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Abstract— Surface soil moisture (SSM) plays significant roles
in various scientific fields, including agriculture, hydrology,
meteorology, and ecology. However, the spatial resolutions of
microwave SSM products are too coarse for regional applications.
Most current optical/thermal infrared SSM retrieval models
cannot directly estimate the quantitative volumetric soil water
content without establishing empirical relationships between
ground-based SSM measurements and satellite-derived proxies
of SSM. Therefore, in this paper, SSM is estimated directly from
5-km-resolution Chinese Geostationary Meteorological Satellite
FY-2E data based on an elliptical-new SSM retrieval model
developed from the synergistic use of diurnal cycles of land
surface temperature (LST) and net surface shortwave radiation
(NSSR). The elliptical-original model was constructed for bare
soil and did not consider the impacts of different fractional
vegetation cover (FVC) conditions. To optimize the elliptical-
original model for regional-scale SSM estimates, it is improved
in this paper by considering the influence of FVC, which is based
on a dimidiate pixel model and a Moderate Resolution Imaging
Spectroradiometer normalized difference vegetation index prod-
uct. A preliminary validation of the model is conducted based
on ground measurements from the counties of Maqu, Luqu, and
Ruoergai in the source area of the Yellow River. A correlation
coefficient (R) of 0.620, a root-mean-square error (RMSE) of
0.146 m3/m3, and a bias of 0.038 m3/m3 were obtained when
comparing the in situ measurements with the FY-2E-derived
SSM using the elliptical-original model. In contrast, the FY-2E-
derived SSM using the elliptical-new model exhibited greater
consistency with the ground measurements, as evidenced by an
R of 0.845, an RMSE of 0.064 m3/m3, and a bias of 0.017 m3/m3.
To provide accurate SSM estimates, high-accuracy FVC, LST,
and NSSR data are required. To complement the point-scale

Manuscript received August 23, 2017; revised December 22, 2017 and
March 12, 2018; accepted March 14, 2018. This work was supported in part by
the National Natural Science Foundation of China under Grant 41601397 and
in part by the Scientific Exploitation of Operational Missions Program of the
European Space Agency through the project “Exploitation of S-1 for Surface
Soil Moisture Retrieval at High Resolution” under Contract 4000118762/16/I-
NB (https://exploit-s-1.ba.issia.cnr.it). The work of Y. Wang was supported by
China Scholarship Council. (Corresponding author: Yawei Wang.)

Y. Wang, R. Ludwig, and A. Loew is with the Geography Department,
Ludwig Maximilian University of Munich, 80337 Munich, Germany (e-mail:
yawei.wang1@gmail.com).

J. Peng is with the School of Geography and the Environment, University
of Oxford, Oxford OX1 3QY, U.K., with the Geography Department, Ludwig
Maximilian University of Munich, 80337 Munich, Germany, and also with
the Max Planck Institute for Meteorology, 20146 Hamburg, Germany.

X. Song is with the College of Resources and Environment, University of
Chinese Academy of Sciences, Beijing 100049, China.

P. Leng is with the Key Laboratory of Agri-Informatics, Ministry of Agri-
culture/Institute of Agricultural Resources and Regional Planning, Chinese
Academy of Agricultural Sciences, Beijing 100081, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2817370

validation conducted here, cross-comparisons with other existing
SSM products will be conducted in the future studies.

Index Terms— Ellipse model, land surface temperature (LST),
net surface shortwave radiation (NSSR), optical/thermal infrared
data, surface soil moisture (SSM).

I. INTRODUCTION

SURFACE soil moisture (SSM), which is represented by
water that is retained in the top few centimeters (approx-

imately 0 to 5 cm) of the soil, represents an important con-
nection between the land surface and the atmosphere [1]–[6].
Real-time, accurate SSM monitoring plays critical roles in
guiding agricultural irrigation and production forecasts for
agricultural applications [7]. As a significant component of
the hydrological cycle, SSM effectively regulates the parti-
tioning of rainfall into infiltration and runoff. Furthermore,
soil moisture was listed as an essential climate variable by the
World Meteorological Organization in 2010 due to its impacts
on climate change over a temporal range of hours to years.
In addition, SSM is closely associated with various fundamen-
tal areas of research and many scientific disciplines [8]–[12].

Both regional- and global-scale quantitative estimates of
SSM are essential. However, due to the combined effects of
weather and surface conditions, SSM displays broad hetero-
geneity at both temporal and spatial scales [13], [14]. There-
fore, it is particularly difficult to acquire quantitative estimates
of SSM at the regional scale. Numerous investigations have
focused on obtaining regional-scale SSM estimates [15]–[20].
Although microwave remote sensing of SSM has various
deficiencies including a lack of soil roughness information and
problems arising from sun-glint contamination at the L-band,
microwave band has all-day observation capability [21]. Some
SSM products have been produced based on the Advanced
Microwave Scanning Radiometer—Earth Observing System
instrument, the Soil Moisture Ocean Salinity mission, the cli-
mate change initiative, and the Soil Moisture Active Pas-
sive [22]–[28]. However, the spatial resolutions of microwave
SSM products are overly coarse (approximately 25–50 km)
for regional applications. Optical/thermal infrared data have
the advantage of a high spatial resolution, and thus, the esti-
mation of SSM from optical/thermal infrared data has been
attempted in several studies [29]–[31]. However, most exist-
ing methods cannot quantitatively estimate the volumetric
soil water content directly without establishing empirical
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relationships between SSM measurements and satellite-derived
proxies of SSM.

The increasing number of geostationary satellites is facili-
tating the development of more practical SSM retrieval meth-
ods with higher spatial and temporal resolutions [31]–[36].
Geostationary satellites have a higher frequency of observa-
tions than do polar orbiting satellites and can produce 48 to
96 images per day with a fixed observation angle for a given
pixel, substantially enriching our understanding of terrestrial
water and energy budgets. A novel SSM retrieval model
was proposed by Leng et al. [32], [33] to directly estimate
SSM without ground soil moisture data for calibration. This
model is based on the synergistic use of diurnal cycles of
land surface temperature (LST) and net surface shortwave
radiation (NSSR) data obtained from geostationary satellite
data. This innovative ellipse model exhibits some advantages
over other methods that utilize optical/thermal infrared data.
First, the ellipse model is capable of directly estimating SSM
without establishing empirical relationships between field-
scale soil moisture measurements and remotely sensed para-
meters. Field-scale soil moisture measurements are essential
for many SSM retrieval models but are difficult to obtain.
Consequently, the ellipse model is less labor intensive and
more convenient. Second, the ellipse model can estimate SSM
via a great number of approaches than can other methods.
Polar orbiting satellites can only observe one target once
every 12 h. If it is cloudy during the satellite pass, the retrieval
method will provide no information. However, the ellipse
model requires only five of 48/96 images, offering a greater
probability of estimating the SSM. Following the approaches
of previous investigations, this paper aims to analyze the
effects of fractional vegetation cover (FVC) and to optimize
the elliptical-original model over different vegetation cover
types. A preliminary validation of the model is conducted
using ground measurements for the counties of Maqu, Luqu,
and Ruoergai.

