of the inputs.  

In Fig. 3, we show the framework of 1D-GAN on the Salinas 

dataset as input. From the figure, one can see that the G

receives both noise z and labels c as input, while D receives as 

input the real spectral vectors x with labels c and some batches 

of fake spectral vectors  zG . Then, through the D network, one 

can obtain the final results including both the class labels and 

the source labels. In our networks, any pooling layer is replaced 

with stride convolutions (discriminator) and fractional-strided 

convolutions (generator). 

C. 3D-GAN 

The main framework of 3D-GAN is shown in Fig.4. In 

3D-GAN, the network extracts spectral-spatial features 

effectively, which achieves better classification performance. 

Here, we only describe the special parts of the proposed 

3D-GAN. Different from 1D-GAN which only utilizes the 

spectral information of HSIs, the spatial features are also taken 

into consideration in addition to the spectral features in this 

subsection.  

The number of spectral bands is reduced to three components 

by PCA, which condense the whole image by reducing the data 

dimensions to a suitable scale, and in the meantime, it reserves 

the spatial information. Due to PCA, the computational 

complexity is dramatically reduced, and it is really important to 

stabilize the GAN training procedure. In 3D-GAN, the 

generator accepts noise as input and transforms its shape to the 

same size as real data with three principal components in the 

spectral domain. Then, the discriminator accepts the real data or 

the generated fake samples as input data, and it uses the 

sigmoid classifier to give the real and fake classification results 

and softmax classifier to give the classification map. The first 

layer of the GAN, which takes a uniform noise distribution z as 

input, is just a matrix multiplication. The result is then reshaped 

into a tensor and used as the start of the convolution stack. In 

the proposed frameworks, we indicate the hyperspectral ground 

labels in multicolor squares but the source labels in grey 

squares.  

In 3D-GAN, like the basic allocations in 1D-GAN, pooling 

layers are replaced with strided convolutions (in the 

discriminator) and fractional-strided convolutions (in the 

generator). In addition, batch normalization is used in both the 

generator and the discriminator and the fully connected hidden 

layers are removed. 

D. Generative Adversarial Samples for Classification 

 Now let us consider that the GAN consists of both a 

generator and a discriminator. The classification abilities of the 

discriminator have been discussed above. On the other hand, 

using the fake samples from the generator also has a potential in 

improving the final classification results in terms of accuracies. 

In fact, when the discriminator cannot distinguish the real data 

from the synthetic fake data, we can also conclude that the 

generated abilities of G are superior to the D . Consequently, 

the whole adversarial network achieves the global optimality in 
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Fig. 4.  The framework of 3D-GAN for HSIs classification 
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theory [28].  

In this paper, the generated fake samples can be regarded as 

augmentation data [45] that increase the number of training 

samples. Then, both the fake samples and the true samples are 

fed into the networks in order to optimize the nets. Let us 

suppose that the original dataset has N classes, during network 

training. To begin with, each generated sample is passed 

forward through the network and assigned a label by taking the 

maximum value of the probability prediction vector. These fake 

samples can consequently be used for training in the network 

with these labels. In addition, the generated samples do not 

belong to any class of real samples. Due to the difference of real 

samples and generated samples, a new class label is then 

created (i.e., 1N ) and every fake sample is endowed with this 

new label. In this paper, we adopted this method to assign 

1N to the labels of fake samples. In the experimental part of 

the paper, we qualitatively visualize the adversarial samples 

through the false color map.  

IV. EXPERIMENTAL RESULTS 

A. Data Description  

In our study, three widely-used hyperspectral datasets with 

different environmental settings were adopted to validate the 

proposed methods. They are captured over Salinas Valley in 

California (Salinas), Kennedy Space Center (KSC) in Florida 

and a mixed vegetation site over the Indian Pines test area in 

North-western Indiana (Indian Pines). 

The first dataset, Salinas, was collected by the 224-band 

AVIRIS sensor over Salinas Valley, California. The available 

dataset is composed of 512×217 pixels with 204 bands [after 

the removal of low signal to noise ratio (SNR) bands] and the 

available ground reference map covers 16 classes of interest. 

The hyperspectral image is characterized by having a high 

spatial resolution (3.7-meter pixels). The false color composite 

image and the corresponding ground reference map are 

demonstrated in Fig. 5. 

The second dataset was captured by the NASA airborne 

AVIRIS instrument over the Kennedy Space Center, Florida. It 

is called here the KSC dataset. The KSC dataset has an altitude 

of approximately 20 km, with a spatial resolution of 18 m. This 

dataset is composed of 512×614 pixels. After removing water 

absorption and low SNR bands, 176 bands were used for the 

corresponding false color composite map. In the classification, 

13 classes were defined for the site. Fig. 6 demonstrates the 

classes of the KSC dataset and the corresponding false color 

composite map. 

The third dataset is a mixed vegetation site over the Indian 

Pines test area in Northwestern Indiana (Indian Pines) which 

was collected by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS). The dataset was obtained by an 

aircraft flown, with a size of 145 pixels × 145 pixels and 220 

spectral bands in the wavelength range of 0.4–2.5 μm. The false 

color image is shown in Fig. 7(a). The number of bands is 

reduced to 200 by removing water absorption bands. Sixteen 

different land-cover classes are provided in the ground 

reference map, as shown in Fig. 7.  

For all three datasets, the labeled samples were split into two 

subsets which contain training and test samples, and the details 

are listed in Table I, II, and III. During the training procedure of 

GAN, we use 200 training samples, which are truly limited, to 

learn weights and biases of each neuron, 100 training samples 

are used to guide the design of proper architectures, which can 

identify whether the network is overfitted or not. In the test 

process, all the samples in the dataset are used to estimate the 

capability of the trained network. This is important for 

designing the proper convolution network and we can use the 

test samples to assess the final classification performance. 

