
1

Tensor-based Low Rank Graph with Multi-manifold
Regularization for Dimensionality Reduction of

Hyperspectral Images
Jinliang An, Xiangrong Zhang, Senior Member, IEEE, Huiyu Zhou, Licheng Jiao, Fellow, IEEE

Abstract—Dimensionality reduction is an essential task in
hyperspectral image processing. How to preserve the original
intrinsic structure information and enhance the discriminant
ability is still a challenge in this area. Recently, with the
advantage of preserving global intrinsic structure information,
low rank representation has been applied to dimensionality
reduction and achieved promising performance. By exploiting
the sub-manifolds information of the original dataset, multi-
manifold learning is effective in enhancing the discriminant
ability of the processed dataset. In addition, due to the ability
of preserving the spatial neighborhood structure information,
tensor analysis has become a popular technique for hyperspectral
image processing. Motivated by the above analysis, a novel tensor-
based low rank graph with multi-manifold regularization (T-
LGMR) for dimensionality reduction of hyperspectral images
is proposed in this paper. In T-LGMR, a low rank constraint
is employed to preserve the global data structure while multi-
manifold information is utilized to enhance the discriminant
ability and tensor representation is used to preserve the spatial
neighborhood information. Finally, dimensionality reduction is
achieved in the graph embedding framework. Experimental
results on three real hyperspectral datasets demonstrate the
superiority of the proposed method over several state-of-the-art
approaches.

Index Terms—Dimensionality reduction, hyperspectral images
classification, tensor processing, graph embedding.

I. INTRODUCTION

W ITH the development of advanced imaging techniques,
hyperspectral sensors can simultaneously measure hun-

dreds of narrow contiguous bands spanning over the visible-
to-infrared spectrum. Hyperspectral images can provide rich
spatial and spectral information, and have been used in
many fields, such as classification [1], [2], target detection
[3], [4], anomaly detection [5], [6], and others [7], [8]. On
the other hand, hyperspectral images contain overwhelming
spectral bands, which may lead to the curse of dimensionality
especially when the training samples are scarce [9]. And the
high spectral dimensionality may cause significant increase
in the computational time and data storage. Consequently,
dimensionality reduction is an essential task in hyperspectral
images processing. The goal of dimensionality reduction is
to reduce the dimensionality of the feature space while the
desired intrinsic information is preserved.

Popularly used dimensionality reduction methods include
unsupervised method, such as Principal Component Analysis
(PCA) [10], which aims at maximizing the mutual informa-
tion between the original high-dimensional dataset and the
supervised methods, such as Linear Discriminant Analysis

(LDA) [11], which targets at finding a projection matrix to
minimise the trace of the between-class scatter matrix whilst
minimising the trace of the within-class scatter matrix in
the projected subspace simultaneously. In addition, numer-
ous dimensionality reduction methods have been proposed
and achieved promising performance. But how to preserve
the original intrinsic structure information and enhance the
discriminant ability is still a challenge in this area.

The low rank property has been proved to be useful in
preserving global data structures [12]. Recently, low rank rep-
resentation (LRR) [13] based methods have been successfully
applied to hyperspectral images processing [14]–[16]. LRR
aims at finding the lowest rank representation of the data with
an appropriate dictionary. Compared with other representation
methods, such as sparse representation (SR) [17], LRR is
robust against noise and can make full use of the high spectral
correlation of hyperspectral images. Nevertheless, LRR fails
to exploit the local geometrical structures information and this
may degrade the performance in some applications.

Researchers have pointed out that the human brain rep-
resents the real world’s perceptual stimuli in a manifold
way and encodes high dimensional signals in an intrinsically
low dimensional structure [18]. Based on this theory, many
manifold learning methods which can preserve global or local
geometrical properties of the original input data have been
proposed for dimensionality reduction [19], classification [20]
and other applications [21]. Among these manifold based
methods, the most well-known ones are isometric feature
mapping (ISOMAP) [22], local linear embedding (LLE) [23]
and Laplacian Eigenmap [24]. He et al. [25] proposed the
Locality Preserving Projections (LPP), which is a linearization
method derived from the Laplacian Eigenmap by preserving
the local similarity between data points. But classical LPP is
an un-supervised method which does not use the class label
information, so the discriminability of the projection matrix
derived from LPP is limited.

By presenting each data point as a vertex and regarding
the similarity of pairwise data as the corresponding edges
which link vertex pairs, graph based methods have been
successfully applied in dimensionality reduction [26]. In [27],
a Laplacian regularized collaborative graph-based discriminant
analysis (LapCGDA) framework was proposed. LapCGDA
can offer collaborative representation and exploit the intrinsic
geometric information by laplacian regularization. Different
from Euclidean distance which is usually used to evaluate
the similarity between two vectors, a graph-based discriminant
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Fig. 1. Vector- and tensor-based representations of the original tensor dataset.

analysis with spectral similarity (GDA-SS) measurement was
proposed in [28]. To jointly utilize low rank and sparse
properties of the original dataset, a sparse and low rank graph-
based discriminant analysis (SLGDA) method was proposed in
[29]. Furthermore, two kernel extension methods of SLGDA,
the classical kernel SLGDA (cSLGDA) and Nystrom-based
kernel SLGDA (nSLGDA) [30] were proposed to enhance the
ability of processing complex data with a nonlinear nature.

In general, the methods discussed above assume that the
input samples are in the form of vectors. But in many
applications, the original data is in a higher order tensor form,
such as hyperspectral images and videos. In these cases, we
have to convert the high order tensors into vectors firstly.
But the spatial information which has been proved to be
important for the following processing may be destroyed
during the vectorization. For example, as shown in Fig.1, given
an original tensor dataset with nine classes and four spectral
bands (each color stands for a class and we suppose the four
spectral bands are the same for simplicity). For vector-based
samples, samples 1, 2, 7 and 8 which belong to the same
class may be apart from each other in the sample matrix and
the spatial neighborhood assumption is violated. For tensor-
based samples, the spatial neighborhood information can be
well preserved (see Fig.1).

