IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, MONTH YEAR 1

Atmospheric Artefacts Correction With a
Covariance Weighted Linear Model
Over Mountainous Regions

Zhongbo Hu, Student Member, IEEE, Jordi J. Mallorqui, Senior Member, IEEE, Hongdong Fan

Abstract—Mitigating atmospheric phase delay is one of the
largest challenges facing the differential synthetic aperture radar
interferometry (DInSAR) community. Recently, many publica-
tions have studied correcting stratified tropospheric phase delay
by assuming a linear model between them and topography.
However, most of these studies have not considered the effect of
turbulent atmospheric artefacts when adjusting the linear model
to data. In this paper, we present an improved technique that
minimizes the influence of turbulent atmosphere in the model
adjustment. In the proposed algorithm, the model is adjusted to
the phase differences of pixels instead of using the unwrapped
phase of each pixel. In addition, the different phase differences
are weighted as a function of its Atmospheric Phase Screen
(APS) covariance estimated from an empirical variogram to
reduce in the model adjustment the impact of pixel pairs with
significant turbulent atmosphere. The good performance of the
proposed method has been validated with both simulated and
real Sentinell-A SAR data in the mountainous area of Tenerife
island, Spain.

Index Terms—Synthetic aperture radar (SAR), Interferometric
SAR (InSAR), APS, modelling.

I. INTRODUCTION

IFFERENTIAL synthetic aperture radar interferometry

(DInSAR), also known as Persistent Scatters Interfer-
ometry (PSI), has proven to be a very powerful technique for
measuring large-scale land deformations with centimeter to
millimeter accuracy along the Line of Sight (LOS) direction.
Their high accuracy is achieved in correspondence to the high
phase quality of interferograms, assuming they are not influ-
enced by other phase components. However, the differences in
humidity, temperature and pressure between two acquisitions
may cause additional fringes on differential interferograms that
affect the estimation of the geophysical parameters. In order
to estimate them more reliably, the effect of APS cannot be
ignored.
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A previous study by Hanssen [1] showed that the atmo-
spheric propagation delay in an interferogram can be cate-
gorized into vertical stratification and turbulence components
mixing. In the former, APS correlates with topographic vari-
ations, while in the latter, APS presents a spatial correlation
length that can typically be described by the slope of its power
spectral density based on Kolmogorov’s theory.

To remove the two categories of APS from interferograms,
different methods have been developed for atmospheric com-
pensation. They can be classified in three categories. The
classical approaches in time series analysis take advantage of
the properties of APS and deformation in the interferometric
phase. Turbulent atmospheric phase artefacts are highly corre-
lated in space, but they can be assumed to be uncorrelated
in time. At the same time, the phase terms associated to
deformation present a higher temporal correlation and, usually
assumed, a lower spatial correlation. Thus, the phase terms
coming from atmospheric artefacts can be estimated and
partially removed from the interferometric phase by applying
different spatial and temporal filters [2]-[5]. However, with no
prior information about the atmospheric artefacts and/or the
deformation signal characteristics, it is difficult to determine
the proper shape/extension of the spatial filter and the optimal
length of the temporal filter. In order to optimize the filtering
approaches, some researchers have tried to obtain the statistical
properties of the atmospheric artefacts from auxiliary data
(such as numerical weather prediction (NWP) products) as a
priori information [6]. It has been proved that this is an al-
ternative method to improve atmospheric artefacts mitigation.
Despite the fact that these filtering methods are simple and
effective in some cases, the coupling between the non-linear
deformation and the APS prevents the correct separation of
the two. There is always the risk of filtering in excess the
non-linear deformation or contaminating the time-series with
atmospheric noise.

Other techniques use auxiliary data sets such as meteoro-
logical models or multispectral remote sensing data. The APS
delay in each individual interferogram can be mitigated using
the retrieved water vapors from MERIS data, MODIS data
[7], [8], GPS [9]-[11] or forecast products from NWP [12],
[13]. However, the main limitation of this technique is the lack
of available water vapor data in areas covered by clouds. In
cloudy areas, numerical models such as the Weather Research
and Forecasting Model (WRF), the Fifth Generation Penn
State/NCAR Mesoscale Model (MM5) and global atmospheric
reanalysis data have been used for predicting atmospheric
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conditions [14]-[18]. However, the accuracy of the predicted
water vapor contents depends on the quality of the models and
their input data [19].

Another class of techniques considers that APS is correlated
with topography [20], which can happen in mountainous
areas. Stratified APS contribution in interferograms can be
modelled by analysing the phase-elevation relationship with
a linear model [21]-[24]. To estimate the stratified APS more
accurately, recent improvements have been made by analysing
phase-elevation relationship with a multiple-regression model
[25]. In addition, a power law model has also been applied
to remove tropospheric APS, which accounts for the spatial
variation of the tropospheric properties [26]. The main lim-
itation of these model related methods is that other phase
terms (e.g. turbulent atmospheric artefacts, deformation related
phase, decorrelation noise, ...) can influence the estimate of
the coefficient that relates phase with elevation. In practice,
Persistent Scatters (PSs) are usually selected to calculate the
coefficient in order to reduce the impact of decorrelation noise.
Although such attempt can be more effective to some extent
[27], the influence of turbulent atmospheric artefacts can not
be neglected. If the real situation fails to meet the basic
assumption that the observed phase is stratified APS only, or
in other words if the stratified and turbulent APS are mixed,
current phase-elevation based methods may obtain an incorrect
coefficient estimation.

From the aforementioned research, filtering approaches
always aim at turbulent APS estimation, while modelling
methods can estimate and mitigate the topography-related APS
to some extent. Ancillary data, like weather forecast models,
can partially provide both turbulent and stratified signals. Each
type of method has its advantages and drawbacks. Stratified
APS can influence the performance of the filtering-based
methods. On the contrary, estimating stratified components
using conventional linear models is not accurate in situations
where the turbulent component exists.