II. STUDY AREA AND DATA

A. Description of the Study Area

The study area, which includes the counties of Maqu, Luqu,
and Ruoergai (33.05° N–34.81° N, 100.76° E–103.61° E),
is located to the east of the source area of the Yellow
River (SAYR), the catchment of which lies above the Tang-
nag Hydrological Station in the Northeastern Qinghai–Tibet
Plateau [37]. The area encompasses a large river valley and
surrounding hills, wetlands, grassland, and bare areas. The
climate is wet and cold with dry winters and rainy summers
due to the monsoon season. The mass and energy fluxes
between the land surface and the atmosphere in the Qinghai–
Tibet Plateau have substantial effects on regional and global
climates. Thus, studying the SSM over the study area in the
Qinghai–Tibet Plateau is of great significance.

B. FY-2E Data

The FY-2 series of satellites, which were launched by
China beginning in 2001, consists of five geostationary mete-
orological satellites FY-2C/2D/2E/2F/2G. The FY-2E satellite

TABLE I

MAIN TECHNICAL SPECIFICATIONS OF THE RADIOMETER

Fig. 1. Map of the study area, which includes the counties of Maqu, Luqu,
and Ruoergai.

was launched at the end of 2008 to replace FY-2C. The
optical imaging radiometer onboard the FY-2E satellite is a
stretched-visible and infrared spin-scan radiometer (S-VISSR)
that includes one visible channel and four infrared thermal
channels (Table I) [38]. FY-2E can obtain one full disc image
per hour or every 30 min that covers the earth’s surface
over latitudes from 60° N to 60° S and longitudes from
45° E to 165° E during the flooding season. FY-2E data are
obtained from the National Satellite Meteorological Center
(http://www.nsmc.cma.gov.cn/NSMC/Home/Index.html).

C. Ground Soil Temperature Measurements

The soil moisture monitoring network used in this paper
was installed by the Cold and Arid Regions Environmental
and Engineering Research Institute and the Faculty of Geo-
Information Science and Earth Observation of the Univer-
sity of Twente, Enschede, The Netherlands; the stations are
shown in Fig. 1. Table II displays information on the soil
moisture monitoring stations, which was derived from the
coordinated Asia–European long-term observing system of
Qinghai–Tibet Plateau hydrometeorological processes and the
Asian-monsoon system with ground satellite image data and
numerical simulations report “continuous in situ soil mois-
ture measurements at Maqu site” by L. Dente, Z. Vekerdy,
Z. Su, and J. Wen. The ground measurements represent the
soil moisture at a depth of approximately 5 cm, which is most
closely related to the SSM estimates retrieved from satellite
data in this paper.
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TABLE II

NETWORK STATION INFORMATION

D. Simulated Data

Simulated data from the common land model (CoLM)
are used to improve the elliptical-original SSM retrieval
model [39]. Various studies show that the CoLM provides
reasonable simulations of the land surface state in Northwest-
ern China and the Tibetan Plateau, including at Maqu station,
which is located in the current study area [40]. The CoLM can
adequately represent basic features of the land surface energy
balance at daily time scales in China [41].

The CoLM primarily represents physical, hydrological, and
biological processes and exhibits high accuracy in the sim-
ulation of multiple parameters, including snow cover, soil
moisture, sensible heat flux, and latent heat flux. Atmospheric
forcing data that are employed for driving the CoLM primarily
encompass the downward solar radiation, downward longwave
radiation, wind speed, wind direction, precipitation, air temper-
ature at a reference height, atmospheric pressure at the surface,
and relative humidity at a reference height.

III. METHODOLOGY

A. Elliptical-Original SSM Retrieval Model

The diurnal LST cycle can be described as a sine or cosine
function. The daytime part of the diurnal temperature cycle
model can be expressed as follows [42]:

Tday(t) = T0 + Ta cos[β(t − tm)] (1)

where Tday(t) is the LST (K ) at time t (hours), T0 is the resid-
ual temperature at sunrise, Ta is the temperature amplitude, β
is the width of the half-period of the cosine term, and tm is
the time at which the temperature reaches its maximum.

A similar cosine function can be used to express the diurnal
NSSR cycle

Sday(t) = S0 + Sa cos[α(t − tr )] (2)

where Sday(t) is the NSSR (W/m2) at time t (hours), S0 is the
residual NSSR at sunrise, Sa is the NSSR amplitude, α is the

width of the half-period of the cosine term, and tr is the time
(hours) of the maximum NSSR.

To facilitate investigating the relationship between the diur-
nal cycles of LST and NSSR and simplify the expression, LST
and NSSR can be made dimensionless as follows:

x = Tday(t) − s
r − s

= p1 cos[β(t − tm)] + q1 (3)

y = Sday(t) − j
k − j

= p2 cos[α(t − tr )] + q2 (4)

where x and y are the dimensionless LST and NSSR, respec-
tively, r and s are set as 325 and 275 K, respectively, and k
and j are set as 1200 and 0 W/m2, respectively. p1, q1, p2,
and q2 are parameters of the diurnal LST and NSSR cycles.

For a day of clear skies, it is assumed that β in (1) is equal
to α in (2). The difference between maximum LST time tm
and maximum NSSR time tr is calculated as follows:

#t = tm − tr . (5)

An elliptical relationship exists between LST and NSSR
during the daytime on fully cloud-free days, which can be
expressed as follows [33]:
p2

2(x −q1)
2−2 p1 p2[cos(β · #t)](x −q1)(y−q2)+ p2

1(y−q2)
2

= [p1 p2 sin(β · #t)]2. (6)

For a given atmospheric condition, p1, q1, p2, q2, β, and
#t are constants for a particular soil type and soil moisture
content. The ellipse parameters, including the center horizontal
coordinate (x0), the center vertical coordinate (y0), the semi-
major axis (a), the semiminor axis (b), and the rotation
angle (θ), can be calculated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = q1
y0 = q2

θ = 1
2

cot−1
[

p2
1 − p2

2

2 p1 p2 cos(β · #t)

]

a = p1 sin(β · #t)
b = p2 sin(β · #t).