To address these problems, many tensor-based methods
[31]–[33] have been developed. By employing a powerful
mathematical framework referred to as multilinear algebra,
tensor based techniques have been successfully applied in
the field of hyperspectral image processing. A group based
low rank tensor model (GTLR) [34] was proposed for hyper-
spectral image dimensionality reduction. In GTLR, the non-
local similarity and the low rankness are jointly considered
to obtain the intrinsic structure information of hyperspectral
images. Zhang et al. [31] proposed a patch tensor organization
scheme and developed tensor discriminative locality alignment
(TDLA) to remove redundant information for subsequent clas-
sification. Zhong et al. [35] proposed a tensor based spectral-
spatial feature extraction method for hyperspectral images. The
spectral and spatial features are extracted to generate second-
order feature tensors, and then the local tensor discriminant
analysis (LTDA) framework is employed to achieve dimen-

sionality reduction for the hyperspectral dataset. By employing
the graph bedding framework, a class-aware tensor neigh-
borhood graph and patch alignment (CTNGPA) method was
proposed for hyperspectral images dimensionality reduction
[36]. In CTNGPA, a class-ware tensor neighborhood graph
containing discriminative information is constructed using a
tensor distance criterion. Then a patch alignment framework
is employed to obtain the optimal projection matrix. By
jointly considering the tensor characteristic and the tensor-
based neighborhood information, CTNGPA can simultane-
ously explore both local spectral and spatial information of
the hyperspectral data. Tensor locality preserving projection
(TLPP) was proposed for hyperspectral images classification
[37], which can effectively embed both spatial structures and
spectral information into low-dimensional space simultaneous-
ly by a series of projection matrices trained for each mode of
input samples. In [38], a low rank tensor recovery problem
was formulated by using tensor singular value decomposition
(tSVD), i.e.tensor tubal rank and tensor nuclear norm. Wei et
al. [39] proposed a hierarchical feature learning method called
Stacked Tensor Subspace Learning (STSL) for hyperspectral
image classification. STSL can learn discriminative spectral-
spatial features of the hyperspectral images at different scales.

In summary, exploiting intrinsic structure information and
enhancing the discriminant ability are two important issues in
tensor processing. But in the available tensor-based methods,
these two issues are usually considered separately. In the pro-
posed method, we consider the two issues in one framework,
where the low rank constraint is utilized to exploit the global
structure information whilst the multi-manifold is employed to
enhance the discriminant ability of the processed hyperspectral
dataset.

Jointly considering low rank representation, tensor analysis
and multi-manifold information, a novel tensor-based low rank
graph with multi-manifold regularization for dimensionality
reduction of hyperspectral images is proposed in this paper.
For simplicity, the proposed method is called T-LGMR. In
T-LGMR, the low rank constraint is imposed to keep the
global data structures whilst tensor analysis is employed to
preserve the spatial neighborhood information. Multi-manifold
is utilized to preserve the local geometrical property and
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Fig. 2. Illustration of T-LGMR.

enhance the discriminability. In general, the proposed method
can preserve the local and globe data structure simultaneously
and enhance the discrimination. Compared with the established
approaches, our proposed method has three new contributions:
1) Unlike traditional vector-based methods which treat each
sample as an independent and identically distributed item, the
samples in T-LGMR are represented in a tensor form which
can preserve the original spatial neighborhood information. In
addition, by adopting tensor training samples, only a small
set of the labeled training samples are needed in T-LGMR. 2)
With the assumption that the samples belonging to the same
class lie on a unique sub-manifold, T-LGMR constructs tensor-
based within-class and between-class graphs to characterize
the within-class compactness and the between-class separabil-
ity which make the resulting graphs more discriminative. 3)
Different from the available vector-based graphs, the proposed
tensor-based graph can exploit the geometric information of
tensor samples along the spatial and spectral dimensions,
which makes the resulting graph more informative. In sum-
mary, the learned tensor-based graph jointly utilizes spatial
neighborhoods, discriminative and low rankness information
which capture the local and global structures as well as
the discriminative information simultaneously and make the
resulting graph more robust and discriminative.

The remainder of this paper is organized as follows. In
section II, we introduce the established work related to the
proposed method. The proposed method is discussed in Sec-
tion III. In Section IV, experiments are undertaken to evaluate
the performance of the proposed method. The conclusion is
finally given in Section V.

II. RELATED WORK

In this section, the related work is introduced to illustrate
the theoretical origin and the difference between the proposed
method and the available methods.

A. LPP and Multi-Manifold Discriminant Analysis

1) LPP: LPP aims at preserving the local geometry structure
of the input data by building a graph incorporating neigh-
borhood information. Let X = [x1, x2, · · · , xm] be the input
data, P is a projection matrix which maps the input data to
a low dimensionality space and Y = [y1, y2, · · · , ym] is the
projected data. The objective function is described as follows:

min
∑
i,j

∥yi − yj∥2Wij (1)

where Wij is the weight matrix which can be defined as:

Wij =

{
exp(−∥xi − xj∥2/t) if xi and xj are connected
0 otherwise

(2)
where parameter t > 0. The objective function incurs a
heavy penalty if inputs xi and xj are far apart. Therefore,
minimizing Eq.(1) is an attempt to ensure that if xi and
xj are close, then yi and yj are close as well. This means
the local intrinsic geometrical structure can be preserved in
the low dimensionality subspace. To seek the best solution,
an extra constraint PTXDXTP = I is imposed. Then, the
minimization problem is given as

argmin
P

tr(PTXLXTP )

s.t. PTXDXTP = I
(3)

where L = D − W is the Laplacian matrix, D is a degree
matrix with Dii =

∑
j

Wij . Then the projection matrix P

is given by solving the following generalized eigenvalue
problem:

XLXTP = λXDXTP (4)

2) MMDA: By using sub-manifold and multi-manifold infor-
mation to enhance the discrimination, multi-manifold discrim-
inate analysis (MMDA) was introduced in [40]. In MMDA,
sub-manifold is represented by a within-class graph while
multi-manifold is represented by a between-class graph.
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For the within-class graph, the weight matrix is defined as:

Ww
ij =

{
exp(−∥xi − xj∥2/t) if labels li = lj
0 otherwise

(5)

The within-class graph-preserving criterion is defined as

argmin PTXLwX
TP (6)

where Lw = Dw − Ww is a Laplacian matrix, Dw is
a diagonal degree matrix with Dw

ii =
∑
j

Ww
ij . For the

between-class graph, after calculating the classes’ centers
H = [h̃1, h̃2, · · · , h̃C ], where h̃i is the mean value of the
samples belonging to i-th class, C is the number of classes,
and the weight matrix between the class centers is defined as:

W b
ij = exp(−

∥∥∥h̃i − h̃j

∥∥∥2/t) (7)

The between-class graph-penalizing criterion is defined as

argmax PTHLbH
TP (8)

where Lb = Db − W b is a Laplacian matrix, and Db is a
diagonal degree matrix with Db

ii =
∑
j

W b
ij . The objective

function of MMDA can be expressed as

P = argmax
P

PTHLbH
TP

PTXLwXTP
(9)

The projection matrix P can be obtained by solving the
generalized eigenvalue problem.

