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Abstract— This paper presents a comprehensive procedure
to improve the wind geophysical model function (GMF) for
the Global Navigation Satellite System Reflectometry (GNSS-R)
instrument onboard the TechDemoSat-1 satellite. The observable
used to define the GMF is extracted from the measured delay-
Doppler maps (DDMs) by correcting for the nongeophysical
effects within the measurements. Besides the instrument and
the geometric effects as provided in the bistatic radar equation,
a calibration term that accounts for the uncalibrated receiver
antenna gain and the unknown transmitter antenna gain is
proposed to optimize the calculation of GNSS-R observables.
Such calibration term is presented as a function of observing
elevation and azimuth angles and is shown to remarkably reduce
the measurement uncertainties. First, an empirical wind-only
GMF is developed using the collocated Advanced Scatterome-
ter (ASCAT) winds and European Centre for Medium-Range
Weather Forecasts (ECMWF) model wind output. This empirical
GMF agrees well with the model output. Then, the sensitivity of
the observable to waves is analyzed using the collocated ECMWF
wave parameters. The results show that it is difficult to include
mean square slope (MSS) in the development of an empirical
GMF, since the difference between ECMWF MSS and the MSS
sensed by GNSS-R varies with incidence angle and wind speed.
However, it is relevant to take significant wave height (Hs)
in account, particularly for low wind conditions. Consequently,
a wind/Hs approach is proposed for improved wind retrievals.

Index Terms— Advanced Scatterometer (ASCAT), calibration,
Global Navigation Satellite System Reflectometry (GNSS-R),
wave, winds.
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I. INTRODUCTION

GLOBAL Navigation Satellite System Reflectometry
(GNSS-R) techniques have shown their capability

to observe many geophysical parameters, such as soil
moisture [1]–[3], snow and sea ice characterization [4]–[6],
and sea surface wind speed [7]–[9]. Similar to the operational
scatterometer level 2 (L2) processing, the GNSS-R wind inver-
sion relies on a geophysical model function (GMF) which, for
the latter, relates the measured delay-Doppler map (DDM) to
the sea surface wind speed for a certain observing geometry.
For instance, the National Oceanographic Centre has devel-
oped different wind inversion algorithms for the Space GNSS
receiver—remote sensing instrument (SGR-ReSI) onboard
the U.K. TechDemoSat-1 (TDS-1) satellite [10], [11]. Both
algorithms are based on the signal-to-noise (SNR) ratio defined
as the ratio of the averaged signal value from a box sur-
rounding the peak of DDM and the averaged noise value
from a box within the signal-free area of the DDM. The fast-
delivery inversion (FDI) algorithm in [10] is implemented in
the Measurement of Earth Reflected Radio-Navigation Signals
By Satellite (MERRByS) ground processing system to produce
and distribute L2 wind speed products to potential end-users.
It simply relates the sea surface wind speed to SNR and
receiver antenna gain by a power law. A more sophisticated
algorithm based on the bistatic radar equation (BRE) is pro-
posed in [11] to correct not only for the receiver antenna
gain but also for the GNSS-R bistatic viewing geometry,
in order to derive an observable that better represents surface
winds, and in turn, to improve the retrieved wind quality.
It also uses a power-law empirical relationship between the
derived observable and the reference Advanced Scatterom-
eter (ASCAT) wind speed. Although BRE leads to higher
retrieved wind quality than FDI, it is much less efficient than
the latter in terms of ground processing, thus not suitable for
a rapid data delivery [10]. Similar empirical approaches are
developed to retrieve wind speed from the Cyclone GNSS
(CYGNSS) mission [12]–[14]. In [12] the wind speeds are
estimated from five different observables derived from GNSS-
R DDMs, based on empirical regressions of the observables
against buoy wind. Then a minimum variance estimator is
presented to composite the five wind estimates into a unique
wind speed value with lower error than that of each individual
wind estimate. This approach is improved by several additional

0196-2892 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1531-5262
https://orcid.org/0000-0002-1507-2133
https://orcid.org/0000-0002-9972-9090
https://orcid.org/0000-0002-6455-4630


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

processing steps in [13], such as by decoupling the effects of
the geometry and the Woodward ambiguity function, and by
optimizing the composition of different wind estimates. More
recently, a Bayesian wind speed estimator is developed to
correct for the long-wave sensitivity at low wind speeds [14].
Basically, this approach requires a characterization of the
observable as a function of wind speed and significant wave
height. In summary, regardless of the inversion algorithm
used, one needs to define one (several) observable(s) from
the measured DDMs, regress them against the collocated
reference winds and/or other geophysical parameters, quantify
the relationship between the observable(s) and such parameters
through an empirical lookup table (LUT), and incorporate the
LUT into a retrieval algorithm.