This paper focuses on a new stratified APS correction
technique that can be applied to mountainous areas in which
the topography-related and turbulent APS are mixed together.
As the turbulent component is correlated in space while the
stratified one is correlated with topography, the proposed
method is based on utilizing the phase differences among
nearby pixels, which are within the correlation distance of
turbulent APS, to estimate the coefficient value of a linear
model. The biggest improvement of this technique is that
the influence of turbulent components are minimized when
modelling the stratified APS.

This paper is structured as follows. Section II describes
the details of the compensation algorithm. In Section III, a
simulated scenario is used to evaluate the proposed method
with synthetic data. An analysis of the performance of the
improved model with real data is shown in section IV. Finally,
section V is dedicated to summarizing the main improvements
and limitations of the APS compensation strategy.

II. IMPROVED LINEAR MODEL:

CONCEPT AND ALGORITHM
A. Motivation of APS Removing

In an interferogram, the differential phase of each pixel, ¢,
can be decomposed into five phase components [1], [2], [5],
[28].

(b = ¢Atopo + (bdef + (bAatm + ¢orbit + (bnoise (1)

Where ¢atopo is the residual topographic phase caused by
inaccuracies of the DEM used to generate the differential
interferograms; ¢q4.s is the phase contribution due to target
displacement along the LOS direction; ¢aq¢n, relates to the
differential atmospheric delays phase, which can be further
decomposed into stratified delay ¢qtm,_stro and turbulent com-
ponent @uim_turb; Porbit 1S the phase due to inaccuracies in
the orbits; and ¢,,4;sc includes all phase terms caused by the
different decorrelation factors.

All PSI algorithms have been struggling to get the reliable
components of Patopo and @ger. In (1), @orpiz phase com-
ponent can be compensated using control points, and ¢y,
phase is random, which is difficult to model for most of the
decorrelation factors. As we work with persistent scatterers,
which means that ¢,,;sc shows a low variance, we ignore
the @noise phase component. Consequently, ¢aqtn, phase
component is the main factor that limits the estimation of
geophysical parameters.

B. Atmospheric Artefacts

Interferometric SAR (InSAR) observations are usually
plagued by propagation delays. As the atmosphere properties
(temperature, pressure, and relative humidity) between the
radar platform and the ground targets vary spatially and
temporally, the phase delays vary from one situation to another.
At microwave bands it is well known that propagation delays
have two major sources: tropospheric terms and ionosphere
effects [1], [29]. For C-band and X-band data, the tropospheric
component is the one with the most significant contribution
to APS. On the contrary, with L-band SAR data over scenes
located at high latitudes the ionosphere delays have also to be
taken into consideration [30]. In this study focused in C-band
data, the phase delay caused by the ionosphere is ignored.

The tropospheric delay can be elaborated that the velocity
of electromagnetic waves is not constant through a hetero-
geneous medium as the speed of propagation changes with
the refractivity index N of the medium. As the troposphere
is mainly characterised by wet and hydrostatic components,
the refractivity index N includes both. Ng., depends on
partial pressure of dry air P, and N, is described by water
vapour partial pressure e. Both refractivity components depend
on temperature 1. The refractivity can be mathematically
characterised as: [31]

P e e
N(T,P,@) = klf +k2f +k3ﬁ
= Ndry +Nwet

Where k; = 0.776 K Pa~!, ky = 0.716 KPa~!, and kg =
3.75¢3K2Pa !,

2
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The two-way propagation phase delay term, @gt.,, corre-
sponds to the integration of the total refractivity N (T, P, e)
along the LOS:

_47T _6 fsat
Gatm = Tlo ) (Nary + Nyet)dx 3)

Ttarget

Where A is the radar wavelength, Z;4,ge¢ the location of the
target and s, the zero-doppler location of the satellite for
the target. In practice, it is not necessary to integrate along the
whole path but only the extension of the troposphere [1]. For
InSAR, the differential atmospheric delays ¢ gty component
is the difference between the two acquisitions.

In mountainous regions, topography dependent fluctuations
of atmospheric parameters such as temperature, pressure and
relative humidity lead to a variation of the atmospheric proper-
ties. Other publications show that stratified atmospheric delay
@Aatm_stra can be modelled as a linear relation with height
[20]-[24], [27].

C. A Weighted Linear Model to Estimate Stratified APS

As mentioned in the previous section, in mountainous areas
stratified APS linearly correlates with topography, which can
be modelled as follows [20]-[24], [27]:

¢model = Kh+ ¢0 (4)

Where K is the key coefficient to be estimated; h is the
elevation, which can be derived from an auxiliary DEM (e.g.
SRTM); and ¢ is a phase offset.

As the phase quality of any interferogram is not homoge-
neous due to the different decorrelation sources, K has to be
estimated from a set of high quality pixels, this is PSs. As
resolution is not a constrain, the quality of the interferograms
can be improved with multi-looking and the PSs selected
imposing a simple coherence threshold. Since the coefficient
K is assumed to be constant in a specific interferogram, it
is possible to obtain a good estimation of K by adjusting the
linear model (4) to the observation phase ¢,ps. The coefficient
K can be estimated by minimizing a Model Adjustement
Function (MAF) [28] defined as follows:

1 N . . 2
T = N Z ’e_]¢obs — e_-7¢model (5)
=1

Where N is the number of selected PSs. The mean advantage
of working in the complex space is that it can be done with
wrapped interferograms, so no phase-unwrapping is necessary
and a potential source of errors is avoided.

Other papers dealing with the estimation of coefficient K
have been published in the last years [22], [24]. In [22], a
preliminary deformation is estimated and removed prior the
calculation of K to avoid the “noise” contribution of defor-
mation. Alternatively, in [24], improvements have been made
by analysing the observed phase with a multiple spatial scales
approach. Using these methodologies, topography related APS
can be estimated correctly with the assumption that there is
no turbulent APS in the phase ¢,,s. Unfortunately, if the
interferogram contains turbulent artefacts the estimation of K
will be jeopardized.