Compared with LPP, MMDA can offer more discriminative
information by explicitly considering the sub- and multi-
manifold structures as well as the label information, which is
important for the classification and recognition tasks. Further-
more, in order to further exploit the neighborhood information
of the input data, the MMDA will be extended in a tensor form
in the proposed method.

B. LRR and tensor LRR

1)LRR: In order to capture the global structure of the input
data, Liu et al. [13] proposed the low rank representation and
developed the LRR graph to render the global data structure
by imposing a global low rank constraint.

Given a set of samples X , LRR aims at finding the lowest
rank representation of X with a dedicated dictionary, and in
real applications, X itself is usually used as the dictionary, so
the basic objective function of LRR is as follows:

min
Z

rank(Z)

s.t. X = XZ
(10)

where Z is the low rank coefficient matrix. Due to the
discrete nature of the rank function, it is difficult to solve the
optimization problem shown in Eq. (10). Zhang et al. [41] have
proved that Eq. (10) can be relaxed to a convex optimization
problem as follows:

min
Z

∥Z∥∗
s.t. X = XZ

(11)

where ∥·∥∗ denotes the nuclear norm of a matrix. In a real
application, the observations are often noisy or corrupted. By
adding a noise term, Eq.(11) can be reformulated as

min
Z,E

∥Z∥∗ + λ∥E∥2,1
s.t. X = XZ + E

(12)

where E is the noise in the observation and ∥E∥2,1 =∑n
j=1

√∑m
i=1 ([E]i,j)

2 is ℓ2,1-norm [42]. The parameter λ >

0 is used to compromise the outcome for better optimisation.
2) Tensor LRR: Recently, low rank representation algorithms

have been extended to a tensor form and achieved promising
performance in many applications [43]–[45]. Fu et al. [46]
proposed tensor low rank representation for subspace cluster-
ing which aims at looking for a lowest rank representation
over all the candidates while maintaining the inherent spatial
structures between the samples. The affinity matrix used for
spectral clustering is built from the combination of similarities
along all the spatial directions. In [47], Fu et al. proposed
a tensor based low rank representation and sparse coding-
based (TLRRSC) subspace clustering method. In TLRRSC,
tensor based low rank representation is used in order to obtain
the lowest rank representation of the original dataset along
all the spatial directions and sparse coding is used to learn
a dictionary in the feature space thus the samples can be
represented by a few atoms. TLRRSC can capture the global
structures and the inherent feature information of the data and
provide a robust subspace segmentation for the corrupted data.
Zhang et al. [48] proposed a Low rank Tensor constrained
Multi-view Subspace Clustering (LT-MSC) method. In LT-
MSC, a low rank constraint is imposed on the tensor samples
whilst considering the cross information between the different
views in order to improve the clustering accuracy.

Vector- and tensor-based low rank representation methods
with discriminant criteria have also been published in the
research community. For example, Li et al. [12] proposed a
sparse and low rank graph-based discriminant analysis (SLG-
DA) method. In SLGDA, an informative graph is constructed
by combining both sparsity and low rankness to maintain
global and local structures simultaneously and the discrimi-
nation is improved by introducing a Laplacian graph. Jia et al.
[49] proposed a low rank tensor completion method for action
classification and image recovery. This method integrates the
global low rank and discriminative information by introducing
inter-class and intra-class scatter matrices of tensor samples.

III. PROPOSED METHOD

A. Definitions and Notations

An N -dimensionality array can be represented as an N -
order tensor X ∈ RI1×I2×···×IN , where In (1 ≤ n ≤ N) is
the n-mode dimensionality. The entries of X are represented
as Xi1i2···in···iN , where in (1 ≤ in ≤ In) is the n-mode index.
Before formulating the proposed method, we first introduce
the main definitions and notations used in this paper.

Definition 1: (n-mode vector and n-mode flattening matrix):
The n-mode vector of X is an n-dimensional vector by varying
index in whilst keeping the other indices fixed. Taking all the
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n-mode vectors as columns, the obtained matrix is a n-mode
flattening matrix and denoted by

Xn ∈ RIn×(I1×I2×···In−1×In+1×···×IN ) (13)

Definition 2: (n-mode product): The n-mode produc-
t refers to a tensor X ∈ RI1×···In×···×IN times by
a matrix U ∈ RJ×In , denoted by Y = X × nU ,
where Y ∈ RI1×···×J×···×IN is a tensor with entries
Yi1i2···in−1jin+1···iN =

∑In
in=1 xi1i2···in−1inin+1···iNujin . The

n-mode product is also denoted in terms of the tensor matrix

Y = X × nU ⇔ Yn = UXN (14)

Definition 3: (Kronecker product): The Kronecker product
of matrix A ∈ RI×J by matrix B ∈ RK×L is a matrix denoted
by

Y = A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 (15)

where Y ∈ R(I×K)×(J×L).
Definition 4: (Tucker decomposition): Tucker decomposi-

tion is denoted by

Y = X × 1U1 × 2U2 × · · · × NUN

=
R1∑

r1=1

R2∑
r2=1

· · ·
RN∑

rN=1
xr1r2···rNu1r1 ◦ u2r2 ◦ · · · ◦ uNrN

(16)
where “o” is the outer product of the vector, X ∈
RR1×R2×···×RN is called the core tensor, Un ∈ R In×Rn(1 ≤
n ≤ N) are factor matrices along each mode and Y ∈
RI1×I2×···×IN is an approximate tensor under a certain cri-
terion.