 

(a) (b)  
Fig. 6.  The Kennedy Space Center (KSC) dataset. (a) False-color composite 

(Band 28, 19, 10) and (b) ground reference map 

 

(a) (b)

 Fig. 7.  The Indian Pines dataset. (a) False-color composite image (Band 28, 19, 

10) and (b) ground reference map 

  
Fig. 5.  The Salinas dataset. (a) False-color composite (Band 50, 28, 15) 

and (b) ground reference map 
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B. The classification results for 1D-GAN 

 In this experiment, our networks are also compared with 

other former methods used in HSI feature extraction and 

classifications such as the original CNN to validate the quality 

of classification results. The training and test data are randomly 

chosen among the whole dataset and we only use 200 training 

samples for each datasets and the epoch is set to 500 for our 

methods. The GANs have a relatively higher computational 

complexity compared with other networks considering the fact 

that both the G and D need to be trained in each epoch. The 

classification results are given in the form of mean± standard 

deviation. The 1D-GAN framework is built only based on HSI 

spectral feature extraction. Therefore, all the input noise and 

training data are spectral vectors. First, the number of training 

data spectral bands in each dataset is reduced to 10 by PCA. 

The size of noise 𝑧 sent to the generator networks is 111   and 

it is then converted to 1110   through the fractionally-stride 

convolution of generator G .Then the generated fake samples 

and true training samples are imported to the discriminator D

which can give the corresponding image labels c and source 

labels s . The main architectures of the 1D-GANs and 

PCA-CNN for each dataset are shown in Table IV, and the 

n_class shown in Table IV represents the number of classes in 

each dataset  

In order to have a fair comparison, the architecture of 

PCA-CNN is designed in such a way to be the same as 

discriminator D .The stride is 1 and the padding is set to 0 in this 

experiment. Similarly, we apply the same activation function as 

used in DCGAN. The batch normalization is also introduced to 

the networks for the specific layers. The batch normalization 

can stabilize training by normalizing the input for each unit to 

have zero mean and unit variance.  

At the end of the common CNN, the fully connected neural 

nodes are activated by a linear function. Then, the 

corresponding labels are given through a softmax classifier. 

After the full connection and activation, the last layer neural 

nodes of discriminator D are connected with both a softmax 

classifier and a sigmoid classifier. From the softmax classifier, 

one can obtain the predicted label c . From the sigmoid 

classifier, one can obtain the labels s  (fake or real) of the GAN. 

In this experiment, our methods are compared with other 

feature extraction methods like the PCA, factor-analysis (FA) 

[46], locally linear embedding (LLE) [47], linear discriminant 

analysis (LDA) [48], independent component analysis (ICA) 

[49], PCA-CNN and recurrent neural network (RNN) [50]. FA 

TABLE III LAND COVER CLASSES AND NUMBERS OF PIXELS ON INDIAN 

PINES DATASET 

Class Samples 

No. Color Name Numbers 

1  Alfalfa 46 

2  Corn-notill 1428 

3  Corn-min 830 

4  Corn 237 

5  Grass-pasture 483 

6  Grass-trees 730 

7  Grass-pasture-mowed 28 

8  Hay-windrowed 478 

9  Oats 20 

10  Soybean-notill 972 

11  Soybean-mintill 2455 

12  Soybean-clean 593 

13  Wheat 205 

14  Woods 1265 

15  Buildings-Grass-Trees 386 

16  Stone-Steel-Towers 93 

Total 10249 

 

TABLE II LAND COVER CLASSES AND NUMBERS OF PIXELS IN KSC 

DATASET 

Class Samples 

No. Color Name Numbers 

1  Scrub 761 

2  Willow swamp 243 

3  CP hammock 256 

4  Slash pine 252 

5  Oak/Broadleaf 161 

6  Hardwood 229 

7  Swamp 105 

8  Graminoid marsh 431 

9  Spartina marsh 520 

10  Cattail marsh 404 

11  Salt marsh 419 

12  Mud flats 503 

13  Water 927 

Total 5211 

 

TABLE I    LAND COVER CLASSES AND NUMBERS OF PIXELS ON 

SALINAS DATASET 

Class Samples 

No
. 

Color Name Numbers 

1  Brocoli_green_weeds_1 1977 

2  Brocoli_green_weeds_2 3726 

3  Fallow 1976 

4  Fallow_rough_plow 1394 

5  Fallow_smooth 2678 

6  Stubble 3959 

7  Celery 3579 

8  Grapes_untrained 11213 

9  Soil_vinyard_develop 6197 

10  Corn_senesced_green_weeds 3249 

11  Lettuce_romaine_4wk 1058 

12  Lettuce_romaine_5wk 1908 

13  Lettuce_romaine_6wk 909 

14  Lettuce_romaine_7wk 1061 

15  Vinyard_untrained 7164 

16  Vinyard_vertical_trellis 1737 

Total 53785 
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is a linear statistical method designed for potential factors from 

observed variables to replace original data. LLE seeks a 

lower-dimensional projection of the data which preserves 

distances within local neighborhoods. LDA can be used to 

perform supervised dimensionality reduction, by projecting the 

input data to a linear subspace consisting of the directions 

which maximize the separation between classes.  ICA separates 

a multivariate signal into additive subcomponents that are 

maximally independent. An RNN is a network which uses 

hidden layers or memory cells to learn features, and it adopts 

recurrent connections between neural activations at consecutive 

time steps. The effectiveness of different feature extraction 

methods is evaluated mainly through classification results. 

Additional classifiers such as the KNN classifier and SVM with 

a kernel like RBF-SVM for the evaluation.  

In order to have a fair comparison, we use the grid search 

method to find the best parameters for these feature extraction 

methods. The results listed in Table V-VII are the best results 

obtained in the searching process. For the methods with the 

RBF-SVM classifiers, we use a “grid-search” [51] method to 

define the most appropriate C and  [52]. In this manner, pairs 

of  ,C are tried and the one with the best classification 

accuracy on the validation samples is picked. This method is 

convenient and straightforward. Moreover, the computational 

time to find the best parameters by grid-search is not much 

since there are only two parameters that need to be estimated. In 

this experiment, we do the search by exponentially growing 

sequences of C and  like [23].  