In this paper, we aim to develop an improved wind GMF
for SGR-ReSI based on the level 1B (L1B) data disseminated
by MERRByS. The fundamental idea consists of two parts.
First, the improved GMF should include a GNSS-R observable
which correlates well with the surface winds. Consequently,
an approach similar to the BRE algorithm is applied to remove
the nongeophysical effects from the GNSS-R DDMs, such
as the observing geometry, the antenna gain pattern, and the
instrumental calibration factors. Second, the GNSS-R signal
results from both the specular reflection and the diffuse scatter-
ing of microwaves off the sea surface. The coherent reflection
part is expected to be dominated by large waves, while
the diffuse scattering part mainly depends on short waves.
According to the current GNSS-R theory [7], the DDM in
theory is fully characterized by the mean-square slope (MSS),
which depends on the local wind speed, the fetch, and the
incoming swell. If accurate wave reference data were widely
available and if GNSS-R indeed responded to large waves,
then an MSS GMF may be more suitable than a wind GMF,
since it accounts for the swell effects. On the other hand,
accurate sea surface wind measurements are widely available,
which favors the development of a wind GMF. Note though
that sea-state-dependent effects, other than those produced by
the local wind, i.e., swell, should be taken into account in the
GMF development. Such effects can, for instance, be modeled
by analyzing significant wave height (Hs) dependencies in
low wind conditions. Therefore, although the observable is
well described by the sea surface wind speed signature, other
effects, such as sea surface temperature (SST) and significant
wave height (Hs), are also taken into account during the GMF
development as second-order improvements [15].

Section II introduces the ancillary data and the simulator
used in this paper. Then a set of empirical criteria are presented
to select only the SGR-ReSI data of relatively high quality.
In Section III, the analysis of both simulated and real TDS-1 is
carried out in order to develop the corrections for removing the
mentioned nongeophysical effects. In Section IV, the relevant
corrections that are verified in the simulations are applied to
the real TDS-1 data, and an empirical wind-only GMF is
generated. Then, the sensitivity of TDS-1 corrected observa-
tions to sea surface conditions is analyzed using collocated
ASCAT level 2 (L2) wind data and the European Centre for
Medium-Range Weather Forecasts (ECMWF) model output,
e.g., winds and waves. A combined wind/Hs GMF is proposed

TABLE I

LIST OF THE COLLOCATED ANCILLARY PARAMETERS

to improve the characterization of the GNSS-R observable.
Finally, conclusions are presented in Section V.

II. DATA AND SIMULATOR

A. Data

SGR-ReSI has operated in two different modes. From
September 2014 to April 2015, it operated in unmonitored
automatic gain control (UAGC) mode, in which the receiver
absolute power levels are unknown since the instrument
automatically adjusts the receiver gain to make optimal use of
the available dynamic range. As from May 2015, it operates
in fixed gain mode (FGC), which is more suitable for
calibration purposes. In both cases, the DDMs are generated
onboard at 1 Hz with a coherent integration time of 1 ms. The
entire SGR-ReSI L1B data set is collocated with ECMWF
wind/wave parameters and ASCAT-A L2 winds. Different
ECMWF/ASCAT parameters used in the analysis are listed
in Table I. The SGR-ReSI data are converted from the L1A
onboard processed DDMs into a standard multiframe tag
image file format, and separated into tracks and referenced
to files with synchronized metadata [16]. The collocated
ECMWF parameters are acquired by interpolating three
ECMWF 3-h forecast fields on a 0.5625° latitude/longitude
grid both spatially and temporally to the data acquisition
location and time. ASCAT data are collocated with SGR-ReSI
specular point acquisitions using the following criteria:
a maximum separation of 20 min in time and 25 km in space.

The observable is a quantity derived from the DDM which
depends on the underlying wind/wave conditions. In this paper,
a normalized reflected signal (SNR) is the primary observable
used to develop the GNSS-R GMF [17]. The noise nDDM is
defined as the average of the noise floor across all Doppler bins
and the first 20 negative delay bins of the DDM, as indicated
by the red rectangle in Fig. 1. While, the signal is defined
as the average of the peak power (denoted as pDDM) across
certain Doppler and delay bins (3 Doppler bins × 1 delay bin,
as indicated by the gray rectangle) subtracted by the noise.
In practice, the peak position is directly determined from
the DDM data. If the peak position is found at a Doppler
shift lower than −500 Hz or larger than +500 Hz, the cor-
responding DDM is excluded from the study. The raw SNR
computation is based on [17], i.e.,

SNR0 =
pDDM − nDDM

nDDM
. (1)
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Fig. 1. Illustration of the observable definition: the noise is defined as the
DDM average over the red rectangle, and the signal is define as the DDM
average over the white rectangle minus the noise.