In order to make more robust the model adjustment in
presence of turbulent APS, in this paper it is proposed to
use phase differences among the selected PSs instead of the
absolute values. This improved method has been called Lin-
ear Model Resisting Turbulent Atmosphere Delay (LMRTA).
Under LMRTA approach, it is possible to reduce the impact
of turbulent APS significantly.

The implementation of the LMRTA is presented below.
Considering the situation with turbulent APS, the observation
phase ¢ops consists of Gutm_stra aNd Ggtm_tury cOMponents.

d)obs = d)atm_stra + ¢atm_turb (6)

AS Patm_stro component correlates with topography, namely
it satisfies (3), but ¢4¢m,_tur» component not, adjusting directly
the model ¢,,,04e; With the observation phase ¢,5s may lead
to an incorrect coefficient K. Taking advantage of the spatial
correlation of ¢qm,_turp, the differential phases among neigh-
bouring pixels can be used instead. A new observation phase
between two pixels ¢ and j, A¢.j_, can be defined to reduce

the impact of turbulent APS in the model adjustment. The new
phase is defined as,

L _ ] i,J
A(Z)obs - Ad)atm_stra + A¢atm_turb
i

Y i _4J
atm_stra ¢atm_stra + d)atm_turb ¢atm_turb

Correspondingly, LMRTA model can be defined now as
AphI Kh' — KW + ¢} — ¢}

model —

= K(h' — 1Y) ®

¢ is a constant value for all pixels of the interferogram. Under
the practical point of view, the selected pixels can be related
thanks to a Delauney triangulation, where the pixel locations
constitute the nodes and the relations among them the arcs.
These arcs define the phase differences to be used during
the model adjustment step. Different limitations can be set
to improve the performance of K estimation, for instance the
maximum arc length or the minimum number of arcs reaching
any pixel of the triangulation.

Many studies indicate that the turbulent atmospheric arte-
facts correlate spatially [1]. The level of correlation decreases
as the pixels’ distance increases. Therefore, when estimating
the coefficient of stratified APS, the influence of A¢!7 .,
component can be partially weakened by weighting in the
MATF the different pixel pairs. The farther the pixels the lower
its weight in MAF. To be more specific, for two close pixels
t and j located at short distance the turbulent term for each
one is very similar, so A¢!7 . . should be close to zero.
On the contrary, for other pixels with a large separation, the
turbulent APS may be totally uncorrelated and the impact of
A¢ll .. in MAF is considerable. Based on this concept, an

appropriate covariance matrix involving the correlation length
would be beneficial for weighting the different pixels’ pairs.

D. Spatial Covariance Matrix

Previous studies show that a stochastic model can be used
to properly characterise turbulent atmosphere phase delay
[32]. Turbulent atmosphere artefacts are characterised by its
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high spatial correlation. In spatial statistics the theoretical
variogram is a function that describes the degree of spatial
dependence of a spatial random field. So it is actually the
variogram of atmospheric artefacts that can characterise the
correlation of turbulent APS.

In geostatistics the empirical variogram is an estimate of
the theoretical variogram and measures the spatial variability
of an isotropic and stationary area. The empirical variogram
4(h) is defined as [33]:

R 1
W0 = g3 PR )

(1,5)EN:

Where N; is the set of pairs of pixel 4, 7 within distance
I, |Ny| is the total number of pairs within distance ! and
z would be in this case the turbulent atmospheric phase
value. In practice, the turbulent phase is mixed with other
components that are expected to be less correlated in space.
Hence, the variogram of the turbulent atmospheric artefacts
can be empirically estimated from the interferograms.

The turbulent atmospheric covariance matrix > of one
interferogram can be derived from the empirical variogram.

2 2 2 2 2 2
911,11 911,12 ¢+ %111m %1121 911,22 0 Ollnm
2 2 2 2 2 2
921,11 921,12 - 921,1m 921,21 921,22 0 921,mm
2 2 2 2 2
= n1,11 %n1,12 - Tni,im 9ni1,21 %n1,22 0 nlnm
= 2 2 2 2 2 2
T12,11 912,12 -+ 912,1m 12,21 912,22 - T12.am
2 2 2 2 2 2
O32,11 922,12 - T22.1m 0T2221 %2222 -+ %22 nm
2’ 2" 2’ 2" 2’ T
Tnm,11 Onm,12 = Tnm,1m 9nm,21 9nm,22 ** Pnm,nm

(10)
where n, m are the maximum pixel indices in azimuth
and range directions respectively. Each element o7, ji in the
covariance matrix can be derived as follows:

(1)

Where ¢2(0) is the covariance at distance [ = 0. In practice,
02(0) is the limit of the variogram tending to infinity lag
distances, and h,j € {1,2,...,n},i,k € {1,2,...,m}.
Ahi,jk (1) is calculated from (9).

Once the covariance matrix of turbulent APS has been
estimated, it can be used to weight the different arcs of the
triangulation when adjusting the LMRTA model.

In real situations, three aspects limit the accurate variogram-
based estimation of the turbulent APS covariance matrix: the
density and quality of PSs, the real shape of the variogram,
and the last but not the least, the different phase components
present in the interferograms that can disguise the turbulent
APS [34].

U}QLi,jk =0%(0) — hi, k(1)

III. VALIDATION WITH SIMULATED DATA

The LMRTA method proposed in this paper is being vali-
dated firstly with simulated data in order to perform tests under
perfectly controlled conditions. In comparison with real data
cases, the true values of the different parameters involved are
known, which can be compared with the estimated ones. In
the simulated test, firstly, both topography related APS and

turbulent APS are simulated. Secondly, the method aforemen-
tioned has been implemented to separate stratified APS from
turbulent APS. Finally, an accuracy study has been done to
evaluate the results of the new method compared with those
of the conventional one.