For PCA, FA, LDA and ICA, we select the number of 

features in the range of 10 to N  (i.e., the number of 

hyperspectral bands). The number of the neighbors in LLE is 

chosen from 1 to 15 and for KNN the range of the nearest 

neighbors varied between 1 and 10. Table V-VII shows the 

results obtained from the condition when the GAN models are 

TABLE IV THE ARCHITECTURES OF THE 1D-GAN 

Nets NO. Convolution BN Stride Padding 
Activation 
function 

G 
1 4×1×512 YES 1 0 ReLu 

2 4×1×128 YES 1 0 ReLu 

3 4×1×1 NO 1 0 Tanh 

D 

1 4×1×256 NO 1 0 LeakyReLu 

2 4×1×512 YES 1 0 LeakyReLu 

3 4×1×128 NO 1 0 NO 

4 
128×n_class NO - - Softmax 

128×2 NO - - Sigmoid 

 

TABLE V CLASSIFICATION RESULTS OBTAINED BY DIFFERENT APPROACH ON SALINAS DATASET 

Dataset Classifier KNN 

 
FE 

methods 
PCA FA LLE LDA ICA CNN PCA-CNN RNN 1D-GAN 

Salinas 

 

OA(%) 
75.20 71.27 74.50 76.53 80.12 83.32 84.14 77.46 85.64 

±1.42 ±2.17 ±1.58 ±2.17 ±1.90 ±1.90 ±2.17 ±2.27 ±2.96 

AA(%) 
70.29 65.10 68.63 78.28 79.93 76.10 77.13 77.05 79.86 

±0.98 ±2.52 ±1.36 ±2.52 ±3.20 ±2.03 ±2.52 ±3.80 ±3.19 

K×100 
72.14 68.20 70.13 72.82 77.68 81.34 83.67 74.81 83.67 

±1.38 ±2.48 ±1.72 ±1.38 ±2.13 ±1.42 ±1.38 ±2.51 ±2.03 

Classifier Logistic Regression 

OA(%) 
79.12 76.57 76.70 79.22 80.35 88.29 88.94 78.46 89.13 

±0.98 ±2.52 ±1.76 ±2.67 ±2. 23 ±1.73 ±2.17 ±2.15 ±2.19 

AA(%) 
78.29 76.10 75.63 68.94 75.14 84.10 87.13 80.92 88.13 

±1.48 ±2.52 ±1.36 ±3.47 ±3.45 ±2.03 ±2.52 ±2.61 ±3.50 

K×100 
76.14 74.20 74.13 72.57 78.04 87.34 88.45 76.01 89.03 

±1.72 ±2.48 ±1.72 ±3.07 ±2.09 ±1.42 ±1.38 ±2.41 ±2.62 

Classifier RBF-SVM 

OA(%) 
78.20 75.27 76.50 78.53 83.04 87.32 87.98 77.23 88.45 

±2.42 ±3.17 ±2.58 ±2.17 ±2.17 ±1.90 ±2.17 ±2.23 ±2.80 

AA(%) 
82.29 81.10 79.63 75.51 80.48 84.10 85.13 78.02 84.63 

±0.98 ±3.52 ±2.36 ±2.52 ±2.17 ±2.03 ±2.52 ±3.82 ±3.64 

K×100 
75.14 73.20 72.89 77.05 81.98 85.34 85.45 74.56 88.45 

±1.38 ±3.48 ±2.72 ±1.38 ±2.17 ±1.72 ±1.38 ±2.41 ±2.62 
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trained using the 10 principal components of the original HSIs. 

Compared with the PCA, FA, LLE, LDA, ICA and RNN, the 

CNN-based methods show better performances in terms of 

accuracies, especially the 1D-GAN methods which all achieve 

the best accuracy on three different classifiers. Furthermore, 

these Tables illustrate that the classification results usually 

have a superior performance when feature extraction methods 

are followed by either LR or RBF-SVM classifiers.

                                                                         TABLE VII CLASSIFICATION RESULTS OBTAINED BY DIFFERENT APPROACH ON INDIAN PINES DATASET 

Dataset Classifier KNN 

 
FE 

methods 
PCA FA LLE LDA ICA CNN PCA-CNN RNN 1D-GAN 

Indian 

Pines 

OA(%) 
48.20 47.27 47.50 55.52 57.60 61.32 63.14 53.61 64.39 

±5.42 ±4.17 ±3.58 ±2.36 ±1.21 ±1.90 ±1.52 ±4.84 ±2.46 

AA(%) 
40.29 40.10 39.63 40.34 41.80 55.10 58.89 37.57 56.13 

±5.98 ±4.92 ±3.36 ±4.43 ±2.82 ±1.03 ±1.42 ±5.13 ±3.19 

K×100 
44.14 43.20 42.13 48.26 50.63 58.34 60.45 45.67 60.45 

±5.38 ±4.48 ±3.72 ±2.61 ±1.52 ±1.42 ±1.04 ±5.52 ±3.14 

Classifier Logistic Regression 

OA(%) 
51.20 47.27 46.50 54.67 56.57 64.32 66.14 57.51 67.24 

±1.59 ±2.23 ±1.97 ±1.98 ±2.78 ±1.47 ±1.46 ±2.53 ±2.80 

AA(%) 
43.29 45.10 41.63 39.37 42.69 57.10 59.13 44.52 59.27 

±2.98 ±3.52 ±2.36 ±2.76 ±3.14 ±3.03 ±2.09 ±4.03 ±3.19 

K×100 
49.14 46.20 43.13 49.05 51.39 61.16 64.10 51.24 63.45 

±1.68 ±2.48 ±1.28 ±3.05 ±3.01 ±1.98 ±1.52 ±3.12 ±2.62 

Classifier RBF-SVM 

OA(%) 
50.20 43.27 44.50 53.65 58.47 65.32 67.32 53.66 68.64 

±1.42 ±2.17 ±1.58 ±2.48 ±2.14 ±1.90 ±2.09 ±5.18 ±2.14 

AA(%) 
47.29 38.10 40.63 47.34 52.48 60.10 62.13 39.17 64.45 

±0.98 ±2.52 ±1.36 ±1.42 ±2.98 ±2.03 ±1.90 ±6.88 ±3.25 

K×100 
49.14 40.20 42.13 50.89 57.47 62.45 65.36 46.08 66.36 

±1.38 ±2.48 ±1.72 ±2.13 ±2.47 ±1.42 ±1.35 ±7.02 ±3.08 

 