Although for FGC mode measurements, the SNR is not strictly
needed for calibration purposes, for consistency, the SNR is
computed for both UAGC and FGC modes, and in both the
simulation and the analysis of real TDS-1 data. Note that
ideally, i.e., from the simulation point of view, the observ-
ables signal, SNR, peak, and peak-to-noise ratio (PNR) are
equivalent.

The SGR-ReSI DDMs do not always present the typical
shape shown in Fig. 1, due to ice contamination or low
SNR conditions. Therefore, a quality control (QC) together
with the quality flags in the L1B product is needed to
filter out poor-quality data before the analysis. First, all the
measurements with SST <−1 °C are excluded to avoid ice
contamination. This is similar to the ice flagging used by the
ASCAT L2 processing. Second, a four-sigma QC approach
is used to filter out the noisy DDMs, i.e., the measurements
with (pDDM/σn) < 4 are excluded, where σn is the standard
deviation (SD) over the noise box. Finally, the DDMs whose
peak positions are too far from the zero Doppler—zero delay
bin (as given by the L1B data) are excluded. In practice,
if the position of the maximum value is more than two
Doppler bins or five delay bins away from the specular point,
the corresponding DDM is excluded from the further analysis.
The last two conditions usually correspond to measurements
at high incidence angles and low Gr values (less than 0 dB),
that is about 47% of the observations over the ocean.

B. Simulator

A GNSS-R open source end-to-end simulator, namely,
Wavpy [17], is used to verify each step of the correction in
this section. The simulator uses the observation geometries of
the real data as input and generates DDMs at 1 Hz as well.
Then the corrections are consolidated with real data analysis

Fig. 2. (a) Simulated SNR1 as a function of wind speed (x-axis) and
incidence angle (color). (b) Same SNR1 (2) as a function of incidence and
the fit regression cureve in solid, for three different wind speeds, i.e., 5, 7,
and 12 m/s [as shown by the vertical lines in (a)].

in Section III. The primary issue of the GMF development
is to correct for the effect of receiver antenna gain, which
dominates the observable variations. The correction is written
as

SNR1 =
SNR0

Gr
. (2)

Fig. 2(a) shows the corrected SNR (SNR1), derived from a
Wavpy simulation that uses the real TDS-1 settings avail-
able from the MERRByS product (Gr , observation geometry,
and Gt ), as a function of ASCAT wind speed and for different
incidence angle values (see legend). It is clear that SNR1
shows good correlation with the input wind speed for each
incidence angle bin. However, this observable has a residual
dependence on incidence angle. The main reason for this
is that the following effects of the BRE have not been
accounted for.

1) the surface area (A) corresponding to the signal glisten-
ing area;

2) the transmitter power and its antenna gain (Gt );
3) distance from the signal glistening area to the

receiver/transmitter (Rr /Rt ).
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Ideally, the abovementioned effects should be corrected using
the BRE approach as described in [11]. However, the actual
implementation of BRE is time consuming, particularly for
the calculation of surface area A. Moreover, different GPS
satellites may have different transmitter power and antenna
gain patterns, which need to be accounted for accurate σ 0

(and SNR) estimations. Since no accurate estimates of these
parameters are available, we use an empirical approach to sim-
plify the correction of the aforementioned effects. According
to Fig. 2(b), the combined transmitted antenna power and gain
(and residual receiver antenna gain) effect is a quasi-linear
function of incidence angle, for all wind speeds. For simplicity,
the combined effect on the SNR is simply modeled as a linear
function of incidence angle θ in degrees

f (θ) = 0.019426θ + 0.93379. (3)

The incidence angle correction f (θ) is then applied to SNR1
as

SNR2 =
SNR1

f (θ)
. (4)

The observable dependence on f (θ) is removed after apply-
ing (4) (not shown). However, small variations of SNR2 persist
at certain incidence angle and wind speed bins. Such variations
increase with θ [2%–6%, see the small variations at each
incidence bin in Fig. 2(b)]. This is because the sea surface area
is indeed not only a function of θ but also slightly dependent
on the observing azimuth (relative to the geographic north) and
the relative motion between the receiver and the transmitter.
If the surface area associated with the signal is estimated
properly, such small variations can be totally removed [18].

III. METHODOLOGY

Following the simulation results, we apply the Gr and f (θ)
corrections to the real SGR-ReSI data. Then the 2-D histogram
of the corrected SNR (SNR2) versus incidence angle θ is
analyzed in order to verify the effectiveness of such corrections
for real data. Note that in Fig. 3(a), the sampled wind prob-
ability density functions (PDFs) are dependent on incidence
angle. Since the SGR-ReSI antenna is almost nadir looking,
the capability of sensing the low signal power at high wind
speeds decreases with increasing incidence angles, leading to a
positive shift of the wind PDF for decreasing θ . To discard any
wind sampling effects in the residual dependence on θ , a PDF
matching technique is used. That is, the SGR-ReSI SNR2
data are randomly selected to match the minimum number N
in each ECMWF speed bin as indicated by the black-bold
curve in Fig. 3(a). Consequently, the 2-D histogram of SNR2
versus incidence angle θ is shown in Fig. 3(b). For the sake of
comparison, each 2-D bin is normalized by the total number
of samples within the corresponding incidence bin. The same
approach is applied to the data acquired in FGC mode, which
show similar results to those in Fig. 3.