A. Simulation of the Different Phase Components

The following synthetic scenario is simulated based on the
parameters presented in Table I. Details on how to simulate
the different atmospheric components are discussed.

TABLE I
PARAMETERS OVER A SYNTHETIC SCENARIO

Parameters Value
Size of Images (pixels) 256 x 256
Number of Images 51
Number of Interferograms 135
Minimum temporal baseline (days) 11

Size of pixels (m) 30
Number of pixels 726
Number of links 2132

Maximum coefficient 0.2

Minimum coefficient 0.16
Standard deviation of coefficient 0.01
Maximum topography (m) 2000
Minimum topography (m) 1600

On the one hand, in terms of the turbulent atmospheric
artefacts from the previous sections it is clear that the spatial
variance is the key point. A large number of methods have
been exploited to simulate Gaussian random fields [35], [36].
In these approaches, the spatial correlation matrix has to be
firstly defined, and then the Cholesky decomposition can be
applied to a random process [32] or the circular embedding
method [35] can be used to Gaussian stochastic simulations.
As mentioned in the previous sections, Kolmogorov’s theory
can generally describe the turbulent atmospheric artefacts and
the spatial correlation follows approximatively an exponential
law. In addition, a wide range of correlation models can
describe the Kolmogorov’s turbulence, which include Matérn-
family models, Bessel family models, Guassian, exponential
and spherical models. Different models are compared in [37].
In the following, the covariance of turbulent atmospheric
artefacts has been simulated through a spherical model.

20)55 — 36
2(0),

[ <a

l>a (12)

=17

Where o2(0) means the variogram value for distances far
away from the correlation distance, [ is the distance and
a indicates the correlation window. Examples of simulated
turbulent atmospheric artefacts are shown in Fig. 1a and Ic.

On the other hand, the topography related atmospheric arte-
facts are modelled using a simple linear model. For simplicity,
a topography based on a paraboloid and a semi-empirical
coefficient K are chosen in the simulated scene. Examples of
simulated topography related atmospheric artefacts are shown
in Fig. 1b and 1d. We refer them as pair I1 and I2.
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Fig. 1. Two examples of true and estimated turbulent APS (first and third column) and topography related APS (second and fourth column). The first two
columns are for I1 and last two columns are for 12. The first row subfigures are for original APS, second row for conventional method, third row for distance

weighted D-LMRTA and last row for variogram weighted V-LMRTA.

B. Stratified Atmospheric Artefacts Estimation

The first step of the algorithm is to select pixels with good
phase quality, this is the PSs. The classical PSs coherence-
based selection over the multi-looked interferograms can be
used. The number of PSs selected will depend on the co-
herence threshold and the particularities of the interferogram.
Once selected, they are connected using a Delaunay triangu-
lation, as explained in Section II-C. In the simulation, 726
pixels have been randomly selected. The selected pixels and
triangulation are shown in Fig. 2.

As mentioned previously, experimental variograms of APS
are important to provide the parameters that characterise
the spatial properties of turbulent atmospheric artefacts. In

the simulated case, equation (9) has been used to do the
variogram analysis. In the network of selected pixels, the
minimal and maximal distances are 30 m and 10380 m
respectively. Distance bins have been set to 30 m wide,
the same resolution of the interferogram, in the variogram
computation. The variograms calculated from the simulated
turbulent APS I1 and 12 are shown in Fig. 3. Variogram values
for arcs larger than 8 km are not represented as the number of
pixels was too few for providing a reliable estimation. As it
can be seen, that the variogram values for distances over 3 km
show an oscillation behavior around a specific value, o%(0).
In other words, both plots in Fig. 3 show that the correlation
distance of the atmospheric artefacts is about 3 km. The values
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Fig. 2. Delaunay triangulation for selected PSs in the simulator.

of 02(0) for I1 and 12 are 3.4 mm? and 5.8 mm? respectively,
which is the average of variogram values for distance over 3
km for each case. Finally, the covariance matrix ¥ for each
interferogram can be filled using equation (11).
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Fig. 3. Experimental variograms (dots) for turbulent APS I1 and I2. Dashed
lines indicate o2 (0) for both cases.
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In the following, both conventional method and the LMRTA
method are applied to the synthetic data to separate the
stratified and the turbulent APSs. The optimal coefficient K
can be estimated by a brute-force method testing all reasonable
values of K,y in [—1,1] with a step of 0.0001 in function
I'(K).

Kopt = arg Kg{ljrll | I'(K)

(13)

The LMRTA algorithm uses the phase differences among
connected pixels as a new observation phase to mitigate the

impact of turbulent APS. In order to further reduce its impact,
each arc can be weighted in such a way that the contribution
of short distance pairs (less affected by turbulent APS) is
increased in front of longer ones (more affected by turbulent
APS). Based on this idea, the LMRTA algorithm can be
improved by considering a weight matrix. Consequently, the
MAF can be rewritten as follows.

L
1 ’ N _iAGh 2
- - w; (e 712Pobs — 77 Prrodel
Yoy wiy ; ol I
(14)

Where L is the number of total arcs established among
pixels and w; ; is its weight. A¢!y/ and A¢)? . are detailed
in equations (7) and (8) respectively. The best weighting
strategy would be to use the covariance matrix ¥ derived
from the empirical variogram, as presented in Section II-D.
However, with real data covariance matrix can be costly to
build in large scenes and prone to errors depending on the
interferograms’ quality. Alternatively, links’ distances can be
used as a practical alternative for determining the weight for
each link. Namely, pairs with short distances are assigned
higher weights than pairs with longer distances.