Definition 5: (Tensor Frobenius norm): The Frobenius norm
of tensor X ∈ RI1×I2×···×IN is given by

∥X∥ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2
i1i2···iN (17)

B. Tensor Based Multi-manifold Discriminant Analysis

As discussed above, MMDA can exploit the sub-manifolds
information and enhance the discriminant ability. In this sec-
tion, we extend the MMDA to a tensor form (T-MMDA).

Manifold learning framework is under the basic as-
sumption that the high-dimensionality data lies on a s-
mooth low-dimensionality manifold. Furthermore, for a high-
dimensionality dataset with different classes of objects, each
class lies on a unique manifold which is called sub-manifold
and all the sub-manifolds form a multi-manifold. Let {Xi ∈
RI1×I2×···×IN i = 1, · · · ,M} be a set of tensor samples
belonging to C classes, where M is the number of the training
samples. With these tensor samples, we can construct a tensor-
based within-class graph which characterizes the sub-manifold
or the compactness within a class and a tensor-based between-
class graph which characterizes the multi-manifold or the

separation between different classes. The within-class graph
is constructed as follows:

argmin
Un

M∑
i=1

M∑
j=1

∥Yi − Yj∥2Wij (18)

where Yi=Xi × 1U1 × · · · × NUN is the projected data of Xi

in a low-dimensionality space. Wij is the weight matrix which
is defined as follows:

Wij =

{
exp(−∥Xi −Xj∥2/t) if class label li = lj
0 otherwise

(19)
The between-class graph is defined as

argmax
Un

C∑
i=1

C∑
j=1

∥∥∥Ỹi − Ỹj

∥∥∥2Bij (20)

where Ỹi=X̃i × 1U1 × · · · × NUN is the projected tensor of
X̃i in a low-dimensionality space and X̃i is the mean tensor
of the tensor samples belonging to the i-th class. Bij is the
weight matrix of different classes, which is defined as follows:

Bij = exp(−
∥∥∥X̃i − X̃j

∥∥∥2/t) (21)

The optimization problems shown in Eq. (18) and (20) are
high-order nonlinear programming problems which cannot be
solved by direct matrix transformation and general eigenvalue
decomposition. As discussed in [50], Eq. (18) and (20) can
be solved by applying an iteration scheme. Assuming that
U1, · · · , Un−1, Un+1, · · · , UN are known, we aim at finding
a solution for Un . For Eq. (18), we denote Xi × 1U1 ×
· · · × n−1Un−1 × n+1Un+1 × · · · × NUN by Yn

i and Y n
i is

the flattening matrix of Yn
i . Based on the properties of the

tensor analysis discussed above, Eq. (18) can be reformulated
as follows:

argmin
Un

tr{UnLwU
T
n } (22)

where Lw =
M∑
i=1

M∑
j=1

(Y n
i − Y n

j )(Y n
i − Y n

j )
T
W (i, j). Simil-

iarly, we denote X̃i×1U1×· · ·×n−1Un−1×n+1Un+1×· · ·×
NUN by Ỹn

i and Ỹ n
i is the flattening matrix of Ỹn

i . Eq. (20)
can be reformulated as:

argmin
Un

tr{UnLbU
T
n } (23)

where Lb =
C∑
i=1

C∑
j=1

(Ỹ n
i − Ỹ n

j )(Ỹ n
i − Ỹ n

j )
T
B(i, j). In a

graph embedding framework, the factor matrices Un should
satisfy the following two optimization criteria:

argmin
Un

tr{UnLwU
T
n }

argmax
Un

tr{UnLbU
T
n } (24)

By employing the difference scatter discriminant criterion
[51] [52], the objective function of T-MMDA can be rewritten
as

argmin
Un

tr{Un(Lw − ζLb)U
T
n } (25)
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where ζ is a tuning parameter to balance the effect of within-
class compactness and between-class separation. Here, we set
ζ as 1 following the way shown in [53] [54]. Thus, the optimal
problem of Eq.(25) is reformulated as

argmin
Un

tr{UnLregU
T
n } (26)

where Lreg = Lw − Lb is the regularization graph obtained
by tensor based multi-manifold discriminant analysis.

C. Tensor LRR with Multi-manifold regularization

Let X be an N-order tensor, and the basic objective function
of TLRR is described as follows:

argmin
Xn

N∑
n=1

∥Xn∥∗ + λ∥En∥2,1 (27)

where Xn and En are the n-mode flattening and error matrices
respectively. ℓ2,1-norm encourages the columns of En to be
zero, which means the corruptions are sample-specific, i.e.,
some data vectors are corrupted whilst the others are clean
(this assumption is reasonable in the processing of hyperspec-
tral images). With the property of tensor operations discussed
above, the objective function Eq. (27) can be rewritten as

argmin
Un

N∑
n=1

∥Un∥∗ + λ∥En∥2,1
s.t. Xn = UnGn + En

(28)

where Gn is the n-mode flattening matrix of tensor (X ×
1U1 × · · · × n−1Un−1 × n+1Un+1 × · · · × NUN ). By solving
the optimization problem in Eq. (28), the low rank property of
X can be obtained from Un. In addition, in order to utilize the
sub-manifold and multi-manifold information discussed above,
we incorporate the tensor multi-manifold constraint Eq. (26)
into the TLRR model and the resulting objective function can
be reformulated as follows:

F (U1, U2, · · · , UN )

= argmin
Un

N∑
n=1

∥Un∥∗ + λ∥En∥2,1 + βtr{UnLregU
T
n }

s.t. Xn = UnGn + En

(29)
where λ and β are used to balance the effects of the noise and
the multi-manifold regularization terms. The minimization of
the first term of the objective function is to learn a low rank
factor matrix Un and the low rank representation of tensor
X can be obtained by X × 1U1 × · · · × NUN . The second
term is the error of the low rank representation whilst the third
term is the multi-manifold regularization which encourages the
projected samples lying on the same sub-manifold to gather
together and those in different sub-manifolds to be apart from
each other.