Since the noise does not depend on θ , the histogram of
other observables, e.g., signal, peak, and PNR, is similar to
that of the SNR (SNR2, not shown). From Fig. 3(b), one can
conclude that there is still incidence angle dependence for
high incidence angles. This may be attributed to the Fresnel

Fig. 3. (a) PDFs of wind speed for different incidence angle. (b) 2-D
histogram of the real SGR-ReSI SNR2 [i.e., after correcting for Gr and f (θ)]
versus incidence angle. Data acquired at UAGC mode are used in these plots.

reflection coefficient [13], the uncalibrated receiver antenna
gain and the unknown transmitter antenna gain. The Fresnel
reflection coefficient is a function of incidence angle and
dielectric permitivity. The latter is estimated using collocated
ECMWF SST, a fixed sea surface salinity (SSS) value (35 psu),
and the GPS L1 frequency (1575.42 MHz). The antenna gain
patterns are not accounted for accurately in (2) and (3) and
can be further considered as a function of both incidence angle
and azimuth angle (i.e., the specular point to receiver vector
in the receiver’s antenna frame), as modeled by an additional
calibration factor �g(θ , ϕ). In practice, on can estimate �g
using the following iterative process (see Fig. 4) and the
following equation:

�g j,k =
1

N

∑

i

ni · 〈xi, j,k〉
〈xi 〉

(5)

where x corresponds to the observable SNR, N is the total
amount of data, ni is the number of data in the i th wind
speed bin, and j, k represents the bin number for incidence
angle and azimuth angle, respectively. The bin size is 1 m/s
for i , 1° for j , and 10° for k.
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Fig. 4. Iterative process to estimate �g.

As shown in Fig. 4, �g1 corresponds to the contribution
from the transmitter antenna gain and the unknown receiver
antenna gain estimation (systematic) errors; while �g2 cor-
responds to �g1 and the estimated receiver antenna gain Gr

(given by the TDS-1 L1B product). The estimation of �g2 is
carried out to test the robustness of the iterative method.
Indeed, by computing the ratio of �g2 and �g1, one should
infer the receiver antenna gain pattern as

Ginferred
r =

�g2

�g1
+ C (6)

where C is a constant value that makes Ginferred
r and Gr to

have the same absolute value. It is independent of θ and ϕ and
does not affect the measurement scatters. Fig. 5 shows �g1,
Ginferred

r and the estimated antenna gain pattern Gr given by
the SGR-ReSI L1B product, respectively. It is clear that the
inferred and estimated receiver antenna patterns are almost
identical (except for the high incidence angles), thus proving
that the chart flow shown in Fig. 4 can be used to estimate the
combined sytematic effects induced by the transmitter antenna
gain and the residual receiver antenna gain errors.

In principle, SGR-ReSI receives signals from different
GPS satellites, which may have different transmitter power
and antenna gain pattern. Therefore, applying a single
correction table �g1 to all the transmitters may not lead
to an optimal calibration. One should repeat the procedure
shown in Fig. 4 for each transmitter separately, as specified

Fig. 5. (a) Additional calibration factor �g1 (combined receiver and
transmitter G) as a function of elevation and azimuth angles. (b) Inferred
receiver antenna gain pattern. (c) Estimated antenna gain pattern (given by
the SGR-ReSI L1B product).

by the space vehicle numbers (SVNs), which can be easily
transformed from the pseudorandom number (PRN) codes in
the L1B product. Note that since very little amount of data
are found from SVNs 26, 38, 70, and 73 during the study
period (September 2014–April 2016), these transmitters are
excluded from the analysis. After excluding these data sets,
each PRN code corresponds to a unique SVN, such that one
can use either SVN-dependent or PRN-dependent corrections
in this paper. Finally, the observable of real data set is further
corrected by the Fresnel reflection coefficient �(θ) [7] and
the PRN-depdendent correction factor �gPRN

SNR3 =
SNR2

|�(θ)|2 · �gPRN
(7)

Fig. 6 shows the same plot as Fig. 3(b) but for SNR3. It is clear
that the incidence angle dependence is very much reduced
by using the additional correction depicted by (7). Note
though that the measurement uncertainties slightly increase
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Fig. 6. 2-D histogram of the real SGR-ReSI SNR3 (after correcting for
Gr , f (θ), Fresnel reflection coefficient and the PRN-dependent correction
factor �gPRN) versus incidence angle for data in UAGC mode.

with incidence angle. After applying QC as described in
Section II-A, all the valid observables SNR3 with θ < 45° and
Gr > 0 dB, i.e., 45% of the measurements over the ocean,
are used in Section IV for the development of the wind GMF.