(7)
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Fig. 2. Diagram of the elliptical relationship between the diurnal cycles
of the LST and NSSR. x0, y0, a, and θ represent the horizontal and
vertical coordinates of the ellipse center, the semimajor axis, and the rota-
tion angle, respectively. (x j , y j ) represent the LST and NSSR at time j
( j = 1, 2, 3, 4, 5).

The elliptical relationship varies with different soil types and
soil moisture contents under a given atmospheric condition.
Furthermore, there is an elliptical relationship between the
diurnal LST and NSSR cycles, as shown in Fig. 2. A stepwise
regression method is used to determine the parameters for
SSM retrieval. With the simulated data, it is found that the four
ellipse parameters (x0, y0, a, and θ) are the most significant
for the estimation of SSM. However, the center horizontal
coordinate x0 and the rotation angle θ have a strong linear
relationship [38].

Therefore, the newly developed SSM retrieval model can be
written as follows [33], [38]:

SSM = n1 × y0 + n2 × a + n3 × lnθ + n0 (8)

where SSM is the daily-averaged SSM (m3/m3), y0, a, and θ ,
which, respectively, represent the vertical coordinates of the
ellipse center, the semimajor axis and the rotation angle, are
the ellipse parameters for the elliptical relationship between
the diurnal LST and NSSR cycles, and ni (i = 0, 1, 2, 3)
is the model coefficients (m3/m3) that can be simulated
from the CoLM. It should be noticed that elliptical para-
meters and model coefficients will change with different
days.

B. Determination of LST

The diurnal cycles of LST and NSSR are prerequisite infor-
mation for the elliptical SSM retrieval model. As determined
in [43] and [44], LST can be expressed as follows based on
the split-window algorithm [45]:

Ts = a0 +
(

a1 + a2
1 − ε

ε
+ a3

δε

ε2

)
TIR1 + TIR2

2

+
(

a4 + a5
1 − ε

ε
a6

δε

ε2

)
TIR1TIR2

2
(9)

where TIR1 and TIR2 are the top-of-atmosphere (TOA)
brightness temperatures (K ) measured in channels IR1 and
IR2; ε is the averaged emissivity from channels IR1 and
IR2 of FY-2E which can be estimated from the LSEs
in channels 31 and 32 of Moderate Resolution Imaging
Spectroradiometer (MODIS) provided by the MODIS LST
product MOD11A1; δε is the emissivity difference between
the two thermal infrared channels IR1 and IR2; and
a0–a6 are unknown coefficients that can be derived from
the simulated data through statistical regression methods for

each viewing zenith angle and subrange. The University of
California Santa Barbara, Santa Barbara, CA, USA, spectral
database was used to determine the emissivity relationship
between the S-VISSR channels and the MODIS 31 and
32 channels [44].

C. Determination of NSSR

NSSR is mainly calculated using downward
surface shortwave radiation (DSSR), upward surface
shortwave radiation (USSR), and land surface albedo as
follows [46], [47]:

Sn = R↓
s − R↑

s = (1 − r)R↓
s (10)

R↓
s = G × cos (SZA) × dr × τ (11)

dr = 1.00011 + 0.034221 cos(α) + 0.00128 sin(α)

+0.000719 cos(2α) + 0.000077 sin(2α). (12)

According to Tang et al.[43] and Li et al.[48],
the atmospheric water vapor content (WVC) can be derived
from the transmittance ratio of the split-window channels.
The relationship between the transmittance ratio and WVC
is determined by synthetic regression on the simulated data
from MODTRAN with aerosol model (VIS = 23 km, rural
model)

WVC = C1 + C2 × τIR2

τIR1
(13)

τIR2

τIR1
= εIR1

εIR2
×

∑N
k=1 (TIR1,k − TIR1)(TIR2,k − TIR2)

∑N
k=1 (TIR1,k − TIR1)

2 (14)

C1 = 28.104 − 14.996
cos(VZA)

+ 3.211
cos2 (VZA)

(15)

C2 = −28.056 + 14.954
cos(VZA)

− 3.206
cos2 (VZA)

(16)

α = 2π(DOY − 1)

365
(17)

where Sn is the NSSR (W/m2); R↓
S and R↑

S represent the
DSSR (W/m2) and USSR (W/m2), respectively; r is the land
surface albedo; G is the solar constant (1367 W/m2); SZA
is the solar zenith angle; dr is the earth–sun distance factor;
τ is the atmospheric transmissivity; DOY denotes the day of
year; WVC is the water vapor content (g/cm2); τIR1 and τIR2
are the atmospheric transmittances in channels IR1 and IR2;
εIR1 and εIR2 are the emissivities in channels IR1 and IR2;
and T IR1 and T IR2 are the TOA mean channel brightness
temperatures (K ) of the N neighboring pixels in channels
IR1 and IR2, respectively.

D. Elliptical-New SSM Retrieval Model

1) Improvement With FVC: The elliptical-original model
was constructed for bare soil conditions with coefficients that
do not reflect conditions with varying FVC. The coefficients
for bare soil are used for SSM estimates under conditions
where the FVC is less than 0.7. However, the FVC is tem-
porally variable, and thus, using the same set of coefficients
to derive the SSM under different vegetation conditions can
produce errors. Accordingly, it is necessary to account for FVC
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Fig. 3. Flowchart of the development of the daily-averaged SSM retrieval
model.

to optimize the elliptical-original model for use at temporal
and spatial scales.

The FVC can be derived from a widely used dimidiate
pixel model, a linear pixel unmixing model, and a MODIS
normalized difference vegetation index (NDVI) product
(16-day MOD13Q1) [49], [50]. This derivation assumes that
each pixel can be decomposed into a linear combination of
bare soil (NDVIsoil) and full vegetation (NDVIveg) as follows:

FVC = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) (18)

where FVC is the fractional vegetation cover, NDVI is the
normalized difference vegetation index, NDVIsoil is the NDVI
of the bare soil, and NDVIveg is the NDVI of the vegetation.
Due to inevitable noise, cumulative probabilities of 0.5%
and 99.5% are taken for NDVIsoil and NDVIveg, respectively,
in this paper.