TABLE VI CLASSIFICATION RESULTS OBTAINED BY DIFFERENT APPROACH ON KSC DATASET 

Dataset Classifier KNN 

 
FE 

methods 
PCA FA LLE LDA ICA CNN PCA-CNN RNN 1D-GAN 

KSC 

 

OA(%) 
68.20 67.27 69.50 76.61 76.70 83.32 84.14 78.26 86.14 

±3.42 ±2.27 ±1.87 ±3.42 ±2.72 ±2.30 ±3.42 ±2.23 ±3.80 

AA(%) 
58.29 54.10 59.63 64.02 66.23 78.10 79.13 68.10 79.58 

±4.28 ±2.72 ±1.71 ±4.28 ±3.42 ±2.43 ±4.28 ±3.75 ±3.21 

K×100 
65.14 64.20 67.13 74.32 73.95 81.34 85.45 75.73 83.45 

±4.38 ±2.07 ±2.56 ±2.63 ±3.04 ±2.63 ±3.52 ±2.67 ±3.62 

Classifier Logistic Regression 

OA(%) 
71.20 70.27 72.50 75.42 76.90 85.32 87.67 80.82 89.64 

±0.98 ±2.52 ±1.36 ±2.35 ±2.86 ±2.03 ±2.42 ±1.99 ±2.47 

AA(%) 
74.29 67.10 70.63 70.34 72.89 80.10 81.13 71.79 84.42 

±2.16 ±2.52 ±1.36 ±3.71 ±3.15 ±2.03 ±1.28 ±2.87 ±3.19 

K×100 
70.14 68.20 71.13 71.96 74.00 83.34 85.15 78.63 88.23 

±2.38 ±2.48 ±1.72 ±2.71 ±2.05 ±1.42 ±1.52 ±2.21 ±2.62 

Classifier RBF-SVM 

OA(%) 
70.20 69.27 69.50 71.61 78.21 86.32 86.14 80.30 88.16 

±2.10 ±2.17 ±1.58 ±3.42 ±2.97 ±1.90 ±1.42 ±3.07 ±2.80 

AA(%) 
60.29 59.10 60.63 66.13 74.65 81.80 81.02 70.66 83.13 

±2.98 ±3.52 ±1.36 ±4.28 ±2.45 ±2.03 ±1.28 ±5.35 ±3.54 

K×100 
68.14 62.20 64.13 70.17 75.58 84.89 86.23 78.04 85.10 

±2.46 ±2.15 ±1.72 ±2.63 ±2.63 ±1.52 ±1.51 ±3.53 ±2.03 
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For the Salinas dataset, 1D-GAN-LR exhibits the best OA, 

AA and K, with improvements of 0.84%, 4.03% and 0.0169 

over CNN-LR, respectively. Our approach outperforms 

1D-GAN-KNN by 3.49%, 8.27% and 0.0536 in terms of OA, 

AA and K, respectively. For the KSC data et, as can be seen, the 

OA of 1D-GAN-LR is 89.64%, which is increased by 3.50% 

and 0.48% compared with KNN and RBF-SVM, respectively, 

it also increases 1.97%,  3.29 % and 0.0308 in OA, AA, and K 

compared with 1D-PCA-CNN. For the Indian Pines dataset, the 

best performance is conducted by 1D-GAN followed by 

RBF-SVM. In this context, 1D-GAN followed by RBF-SVM 

improves the OA, AA, and K of CNN-RBF-SVM by 3.32%, 

4.35%, and 0.0391, respectively. The results show that the 

1D-GAN method gave the best performance in terms of OA, 

AA and Kappa for all three datasets.  

Furthermore, detailed experiments with different principal 

components of 1D-GAN have been investigated to give a 

comprehensive comparison. Table VIII shows the classification 

results of 1D-GAN. There, the whitening principal component 

analysis (PCA) was utilized in the experiments, which is a 

modified PCA with identity covariance matrix. In the table, the 

PCA-3 PCA-10, PCA-50, PCA-100, and PCA-All represent the 

situations where we preserve three, 10, 50, 100, and all 

principal components, respectively.  

In 1D-GAN, 10 principal components are used to condense 

the spectral information. Due to the fact that we only use 

spectral information in 1D-GAN, we try to preserve sufficient 

components (i.e., 10). Furthermore, compared with 3D-GAN, 

the computational complexity of 1D-GAN is relatively low. We 

use relatively more components without high computation 

complexity. From Table VIII, one can see that the 10 principal 

components achieved the best classification accuracy on three 

datasets. If the number of the selected principal components is 

not sufficient, the classification results tend to be bad (e.g., 

when three are selected). Because of the dimensionality of the 

input is low (e.g., three PCs), one cannot formulate a deep 

network to capture the discriminant and nonlinear features 

efficiently. If the number of the selected principal components 

are too many (e.g., 100), the classification results tend to be bad 

too. In order to obtain a good classification performance, 10 

principal components are selected in 1D-GAN. Because of the 

dimensionality of the input is too high (e.g., 100), it may cause 

the serious overfitting problem under the condition of limited 

training samples (i.e., 200). 

C. The classification results for 3D-GAN 

In 3D-GAN, the network considers both spectral and spatial 

features effectively, which can lead to a better performance in 

terms of classification accuracies than the ones obtained by 

1D-CNN. As mentioned before, we preserve three principal 

components as the inputs of 3D-GAN. The architecture of the 

3D-GAN are shown in Table IX. The number of classes for 

each dataset is represented by n_class. The networks G and D  of 

3D-GAN are deep CNNs with five convolution layers and 

proper activation functions. The discriminator D is followed by 

a sigmoid classifier and a softmax classifier, which are used to 

classify the real/fake samples and the HSIs, respectively. The 

size of the input noise is 11100    and the generator converts 

the inputs to fake samples with the size of 36464  . Then the 

generated samples are sent to the discriminator D . Bach 

normalization is used in some specific layers to boost the 

classification accuracy. In our practice, the model leads to 

instability if batch normalization is used in all layers. 

The size of mini-batch was 100 and the learning rate was 

0.0002. In this set of experiments, the number of training 

epochs for the CNNs and GANs is 600.  