D. Optimization

In this section, the Augmented Lagrange Multiplier (ALM)
method [55] is employed to solve the constrained optimiza-

tion problem Eq.(29). The objective function Eq.(29) can be
rewritten as

F (U1, U2, · · · , UN )

= argmin
Un

N∑
n=1

∥Jn∥∗ + λ∥En∥2,1 + βtr{ZnLregZ
T
n }

s.t. Un = Jn, Un = Zn, Xn = UnGn + En

(30)
The Lagrange function Eq.(30) can be written as

Ln = argmin
N∑

n=1
∥Jn∥∗ + λ∥E∥2,1 + βtr{ZnLregZ

T
n }

+tr[Y T
1 (Xn − UnGn − En)]

+tr[Y T
2 (Un − Jn)] + tr[Y T

3 (Un − Zn)]

+µ
2 (∥Xn − UnGn − En∥2F

+ ∥Un − Jn∥2F + ∥Un − Zn∥2F )
(31)

where Y1, Y2 and Y3 are Lagrange multipliers, µ is the penalty
operator and tr(·) is the trace of a matrix. The optimization
problem Eq. (31) can be solved by updating one variable at a
time with all the remaining variables fixed.

1) Fix all the remaining and update Jn:

Jn = argmin ∥Jn∥∗ +
µ

2

∥∥∥∥Jn − (Un +
Y2

µ
)

∥∥∥∥2
F

(32)

2) Fix all the remaining and update Un:

Un = (XnG
T
n − EnG

T
n + Jn + Zn)

+ 1
µ (Y1G

T
n − Y2 − Y3)(2I +GnG

T
n )

−1 (33)

3) Fix all the remaining and update Zn:

Zn = (Y3 + µUn)(β(Lreg + (Lreg)
T ) + µ)−1 (34)

4) Fix all the remaining and update En:

En = λ∥E∥2,1 +
µ

2
(

∥∥∥∥En − (Xn − UnGn +
Y1

µ
)

∥∥∥∥2
F

(35)

5) Update multipliers Y1, Y2 and Y3 : Y1 = Y1 + µ(Xn − UnGn − En)
Y2 = Y2 + µ(Un − Jn)
Y3 = Y3 + µ(Un − Zn)

(36)

6) Update µ:

µ = min(ρµ0, µmax) (37)

It is noted that, for the application of hyperspeatral image
dimensionality reduction, the tensor training samples are 3-
order tensors, i.e. X training

i ∈ RB1×B2×I3 , 1 ≤ i ≤ M ,
where B1 and B2 are two spatial sizes of tensor samples, I3
is the number of the original spectral bands and M is the
number of the training samples. By stacking all the tensor
samples together, we obtain a 4-order tensor training dataset
X training ∈ RB1×B2×I3×M . Using this dataset, the tensor
low rank representation with the multi-manifold regularization
algorithm is outlined in Algorithm 1.
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Algorithm 1: Tensor low rank decomposition with multi-
manifold regularization for hyperspectral dataset
INPUT: M labeled 3-order tensor training samples {X training

i ∈
RB1×B2×I3 , 1 ≤ i ≤ M}, the parameters λ, β and the maximum
number of the training iterations Tmax.
Initialize Un as identity matrix. Jn = 0, Zn = 0, Y1 = Y2 =
Y3 = 0, µ0 = 10−6, µmax = 106, ρ = 1.1, ε = 10−6.
Stack all M tensor samples to obtain 4-order tensor training
dataset X training ∈ RB1×B2×B3×M .
for t = 1 to Tmax do

for n = 1 to 4 do
calculate Lreg by Eqs. (22), (23) and (26).
update Jn, Un, Zn, En by Eqs. (32)-(35).
update Y1, Y2 and Y3 by Eq. (36).
update µ by Eq. (37).

end for
check convergence: if t > 0 and

∥∥U t
n − U t−1

n

∥∥2

F
< ε for

each n, break
end for
OUTPUT: optimal factor matrices U∗

n (1 ≤ n ≤ 4).

E. The complete graph based dimensionality reduction algo-
rithm

In this section, we introduce the proposed graph based
dimensionality reduction algorithm for hyperspectral images.
Using Algorithm 1, the obtained factor matrices U∗

1 ∈ RB1×B1

and U∗
2 ∈ RB2×B2 reveal the property in the row and column

spaces, U∗
3 ∈ RI3×I3 preserves the spectral property and

U∗
4 ∈ RM×M reflects the joint information of all the training

samples. After having obtained the optimal factor matrices
U∗
n(n = 1, 2, 3, 4), we construct a similarity matrix by

A = U∗
1 ⊗ U∗

2 ⊗ U∗
4 (38)

where A ∈ R(B1×B2×M)×(B1×B2×M).
Then the affinity matrix can be computed by

W = |A|+
∣∣AT

∣∣ (39)

It should be noted that, different from other image-based
applications, such as face recognition, hyperspectral image
processing is a pixel-based task. Here we flatten the tensor
data X ∈ RI1×I2×I3×M into matrix X ∈ RI3×(I1×I2×M) so
as to take into account the contribution of each pixel within
the tensor training data. Finally, using the framework of graph-
embedding for dimensionality reduction [26], we have the
Laplacian matrix by L = D − W , where Dii =

∑
j

Wij and

the resulting projection matrix P ∗ can be obtained by solving
the following optimization problem

P ∗ = argmin
PTP=I

∣∣PTXLXTP
∣∣ (40)

which can be reformulated as an eigenvalue decomposition
problem

XLXTP = ΛP (41)

where Λ is a diagonal eigenvalue matrix. The resulting pro-
jection matrix P ∗ ∈ RI3×K (K < I3) is constructed by the
K eigenvectors corresponding to the K smallest eigenvalues.