I'(K)

C. Evaluation of Results and Sensitivity Analysis

Fig. 1(a) — Fig. 1(d) show the original APS for two different
cases with both turbulent and stratified atmosphere. Fig. 1(e)
— 1(h) show the estimated turbulent APS and topography
related APS obtained using the conventional method. Visually
comparing with the true APS, the errors in the estimation of
the stratified APS, which are translated to the estimation of the
turbulent APS, are clearly visible. The benefits of the two ver-
sions of LMRTA, the Distance Weighted LMRTA (D-LMRTA)
and the Variogram Weighted LMRTA (V-LMRTA), are evident
from a visual comparison of the results with the original APS.
Fig. 1(i) — 1(1) show the results for D-LMRTA while Fig. 1(m)
— Fig. 1(p) for V-LMRTA.

Table II shows a comparison of the true and estimated values
of K for the different methods. As it can be seen, the estimated
coefficients for D-LMRTA and V-LMRTA are closer to the
true values than the conventional method demonstrating the
robustness of the proposed strategy when turbulent APS is
presented. The performance of D-LMRTA and V-LMRTA is
very similar, thus the distance-based weighting is an efficient
alternative to avoid the the calculation of the covariance matrix
of turbulent APS from the empirical variogram.

TABLE I
TRUE AND ESTIMATED COEFFICIENTS. K IS THE TRUE VALUE, WHILE K7,
Ko, K3 ARE THE ESTIMATED RESULTS USING CONVENTIONAL METHOD,
D-LMRTA AND V-LMRTA.

Interferograms ~ True Conventional ~D-LMRTA V-LMRTA
K K1 K> K3

I1 0.0100 0.0273 0.0151 0.0140

12 0.0046 0.0442 0.0061 0.0056

It is also interesting to study the sensitivity of the mini-
mization step to demonstrate the robustness of LMRTA ap-
proach. Fig. 4(a) and Fig. 4(b) show the behaviour of MAF,
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I'(K), for the conventional and D-LMRTA methods when
interferograms have stratified atmosphere only. The absence
of the turbulent component allows both methods to find the
exact value but conventional method is more sensitive. The
quadratic behaviour of the function near the minimum is
narrower than with D-LMRTA. The differences arise when
turbulent APS and a linear deformation pattern are added
to the interferograms. Fig. 5 shows the deformation pattern
added to the interferograms, which covers the center of the
scene. The results shown in Fig. 4(c) and Fig. 4(d) validate
the robustness of D-LMRTA. D-LMRTA is able to retrieve a
good approximation of the correct K while the conventional
method fails. Looking at the plots, also the conventional
method presents many local minima. This will make the
minimization results very sensitive to any additional source
of noise presenting in the interferometric phase. The linear
deformation phase contribution definitely contaminates the
estimation of K with the conventional method. However, the
same advantages of D-LMRTA (or V-LMRTA) in front of
turbulent APS, thanks to its phase difference approach, also
apply to the low-pass behaviour of the linear deformation.
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Fig. 4. Minimization Function. Red lines refer to conventional method and
blue lines refer to D-LMRTA.

Besides explicit discussion on the above two interferograms
Il and I2, statistical analyses are carried out to evaluate
the performance of LMRTA on other simulated pairs. Three
methods are compared, conventional, unweighted LMRTA and
covariance weighted V-LMRTA. Phase Standard Deviation
(SD) is used as a metric to assess their performance. Detailed
SD analyses are shown in Table III for four different pairs.
Interferograms’ phase components contain linear deformation,
turbulent and stratified APS. Reference phase components
include all of them except the stratified one. Corrected phase
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Fig. 5. Linear deformation pattern in simulated interferograms.

means residue after removing the estimated stratified com-
ponent. The magnitude of the simulated turbulent APS is
determined with the parameter o(0). The larger o(0) the
stronger the turbulent component. As it can be seen in Table
111, for a mild turbulent component (Ifgl, o(0) = 0.710), all
three methods provide a good estimation of stratified APS.
More specifically, SDs of the corrected phases are close to the
reference one, SD (0.514), and the relative errors are very
small. Even though the differences are not significant, the
smaller error is for V-LMRTA. When the turbulent component
increases the performance of the conventional method starts to
degrade. Ifg2, Ifg3 and Ifg4 show different cases with raising
turbulent component. As expected, the relative errors for the
conventional method raise as well. At the same time both
LMRTA methods keep the relative errors small. The worst
value for unweighted LMRTA is 2.732% and for V-LMRTA
is 1.035%, but they do not occur with the interferogram with
strongest turbulent APS. Once again, the best performance is
provided by V-LMRTA.

Finally, a statistical comparison is applied to a set of 135
simulated interferograms with ¢(0) ranging from 0.71 to 3.53.
The results are shown in Table IV. For the correction with
conventional method only 39% pairs have a relative error
below 1.5% while this rate increases dramatically to around
70% for both LMRTA. The number of pairs with relative
error above 5.0% decreases from the 44.4% obtained with
the conventional method to only 3.7% for both LMRTA.
Meanwhile, the two LMRTA methods show a similar statistical
performance. Moreover, a scatter plot for the 135 simulated
interferograms relating o(0) and absolute SD error is shown
in Fig. 6. It is clear that all the three methods present
similar performances in interferograms with mild turbulent
components. The better performance of LMRTA is evident
in pairs with strong turbulent contamination.

IV. TEST ON REAL DATA
A. Test Site and Data Set

To demonstrate the performance of LMRTA on real data,
Tenerife island (Spain, see Fig. 7) has been selected as test
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TABLE III
PERFORMANCE OF DIFFERENT CORRECTION METHODS FOR FOUR SELECTED INTERFEROGRAMS. VALUES IN PARENTHESE ARE RELATIVE ERROR
(|Corrected — Reference|/Reference).