The SVM-based and CNN-based five methods are included 

to give a comprehensive comparison. The classification results 

are shown in Tables X-XII. For the three datasets, we use

n_band6464  which the n_band represents the number of 

spectral bands and 36464   neighbors of each pixel as the 

input 3D images in these methods without PCA and using PCA 

respectively. The input images are normalized into the range 

[-0.5 0.5]. 

Due to the advantages of SVM, some SVM-based HSIs 

classifiers are included for comparison. The 3D-RBF-SVM 

(SVM with the radial basis function kernel) receives the 3D 

images as inputs. The extended morphological profile with 

                  TABLE VIII CLASSIFICATION RESULTS OF 1D-GAN WITH DIFFERENT PRINCIPAL COMPONENTS ON THREE DATASETS 

Dataset Method PCA-3 PCA-10 PCA-50 PCA-100 PCA-All 

Salinas 

OA(%) 85.32±1.54 89.13±2.19 83.46±1.95 83.32±1.32 81.89±2.24 

AA(%) 89.15±0.39 88.13±3.50 74.39±1.47 74.09±0.97 73.14±3.10 

K×100 82.07±1.22 90.45±2.62 75.20±1.42 76.60±1.03 78.52±2.26 

Time(s) 29.6 46.1 66.8 86.6 106.2 

KSC 

OA(%) 76.89±2.24 89.64±2.47 82.74±1.89 82.45±1.45 82.33±1.34 

AA(%) 70.14±1.34 84.13±3.19 78.28±2.04 77.28±2.04 76.15±1.45 

K×100 74.52±1.26 88.15±2.62 83.41±1.23 81.24±0.89 81.48±1.26 

Time(s) 19.5 32.7 68.2 142.4 178.5 

Indian Pines 

OA(%) 64.09±3.27 67.24±2.80 64.35±2.09 62.30±1.85 59.58±2.56 

AA(%) 58.14±2.56 59.27±3.19 56.75±2.56 53.75±1.56 48.78±3.09 

K×100 61.32±2.21 63.45±2.62 61.53±1.03 60.07±1.03 57.00±2.13 

Time(s) 23.2 37.2 85.4 115.6 153.4 
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SVM (EMP-SVM) is a widely used spectral-spatial classifier 

for [5]. In the EMP-SVM method, three principal components 

from HSIs are computed and then the opening and closing 

operations are used to extract spatial information on the first 

three components. In the experiments, the shape structuring 

element (SE) is set as disk with an increasing size from 1 to 4. 

Therefore, 24 spatial features are generated. The learned 

featured are fed to an RBF-SVM to obtain the final 

classification results. 

Furthermore, 3D-CNN [21], which has the same architecture 

as the discriminator D in 3D-GAN, PCA-CNN, and EMP-CNN 

are also used for comparison. For the PCA-CNN, the CNN is 

conducted on the three principal components, which is useful 

when the training samples are limited [20]. From Tables X-XII, 

one can see that for Salinas dataset, the 3D-GAN exhibits the 

highest OA, AA and K, with an improvement of 1.76%, 3.68% 

and 0.0119 over PCA-CNN respectively. On the other hand, 

our 3D-GAN approach outperforms 3D-RBF-SVM by 9.93%, 

2.69% and 0.09 in terms of OA, AA and K, respectively. 

Furthermore, the proposed 3D-GAN obtains a better 

classification performance on Salinas dataset compared with 

the 3D-CNN and EMP-CNN. For the KSC and Indian Pines 

datasets, we can obtain the similar results. Compared with these 

state-of-the-art methods, the 3D-GAN demonstrates the best 

performance. 

In term of the running time of different networks, the 

3D-GAN needs a longer time to optimize a new network, which 

is caused by the update on both the generator network and 

TABLE IX THE ARCHITECTURES OF THE 3D-GAN  

Nets No. Convolution BN Stride Padding 
Activation 
function 

G 

1 4×4×512 YES 1 0 ReLU 

2 4×4×256 YES 2 1 ReLU 

3 4×4×128 YES 2 1 ReLU 

4 4×4×64 YES 2 1 ReLU 

5 4×4×3 NO 2 1 Tanh 

D 

1 4×4×64 NO 2 1 LeakyReLU 

2 4×4×128 YES 2 1 LeakyReLU 

3 4×4×256 YES 2 1 LeakyReLU 

4 4×4×512 YES 2 1 LeakyReLU 

5 4×4×64 NO 1 0 NO 

6 
64×n_class NO - - Softmax 

64×2 NO - - Sigmoid 

 

                           TABLE X CLASSIFICATION WITH SPECTRAL-SPATIAL FEATURES ON THE SALINAS DATASET 

Method 3D-RBF-SVM EMP-SVM EMP-CNN 3D-CNN PCA-CNN 3D-GAN 

OA(%) 83.09±1.08 85.90±1.26 87.04±0.16 88.15±0.24 91.26±0.48 93.02±1.54 

AA(%) 85.46±2.06 82.53±1.38 74.02±0.36 77.76±0.82 84.47±0.43 89.15±0.39 

K×100 81.07±1.19 84.02±1.46 85.43±0.19 86.05±0.13 90.88±0.52 92.07±1.22 

Brocoli_green_weeds_1 94.15±0.50 77.97±0.69 96.33±1.20 60.17±0.36 84.32±1.13 98.12±1.02 

Brocoli_green_weeds_2 98.57±0.89 99.75±0.37 93.86±0.23 95.04±0.17 98.81±0.08 94.11±0.12 

Fallow 90.56±0.50 50.40±0.51 65.54±1.29 84.69±0.32 75.92±0.15 76.46±0.28 

Fallow_rough_plow 98.93±0.40 98.72±0.82 94.33±0.47 97.63±0.15 89.84±0.09 100.00±0.47 

Fallow_smooth 95.23±0.63 97.44±0.36 77.01±1.01 99.95±0.08 80.00±0.00 88.25±1.89 

Stubble 99.25±0.91 99.94±0.36 94.02±0.01 99.96±0.10 96.88±0.07 99.34±0.36 

Celery 98.82±0.33 99.88±0.02 90.00±0.50 87.50±0.00 97.96±0.19 99.90±0.67 

Grapes_untrained 78.50±0.57 98.50±0.22 75.47±0.69 89.65±0.22 83.64±0.13 89.44±1.13 