2) Experimental Procedure: Fig. 3 depicts the process of
using the elliptical-new SSM retrieval model with geostation-
ary satellite data in detail. The data for CoLM simulation are
similar to those used in [22] and [51]. The initializations of
soil textures about the soil texture classification scheme of
the Food and Agriculture Organization are computed from
Bonan [52]. Besides, the land cover is initialized according
to the United States Geological Survey vegetation categories
and FVC, which is set at 0–0.7 for the study area. Atmospheric
forcing data are used to drive the CoLM, as mentioned earlier
in the reference to the simulated data. As indicated in the
flowchart, FVC is input into the CoLM along with atmospheric
forcing data to directly produce simulated data, including the
diurnal cycle of LST, the diurnal cycle of NSSR, and the
daily-averaged SSM, to construct the database. The model

Fig. 4. Measured wind speed and five sets of simulated wind speeds.

TABLE III

VALIDATION SSM RETRIEVALS WITH DIFFERENT WIND SPEEDS

coefficients are then calculated from the simulated daily-
averaged SSM and diurnal cycles of LST and NSSR. Similarly,
based on the geostationary satellite data, elliptical relation-
ships are built with the ellipse parameters. The SSM can be
successfully produced with the model coefficients and ellipse
parameters.

IV. RESULTS AND ANALYSIS

A. Effect of Atmospheric Forcing Data on the
Elliptical-New SSM Model

The model coefficients simulated from the CoLM are based
on atmospheric forcing data. However, atmospheric forcing
varies temporally and spatially. Therefore, atmospheric forcing
data will affect SSM retrieval. Wind speed, air temperature,
and relative humidity are the atmospheric forcing variables,
most likely to affect the accuracy of the elliptical-new SSM
retrieval model. In this paper, the model errors from wind
speed, air temperature, and relative humidity are analyzed.

1) Effect of Wind Speed on the Elliptical-New SSM Retrieval
Model: Wind speed has a strong diurnal cycle, with a peak in
the afternoon (2 PM) over most land areas [53], [54]. While
controlling other atmospheric forcing variables, diurnal LST,
diurnal NSSR, and daily SSM are simulated under different
wind speeds based on the CoLM. Taking the atmospheric
forcing data on DOY 217 in 2010 as an example, different
diurnal wind speeds are set based on measured wind speed,
as shown in Fig. 4.

After calculating the model coefficients with different wind
speeds, the SSM retrievals are validated with in situ mea-
surements, as shown in Table III. The accuracy of the wind
speed data affects SSM retrieval. If the uncertainty of wind
speed is less than 1 m/s, the accuracy of the result might
not be significantly affected. As the uncertainty of wind
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Fig. 5. Measured air temperature and five sets of simulated air temperature.

TABLE IV

VALIDATION SSM RETRIEVALS WITH DIFFERENT AIR TEMPERATURES

speed increases, the SSM retrievals will become increasingly
inaccurate, with large uncertainties at wind speed uncertainties
in excess of 3 m/s.

2) Effect of Air Temperature on the Elliptical-New SSM
Retrieval Model: Air temperature has a strong diurnal cycle,
with a peak in the afternoon over most land areas. Taking
the DOY 217 in 2010 as an example, simulated data are
produced based on the CoLM with different diurnal air tem-
peratures, as shown in Fig. 5. The SSM retrievals are validated
with in situ measurements, as shown in Table IV. As the
uncertainty of air temperature increases, the retrievals display
larger errors. As the uncertainty of air temperature reaches
a threshold, the error of SSM retrieval tends to be stable
within 0.02 m3/m3. Therefore, the retrievals are less sensitive
to uncertainties in air temperature than they are to those in
wind speed.

3) Effect of Relative Humidity on the Elliptical-New SSM
Retrieval Model: As with wind speed and air temperature,
relative humidity has a strong diurnal cycle, but with mini-
mum value in the afternoon. Setting relative humidity III as
the simulated series that is closest to the measured relative
humidity, the relative humidity I and V series are the series
with the greatest error in this paper, as shown in Fig. 6.
The greater the uncertainty of relative humidity, the larger is
the error of the SSM retrievals. As the uncertainty exceeds
20%, the accuracy of the elliptical-new SSM retrieval model is
minimized. However, a relative humidity value that is higher
than the true value will cause more error than one that is
lower than the true value. Thus, the SSM retrievals obtained
from relative humidity I are less accurate than those obtained
from relative humidity V. From relative humidities I to III,
the error of SSM retrieval increases by 0.018 m3/m3 as shown
in Table V. Overall, the retrievals are less sensitive to error

Fig. 6. Measured relative humidity and five sets of simulated relative
humidity.

TABLE V

VALIDATION SSM RETRIEVALS WITH DIFFERENT RELATIVE HUMIDITIES

in relative humidity than to error in air temperature or wind
speed.

B. Analysis of Model Sensitivity to LST and NSSR

To evaluate the impacts of uncertainties in LST and NSSR
on SSM retrieval, a sensitivity analysis of LST and NSSR is
performed in this paper. Gaussian randomly distributed errors
of 1, 2, and 3 K [errorLST ∼ N(0, 12), errorLST ∼ N(0, 22),
and errorLST ∼ N(0, 32)] are systematically added to the LST.
Then, SSM is estimated by using the elliptical-new SSM
retrieval model with the noised LST data. Compared with the
actual SSM, the root-mean-square error (RMSE) is 0.03 m3/m3

for errorLST ∼ N(0, 12), 0.04 m3/m3 for errorLST ∼
N(0, 22), and 0.06 m3/m3 for errorLST ∼ N(0, 32).
As shown in Fig. 7(a), the correlation coefficient (R) is
0.91 for errorLST ∼ N(0, 12), 0.81 for errorLST ∼ N(0, 22),
and 0.60 for errorLST ∼ N(0, 32). Similarly, we add Gaussian
randomly distributed errors of 10, 20, and 30 W/m2 to the
NSSR [errorNSSR ∼ N(0, 102), errorNSSR ∼ N(0, 202), and
errorNSSR ∼ N(0, 302)]. Fig. 7(b) reveals that the RMSE is
0.02 m3/m3 and that the R value is 0.92 for errorNSSR ∼
N(0, 102). For errorNSSR ∼ N(0, 202), the RMSE is
0.03 m3/m3 and R is 0.81. For errorNSSR ∼ N(0, 302),
the RMSE is 0.05 m3/m3 and R is 0.67. Errors from a
Gaussian random distribution are added to the diurnal LST
and NSSR for all vegetation conditions and land cover types,
and therefore, the results will display the largest possible
sensitivity.