To apply the T-LGMR algorithm to the original tensor
hyperspectral dataset, we need to split the original data into
sub-tensors in spatial dimension by fixed window with the

Algorithm 2: Proposed T-LGMR algorithm
INPUT: Original hyperpectral image, tensor training samples
spatial size B1 and B2, M labeled pixel training samples, the
parameters λ, β and the maximum number of the iterations Tmax.
Construct M labeled tensor training samples using fixed window
criterion.
Calculate optimal factor matrices U∗

n by algorithm 1.
Calculate affinity matrix by Eqs. (38) and (39).
Compute the eigenvalue decomposition problem in Eq. (41).
Split original tensor data into sub-tensors using fixed window with
size of B1 ×B2.
Calculate dimensionality reduced sub-tensors by Eq. (42).
Rearrange the dimensionality reduced sub-tensors.
OUTPUT: Dimensionality reduced dataset.

same size as that of the tensor training samples. The sub-
tensors are represented as Xi, i = 1, 2, · · ·Q, where Q
is the number of the sub-tensors. Then the corresponding
dimensionality reduced data of Xi can be calculated by

Yi = Xi × 1U
∗
1 × 2U

∗
2 × 3P

∗ (42)

where Yi is the dimensionality reduced dataset of Xi, after the
sub-tensors have been rearranged, we obtain the dimensional-
ity reduced dataset.

The proposed algorithm is shown in Algorithm 2.

F. Computational complexity analysis

In this section, we analyze the computation complexity of
T-LGMR. After stacking the N -order tensor training sam-
ples, we obtain a (N + 1)-order tensor dataset X training ∈
RI1×I2×···×IN×IN+1 . For simplicity, we assume the training
dataset is of a uniform size in every dimension, i.e., I1 =
I2 = · · · = IN = IN+1 = I , the iteration times is T and the
number of classes is C. The proposed method is composed
of an iterative updating step and a graph based dimensionality
reduction step. In the iterative updating step, for each itera-
tion, the main computational costs regarding computing and
updating Jn, Un, Zn, En are O((N+1)I3), O((N + 1)IN ),
O((N + 1)IN+2), O((N + 1)IN ) and O((N + 1)IN+2)
respectively. As N ≥ 3, the computational complexity of the
iterative updating step for calculating Un (1 ≤ n ≤ N+1) is
approximately O(T (N + 1)IN+2).

In the graph based dimensionality reduction step, after
obtaining the optimal factor matrices Un(1 ≤ n ≤ N+1),
the time complexity of creating the affinity matrix is O(I3).
With the affinity matrix, the projection matrix can be obtained
by solving an eigenvalue composition problem with the com-
plexity of O(I3). Finally, the reduced dimensionality of the
hyperspectral dataset can be calculated with a complexity of
O(Q(I4 +KI3)). As K ≪ I , the computational complexity
of this step is approximately O(QI4).

With the above analysis, the total computational complexity
of T-LGMR is O(T (N + 1)IN+2 +QI4).

IV. EXPERIMENTAL RESULTS

In this section, we present a number of experiments on
three real hyperspectral image datasets to validate the proposed
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method. In the following experiments, nearest neighborhood
(1NN) and support vector machine (SVM) are employed to
classify the hyperspectral datasets with dimensionality reduc-
tion in the experiments. The LIBSVM [36] with radial basis
function (RBF) kernels is applied in the experiments and the
parameters are obtained by cross-validation.

A. Hyperspectral datasets

The proposed method is evaluated on three real hyper-
spectral datasets, the first dataset was collected by the Na-
tional Aeronautics and Space Administrations Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) sensor over the
northwest Indians Indian Pines in June 1992. The image
contains 145 × 145 pixels and 220 spectral bands in the
wave length range of 0.4-2.5m with a spatial resolution of
20m. There are 16 classes land covers in total, after we have
removed 20 spectral bands due to noise and water absorption,
200 bands are used in the experiments. The synthetic color
and the corresponding ground truth maps are shown in Fig.5
(a) and (b).

The second dataset was collected by the Reflective Optics
System Imaging Spectrometer (ROSIS) optical sensor over the
urban area of Pavia University, Italy. The spectral range is from
430 to 860 nm with a spatial resolution of 1.3 m. It contains
610×340 pixels and 115 spectral bands. After removing some
noisy and water absorption bands, we use 103 spectral bands
in the experiments. There are 9 classes land covers in total and
its synthetic color and the corresponding ground truth maps
are shown in Fig.6 (a) and (b).

The third dataset was collected by the AVIRIS sensor over
Salinas Valley, California, which comprises 512× 217 pixels
and 204 spectral bands after removing 20 noise and water
absorption bands. There are 16 classes of land cover in total
and its synthetic color and the corresponding ground truth
maps are shown in Fig.7 (a) and (b).

B. Comparison algorithms

To evaluate the performance of T-LGMR, several state-of-
the-art methods are chosen as the comparison methods.

1) Tensor based dimensionality reduction methods: These
include tensor discriminative locality alignment (TDLA) [31],
tensor locality preserving projection (TLPP) [37] and tensor
low rank representation without any regularization (TLRR).
For the TDLA, the spatial size of the tensor samples is set as
9×9, the number of the neighbors samples is set as 4. For the
TLPP, the spatial size of the tensor sample is set as 9×9. TLRR
is presented to test the effect of the multi-manifold constraint
term and the parameters of TLRR are the same as those of T-
LGMR. For these tensor-based methods, 5 tensor samples are
selected randomly for each class to form the training samples.

2) Vector based dimensionality reduction methods: These
include multi-manifold discriminant analysis (MMDA) [40],
sparse and low rank graph for discriminant analysis (SLG-
DA) [12] and Laplacian regularized low rank representation
(LAPLRR) [5]. In these three vector-based methods, 10 sam-
ples for each class are randomly chosen to form the training
samples. In SLGDA, the balance parameters of the sparsity

and error constraint terms are set as 0.1 and 0.001 respectively.
In LAPLRR, the balance parameters of the Laplacian graph
regularization and error constraint terms are set as 0.2 and 0.1
respectively. In addition, the original spectral bands without
any processing and the classical LDA with 20% random
samples from each class are also chosen as the comparison
methods.