Soil_vinyard_develop 94.11±0.50 99.33±0.37 95.19±0.01 99.38±0.61 100.00±0.00 100.00±0.00 

Corn_senesced_green_weeds 85.56±0.36 93.99±0.56 85.41±0.04 98.20±0.95 100.00±0.00 98.13±1.00 

Lettuce_romaine_4wk 90.63±0.78 82.30±1.23 92.03±0.16 92.20±0.36 98.87±0.12 96.69±2.12 

Lettuce_romaine_5wk 99.48±0.03 100.00±0.00 89.45±1.23 34.54±4.36 99.35±0.04 99.06±1.04 

Lettuce_romaine_6wk 20.08±2.47 99.12±0.16 40.80±1.89 19.20±5.36 74.65±0.68 77.92±1.68 

Lettuce_romaine_7wk 66.29±1.67 97.64±0.45 20.00±2.48 90.38±1.36 70.73±0.05 78.21±0.67 

Vinyard_untrained 59.14±1.06 0.0138±2.56 52.64±2.96 91.59±1.36 65.13±0.20 70.88±0.45 

Vinyard_vertical_trellis 66.96±0.78 83.79±0.48 55.97±1.87 18.49±6.36 83.42±0.94 90.0±0.12 

Runtime (s.) 49.86 287.54 28.14 96.15 23.30 55.10 
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discriminator network in one training epoch. Therefore, the 

computational complexity of GAN is approximately twice as 

much as the CNN-based methods, but our method possesses a 

superior ability in terms of classification accuracy. 

Like 1D-GAN, detailed experiments with different principal 

components of 3D-GAN have been investigated to give a 

comprehensive comparison. Table XIII shows the classification 

results of 3D-GAN. In the experiment reported in the table, 

three principal components are investigated to obtain the main 

spectral information and their spatial neighborhood pixels are 

used to obtain the spatial information. Due to the fact that the 

spatial information is also included, we use relatively fewer 

components in the spectral domain compared with 1D-GAN. 

From Table XIII one can observe that the PCA operation can 

improve the accuracy to some degree. In the experiment of 

3D-GAN, we only chose three principal components because

TABLE XI CLASSIFICATION WITH SPECTRAL-SPATIAL FEATURES ON THE KSC DATASET 

Method 3D-RBF-SVM EMP- SVM EMP-CNN 3D-CNN PCA-CNN 3D-GAN 

OA(%) 76.13±0.24 90.59±0.25 96.94±0.13 95.63±0.26 96.02±0.42 96.89±1.24 

AA(%) 64.60±0.34 85.83±0.28 91.39±0.02 89.65±0.21 93.17±0.14 94.14±0.40 

K×100 73.52±1.30 89.41±1.39 96.60±0.14 94.95±1.13 95.27±0.49 96.52±0.26 

Scrub 88.68±0.69 87.82±4.24 90.14±0.89 91.71±3.71 96.189±0.56 98.292±0.42 

Willow swamp 69.77±2.67 80.14±7.06 57.28±2.04 89.73±10.1 71.605±1.96 79.835±1.45 

CP hammock 70.73±1.45 87.64±6.19 97.24±0.23 92.16±5.33 76.828±1.24 98.438±0.14 

Slash pine 57.32±0.63 86.64±4.79 95.60±0.19 86.94±6.27 100.00±0.00 86.508±1.12 

Oak/Broadleaf 42.85±2.56 77.02±8.87 63.75±1.56 94.79±6.89 100.00±0.00 98.758±0.14 

Hardwood 32.24±0.62 89.66±5.82 92.07±1.03 90.92±7.90 96.943±0.78 100.00±0.00 

Swamp 10.00±3.77 83.37±17.8 100.00±0.00 91.57±6.14 77.143±1.47 97.143±1.06 

Graminoid marsh 42.23±3.64 91.78±2.82 100.00±0.00 96.22±3.13 79.814±1.89 72.949±2.10 

Spartina marsh 84.00±0.25 97.12±1.57 91.37±0.56 99.53±0.99 100.00±0.00 99.231±0.09 

Cattail marsh 81.88±1.35 97.06±1.85 99.56±0.01 99.81±0.37 99.752±0.04 100.00±0.00 

Salt marsh 96.75±0.45 99.64±1.12 100.00±0.00 99.79±0.30 100.00±0.00 100.00±0.00 

Mud flats 86.32±1.26 99.24±2.11 98.21±0.17 97.69±2.31 99.205±0.03 96.481±1.23 

Water 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.000±0.00 100.00±0.00 

Runtime (s.) 47.94 292.78 27.68 57.53 24.56 48.57 

 

 

 TABLE XII CLASSIFICATION WITH SPECTRAL-SPATIAL FEATURES ON THE INDIAN PINES DATASET 

Method 3D-RBF-SVM EMP-SVM EMP-CNN 3D-CNN PCA-CNN 3D-GAN 

OA(%) 58.01±1.08 69.34±1.06 86.48±0.13 86.47±0.26 87.27±1.01 89.09±1.97 

AA(%) 50.56±2.06 52.63±1.28 68.19±0.26 70.41±0.42 80.17±0.48 83.14±1.58 

 K×100 52.07±1.19 64.51±0.56 84.23±0.16 84.12±0.19 85.24±1.29 87.32±1.21 

Alfalfa 77.35±1.50 15.94±0.39 10.43±1.78 14.70±1.40 15.00±1.34 30.21±1.03 

Corn-notill 18.52±1.06 39.16±1.28 86.71±1.25 86.34±1.11 86.98±0.96 81.79±0.26 

Corn-mintill 54.66±0.57 70.75±0.59 84.25±1.47 89.49±0.70 85.27±1.34 75.93±1.26 

Corn 32.30±0.39 54.74±0.00 76.92±2.69 42.00±1.43 94.09±1.63 90.08±1.23 

Grass-pasture 9.73±0.54 68.37±0.47 84.96±1.59 85.91±0.23 92.75±1.87 86.39±2.12 

Grass-trees 85.53±2.96 96.21±1.16 88.33±0.23 92.75±0.30 79.04±1.03 93.28±0.23 

Grass-pasture-mowed 10.27±1.36 100.00±0.00 10.67±2.35 12.00±0.50 53.57±1.65 40.71±1.05 