C. Validation and Analysis With In Situ Measurements

To compare the elliptical-original model and the
elliptical-new model and validate their feasibilities,
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Fig. 7. Validation of the estimated SSM after adding Gaussian randomly
distributed error. (a) Added error to the LST. (b) Added error to the NSSR.

in situ daily-averaged SSM measurements are regarded as
references for an evaluation of cloud-free days between
July and October in 2010. In this model, SSM is estimated
from the elliptical relationship between the diurnal cycle of
LST and NSSR. For the elliptical relationship between diurnal
LST and NSSR cycles, there should be one diurnal LST-NSSR
ellipse for each given location for a cloud-free day. When the
weather changes (e.g., clouds occur or last for a while or even
rains) during the daytime, LST-NSSR and SSM can also be
affected. In this case, the LST-NSSR relationship may not
be elliptical, probably leading to the inapplicability of the
proposed model. Otherwise, if the LST-NSSR relationship
is still ellipse with weather variation, the ellipse model
would be applicable. In this case, the model is based on
fully cloud-free days to avoid intermittent cloudy or rainy
conditions. However, more in depth investigation should be
conducted to further explore the effects of clouds or rain
events on the estimation of SSM with the proposed model.
In addition, under situation of one diurnal LST-NSSR ellipse
for each given location for a cloud-free day, the SSM retrieval
should be daily averaged. In situ daily-averaged SSM can
reflect to some extent the diurnal variation of soil moisture
content. Hence, it is feasible to evaluate the model outputted
SSM with daily-averaged in situ measurements.

When comparing the SSM retrieval from the elliptical-
original model with the in situ measurements, an R value
of 0.528, an RMSE of 0.178 m3/m3, and a bias of 0.031 m3/m3

are obtained. The elliptical-new model possesses better

Fig. 8. Validation data for the elliptical-original (triangle) and elliptical-new
(rectangle) models with in situ measurements.

TABLE VI

RETRIEVAL RESULTS AND GROUND MEASUREMENT AT NST_15

accuracy, with an R value of 0.655, an RMSE of 0.109 m3/m3,
and a bias of 0.006 (m3/m3). The results in Fig. 8 reveal a good
correlation between the retrieved and ground measurements.
The satellite SSM retrievals in July are higher than the ground
measurements, potentially due to atmospheric data affecting
the model when SSM is high. The atmospheric forcing data,
including wind speed, used to drive the CoLM might affect
the model coefficients causing the SSM retrievals to be higher
than the ground measurements.

1) Analysis of the Error: Station NST_04 is situated in
marshland. Station NST_13 is located in high vegetation-
cover conditions. The FVC at NST_13 can sometimes exceed
70%, which is too high to obtain an accurate SSM retrieval
result [51].

Station NST_15 is situated along a hill slope with a
large elevation difference. Heterogeneous surfaces might cause
errors in the estimation of LST and NSSR. The elliptical
SSM retrieval model is based on the synergistic use of diurnal
cycles of LST and NSSR, and thus, errors in the LST and
NSSR estimates will influence the SSM estimation. Table VI
reveals that the SSM estimation will contain larger error as the
LST estimate becomes less accurate. For example, the SSM
estimate is more accurate on 20 July than on any other day
because of the high accuracy of the LST retrieval on this day.
Furthermore, if the LST retrieval is higher than the true value,
the smaller ellipse rotation angle will reduce the SSM retrieval
value relative to the in situ measurement, as is evidenced
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Fig. 9. Validation using the in situ measurements.

Fig. 10. SSM trends in comparison with in situ measurements.

in Table VI. Thus, the ellipse-new model is not suitable for
station NST_15.

Due to the high uncertainties from LST, the ellipse-new
model is not suitable for stations NST_04, NST_13, and
NST_15. Therefore, a subset of ground-based stations will be
used for validation.

2) Validation With Subset of Ground-Based Stations:
Excluding the stations NST_04, NST_13, and NST_15, the
in situ measurements are used for the validation process.
As shown in Fig. 9, the results are much more effective when
considering FVC, as evidenced by an R of 0.845, an RMSE
of 0.064 m3/m3, and a bias of 0.017 m3/m3. These results
demonstrate that using the elliptical-original model to derive
the SSM with the same set of coefficients for bare soil will
enlarge the error and generate an R of 0.620, an RMSE
of 0.146 m3/m3, and a bias of 0.038 m3/m3. From Fig. 9,
it can be seen that the discrepancies between original model
and in situ measurements get smaller when the FVC is
accounted in the new retrieval model. In particular, we label
the samples that has large bias with original model, while has
better agreement with in situ measurements when the FVC is
accounted in the new retrieval model. To further compare the
elliptical-original and elliptical-new models, the SSM trends
and the field-scaled SSM measurements are shown in Fig. 10.
Regardless of whether SSM is derived from the original- or
elliptical-new model, it exhibits the same trend as the ground
SSM measurements. In addition, it is evident that the SSM
retrievals using the elliptical-new model (red line) are much
more similar to the field-scaled SSM measurements (blue line)
than are the retrievals based on the original model. Therefore,
to precisely derive SSM, different vegetation conditions must

be considered to optimize the applicability of the model at
temporal and spatial scales.

