
  

Abstract—Hyperspectral image (HSI) denoising is a crucial 

preprocessing procedure to improve the performance of the 

subsequent HSI interpretation and applications. In this paper, a 

novel deep learning-based method for this task is proposed, by 

learning a non-linear end-to-end mapping between the noisy and 

clean HSIs with a combined spatial-spectral deep convolutional 

neural network (HSID-CNN). Both the spatial and spectral 

information are simultaneously assigned to the proposed network. 

In addition, multi-scale feature extraction and multi-level feature 

representation are respectively employed to capture both the 

multi-scale spatial-spectral feature and fuse different feature 

representations for the final restoration. The simulated and 

real-data experiments demonstrate that the proposed HSID-CNN 

outperforms many of the mainstream methods in both the 

quantitative evaluation indexes, visual effects, and HSI 

classification accuracy.   

 
Index Terms—Hyperspectral image denoising, spatial-spectral, 

convolutional neural network, multi-scale feature extraction.  

 

I. INTRODUCTION 

YPERSPECTRAL images (HSIs), which simultaneously 

acquire both spatial and spectral information, have already 

been applied in many remote sensing applications, such as 

classification [1]–[2], target detection [3], unmixing [4], etc. 

Nevertheless, because of sensor internal malfunction, photon 
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effects, and atmospheric interference, HSIs often suffer from 

various types of noise, such as random noise, stripe noise, and 

dead pixels [5]–[7]. This greatly affects the subsequent 

processing for information interpretation and understanding 

[8]–[10]. Therefore, it is critical to reduce the noise in HSIs and 

improve their quality before HSI analysis and interpretation. 

A variety of HSI denoising methods have been proposed over 

the last decades [11]–[25]. The most fundamental strategy is to 

apply a conventional 2-D image denoising method to the HSI 

band by band. For example, non-local self-similarity (NSS) 

based methods such as block-matching and 3-D filtering 

(BM3D) [26] and weighted nuclear norm minimization 

(WNNM) [27] or learning-based methods such as expected 

patch log likelihood (EPLL) [28] can also be directly employed 

for HSI denoising. However, these band-by-band denoising 

methods usually lead to larger spectral distortion [22], since the 

correlation of the spatial and spectral information between the 

different bands is not simultaneously taken into consideration 

[23]–[25]. 

Therefore, from the point of view of combined spatial- 

spectral constraints, many scholars have jointly utilized the 

spatial and spectral information to reduce HSI noise [23]. 

Although these spatial-spectral HSI denoising methods can 

achieve relatively better results, the good performance must 

precisely tune parameters for each HSI [24]. This generates the 

unintelligent and time-consuming for different HSI data. 

Besides, because the noise exists in both spatial and spectral 

domain with unequal strength, these methods are insufficient to 

satisfy this complex situation, and tend to produce the 

over-smooth or spectral distortion in more complex noise 

scenario [30]–[31]. Therefore, it is significant to build a fast, 

efficient and universal framework to adapt to the different HSI 

data with different situations. 

Recently, the deep learning theory [32] solving the complex 

problem with an end-to-end fashion can provide a prominent 

strategy to solve the mentioned insufficient of existing 

methods. This type methods exploit feature representations 

learned exclusively from abundant data, instead of 

hand-crafting features that are mostly designed based on 

domain-specific knowledge [33]. DL has also been introduced 

into the geoscience and remote sensing community for data 

interpretation, analysis, and application [34]–[35], including 

aerial scene classification [36]–[37], caption generation [38], 

synthetic aperture radar (SAR) image interpretation [39], 
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pansharpening [40], and so on. In terms of nature image 

denoising task, some scholars such as Mao et al. [41] and 

Zhang et al. [42] employed convolutional neural networks 

(CNNs) to extract the intrinsic and different image features and 

avoid a complex priori constraint, which achieved 

state-of-the-art performance on nature image denoising. 

However, these denoising methods are lack of universality for 

HSI denoising, which do not consider the characteristics of 

spectral redundancy in HSI data. Therefore, how to combine 

with the spatial-spectral strategy and deep learning is 

significant for HSI denoising. 

In this paper, considering that image noise in HSI data can be 

expressed through deep learning models between clean data 

and noisy data, we propose a combined spatial-spectral residual 

network with multi-scale feature extraction to recover 

noise-free HSIs. In our work, both the spatial structure and 

adjacent correlated spectra are simultaneously assigned to the 

proposed network for feature extraction and representation. The 

main ideas can be summarized as follows. 