Hay-windrowed 78.50±0.23 85.00±0.56 100.00±0.00 100.00±0.00 91.59±0.48 98.11±0.21 

Oats 12.32±0.51 15.78±1.19 12.46±2.56 10.00±1.20 10.20±2.05 20.00±1.96 

Soybean-notill 62.28±3.36 75.92±1.39 89.85±0.45 78.72±0.95 73.25±1.14 74.28±0.89 

Soybean-mintill 66.86±1.61 81.23±0.96 91.55±1.04 95.52±1.23 90.30±0.78 91.12±0.25 

Soybean-clean 28.25±0.42 31.85±0.51 86.76±0.69 89.47±0.39 80.43±0.96 84.99±1.46 

Wheat 99.18±1.47 98.23±0.28 87.50±1.48 80.00±0.00 56.34±2.48 49.75±2.45 

Woods 85.98±1.28 90.85±1.19 88.37±1.67 84.55±0.58 91.62±0.69 94.38±0.26 

Buildings-Grass-Trees 13.82±0.35 94.28±1.01 53.53±2.48 69.54±1.31 74.58±0.78 94.47±0.79 

Stone-Steel-Towers 87.78±0.32 95.24±0.67 95.65±0.57 89.34±1.08 88.17±1.02 88.22±1.16 

Runtime (s.) 68.80 315.12 42.18 93.51 37.95 72.46 
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the classification results are relatively good compared with 

other traditional methods, although the classification 

performance may be better if more components are selected. 

One should note that more principal components lead to a 

higher computational complexity and a longer training time. 

Furthermore, the classification accuracies descended when too 

many components (e.g., 100 components) were selected. 

Taking the aforementioned factors into consideration, after 

performing the whiten PCA, we preserved three components in 

3D-GAN.  
To explore the effect of the adversarial component of GANs 

in classification, we also conduct experiments on all three 

datasets to see whether the classifier component of the 

3D-GAN would perform better than for an isolated network of 

GANs. The isolated GAN network means that the discriminator

D updates its parameters in the training process while the 

generator G does not update its parameters. In other words, the 

gradient flow from the discriminator D does not broadcast to 

the generator G , and actually the two networks are not really in 

an adversarial manner. We call this training process 

3D-Isolated-GAN and the results are listed in Table XIV. 

In this experiment, 200 training samples are randomly 

chosen for each dataset, and from the Table we can see that the 

normal 3D-GAN outperforms the 3D-Isolated-GAN about 

2.93%, 3.49%, and 2.46% in terms of OA for the three datasets. 

Therefore, we can make the conclusion that the adversarial 

action between two networks is highly important and 

influential in the training process. 

D. The visualization of adversarial samples and 3D-GAN 

augmentation 

The GAN consists of a generator and a discriminator, which 

is a two-player minimax game between G and D . If the 

discriminator cannot distinguish the real data from the synthetic 

fake data, we can conclude that the generated ability of G has 

superior performance, and the whole adversarial network 

achieves the global optimality in theory [28]. 

The discriminator can be regarded as a classifier to get the 

classification results. On the other hand, the synthetic fake 

samples from the generator can be used to increase the number 

of training samples. The discriminator model is the one which 

directly accesses information in the dataset (e.g., the real 

samples from the distribution and the generator model learn 

based on error signals from the discriminator). 

In the visualization experiment, the fake samples are 

generated by the generator (i.e., G ) of 3D-GAN.  Some 

selected fake and real samples on three hyperspectral datasets 

are shown in Fig. 8. In fact, it is difficult to distinguish the fake 

TABLE XIV CLASSIFICATION RESULTS BETWEEN NORMAL AND ISOLATED GAN NETWORKS ON THE THREE DATASETS 

Dataset  3D-GAN 3D-Isolated-GAN 

Salinas 

OA(%) 93.02±1.54 90.09±0.56 

AA(%) 88.15±0.39 85.76±1.31 

K×100 92.07±1.22 88.05±0.96 

KSC 

OA(%) 97.69 ±0.24 94.20±0.49 

AA(%) 94.14±0.40 84.34±1.37 

K×100 96.52±0.26 89.25±0.98 

Indian Pines 

OA(%) 90.69 ±0.86 87.23±1.75 

AA(%) 83.14±1.82 80.14±2.04 

K×100 89.62±0.26 84.32±0.47 

  

             TABLE XIII CLASSIFICATION RESULTS OF 3D-GAN WITH DIFFERENT PRINCIPAL COMPONENTS ON THREE DATASETS 

Dataset Method PCA-3 PCA-10 PCA-50 PCA-100 PCA-All 

Salinas 

OA(%) 93.32±1.54 95.12±0.75 95.03±0.95 94.53±1.02 94.89±1.24 

AA(%) 89.15±0.39 94.83±0.28 94.39±0.47 93.09±0.97 93.14±0.40 

K×100 92.07±1.22 94.41±1.39 94.20±0.42 93.60±0.45 94.52±0.26 

Time(s) 35.6 66.7 102.9 185.6 366.2 

KSC 

OA(%) 96.89±1.24 97.56±1.04 97.14±0.89 93.45±1.21 93.33±1.34 

AA(%) 94.14±0.40 92.14±1.06 94.28±2.04 89.28±2.04 88.15±1.45 

K×100 96.52±0.26 96.45±0.54 95.41±0.23 92.24±0.59 91.48±1.26 

Time(s) 25.05 49.5 108.1 200.4 330.8 

Indian Pines 

OA(%) 89.09±1.97 90.04±1.29 88.97±1.87 85.30±1.45 83.58±1.12 

AA(%) 83.14±1.58 85.02±1.54 82.75±1.56 81.75±1.56 77.78±2.14 

K×100 87.32±1.21 89.16±0.89 86.53±1.03 83.07±1.03 79.00±1.63 

Time(s) 40.2 60.7 167.9 348.6 532.7 

 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

15 

samples from the real samples. From the Figure, one can see 

that at the end of the adversarial training, the generated samples 

get more and more details from the real data. 