V. SUMMARY AND CONCLUSION

SSM, which plays important roles in agricultural appli-
cations, environmental and climate systems, and weather
forecasting and carbon/nitrogen cycling, is a key land sur-
face variable in the earth system. Due to the capability
of geostationary satellites to acquire observations more fre-
quently relative to polar orbiting satellites, methods of greater
practicality and precision can be developed. In this paper,
we generate an improved and novel SSM retrieval model based
on the synergistic use of diurnal cycles of LST and NSSR.
Previous investigations have demonstrated the feasibility of
the elliptical-original SSM retrieval model for bare soils in
sparsely vegetated areas where the FVC varies from 0 to 0.7.
However, the coefficients of the elliptical-original model are
incapable of distinguishing different vegetation conditions.
In this paper, the elliptical-new model is optimized by account-
ing for the influences of different FVC values. First, the diurnal
cycles of LST, which are estimated using the generalized split-
window algorithm [43]–[45], and of NSSR [46] are calculated.
Second, FVC is calculated based on a dimidiate pixel model
and a MODIS NDVI product to optimize the model for the
estimation of SSM at the regional scale. Subsequently, SSM
retrieval is estimated using the elliptical-new model while
considering the impacts of different FVC values. Finally,
a preliminary validation is conducted by employing in situ
ground measurements for the counties of Maqu, Luqu, and
Ruoergai, which are located to the east of the SAYR. When
comparing the original- and elliptical-new model, stronger
relationship between the ground measurements and the
FY-2E-derived SSM using the elliptical-new model is reported,
with an R of 0.845, an RMSE of 0.064 m3/m3, and a bias of
0.017 m3/m3. The SSM retrieval results using the elliptical-
new model are more similar to the field-scaled SSM measure-
ments than are those obtained using the original model. The
FY-2E-derived SSM based on the elliptical-new model exhibits
less error than does the SSM estimated from the elliptical-
original model. Therefore, the preliminary validation using
in situ measurements confirms that it is necessary to consider
the impacts of FVC for improved SSM retrieval.

The sensitivity of the model to atmospheric forcing is
investigated. The retrievals have larger biases when the wind
speed, air temperature, or humidity has large uncertainties. The
ellipse model is most sensitive to wind speed, which indicates
a requirement for high-accuracy wind speed measurements to
estimate soil moisture with the proposed model.

In the future studies, we will obtain LST and NSSR by
employing high-quality geostationary satellite data. Further-
more, due to the observation of several errors observed during
FVC estimation, including errors in the determination of the
angle and some bidirectional reflectance distribution function
effects from ±55° of the MODIS threshold, the accuracy of
FVC retrieval will be improved and validated. Along with a
point-scale validation, cross-comparisons with other existing
SSM products will be conducted in the future studies.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: SSM RETRIEVAL USING OPTICAL/THERMAL INFRARED REMOTE SENSING DATA 9

ACKNOWLEDGMENT

The authors would like to thank the Faculty of Geo-
Information Science and Earth Observation, University of
Twente (ITC), Enschede, The Netherlands, Chinese Academy
of Science–Cold and Arid Regions Environmental and Engi-
neering Research Institute (CAS-CAREERI), Lanzhou, China,
International Soil Moisture Network, Vienna, Austria, and
National Satellite Meteorological Center China Meteorological
Administration (NSMC), Beijing, China, for providing the soil
moisture measurements data, meteorological data, and FY-2E
data.

REFERENCES

[1] M. H. Cosh, T. J. Jackson, R. Bindlish, and J. H. Prueger, “Watershed
scale temporal and spatial stability of soil moisture and its role in
validating satellite estimates,” Remote Sens. Environ., vol. 92, no. 4,
pp. 427–435, 2004.

[2] W. A. Dorigo et al., “Evaluation of the ESA CCI soil moisture product
using ground-based observations,” Remote Sens. Environ., vol. 162,
pp. 380–395, Jun. 2015.

[3] D. R. Legates et al., “Soil moisture: A central and unifying theme in
physical geography,” Prog. Phys. Geogr., vol. 35, no. 1, pp. 65–86,
2011.

[4] J. Peng, A. Loew, O. Merlin, and N. E. C. Verhoest, “A review of spatial
downscaling of satellite remotely sensed soil moisture,” Rev. Geophys.,
vol. 55, no. 2, pp. 341–366, 2017.

[5] Z.-L. Li et al., “A review of current methodologies for regional evap-
otranspiration estimation from remotely sensed data,” Sensors, vol. 9,
no. 5, pp. 3801–3853, 2009.

[6] R. Zhang, J. Tian, H. Su, X. Sun, S. Chen, and J. Xia, “Two improve-
ments of an operational two-layer model for terrestrial surface heat flux
retrieval,” Sensors, vol. 8, no. 10, pp. 6165–6187, 2008.

[7] L. He, J. M. Chen, J. Liu, S. Bélair, and X. Luo, “Assessment of
SMAP soil moisture for global simulation of gross primary production,”
J. Geophys. Res. Biogeosci., vol. 122, no. 7, pp. 1549–1563, 2017.

[8] W. B. Anderson et al., “Towards an integrated soil moisture
drought monitor for East Africa,” Hydrol. Earth Syst. Sci., vol. 16,
pp. 2893–2913, Aug. 2012.

[9] E. Meyles, A. Williams, L. Ternan, and J. Dowd, “Runoff generation
in relation to soil moisture patterns in a small Dartmoor catchment,
Southwest England,” Hydrol. Process., vol. 17, no. 2, pp. 251–264, 2003.

[10] J. Peng, A. Loew, S. Zhang, J. Wang, and J. Niesel, “Spatial downscaling
of satellite soil moisture data using a vegetation temperature condition
index,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 558–566,
Jan. 2016.

[11] G. P. Petropoulos, G. Ireland, and B. Barrett, “Surface soil moisture
retrievals from remote sensing: Current status, products & future trends,”
Phys. Chem. Earth, A/B/C, vols. 83–84, pp. 36–56, Mar. 2015.

[12] N. Sánchez, J. Martínez-Fernández, and A. González-Zamora, “A com-
bined approach with SMOS and modis to monitor agricultural drought,”
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLI-B8,
pp. 393–398, Jul. 2016.

[13] L. Brocca, F. Melone, T. Moramarco, and R. Morbidelli, “Spatial-
temporal variability of soil moisture and its estimation across scales,”
Water Resour. Res., vol. 46, no. 2, p. W02516, 2010.

[14] J. Peng, J. Niesel, A. Loew, S. Zhang, and J. Wang, “Evaluation of
satellite and reanalysis soil moisture products over Southwest China
using ground-based measurements,” Remote Sens., vol. 7, no. 11,
pp. 15729–15747, 2015.

[15] J. Peng and A. Loew, “Recent advances in soil moisture estimation from
remote sensing,” Water, vol. 9, no. 7, p. 530, 2017.

[16] T. Jagdhuber, I. Hajnsek, A. Bronstert, and K. P. Papathanassiou, “Soil
moisture estimation under low vegetation cover using a multi-angular
polarimetric decomposition,” IEEE Trans. Geosci. Remote Sens., vol. 51,
no. 4, pp. 2201–2215, Apr. 2013.