IV. RESULTS

Following the definitions in Sections II and III,
the observables SNR1 (2) and SNR2 (4) are further
corrected by the Fresnel reflection coefficient �(θ) in order
to ease the comparision between SNR1 (or SNR2) and SNR3.
Hereafter, the subscripts below refer to the corrections to the
observable SNR as follows:

1) subscript “1,” observable after correcting for Gr , and
Fresnel reflection coefficient;

2) subscript “2,” observable after correcting for Gr , Fresnel
reflection coefficient, and f (θ);

3) subscript “3,” observable after correcting for Gr , f (θ),
Fresnel reflection coefficient, and �gPRN.

Section IV-A presents the mean and the SD values of the
studied observable as a function of wind speed. Then the
observable characteristics are evaluated under different surface
conditions according to the wind variability indicator included
in the ASCAT data. Section IV-B addresses the impact of
waves on the observable. The observable characteristics are
evaluated for three different wave conditions, i.e., young sea,
fully developed sea, and swell sea, as well as for different
Hs values.

A. Observable Versus Winds

1) SGR-ReSI—ECMWF Analysis: As shown in [18],
the sensitivity of SNR to wind direction is negligible for all
wind speed regimes. Therefore, the development of the wind
GMF only takes the wind speed component into account.
Fig. 7 shows the SD errors of different SNRs as a function
of wind speed (FGC mode). It is clear that SNR3 has the

Fig. 7. SD errors as a function of wind speed for different SNRs (FGC
mode).

lowest scatter, thus confirming that the corrections performed
in Sections II and III are relevant for both forward modeling
and inversion. Note though that different SNRs show a similar
sensitivity to wind speed changes (not shown).

Fig. 8 shows the scatter-density plots of SNR3 versus
ECMWF wind speed for different operation modes.
The amount of UAGC and FGC data used is about
0.55 and 1.8 million, respectively. The magenta curve is
the wind GMF derived from the Wavpy simulation. Note
that a shift of +1.5 dB has been applied to the Wavpy
curve in order to match the real data highest density points.
This bias is probably due to an overestimation of the noise,
the instrument loss, or some other instrumental parameters
in Wavpy. Since we are more interested on the relative
changes (i.e., sensitivities) of the observables, this bias is not
further addressed in this paper. Despite of the measurement
scatter, the globally measured observable (SNR) has a very
similar sensitivity as that of the simulated SNR from Wavpy.
It also shows that the FGC mode has less uncertainty than
the UAGC mode after applying the mentioned corrections.
Moreover, the FGC mode shows larger sensitivity to high
wind variations than the UAGC mode. Since the wind speed
PDFs of UAGC and FGC are similar (not shown), only the
data obtained in FGC mode are hereafter analyzed.

It is not so straightforward to compare SNR with
the theoretical normalized bistatic normalized radar cross
section (BNRCS), since the former contains the weighted
combination of the scattering contribution from the specular
point and the neighboring points, according to the BRE.
Nevertheless, the measured SNR, in particular the SNR3,
shows on average excellent agreement (within 0.3 dB for
speeds between 2 and 14 ms−1) with the simulated BNRCS
derived from Wavpy (not shown).

2) SGR-ReSI—ASCAT Analysis: Since the orbit of
TDS-1 is quasi sun-synchronous, with a local time ascending
node (LTAN) drift of 1.42 h/yr, the amount of collocated
SGR-ReSI and ASCAT data is limited in FGC mode
(TDS-1 LTAN was closest to that of Metop-ASCAT while
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Fig. 8. Scatter-density plot of SNR3 versus ECMWF wind speed, for
(a) UAGC mode and (b) FGC mode. The colors (from cool to warm)
represent 1%, 10%, 20%, . . . , 90% of the maximum number for the densest
bin. The white curve shows the theoretical wind GMF derived from the Wavpy
simulation

operating in UAGC mode, i.e., during the first six months of
TDS-1 mission), and most of the collocations are located at
mid and high latitudes. To avoid sampling issues, only triple
collocated TDS-1/ASCAT/ECMWF data are used in this
section. Fig. 9(a) shows that the SNR3 fit has less uncertainty
and better fits the theoretical sensitivity (magenta curve)
at low winds when using ASCAT winds (red curve) rather
than ECMWF winds (black curve). This indicates that the
SGR-ReSI actually measures the sea surface wind at a spatial
resolution closer to that of ASCAT than that of ECMWF.
Here, the error bars are purely empirical and can also be used
as an indicator of the effective sensitivity of SNR to wind
speed changes, i.e., the combination of the error bars and the
sensitivity itself (as provided by the SNR slope as a function
of wind speed). For example, a low wind sensitivity (e.g.,
at high winds) combined with a large scatter, leads to very
large wind retrieval errors, which is equivalent to having a
very low or marginal sensitivity with a small scatter.