C. Preparation of tensor training samples

In tensor-based methods for hyperspectral image processing,
how to construct tensor training samples is an important
issue. Here, we elaborate the criterion of how to construct
training samples in T-LGMR. After we have selected pixel
samples randomly, tensor training samples are obtained by
using fixed spatial windows with the pixel samples located at
the center of the windows. As shown in Fig.5(c), Fig.6(c) and
Fig.7(c), the black spots at the center of the white windows are
pixel samples and the white windows are tensor samples. In
addition, due to the region uniformity of the land covers, the
labels of the tensor samples are regarded as the same as the
labels of the corresponding center pixel samples. Compared
with the pixel training samples, the tensor training samples
can provide more geometric structural information and achieve
better performance especially when the labeled data is insuffi-
cient. Another question about the construction of the tensor
samples is the spatial size of the tensor samples. With an
increasing spatial size, more pixels will be included within
the tensor samples which may offer more spatial and spectral
information, but if the spatial size is too large, the pixels within
a tensor sample may belong to different classes which may
destroy the consistency of spatial and spectral information.
There is no fixed rule that can be used to define the spatial size
of the tensor samples. In fact, the spatial size depends on the
size of the hyperspectral image, the class number of different
land covers and the region consistence of different land covers.
In practice, this size is usually determined empirically and
experimentally.

Here, experiments are undertaken to investigate the effects
of the number of the training samples and the spatial size
on the performance of T-LGMR. The number of the labeled
training samples varies from 1 to 10 for each class for all
the three experimental datasets, and the window size is set as
{3×3, 5×5, 7×7, 11×11 15×15, 19×19, 25×25, 31×31}
for Indian Pines and Salinas datasets and {3 × 3, 5 × 5, 7 ×
7, 9 × 9, 11 × 11 15 × 15, 15 × 15, 17 × 17} for Pavia
University dataset. Fig.3 shows the overall accuracy with the
variations of the number of the training samples and the
spatial window size. From Fig.3 it can be observed that, the
proposed method achieves satisfactory and stable classification
accuracy even though there are only a few tensor training
samples. Jointly considering the computational complex and
classification performance, we set the number of the training
samples to 5 for each class of all the experimental datasets.

Meanwhile, with the increase of the window size, the overall
accuracy (OA) increases first and then gradually decreases.
This is because when the window size is not large, more pixels
belonging to the same class will be included in a tensor sample
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Fig. 3. Overall Accuracy with the variation of the window size and the number of training samples for each class. (a) and (d) are on the Indian Pines dataset
with the SVM and 1NN classifiers respectively, (b) and (e) are on the Pavia University dataset with the SVM and 1NN classifiers respectively, (c) and (f) are
on the Salinas dataset with the SVM and 1NN classifiers respectively.

Fig. 4. Overall Accuracy with the parameter tuning of λ and β. (a) and (d) are on the Indian Pines dataset with the SVM and 1NN classifiers respectively,
(b) and (e) are on the Pavia University dataset with the SVM and 1NN classifiers respectively, (c) and (f) are on the Salinas dataset with the SVM and 1NN
classifiers respectively.

with the increasing of the window size which may provide
more useful information. But when the window size is too
large, pixels belonging to different classes may be included in
the same tensor sample, the class and structural information
may be destroyed and the OA decreases. From a general
viewpoint, we set the window size as 11×11 for Indian Pines
and Salinas datasets and 5× 5 for Pavia University dataset.

D. Parameter tuning

In the proposed method, there are two regularization pa-
rameters (i.e. λ and β) in the objective function. These two
parameters are used to balance the effect of the error and

the regularization terms. In general, the parameter tuning
may affect the resulting classification performance to some
extent. In this section, we evaluate the system on the three
experimental datasets to demonstrate the sensitivity of the
proposed method over a wide range of parameter tuning. The
parameter space is set as {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5,
10, 50}. In addition, the number of the training samples for
each class and the spatial size of the tensor samples are set
as the optimal values as discussed above. Fig.4 shows the
overall accuracy with the parameter tuning of λ and β on
the experimental datasets.

From Fig.4, it can be observed that OA varies slightly with
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TABLE I
OA, AA, CLASS-SPECIFIC ACCURACY (IN PERCENT), KAPPA COEFFICIENT AND THE CORRESPONDING VARIANCES OF

DIFFERENT METHODS ON INDIAN PINES DATASET (REDUCED DIMENSIONALITY =30)

Fig. 5. Classification maps with SVM classifier of different methods on Indian Pines dataset. (a) Three-band color composite image. (b) Ground-truth. (c)
Pixel and tensor training samples. (d) Original. (e) LDA. (f) MMDA. (g) LAPLRR. (h) SLGDA. (i) TDLA. (j) TLPP. (k)TLRR. (l) T-LGMR. Note that the
number in the bracket on the bottom of the figures refers to the sample number of the corresponding class.

the tuning of λ and β. For example, in the entire parameter
space, the largest difference between the highest and the lowest
OA is only 1.49% which is obtained on the Pavia University
dataset with the 1NN classifier (Fig.4 (d)) and the smallest one
is only 0.23% which is obtained on the Salinas data set with
the 1NN classifier (Fig.4 (f)). So we believe that the proposed

method is robust against the change of the regularization
parameters. Experimentally, we set λ = 0.5 and β = 0.1 for
all the experiments.
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TABLE II
OA, AA, CLASS-SPECIFIC ACCURACY (IN PERCENT), KAPPA COEFFICIENT AND THE CORRESPONDING VARIANCES OF

DIFFERENT METHODS ON PAVIA UNIVERSITY DATASET (REDUCED DIMENSIONALITY =30)

Fig. 6. Classification maps with SVM classifier of different methods on the Pavia University dataset. (a) Three-band color composite image. (b) Ground-truth.
(c) Pixel and tensor training samples. (d) Original. (e) LDA. (f) MMDA. (g) LAPLRR. (h) SLGDA. (i) TDLA. (j) TLPP. (k)TLRR. (l) T-LGMR.

E. Classification results

In this section, experiments are conducted on the three real
hyperspectral datasets to demonstrate the performance of the
proposed dimensionality reduction method for hyperspectral
classification. As discussed above, seven dimensionality reduc-
tion methods are used for comparison and the original spectral
bands are used as the baseline. To evaluate the classification
performance, the training samples are selected randomly in all

the comparison methods and all the experiments are repeated
20 times. We report the means and the variances of the
classification results on the three real hyperspectral datasets.
The classification results (including OA, AA, Class-specific
Accuracy and Kappa coefficient) and classification maps are
shown in Tables I, II, and III and Figs.5, 6, and 7.