[17] T. Jagdhuber, I. Hajnsek, and K. P. Papathanassiou, “An iterative gener-
alized hybrid decomposition for soil moisture retrieval under vegetation
cover using fully polarimetric SAR,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 8, no. 8, pp. 3911–3922, Aug. 2015.

[18] F. Mattia, G. Satalino, V. R. N. Pauwels, and A. Loew, “Soil mois-
ture retrieval through a merging of multi-temporal L-band SAR data
and hydrologic modelling,” Hydrol. Earth Syst. Sci., vol. 13, no. 3,
pp. 343–356, 2009.

[19] P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical
approach for deriving all-weather soil moisture content using combined
satellite and meteorological data,” ISPRS J. Photogramm. Remote Sens.,
vol. 131, pp. 40–51, Sep. 2017.

[20] W. Zhao, A. Li, and T. Zhao, “Potential of estimating surface soil
moisture with the triangle-based empirical relationship model,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 11, pp. 6494–6504, Nov. 2017.

[21] L. He, J. M. Chen, and K. S. Chen, “Simulation and SMAP observation
of sun-glint over the land surface at the L-band,” IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 5, pp. 2589–2604, May 2017.

[22] L. Brocca et al., “Soil moisture estimation through ASCAT and AMSR-
E sensors: An intercomparison and validation study across Europe,”
Remote Sens. Environ., vol. 115, no. 12, pp. 3390–3408, 2011.

[23] A. Loew and F. Schlenz, “A dynamic approach for evaluating coarse
scale satellite soil moisture products,” Hydrol. Earth Syst. Sci., vol. 15,
pp. 75–90, Jan. 2011.

[24] C.-H. Su, D. Ryu, R. I. Young, A. W. Western, and W. Wagner,
“Inter-comparison of microwave satellite soil moisture retrievals over
the Murrumbidgee Basin, southeast Australia,” Remote Sens. Environ.,
vol. 134, pp. 1–11, Jul. 2013.

[25] N. Wanders et al., “Observation uncertainty of satellite soil moisture
products determined with physically-based modeling,” Remote Sens.
Environ., vol. 127, pp. 341–356, Dec. 2012.

[26] W. Zhao and A. Li, “A comparison study on empirical microwave soil
moisture downscaling methods based on the integration of microwave-
optical/IR data on the Tibetan Plateau,” Int. J. Remote Sens., vol. 36,
nos. 19–20, pp. 4986–5002, 2015.

[27] D. Entekhabi et al., “The soil moisture active passive (SMAP) mission,”
Proc. IEEE, vol. 98, no. 5, pp. 704–716, May 2010.

[28] A. Colliander et al., “Validation and scaling of soil moisture in a semi-
arid environment: SMAP validation experiment 2015 (SMAPVEX15),”
Remote Sens. Environ., vol. 196, pp. 101–112, Jul. 2017.

[29] D. Zhang and G. Zhou, “Estimation of soil moisture from optical and
thermal remote sensing: A review,” Sensors, vol. 16, no. 8, p. 1308,
2016.

[30] D. Zhang, R. Tang, B.-H. Tang, H. Wu, and Z.-L. Li, “A simple
method for soil moisture determination from LST–VI feature space using
nonlinear interpolation based on thermal infrared remotely sensed data,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 2,
pp. 638–648, Feb. 2015.

[31] D. Zhang et al., “Validation of a practical normalized soil moisture
model with in situ measurements in humid and semi-arid regions,” Int.
J. Remote Sens., vol. 36, nos. 19–20, pp. 5015–5030, 2015.

[32] P. Leng, X. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for
estimating surface soil moisture using combined optical and thermal
infrared data,” Int. J. Appl. Earth Observ. Geoinf., vol. 52, pp. 338–348,
Oct. 2016.

[33] P. Leng, X. Song, Z.-L. Li, J. Ma, F. Zhou, and S. Li, “Bare surface
soil moisture retrieval from the synergistic use of optical and thermal
infrared data,” Int. J. Remote Sens., vol. 35, no. 3, pp. 988–1003, 2014.

[34] P. J. Wetzel, D. Atlas, and R. H. Woodward, “Determining soil mois-
ture from geosynchronous satellite infrared data: A feasibility study,”
J. Climate Appl. Meteorol., vol. 23, no. 3, pp. 375–391, 1984.

[35] W. Zhao et al., “Determination of bare surface soil moisture from
combined temporal evolution of land surface temperature and net surface
shortwave radiation,” Hydrol. Process., vol. 27, no. 19, pp. 2825–2833,
2013.

[36] P. Leng, X. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous
surface soil moisture dataset using combined optical and thermal infrared
images,” Hydrol. Process., vol. 31, no. 6, pp. 1398–1407, 2017.

[37] H. Tian et al., “Evidence for a recent warming and wetting in the source
area of the Yellow River (SAYR) and its hydrological impacts,” J. Geogr.
Sci., vol. 25, no. 6, pp. 643–668, 2015.

[38] Y. Wang, X. Song, P. Leng, C. Sun, and X. Liu, “Estimation of surface
soil moisture using FengYun-2E (FY-2E) data: A case study over the
source area of the Yellow River,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2016, pp. 4327–4330.

[39] D. Ji and Y. Dai, “The common land model (CoLM) technical guide,”
College Global Change Earth Syst. Sci., Beijing Normal Univ., Beijing,
China, Tech. Rep., 2010. [Online]. Available: http://globalchange.
bnu.edu.cn/download/doc/CoLM/CoLM_Technical_Guide.pdf

[40] S. Luo, S. Lü, and Y. Zhang, “Development and validation of the frozen
soil parameterization scheme in Common Land Model,” Cold Regions
Sci. Technol., vol. 55, no. 1, pp. 130–140, 2009.

[41] Y.-M. Song, W.-D. Guo, and Y.-C. Zhang, “Simulation of latent heat
flux exchange between land surface and atmosphere in temperate mixed
forest and subtropical artificial coniferous forest sites in China by
CoLM,” Plateau Meteorol., vol. 8, no. 5, pp. E60429–E60433, 2008.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[42] G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval
from combined mid-infrared and thermal infrared data of MSG-
SEVIRI,” Remote Sens. Environ., vol. 105, no. 4, pp. 326–340, 2006.

[43] B.-H. Tang et al., “Generalized split-window algorithm for estimate of
land surface temperature from Chinese geostationary FengYun meteoro-
logical satellite (FY-2C) Data,” Sensors, vol. 8, pp. 933–951, Sep. 2008.