To verify the superior performance of the 3D-GAN 

augmentation methods, we feed the 100 fake samples, which 

are generated by 3D-GAN, into the training dataset. We 

suppose here that the original dataset has N classes and that the 

fake samples can be endowed with the label 1N . Then, the 

real and fake samples are classified by the PCA-CNN and the 

3D-GAN, which are called the Aug-PCA-CNN and 

the3D-Aug-GAN, respectively. The classification results from 

these data augmentation methods and the original methods are 

shown in Tables XV-XVII. From the Tables, one can see that 

the OA of the methods after data augmentation on three dataset 

outperforms the methods without data augmentation. It is 

obvious that the additional fake samples can improve the 

classification performance compared with original methods. 

E. Classification Maps 

At last, in this subsection, the classification accuracies are  

Label: Stubble

 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Label: Soil_vinyard_develop

Label: Lettuce_romaine_4wk

(I)         

Label: Mud flats

Label: Oak/Broadleaf

Label: Willow swamp

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(II)
 

(a) (b) (c)

Label: Corn-notill

(a) (b) (c)

Label: Grass-trees

(a) (b) (c)

Label: Soybean-mintill

(III)
 

Fig. 8.  The real data and generated fake data with same labels in different classes on three datasets: (I): Salinas data, (II) KSC dataset and (III) Indian Pines 

dataset, (a) real training data, (b) the first corresponding fake data and (c) the second corresponding fake data 
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evaluated from a visual perspective. The methods including 

EMP-SVM, 3D-CNN, 3D-GAN and 3D-Aug-GAN with 

virtual samples are selected to classify the whole images. Figs. 

9-11 are the classification maps for different methods on the 

three datasets. All parameters in these models are optimized. 

From Figs. 9-11, one can figure out how the different methods 

affect the classification results. The SVM-based methods 

always have the most errors for the three datasets (see Figs, 9(b), 

10(b) and 11(b)). Especially for the Salinas dataset (Fig 9(b)), 

many pixels are misclassified at the top of the image with the 

SVM based method. By making the comparison between the 

true ground reference and the classification maps, one can see 

that the obtained classification results from CNNs and GANs 

are more precise, which show that the CNNs and GANs are

(a) (b) (c) (d) (e)

 
Fig.  10.   KSC: (a) False color image, (b) to (e), classification maps for different classifiers: (b) EMP-SVM, (c) 3D-CNN, (d) 3D-GAN,(e) 3D-Aug-GAN 

 

(a) (b) (c) (d) (e)
 

Fig.  9.  Salinas: (a) Ground reference map, (b) to (e), classification maps for different classifiers: (b) EMP-SVM, (c) 3D-CNN, (d) 3D-GAN,(e) 3D-Aug-GAN 

 

TABLE XVII CLASSIFICATION WITH DATA AUGMENTATION ON THE INDIAN PINES DATASET 

Method PCA-CNN Aug-PCA-CNN 3D-GAN 3D-Aug-GAN 

OA(%) 88.72±0.94 89.34±1.45 90.69 ±0.86 91.10±0.56 

AA(%) 80.17±0.48 82.62±2.19 83.14±1.82 83.76±1.52 

K×100 86.64±0.49 87.43±1.98 89.62±0.26 89.95±0.13 

Train time(s.) 37.95 41.04 72.46 57.15 

Test time(s.) 4.67 4.18 5.46 5.09 

  

TABLE XVI CLASSIFICATION WITH DATA AUGMENTATION ON THE KSC DATASET 

Method PCA-CNN Aug-PCA-CNN 3D-GAN 3D-Aug-GAN 

OA(%) 96.02±0.42 96.85±0.32 97.69 ±0.24 98.12±0.63 

AA(%) 93.17±0.14 93.29±0.48 94.14±0.40 94.76±0.12 

K×100 95.27±0.49 95.71±0.56 96.52±0.26 98.05±0.20 

Train time(s.) 24.56 19.96 48.57 57.15 

Test time(s.) 2.32 2.19 2.75 2.01 

  

TABLE XV CLASSIFICATION WITH DATA AUGMENTATION ON THE SALINAS DATASET 

Method PCA-CNN Aug-PCA-CNN 3D-GAN 3D-Aug-GAN 

OA(%) 91.26±0.48 92.04±0.16 93.02±1.54 93.67±0.56 

AA(%) 84.47±0.43 85.02±0.36 88.15±0.39 90.89±1.31 

K×100 90.88±0.52 91.13±0.19 92.07±1.22 92.55±0.96 

Train time(s.) 23.30 20.84 55.10 57.15 

Test time(s.) 26.45 26.63 26.56 26.12 
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promising methods for HSI classification. Furthermore, the 

proposed GAN with data augmentation (3D-Aug-GAN) 

demonstrates an excellent visual classification performance, 

and it works pretty well under the condition of limited raining 

samples.  

V. CONCLUSION 

In this paper, the usefulness and effectiveness of GAN for 

HSIs classification are explored for the first time. With the help 

of GANs, the deep CNN achieves better performance in terms 

of classification accuracy compared with traditional CNN. 

Furthermore, the overfitting problem raised by CNNs is 

mitigated. In more detail, two frameworks are designed: (1) 

The first one, called the 1D-GAN, is based on spectral vectors 

and (2) the second one, called the 3D-GAN combines the 

spectral and spatial features. These two architectures 

demonstrated excellent abilities in feature extraction and image 

classification compared with other state-of-the-art methods. In 

the proposed GANs, PCA is used to reduce the high 

dimensionality of inputs, which is really important to stabilize 

the training procedure. Due to the large number of learnable 

parameters (e.g., weights) in deep models, deep CNNs suffer a 

lot with the problem of overfitting, while GAN can be regarded 

as a regularization technique which can mitigate the overfitting 

phenomenon in training process. Furthermore, the HSI samples 

that are generated by GAN are illustrated for the first time here, 

possibly opening a new window for generation of hyperspectral 

data generation. More importantly, generated adversarial 

samples are for the first time used as training samples for HSIs 

classification in this paper. Those samples significantly 

improve the classification performance. The aforementioned 

techniques show their huge potential of GANs for HSI 

classification. 
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