1) A novel spatial-spectral deep learning-based method for 

HSI denoising is proposed, by learning a non-linear 

end-to-end mapping between the noisy and clean HSIs with a 

2D spatial and 3D spatial-spectral combined convolutional 

neural network. For better utilizing and mining the character 

of single band and high correction of its adjacent band, the 

proposed method develops a 2D and 3D combined 

convolutional neural network. In first layer of the proposed 

model, 2D-CNN can enhance the feature extraction ability of 

the single band, and 3D-CNN can simultaneously utilize the 

high correction and complementarity of its adjacent bands. 

2) In remote sensing imagery, the feature expression may 

rely on contextual information in different scales, since 

ground objects usually have multiplicative sizes in different 

non-local regions. Therefore, the proposed model introduces 

a multi-scale convolutional unit to extract multi-scale 

features for the multi-context information, which can 

simultaneously get diverse receptive field sizes for noise 

removal. 

3) For different HSIs with different spectrum numbers and 

diverse noise distributions, the proposed method can 

effectively remove the noise in different HSIs with only 

single model, which can simultaneously preserve the local 

details and structural information of the HSI without pre-set 

parameters adjusting. 

The remainder of this paper is organized as follows. In 

Section II, the HSI degradation model is described, and then 

existing methods for HSI denoising is introduced. The 

proposed HSID-CNN model and the related details are 

presented in Section III. The simulated and real-data 

experimental results and a discussion are presented in Section 

IV. Finally, our conclusions are given in Section V.  

II. RELATED WORK 

A. Hyperspectral Noise Degradation Model 

HSI data can be denoted by 3-D cube Y  of size M N B  , 

whose degradation model can be described as: 

 = +Y X V   (1) 

where X  is the ideal noise-free data, 
1 2[ , ,..., ]Bv v v=V  is the 

additive noise with the Gaussian distribution 2~ (0, )n nv   , 

and 1 n B   and 2

n  mean that the noise intensity varies in 

the n-th spectra. Hence, the HSI denoising process is to 

estimate the original data X  from the noisy observation Y . 

 

B. Analysis of Existing HSI Denoising Methods 

Up to now, there are two main types of HSI denoising 

methods: 1) transform-domain-based methods and 2) 

spatial-domain-based methods. The transform-domain-based 

methods attempt to separate clear signals from the noisy data by 

various transformations, such as principal component analysis, 

Fourier transform, or wavelet transform. For example, 

Atkinson et al. [11] presented an estimator utilizing discrete 

Fourier transform to decorrelate the signal in the spectral 

domain, and a wavelet transform was utilized for the spatial 

filtering. Othman et al. [12] employed a hybrid spatial-spectral 

derivative-domain wavelet shrinkage noise removal (HSSNR) 

method. This method depends on the spectral derivative 

domain, where the noise level is elevated, and benefits from the 

dissimilarity of the signal nature in the spatial and spectral 

dimensions. The major weakness of this type of approaches is 

that these methods are sensitive to the selection of the transform 

function and cannot consider the differences in the geometrical 

characteristics of HSIs.  

To employ the reasonable assumption or prior, such as total 

variation [13], non-local [14]–[15], sparse representation [16]–

[17], low rank models [18]–[22] and so on, the 

spatial-domain-based methods can map the noisy HSI to the 

clear one in attempt to preserve the spatial and spectral 

characteristics. For example, Yuan et al. [13] proposed a 

spatial-spectral adaptive total variation denoising algorithm. In 

addition, Chen et al. [14] also presented an extension of the 

(BM4D) [15] algorithm from video data to HSI cube data, with 

principal component analysis (PCA) for the noise reduction. 

Based on sparse representation, Lu et al. [16] proposed a 

spatial-spectral adaptive sparse representation (SSASR) 

method. Furthermore, Li et al. [17] exploited the intra-band 

structure and the inter-band correlation in the process of joint 

sparse representation and joint dictionary learning. For an HSI, 

both the high spectral correlation between adjacent bands and 

the high spatial similarity within one band reveal the low-rank 

structure of the HSI. Hence, Renard et al. [18] proposed a 

low-rank tensor approximation method, which performs both 

spatial low-rank approximation and spectral dimensionality 

reduction. In addition, Zhang et al. [19] proposed a new HSI 

restoration method based on low-rank matrix recovery (LRMR). 

Besides, Zhao et al. [20] investigated sparse coding to model 

the global redundancy and correlation (RAC) and the local 

RAC in the spectral domain, and then employed a low-rank 

constraint to consider the global RAC in the spectral domain. 

Instead of applying a traditional nuclear norm, Xie et al. [21] 

introduced a nonconvex low-rank regularizer named the 

weighted Schatten p-norm (WSN). 

 



 

Fig. 1. Flowchart of the proposed HSID-CNN method for removing noise in HSI data. 

 

 
Fig. 2. Structure of HSID-CNN. 