Interferograms c(0) Ifg phase SD Reference phase SD Corrected phase SD
All phase Components with no  Conventional method Unweighted LM-  V-LMRTA
components stratified APS RTA
Ifgl 0.710 2.071 0.514 0.508 (1.167%) 0.509 (0.973%) 0.510 (0.778%)
Ifg2 1.574 1.834 1.546 1.761 (13.907%) 1.525 (1.358%) 1.530 (1.035%)
Ifg3 2.586 2.574 2416 3.426 (41.805%) 2.482 (2.732%) 2.419 (0.124%)
Ifg4 3.310 3.235 2.547 3.491 (37.063%) 2.534 (0.510%) 2.535 (0.471%)

TABLE IV
STATISTICAL COMPARISON OF DIFFERENT CORRECTION METHODS FOR ALL SIMULATED INTERFEROGRAMS IN TERMS OF RELATIVE ERROR.

Correction performance

Numbers (Percentage)

Relative error Conventional method Unweighted LMRTA V-LMRTA
0-1.5% 53 (39.3%) 95 (70.4%) 94 (69.6%)
1.5%-3.5% 10 (7.4%) 24 (17.8%) 26 (19.3%)
3.5%-5.0% 12 (8.9%) 11 (8.1%) 10 (7.4%)
Above 5.0% 60 (44.4%) 5 (3.7%) 5 (3.7%)
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Fig. 6. The scatter plot between o (0) and absolute SD error for 135 inter-
ferograms with conventional, unweighted LMRTA and V-LMRTA methods. 28.00° 28.00°
-17.00° -16.75 -16.50° -16.25° -16.00°

site. Tenerife is a volcanic island, whose eruptive system
is dominated by the Las Canadas Caldera and the extinct
volcano Teide. In 2004, a seismic crisis occurred in Tenerife,
which produced surface gravity changes and displacements
[38]. It is worth to point out that in this test site, the
topography ranges from sea-level up to 3700 m. In such
mountainous regions, the atmospheric artefacts can be deeply
correlated with the topography. In addition, over coastal areas,
atmospheric turbulences are usually strong [23], which can
interfere the estimation of stratified APS with conventional
methods. Consequently, this region is a perfect scenario to
evaluate the correction capabilities of LMRTA. The dataset
is composed by 55 Sentinell-A satellite images acquired in
the period covering from 2014 to 2016. From the available
images 99 differential interferograms, with perpendicular and
temporal baselines shorter than 400m and 70 days respectively,
have been produced. All processing has been carried out with
SUBSIDENCE-GUI, the software implementation of Coherent
Pixel Technique (CPT) [5] developed at UPC.

By analysing the relationship between unwrapped phase
and topography, it has been found that 14 out of the 99
interferograms present strong phase artefacts linearly corre-
lated with topography. Fig. 8 shows 6 interferograms with
different temporal and spatial baselines. The labels indicate
the acquisition dates of the master and slave images with the
format year-month-day (yyyymmdd). In order to exclude that

Fig. 7. Location of Canary Archipelago just off the southern coast of Morocco
and map of Tenerife Island. The red rectangle indicates the area of interest,
centred on Teide.

the fringes were produced by inaccuracies of the DEM used to
remove topography, Fig.9(a) shows a differential interferogram
with a moderate baseline with almost no fringes on the slopes
of Teide. Moreover, Fig. 9(b) shows a scatter plot of the spatial
baseline and the number of fringes of the interferograms.
Clearly, the number of fringes is not correlated with the
spatial baseline. The performance of the proposed algorithm
is assessed based on the aforementioned 14 pairs.

B. Processing Chain

The block diagram that summarizes LMRTA algorithm
processing chain is shown in Fig. 10. As it can be observed,
there are three main steps. Firstly, a preliminary linear model,
which includes linear deformation and DEM error, is adjusted
to the stack of multi-looked differential interferograms to
cancel, as much as possible, the influence of these two phase
components. Secondly, a weighted LMRTA model is adjusted
to the residue phase to model stratified APS. Weighting can
be obtained either from the covariance matrix or the pixels’
distances. For the former, phase unwrapping is necessary
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relationship between the number of fringes and spatial baseline.

in order to estimate the covariance matrix from the exper-
imental variogram. In this paper interferograms have been
unwrapped using SNAPHU [39]. For the latter, unwrapping
can be skipped. Once the topography correlated APS have
been estimated with LMRTA, it can be removed from the
interferograms. CPT is then applied to the compensated inter-
ferograms, which can be now at full-resolution, to determine

the remaining velocity of deformation and DEM error. In
practice, the first low-resolution linear model adjustment is
affected by APS and the processing can be benefited by an
iterative procedure, as shown in Fig. 10. The iteration over the
residues does not need to recalculate the covariance matrix as
the experimental variogram would not be reliable if residual
phases were used. The iterative procedure helps to better
estimate the stratified APS and the linear terms.

Linear velocity e

and DEM error Phase Model
Covariance Phase
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Multi-looked
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Fig. 10. LMRTA diagram for atmospheric artefacts compensation.

C. Stratified Atmospheric Artefacts Compensation

The performance of LMRTA is evaluated using Sentinell-
A data. Among all differential interferograms, the pair
(20151031-20151206) has been selected to visualize the be-
havior of LMRTA. Firstly, pixels with coherence values higher
than 0.7 from the multilooked, 5x25 (Azimuth x Range),
interferograms are selected as PSs. The 15305 pixels selected
are linked using a Delaunay triangulation to generate the
observation vector A¢.7 . Then, equation (9) is applied to
calculate the empirical variogram, and after that the covariance
matrix using equation (11). Finally, conventional, unweighted
LMRTA and V-LMRTA methods are used to retrieve the model
coefficients that better fit the observation vector A¢/..