The impact of wind variability on SGR-ReSI measurements
is analyzed by simply checking the estimated SD errors of
SNR3 for different ASCAT-derived wind variability condi-
tions. As shown in [19], the singularity exponents (SEs)

Fig. 9. (a) Mean SNR3 and corresponding SD errors (error bars) as a
function of ECMWF wind speed (black curve), and ASCAT wind speed
(red curve). The grey curve corresponds to the theoretical sensitivity derived
from the Wavpy simulation. (b) Mean SD of SNR3 errors as a function of
wind variability category.

derived from ASCAT data depict the degree of local regularity
(spatial gradient) around a given point. The most negative sin-
gularity exponent (SE) values correspond to the least regular
behavior of the ASCAT wind field (i.e., the highest wind
variability conditions), while positive SE values indicate a
more regular behavior (i.e., low wind variability conditions).
In this section, a set of SE thresholds (−0.15, −0.09, −0.05,
and 0) is used to roughly separate the surface wind variability
into five different intervals or categories, such that the wind
variability increases as the category index increases. In gen-
eral, the slope of the mean SNR3 versus wind speed (i.e.,
the SNR3 sensitivity) does not change with wind variability
(not shown). However, as seen in Fig. 9(b), the mean SD errors
clearly increase with wind variability. Note that the mean SD
values are derived from the following equations:

SD =

√√√√
∑Ns

i=1 ni · SD2
i∑Ns

i=1 ni
(8a)

SD =

√√√√
∑Ns

i=1 1/ni · SD2
i∑Ns

i=1 1/ni
(8b)
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where i indicates the i th wind speed bin (bin size 1 m/s),
ni (5 ≤ i ≤ 12) is the percentile of samples in the i th
wind speed bin, and SDi is the SD error for SNR3. For wind
conditions of w > 12 m/s or w < 5 m/s, there is too little
data (e.g., only 10–300 samples) and, therefore, the results
are not statistically significant. Equation 8(a) is the common
approach used to assess the ensemble mean value, while 8(b) is
usually adopted to mitigate the sampling effects (e.g., of wind
speed). Taking the amount of data into account, the three-
sigma statistical uncertainties are about 0.17, 0.16, 0.14, 0.10,
and 0.05 dB for the five SE categories, respectively. Such
uncertainties are generally smaller than the difference between
the corresponding adjacent categories (black curve). Therefore,
these differences are statistically significant, except for the
decrease of the mean SD values for the SE categories 4–5
when using 8(b) (gray curve). It can, therefore, be concluded
that the SNR3 SD errors generally increase as the wind
variability increases (in particular, for categories 1–2).

B. SNR Versus Nonwind Related Effects

Here, we consider the sensitivity of SNR to wave
parameters. As mentioned in Section I, the DDM is in theory
fully characterized by MSS, which depends on the local
wind speed, the fetch, and the incoming swell. Since wind
is a significant contribution to MSS, these two variables are
highly correlated [20] in the absence of swell. Therefore, one
can either define an SNR-to-wind GMF like in Fig. 8 or an
SNR-to-MSS GMF in a similar way (not shown). The question
is what MSS data are available to develop an empirical
SNR-to-MSS GMF? We first note that the high-frequency
wave contribution to the MSS as sensed by GNSS
reflectometry but not by the NWP model such as ECMWF.
The ECMWF MSS (MSSWAM) represents the integral over all
frequencies and directions of the 2-D wave spectrum (denoted
as ψ) output from the ECMWF wave model (WAM),
but with a high-frequency cutoff, whose wavenumber is
κWAM
∗ = 3.8 rad/m [21], while the TDS-1 MSS (MSSTDS)

represents the same integral but with the following cutoff
wavenumber [7], [22]:

κTDS
∗ =

2π cos θ

3λ
(9)

where θ is the incidence angle, and λ is the wavenumber of the
transmitted microwave signal. For TDS-1, κTDS

∗ = 11 rad/m
for θ = 0°, and κTDS

∗ = 7.8 rad/m for θ = 45°. Therefore,
the difference between MSSWAM and MSSTDS can be
estimated as follows:

�mss =
∫∫

κWAM
∗ ≤κ<κ∗

κ2ψ(κ)d2κ. (10)

Since κTDS
∗ depends on the incidence angle, �MSS also

shows dependence on the incidence angle, which in turn
further complicates the development of an MSS GMF using
ECMWF MSS as reference or the incorporation of MSS into
the wind GMF. Moreover, the wave spectrum is a function of
wind speed, indicating that the normalized difference between
MSSTDS and MSSWAM (denoted as �MSS/MSSWAM) depends
on wind speed as well (see Fig. 10). Here, the simulation

Fig. 10. Normalized N�mss (�mss/mssWAM) as a function of wind
speed for a fully developed sea state (Elfouhaly spectrum) and two different
incidence angles (see legend)

is carried out for fully developed sea state using Elfouhaly
spectrum [23]. It shows that �MSS decreases with increasing
wind speed. Moreover, �MSS is less prominent at
higher incidence angle. Therefore, the development of a
comprehensive MSS GMF and the analysis of residual MSS
effects on the wind GMF are not considered at this stage.