 

Although these HSI denoising methods can achieve 

relatively better results, the good performance must precisely 

tune parameters for each HSI [22]. This generates the 

unintelligent and time-consuming for different HSI data. 

Therefore, it is significant to build a fast, efficient and universal 

framework to adapt to the different HSI data with different 

situations. 

 

III. METHODOLOGY 

A. The Proposed Framework Description 

Combined with the joint spatial-spectral strategy, we propose 

a novel DL-based method for HSI denoising with a deep CNN 

(HSID-CNN) to overcome the shortages of existing methods. 

The flowchart of the proposed method is depicted in Fig. 1. 

HSID-CNN learns a non-linear end-to-end mapping between 

the noisy data and original data with a deep CNN, which 

simultaneously employs the simulated k -th noisy band spatialy  

and its adjacent bands spectraly . The joint spatial-spectral data 

are then taken as the inputs of the proposed network, adaptively 

updating trainable parameters through the BP algorithm [33] 

with the residual output  . After training with a converged loss, 

the learned network can be applied to the noise reduction for 

real HSI data. Details of this network are provided as below. 

 

B. The Proposed Model for HSI Denoising 

The overall architecture of the HSID-CNN framework is 

displayed in Fig. 2. The input spatial data of size W H  

represent the current noisy band in the top-left corner. 

Correspondingly, the input spectral data of size W H K   

represent the current spatial-spectral cube with adjacent bands 

in the bottom-left corner. Based on this joint spatial-spectral 

learning strategy, one distinct advantage is that the proposed 

method can deal with no matter how many bands in HSIs data, 

because the proposed HSID-CNN model only takes one single 

spatial band (2D) as denoising object each time for HSI data, 

and its adjacent spectral bands (3D) as auxiliary data. Then our 

method traverses all the bands through one-by-one mode, 

which simultaneously employing spatial-spectral information 

with spatial and spatial-spectral filters, respectively. The 

detailed configuration of the proposed model is provided in 

Table I. 
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TABLE I 

DETAILED CONFIGURATION OF HSID-CNN. 

Main parts  Configuration 

Joint spatial-spectral 
multi-scale feature 

extraction 

Spatial_Feature_3: 20 3 3  Conv 

Spatial_Feature_5: 20 5 5  Conv 

Spatial_Feature_7: 20 7 7  Conv 

Spectral_Feature_3: 20 3 3  Conv 

Spectral_Feature_5: 20 5 5  Conv 

Spectral_Feature_7: 20 7 7  Conv 

Concat: Spatial feature + Spectral feature 

Feature representation Layer 1–Layer 9: 60 3 3  Conv + ReLU 

Multi-level feature 

representation  
Concat: Layer 3 + Layer 5 + Layer 7 + Layer 9 

Residual restoration Layer 10: 1 3 3  Conv 

 

1) Joint Spatial-Spectral Multi-Scale Feature Extraction 

As mentioned in Section I, the redundant spectral 

information in HSIs can be of great benefit to improve the 

precision of the restoration, since the spatial-spectral cube 

usually has a high correlation and similarity in the surface 

properties and textural features. Therefore, for better utilizing 

and mining the character of single band and high correction 

with its adjacent band, the proposed method develops a 2D and 

3D combined CNN network. In the proposed framework, the 

current spatial band and its K adjacent bands are 

simultaneously set as the inputs in the proposed network. In Fig. 

3(a) top, 2D convolution filters were employed to acquire 

spatial information for single current band. Simultaneously, in 

Fig. 3(a) bottom, 3D convolution filters (including adjacent 

spectrum numbers) were employed to acquire joint 

spatial-spectral information for adjacent bands. 

Furthermore, the feature expression may rely on contextual 

information in different scales in remote sensing imagery, since 

ground objects usually have multiplicative sizes in different 

non-local regions. Therefore, the proposed model introduces a 

multi-scale convolutional unit to extract multi-scale features for 

the multi-context information, which can simultaneously get 

diverse receptive field sizes for noise removal. To capture both 

the multi-scale spatial feature and spectral feature, the proposed 

method employs different convolutional kernel sizes, as 

described in Fig. 3. The six outputs of the feature maps are then 

concatenated into a single 120-channel feature map. After 

extracting the contextual feature information with different 

scales, both the spatial information and spectral information can 

then be jointly utilized for posteriori processing. 

  

(a) (b) 

Fig. 3. Joint spatial-spectral multi-scale feature extraction. (a) The joint 

spatial-spectral multi-scale feature extraction block in proposed framework. (b) 

Multi-scale feature results with different convolution kernel sizes. 