It can be seen that the proposed method achieves much
better classification performance in terms of OA, AA and
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TABLE III
OA, AA, CLASS-SPECIFIC ACCURACY (IN PERCENT), KAPPA COEFFICIENT AND THE CORRESPONDING VARIANCES OF

DIFFERENT METHODS ON SALINAS DATASET (REDUCED DIMENSIONALITY =30)

Fig. 7. Classification maps with SVM classifier of different methods on Salinas dataset. (a) Three-band color composite image. (b) Ground-truth. (c) Pixel
and tensor training samples. (d) Original. (e) LDA. (f) MMDA. (g) LAPLRR. (h) SLGDA. (i) TDLA. (j) TLPP. (k)TLRR. (l) T-LGMR.
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Fig. 8. Overall accuracy versus reduced dimensionality. (a) and (d) are on the Indian Pines dataset with the SVM and 1NN classifiers respectively, (b) and
(e) are on the Pavia University dataset with SVM and 1NN classifier respectively, (c) and (f) are on the Salinas dataset with the SVM and 1NN classifiers
respectively.

TABLE IV
COMPUTATIONAL COMPLEXITY IN TERMS OF RUNNING TIME (IN SECONDS) ON THREE EXPERIMENTAL DATASETS

Fig. 9. The variation of overall accuracy versus the residual error between two iterations. (a) Indian Pines. (b) Pavia University. (c) Salinas.

Kappa than all the other state-of-the-art methods. For example,
in terms of OA, the proposed method is approximately 2%,
2% and 1% better than that of the second best method.
This demonstrates that the proposed method is an effective
discriminative dimensionality reduction method. In addition,
the results show that the tensor-based methods achieve better
performance than the pixel-based methods.

For the Indian pines image, it can be observed from Fig.5
that, the proposed method has significantly region uniformi-
ty (marked by the white rectangle) compared to the other
methods (see Fig.5 (d)-(j)). In addition, for small sample
classes, such as classes 9 and 7, there are only 20 and 26

samples, respectively. Such small samples pose a challenge to
the classification task. By fully exploiting both spatial-spectral
and discriminative information, the proposed method yields
promising results(see Table I), which is in accordance with the
results shown in Fig. 5 (d)-(j) (marked by the white ellipse).

For the Pavia University image, good region uniformity is
also obtained by T-LGMR (marked by the white rectangle in
Fig.6 (d)-(j)). Moreover, for a ribbon distribution, such as class
8 (marked by the white ellipse in Fig.6 (d)-(j)), the proposed
method can also achieve satisfactory performance, which is in
accordance with the results shown in Table II.

For the Salinas image, land cover in this scene has good
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region homogeneity (see Fig.7(b)) and all the methods can
achieve promising results. It should be noted that, for classes
2 and 16 (marked by the white rectangle), the proposed method
delivers 100% classification accuracy with the SVM classifier.
Classes 8 and 15 (marked by the white ellipse) are difficult
to be distinguished in this scene. For these two classes, the
proposed method performs much better than the other methods
and the classification accuracy is significantly improved (see
Fig.7 (d)-(j)).

F. Sensibility analysis of reduced dimensionality

We also investigate the effect of reduced dimensionality
on the performance of our method. Fig.8 shows the Overall
Accuracy results with the SVM and 1NN classifiers on all the
experimental datasets when the dimensionality ranges from 3
to 49 with the step length of 2. From Fig.8, we can see that
the Overall Accuracy is improved with the increasing of the
dimensionality and tend to be stable after the dimensionality
is larger than 30. As a result, we set the dimensionality to 30.
Fig.8 also illustrates the advantage of the proposed method
over the other comparison methods when the dimensionality
is low, which further demonstrates the ability of the proposed
method in dimensionality reduction.

G. Algorithm analysis

1) Computational complexity analysis: In this section, we
analyze the computational complexity (in terms of running
time) of T-LGMR. All the experiments are carried out using
Matlab R2014a on a PC with Intel Core i5-5490 CPU and
8 GB RAM. The procedures of all the comparison methods
involved in this paper contain two main processing steps:
dimensionality reduction and classification. For all the com-
parison methods, the dimensionality reduction techniques are
unique while the classification methods are the same. In
order to evaluate the computational efficiency, we record the
running time consumed by each comparison method. Table
IV shows the running time of each method with the SVM
classifier on the three experimental datasets. It is shown that
the running time of LDA and MMDA whose solutions do
not need the iterative strategy are shorter than that of the
others. The running time of LAPLRR and SLGDA are slightly
longer than that of LDA and MMDA due to the iterative
strategy in the matrix form which is employed in these two
methods which costs more time to converge to the optimal
solution. Tensor-based methods, i.e., TDLA, TLPP, TLRR
and T-LGMR need longer running time as the tensor-based
methods need more time to calculate the solution for each
mode. Furthermore, T-LGMR consumes slightly longer time
than TLRR and much shorter time than TDLA and TLPP.
Compared with the excellent classification performance, the
running time of T-LGMR is acceptable.

2)Convergence analysis: To illustrate the convergence of the
proposed method, the residual errors between two iterations
and the corresponding overall classification accuracy on the
three hyperspectral datasets are presented. It can be seen from
Fig.9 that the residual errors between the two iterations can
quickly converge to zero after 10 iterations. In addition, by

setting the iteration times as 20 for all the three datasets which
can guarantee the proposed method to converge to an optimal
solution, we record the corresponding overall classification
accuracy with the SVM classifier in each iteration. It can be
seen from Fig.9 that the overall accuracy increases and then
reaches the optimal result with the decrease of the residual
error. All these experimental results suggest the proposed
method can converge in a few iterations.

V. CONCLUSION

In this paper, we proposed a tensor-based low rank graph
with multi-manifold regularization for dimensionality reduc-
tion of hyperspectral images. By jointly utilizing the low
rank constraint and multi-manifold information, an informative
and discriminative graph is constructed for dimensionality
reduction of hyperspectral images. In addition, different from
the available vector-based graphs, the proposed tensor-based
graph can fully exploit the information of all the training
samples along two spatial dimensions. Experimental results
on several real hyperspectral datasets prove its efficiency and
superiority to several state-of-the-art techniques. In our future
work, more intrinsic information within the tensor data, e.g.,
the sparsity of hyperspectral image will be jointly considered
to enhance the classification performance.
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