Fig. 11 presents the results using the different methods
over the selected pair. In detail, Fig. 11(a) is the original
wrapped differential interferogram, where fringes are strongly
correlated with the topography. After the stratified APS com-
pensation, wrapped residual phases for conventional linear
model, unweighted LMRTA and V-LMRTA are shown in Fig.
11(b), Fig. 11(c) and Fig. 11(d) respectively. It is clear from the
residual fringes that the three methods are able to reduce the
number of fringes to some extent. To be specific, one evident
fringe still exists in the residue after conventional correction,
while there are no apparent topographic related fringes in the
residues from both LMRTA, which produces visually almost
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scatters and unwrapped phase residue.

identical results. The SD analysis on the unwrapped residue
phases in subsection D shows that V-ILMRTA performs better
than unweightedt LMRTA. Unwrapped phases for differential
interferograms and phase residues have been obtained with
SNAPHU [39]. Subfigures in the second row of Fig. 11 show
scatter plots of unwrapped phases and elevation of the selected
PSs. It is clear from Fig. 11(f) that the unwrapped phase
of the original differential interferogram shows a clear linear
topographic trend. Conventional model and both LMRTA
are able to correct this trend. An inspection of the phase
residues shows the better performance of LMRTA compared
with the conventional method, which still presents a residual
linear trend as seen in Fig. 11(g). The third row in Fig. 11
shows the unwrapped phases of PSs over the radar brightness
image. Once again, it is clear that LMRTA outperforms the
conventional method.

The model adjustment could be benefited of an iterative
procedure, as shown in Fig. 10, that would allow a refinement
of the stratified APS estimation. The iterative procedure has
been evaluated with the three methods using, as example, two
different interferograms. The performance after each iteration
is evaluated with the SD of the phase residue. Fig. 12(a) shows

the 20151031-20151206 case, in which the three methods
almost converge after the first regression. After the second
iteration there is no significant improvement in the solution.
As expected, V-LMRTA provides the solution with the lowest
SD. Conversely, Fig. 12(b) shows a situation in which the
conventional method diverges but unweighted LMRTA and
V-LMRTA present identical performance as with the previous
case. It can be concluded that the iterative procedure can refine
the solution with just a single iteration and, in most of the
cases, the marginal benefit obtained does not compensate its
computational cost.

D. Validation with Global Meteorological Reanalysis Data

The proposed method is validated by comparing the phase
delays estimated with those obtained from Global Atmospheric
Models (GAMs) reanalysis data. ERAS data has been selected
for the validation as it is a relative new generation of climate
reanalysis data with better performances than other datasets
(e.g. ERA-interim, MERRA).

ERAS is the fifth global European Center for Medium-
Range Weather Forecasts (ECMWF) reanalysis product pro-
duced by Copernicus Climate Change Service, providing es-
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Fig. 12. SD of phase residues at each iteration. Red, magenta and blue
represent conventional, unweighted LMRTA and V-LMRTA respectively. (a)
20151031-20151206 interferogram, (b) 20150715-20150808 interferogram.

timates of temperature, pressure, humidity and geopotential
height along 37 pressure levels, with 31 km resolution. These
reanalysis parameters are hourly available covering the period
from 1979 to present [40].

Based on the vertical profiles of temperature, pressure, and
relative humidity on coarse grid nodes provided by GAMs,
the refractivity index N can be calculated with (2) at different
height levels. Once the refractivity index N is computed, the
absolute phase delay can be obtained for each pixel of the
interferogram using (3). The integration of N along the LOS
requires the interpolation of N at the required locations and
an external DEM to consider the local topography of each
pixel. Details on the derivation of tropospheric delays from
the atmospheric reanalysis products are described in [16],
[18], [41]. In this paper, based on the idea of integrating
atmospheric parameters along zenith direction in Python-based
Atmospheric Phase Screen (PyAPS) [16], [18], an improved
method calculating APS along LOS direction [42] has been
used to validate the algorithm.

Subfigures Fig. 11(e), Fig. 11(j) and Fig. 11(o) show the
wrapped phase residue, the scatter plots of unwrapped phase
residue versus elevation and the PSs unwrapped phase residue
over the radar brightness image after ERA5 APS compensa-
tion. Comparing ERAS result Fig. 11(j) with both LMRTA
results Fig. 11(h) and Fig. 11(i), it can be observed that they
look very similar. Both LMRTA and ERAS phase residues
present a similar magnitude and fluctuations around zero,
despite the latter has a lower SD. This can be explained by
the fact that ERAS can remove the turbulent APS to some
extent. However, phase residue from the conventional method
(Fig. 11(g)) shows a linear trend, which is not consistent with
ERAS result.

After applying a statistical analysis on PSs unwrapped
phases obtained from each method, it has been observed
that unweighted LMRTA and V-LMRTA can reduce SD from
13.02 to 3.425 and 2.95 rad respectively, while SD from the
conventional method is 4.22 rad. With ERA5 method, SD is
reduced to 3.141 rad, which is closer to the results provided
by V-LMRTA. The statistical comparison further validates that
V-LMRTA outperforms the conventional linear method.

E. Statistical Analyses on All Interferograms

Besides detailed analyses on the above specific interfero-
gram, a statistical comparison of original differential phases
and phase residues using the different methods for 14 inter-
ferograms with significant stratified APS has been carried out.

In the comparison, the phase SD is used as a quality metric
and ERAS APS is used as reference. As it can be seen from
the original interferogram column in Table V, phase SD values
are large due to the presence of strong atmospheric artefacts.
After applying the different correction methods, SD of the
phase residues are listed for each one.

Interferogram 20151112-20151218 (Ifg4) has been selected
as example for a detailed analysis. Ifg4 was obtained from
two images during the rainy season with a temporal baseline
of 36 days and spatial baseline of 20.5 m. As it can be seen
from Fig. 8(c), the wrapped phase exhibits a clear topography-
related pattern that can be associated to stratified APS. After
applying the conventional correction method, the SD of phase
residue decreased a 51.0%, from 4.696 to 2.303 rad. More-
over, the residue can be reduced up to 1.649 and 1.678 rad
using unweighted LMRTA and V-LMRTA respectively. Both
LMRTA strategies produce similar results that are closer to
the one provided by ERAS.