[44] X. Song et al., “Estimation of land surface temperature using FengYun-
2E (FY-2E) data: A case study of the source area of the Yellow River,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8,
pp. 3744–3751, Aug. 2017.

[45] Z. Wan and J. Dozier, “A generalized split-window algorithm for
retrieving land-surface temperature from space,” IEEE Trans. Geosci.
Remote Sens., vol. 34, no. 4, pp. 892–905, Jul. 1996.

[46] Y. Wang, X. Song, and R. Wang, “Estimation of net surface shortwave
radiation using FengYun-2E (FY-2E) data on cloud-free days,” J. Univ.
Chin. Acad. Sci., vol. 33, no. 6, pp. 769–774, 2016.

[47] R. Liu, “Evapotranspiration estimated by using Geostationary Meteoro-
logical Satellite data over the source water region of the Yellow River,”
Ph.D. dissertation, Cold Arid Regions Environ. Eng. Res. Inst., Univ.
Chinese Acad. Sci., Gansu, China, 2011.

[48] Z.-L. Li, L. Jia, Z. Su, Z. Wan, and R. Zhang, “A new approach for
retrieving precipitable water from ATSR2 split-window channel data
over land area,” Int. J. Remote Sens., vol. 24, no. 24, pp. 5095–5117,
2003.

[49] Y. Ding et al., “Quantifying the impact of NDVIsoil determination meth-
ods and NDVIsoil variability on the estimation of fractional vegetation
cover in Northeast China,” Remote Sens., vol. 8, no. 1, p. 29, 2016.

[50] G. Gutman and A. Ignatov, “The derivation of the green vegetation frac-
tion from NOAA/AVHRR data for use in numerical weather prediction
models,” Int. J. Remote Sens., vol. 19, no. 8, pp. 1533–1543, 1998.

[51] P. Leng, X. Song, Z. L. Li, Y. Wang, and D. Wang, “Effects of vegetation
and soil texture on surface soil moisture retrieval using multi-temporal
optical and thermal infrared observations,” Int. J. Remote Sens., vol. 36,
nos. 19–20, pp. 4972–4985, 2015.

[52] G. B. Bonan, “A land surface model (LSM version 1.0) for eco-
logical, hydrological, and atmospheric studies: Technical description
and user’s guide,” Nat. Center Atmospheric Res., Boulder, CO, USA,
Tech. Rep. NCAR/TN-417+STR, 1996.

[53] A. M. Hasson, N. I. Al-Hamadani, and A. A. Al-Karaghouli, “Compar-
ison between measured and calculated diurnal variations of wind speeds
in northeast Baghdad,” Solar Wind Technol., vol. 7, no. 4, pp. 481–487,
1990.

[54] A. Dai and C. Deser, “Diurnal and semidiurnal variations in global
surface wind and divergence fields,” J. Geophys. Res. Atmos., vol. 104,
no. D24, pp. 31109–31125, 1999.

Yawei Wang received the B.S. degree in geographic
information system from Sichuan Normal Univer-
sity, Chengdu, China, in 2013, and the M.S. degree
in geographic information system from University
of Chinese Academy of Sciences, Beijing, China,
in 2016. She is currently pursuing the Ph.D. degree
from the Ludwig Maximilian University of Munich,
Munich, Germany.

Her research interests include moisture and energy
fluxes from remote sensing data.

Jian Peng (M’12) received the Ph.D. degree in
earth science from the Max Planck Institute for
Meteorology (MPI-M), Hamburg, Germany.

He was a Research Scientist at the University
of Munich, Munich, Germany, and a Post-Doctoral
Researcher at MPI-M. He is currently a Senior
Researcher with the School of Geography and
the Environment, University of Oxford, Oxford,
U.K. His research interests include the quantitative
retrieval of land surface parameters from remote
sensing data, understanding land-atmosphere inter-

actions using earth system models and observational data, development of
downscaling schemes, quantification of climate change impact on water
resources, estimation of high-resolution land surface water and energy fluxes
from satellite observations, and the investigation of hydrological and climatic
extremes and their impacts on vegetation.

Xiaoning Song (M’04) received the Ph.D. degree in
geographic information system from the Institute of
Remote Sensing Applications, Chinese Academy of
Sciences, Beijing, China, in 2004.

She is currently a Professor with the Uni-
versity of Chinese Academy of Sciences, Bei-
jing. Her research interests include parameters
inversion of land surface temperature, surface
emissivity, surface albedo, leaf area index, net
primary production, evapotranspiration, and soil
moisture.

Pei Leng received the Ph.D. degree in geographic
information system from the University of Chinese
Academy of Sciences, Beijing, China, in 2015.

He is currently with the Key Laboratory of
Agri-Informatics, Ministry of Agriculture/Institute
of Agricultural Resources and Regional Plan-
ning, Chinese Academy of Agricultural Sciences,
Beijing. His research interests include the moisture
and energy fluxes from remote sensing data.

Ralf Ludwig received the Diploma and Ph.D.
degrees in physical geography, remote sensing geol-
ogy and geophysics from the Geography Depart-
ment, Ludwig Maximilian University of Munich
(LMU), Munich, Germany, in 1993 and 1999,
respectively.

He is the Dean of the Faculty of Geosciences and
a Professor of applied physical geography and envi-
ronmental modeling with Department of Geography,
LMU. His research interests include process-based
and spatially distributed hydrological modeling at

the catchment scale, data assimilation and model integration for water
resources, land use and climate change impact assessment from Mediterranean
to subarctic environments, and the energy–environment interface.

Dr. Ludwig is a Steering Committee Member of the Helmholtz Research
School MICMoR and the Spokesperson of the Albertan-Bavarian Energy-
Environment Research Network ABBY-Net. He is the member of the Euro-
pean Geosciences Union, the German Society for Photogrammetry, Remote
Sensing and Geoinformation, and the German Society for Canadian Studies.

Alexander Loew (M’04) received the M.S. degree
in geography and the Ph.D. degree in phys-
ical geography from the Ludwig Maximilian
University of Munich (LMU), Munich, Germany,
in 2001 and 2004, respectively.

He is currently a Full Professor of physical geog-
raphy and microwave remote sensing with the LMU.
His research interests include the derivation of quan-
titative land surface parameters from remote sensing
data, the assimilation of remote sensing data into
climate and land surface process models, and the

evaluation of climate models using observational data.