1) Sea State: A qualitative approach is presented to assess
the impact of long waves on SNR, i.e., the observable char-
acteristics are evaluated under different sea-state conditions.
A simple empirical categorization [24] is used to roughly
discern between growing sea, fully developed sea and swell
sea. This model includes three essential parameters, i.e., wind
speed U , Hs , and an empirical threshold th used to separate
the different sea states. The significant wave height of fully
developed sea is calculated from the Pierson–Moskowitz spec-
trum [25] and approximated by the following equation:

H FD
s

∼= 0.22
U2

g
(11)

where g is the Earth’s gravity acceleration. The normalized
difference between H FD

s and the estimated Hs (from WAM)
is computed as follows:

dn =
Hs − H FD

s

H FD
s

. (12)

Finally, the sea-state conditions are categorized as




dn < −th growing sea

dn > th swell

otherwise fully-developed sea

(13)

where the empirical threshold is set to th = 0.2, such that
the percentiles of growing sea, fully developed sea and swell
sea are about 7%, 23%, and 70%, respectively. Fig. 11 shows
the mean SNR3 versus ASCAT wind speed for the different



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: TOWARD THE GENERATION OF A WIND GMF 9

Fig. 11. Mean SNR3 and corresponding SD errors (error bars) as a function
of ASCAT wind speed for different sea-state conditions.

sea-state conditions. Fully developed seas lead to lower SNR
than younger seas. The impact of swell appears not negligible.
Besides the discernible biases among the three sea-state cate-
gories, the observable shows larger uncertainties for growing
sea state than for the other sea-state conditions. However,
the SNR sensitivity to wind speed changes is rather similar
for all conditions.

2) Significant Wave Height: Following (10), MSS is mostly
determined by large wave numbers, hence short (wind) waves,
while Hs features larger sensitivity to swell waves. As such,
ECMWF winds are more correlated with ECMWF MSS than
to Hs [20]. It is, therefore, worth analyzing whether the SNR
dependence on Hs is complementary to that on wind speed.
Fig. 12 shows the mean SNR3 as a function of (a) ASCAT
and (b) ECMWF wind speeds under different Hs conditions.
As expected, the observable is more sensitive to ASCAT winds
than to ECMWF winds, since the SNR footprint is closer
to ASCAT wind resolution than to ECMWF wind resolution.
However, the sensitivity is very low for both wind references
when Hs > 5 m, since large Hs values typically correspond
to winds higher than 7 m/s. Fig. 12(c) shows the same as
Fig. 12(b) but for the entire SGR-ReSI data set (i.e., not limited
to the collocated SGR-ReSI-ASCAT data set). Note that in the
former, the curves span over different number of wind speed
bins than in the latter. The reason is obvious: in relative terms,
the entire SGR-ReSI data set contains more median wave state
conditions (2 m < Hs < 4 m) and less calm (Hs < 2 m)/
extreme (Hs > 4 m) wave state conditions than the more
limited ASCAT-collocated data set. Consequently, the blue
and magenta curves in Fig. 12(c) are more likely to reach
the global median wind speeds [see Fig. 12(b) and (c)]. Note
that for winds below 7 m/s, the SNR sensitivity to wind
speed changes with Hs , i.e., it increases with decreasing
Hs . Consequently, adding an Hs term in the wind GMF
may be relevant. Although this may further complicate the
wind inversion (i.e., one observable for two unknowns),
Clarizia and Ruf [14] have shown that with a Bayesian

approach, conditioned by prior information, the combined
GMF leads to improved wind retrievals, particularly for low
winds.

V. DISCUSSION

The approach for the derivation of the GNSS-R observable
in Sections II and III accounts for the receiver antenna
gain effects, and models the combined effects of GNSS-R
geometry, transmitter antenna gain, and surface area around
the specular point in an empirical way. It further addresses the
effect of uncalibrated antenna gain using an iterative method
for each GPS satellite, leading to considerable reduction of
uncertainty in the observables. In particular, the proposed
empirical approach can be easily implemented using prede-
fined regression coefficients (3) and correction LUT (�gPRN),
which is highly desired for fast-delivery ground processing.
Future efforts are needed to refine the observable in order
to improve the GNSS-R GMF. First, to quantify the surface
area of the glistening zone accurately, which may further
reduce the observable uncertainty by 2%–6%. Second, to take
SSS into account for the calculation of the Fresnel reflection
coefficient �(θ), since cold water (polar regions) and rainy
(tropics) areas usually correspond to significantly lower SSS
value than eslewhere. Third, to characterize the noise effects.
The estimated noise in Fig. 1 actually includes the instrument
and antenna noise, as well as the thermal noise of atmosphere
and earth surface (and, occasionally, reflections of radiation
from the sun, the moon, and the milky way) intercepted by
the antenna. It may be relevant as well to carry out the noise
monitoring.