Another two interesting pairs (Ifg2 and Ifgl3) show that
SD phase residues even increased after applying the con-
ventional method, while the other methods can reduce the
phase residue to similar levels. For the particular case of
Ifg13 the reduction is quite small. For all pairs in Table V
except Ifgl, LMRTA based methods show more SD reduction
than the conventional one. For Ifgl case, the conventional
method exhibits a correction of 51.5% compared with a 48.3%
for the unweighted LMRTA and 46.7% for V-LMRTA, while
ERAS based correction shows the worst performance, 35.9%.
The comparison between unweighted LMRTA and V-LMRTA
shows that both produce comparable results in SD reduction
and, depending on the case, one may achieve a better reduction
than the other. The same idea can be applied to the ERAS
based compensation.

In all cases, both LMRTA strategies and ERAS were able to
reduce the APS but they are not able to cancel it completely.
For the former, the turbulent APS is not considered in the
linear model and thus it can not be compensated. For the latter,
the coarse 30 km grid of the atmospheric parameters makes
that strong local atmospheric artefacts would not be correctly
modelled.

V. CONCLUSION

In this paper, a covariance weighted linear model for
removing atmospheric artefacts in mountainous areas has
been presented. The proposed approach, LMRTA, includes an
improved linear model between stratified APS and topography
based on phase differences among selected pixels, PSs, that
reduces the impact of turbulent atmosphere. All selected pixels
are related using a Delauney triangulation. The model adjust-
ment step also considers a weighting strategy that minimizes
the effect of those arcs between pixels affected by turbulent
atmosphere. The weights can be obtained either from the
spatial covariance matrix derived from the empirical variogram
or simply penalizing the longer links that are prone to be
affected by turbulent APS. The performance of this technique
has been verified with simulated data and Sentinell-A SAR
data of Tenerife island.
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TABLE V
PERFORMANCE OF DIFFERENT CORRECTION METHODS FOR 14 SELECTED INTERFEROGRAMS. VALUES IN PARENTHESES ARE CORRECTION
PERCENTAGE, (original — corrected)/original.

Interferograms Spatial baseline  Phase SD

Original inter-  Conventional Unweighted LM-  V-LMRTA ERAS

ferogram method RTA
20150516-20150715 (Ifgl) 38.0 m 3.951 1.915 (51.5%) 2.044 (48.3%) 2.104 (46.7%) 2.533 (35.9%)
20150715-20150808 (Ifg2) -30.7 m 8.239 10.283(-) 3.121 (62.1%) 3.169 (61.5%) 4.006 (51.4%)
20151031-20151206 (Ifg3) -13.6 m 13.020 4.220 (67.6%) 3.425 (73.7%) 2.950 (77.3%) 3.141 (75.9%)
20151112-20151218 (Ifg4) 20.5 m 4.696 2.303 (51.0%) 1.649 (64.9%) 1.678 (64.3%) 1.818 (61.3%)
20151206-20151230 (Ifg5) -8.6 m 2.063 1.850 (10.3%) 1.761 (14.6%) 1.773 (14.1%) 1.798 (12.8%)
20151218-20160216 (Ifg6) -21.5 m 6.965 5.985 (14.1%) 5.365 (23.0%) 5.149 (26.1%) 4.414 (36.6%)
20160111-20160123 (Ifg7) 36.8 m 1.848 1.626 (12.0%) 1.592 (13.6%) 1.555 (15.9%) 1.526 (17.4%)
20160603-20160615 (Ifg8) 333 m 3.447 3.358 (2.6%) 2.541 (26.3%) 2.553 (25.9%) 2.603 (24.5%)
20160615-20160709 (Ifg9) 19.9 m 3.268 3.169 (3.0%) 2.464 (24.6%) 2.503 (23.4%) 2.533 (22.5%)
20160615-20160721 (Ifgl0) 155 m 3.277 3.017 (7.9%) 2.569 (21.6%) 2.705 (17.5%) 2.770 (15.5%)
20160615-20160802 (Ifgll)  -50.7 m 5.644 3.575 (36.7%) 3.407 (39.6%) 3.183 (43.6%) 2.969 (47.4%)
20160615-20160814 (Ifgl2)  16.5 m 4.581 2.871 (37.3%) 2.142 (53.2%) 2.203 (51.9%) 2.303 (49.7%)
20160709-20160826 (Ifgl3)  30.8 m 3.014 3.448 (-) 2.863 (5.0%) 2.606 (13.5%) 2.477 (17.8%)
20160721-20160814 (Ifgl4)  17.5m 6.170 6.017 (2.5%) 2.407 (61.0%) 2.371 (61.6%) 2.925 (52.6%)

One important feature of the proposed algorithm is that
topography related APS can be estimated from interferograms
with no need of any auxiliary data, except a DEM. Besides,
a distinctive advantage of the proposed approach is its robust-
ness in situations where the interferogram contains turbulent
APS or spatially low-pass deformation. The spatial covariance
matrix, which characterises turbulent APS, is estimated from
the interferogram itself. With the usage of covariance as
a weighting strategy in the improved model, the influence
of turbulent component can be reduced. As sometimes the
estimation of the covariance matrix can be time consuming
or prone to errors for heavily decorrelated interferograms, the
weighting can also be established using the pixel’s distance of
each arc. Shorter arcs are considered to be more reliable in
the model adjustment than longer ones.

Both simulated and real data have shown than LMRTA
approach can robustly estimate the stratified atmosphere in
presence of turbulent one and, partially, compensate APS
in the interferograms. It is important to highlight the good
agreement between LMRTA results and ERAS based APS.

Further investigations will focus on more accurate variance-
covariance matrix estimation, which is a critical step to char-
acterise turbulent APS conditions.
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