Physically speaking, MSS may be closer to the GNSS-R
observable, which is dominated by reflection and scattering
of waves on the local ocean topography. The reflection part is
expected to depend on swell traveling within the footprint, but
generated external to it. The high-frequency wave contribution
is defined as wind sea and is indeed highly correlated with
wind. If accurate MSS reference data were available and if
GNSS-R indeed responded to MSS, then a MSS GMF would
be obviously better than a wind GMF, since it accounts for
the swell effect on MSS and wind does not. However, if no
accurate MSS reference data are available, then a wind GMF
may be preferred, since MSS and wind are highly correlated.
Moreover, ASCAT winds are very good and have verified
ECMWF model winds too, but MSS is relatively uncertain.
It is essentially modeled from the winds and integrated in
time. This is why a wind GMF is attractive and an MSS GMF
is not.

The significant wave height is composed of wind sea and
swell contributions. Although it is not an ideal variable to
represent the nonlocal sea state, one may expect that Hs is
complementary to the analysis of SNR dependence on wind
speed, particularly for high Hs and low wind cases. However,
since Hs depends on wind speed (U2) too, separating the SNR
into different Hs categories generally suffers from conditional
sampling errors drawn from different wind and error PDFs.
The only way to get useful information out of underdetermined
observations is to add prior knowledge. Ideally this should be
fit in the context of a 4-D variational approach, though most
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Fig. 12. Mean SNR3 as a function of (a) ASCAT and (b) ECMWF wind speeds for the collocated SGR-ReSI and ASCAT data set. (c) Same as (b) but for
the entire SGR-ReSI data set (i.e., not limited to the collocated SGR-ReSI-ASCAT data set).

NWP and WAMs are not integrated unfortunately. In that case,
one may use the prior Hs from ECMWF to retrieve a better
wind speed. Hs errors in the prior are then projected on the
GNSS-R speed error, so this should be used with caution.

VI. CONCLUSION

In this paper, both the simulation and the analysis of the
SGR-ReSI L1B data are used to develop the GNSS-R GMFs.
The simulation results show that an SNR correction for the
receiver antenna gain Gr and the incidence angle f (θ) is
essential for forward model development purposes. Actually,
f (θ) includes the effects of the receiver and transmitter
geometry and the specular area. Consequently, an innovative
method is developed to further correct for the residual inci-
dence dependence in the real data, which may be attributed
to the uncalibrated receiver antenna gain and the unknown
transmitter antenna gain, and is modeled as a function of both
incidence angle and azimuth angle. In practice, such residual
incidence dependence is modeled as a 2-D LUT. To account
for different Gt and transmitter power (Pt ) characteristics,
the LUT corrections are applied for each satellite ID or PRN.
The overall corrections remarkably reduce the measurement
uncertainties, and as such, are the basis for the GNSS-R GMF
development.

The results show that ASCAT winds are more representative
of TDS-1 SNRs than ECMWF winds, and, therefore, more
suitable for defining the GMF, particularly for wind speeds
below 3 m/s. SNRs observed in the fixed gain control (FGC)
mode are more sensitive to surface wind than those observed
in the UAGC mode. An empirical wind-only GMF is then
generated, which sensitivity agrees well with the physically
based model used in the simulation procedure.

The SNR dependence on SST is not investigated. At low
SST conditions, the large SD values of the SGR-ReSI mea-
surements are caused by the high wind variability conditions
at high latitudes. Although the observable uncertainties do
depend on wind variability, no significant dependence for the
noise estimates is found. Therefore, no error model can be
developed at this stage for GNSS-R wind inversion purposes.

Sea surface winds and MSS are highly correlated, thus
one can either use a wind GMF or an MSS GMF.

However, due to the lack of reliable MSS reference, no MSS
GMF development or MSS impact analysis on the wind
GMF has been carried out. It is recommended to further
assess the SNR-to-MSS relationship with a reference MSS that
accounts for the different wavelength cutoffs between GNSS-R
and model output. A comprehensive Wavpy simulation can be
carried out to compute such �MSS, which can be used to
correct the auxiliary (model) MSS estimates. In line with [14],
a nonnegligible dependence of SNR on significant wave
height is found, complementary to that on wind. In partic-
ular, the SNR sensitivity increases for decreasing Hs values,
at winds below 7 m/s.
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