2) Deep CNN with Residual Learning Strategy 

CNNs exploit the spatially local features by enforcing a local 

connectivity pattern between the convolutional junctions of 

adjacent layers. Hidden units in layer l  take as a subset of units 

in layer 1l − , which form spatially contiguous receptive fields, 

obtaining more information by collecting and analyzing more 

neighboring pixels. Therefore, deeper networks can usually 

exploit the high non-linearity and obtain more essential feature 

extraction and expression abilities. 

However, as the layer depth increases, the common deep 

networks can have difficulties in approximating identical 

mappings by stacked flat structures such as the Conv-BN-ReLU 

block [42]. In contrast, it is reasonable to consider that most 

pixel values in residual image for restoration will be very close 

to zero. In addition, the spatial distribution of the residual 

feature maps should be very sparse, which can transfer the 

gradient descent process to a much smoother hyper-surface of 

loss to the filtering parameters. Thus, it is significant to search 

for an allocation which is on the verge of the optimal for the 

network’s parameters. Therefore, in the proposed model, the 

residual learning strategy is employed to ensure the stability 

and efficiency of the training procedure. The reconstructed 

output is represented with residual mode instead of 

straightforward results. Residual learning can effectively 

reduce the traditional degradation problem of the deeper 

networks [43], allowing us to add more trainable layers to the 

network and improve its performance. The residual noise   is 

defined as follows: 

 ˆ
spatialx y = −   (2) 

where x̂  is the original clean band. Specifically, for the 

proposed HSID-CNN, given a collection of T  training image 

pairs  , ,i i i

spatial spectral T
x y y , 

i

spatialy  is the noisy HSI as the spatial 

data, 
i

spectraly  is the corresponding noisy adjacent cube as the 

spectral data, and 
ix  is the clean HSI as the label. Setting   as 

the network trainable parameters, our model uses the 

mean-squared error (MSE) as the loss function: 

 
2

2
1

1
( ) ( , , )

2

T
i i i

spatial spectral

i

loss Net y y
T


=

 =  −   (3) 

 

3) Multi-Level Feature Representation for Restoration 

As shown in Fig. 4(b)–(e), various levels of feature 

information exist in the different depth layers. To efficiently 

utilize these comprehensive features between indirectly 

connected layers without direct attenuation, therefore, it is 

worth merging these different feature representations for the 

final restoration [44]. A multi-level feature representation unit 

in the proposed method is employed by integrally concatenating 

the multiple feature maps of the convolutional layers with 

different depths, as shown in Fig. 5.  

Besides, multi-level representation in the proposed model 

can be regarded as multiple skip-connections [40], which have 

been verified the effectiveness for solving the vanishing 

gradient problem [42]. The concatenated representation is 

defined as: 
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Fig. 4. Various levels of feature information in the different depth layers. (a) 

Input data with spatial/spectral images. (b) Feature maps of the 3rd 

convolutional layer. (c) 5th. (d) 7th. (e) 9th. (f) The output residual image. 

 

 
Fig. 5. Multi-level feature representation in the proposed HSID-CNN. 
 

 
3 5 7 9{ , , , }cf Concat f f f f=   (4) 

where 
3 5 7 9, , ,f f f f  stand for the different-level feature 

representations, as displayed in Fig. 4(b)–(e), respectively. The 

concatenated layer 
cf  is then further employed to fuse these 

combined feature representations for the final restoration: 

 
c c cW f b =  +   (5) 

where 
cW  and 

cb  stand for the weight parameters and bias 

parameter of the last convolutional layer, respectively. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

To verify the effectiveness of the proposed method, both 

simulated and real-data experiments were performed, as 

described below. The proposed method was compared with the 

current mainstream methods of HSSNR [12], low-rank tensor 

approximation (LRTA) [18], BM4D [15], and LRMR [19]. 

Before the denoising process, the gray values of each HSI band 

were all normalized to [0,1] . MPSNR [45], MSSIM [46], and 

MSA [47] served as evaluation indexes in the simulated 

experiments. Generally speaking, in simulated experiments, 

better HSI denoising results are reflected by higher MPSNR, 

MSSIM, and lower MSA values. For the real-data experiments, 

the classification accuracy of the HSI before and after denoising 

is listed for comparison purposes with the different algorithms. 

The testing codes of the proposed method can be downloaded at 

https://github.com/WHUQZhang/HSID-CNN. 

 

1) Parameter Setting and Network Training: The adjacent 

spectral band number K  was set as the same during all the 

training procedures, with 24K =  for both the simulated and 

real-data experiments. An impact analysis for the K  value is 

provided in Section IV-C. The proposed model was trained 

using the Adam [48] algorithm as the gradient descent 

optimization method, with momentum 
1 0.9 = , 

2 0.999 = , 

and -810 = , where the learning rate   was initialized to 0.01 

for the whole network. The training process of HSID-CNN took 

100 epochs (an epoch is equal to about 1,700 iterations, 

128batchsize = ). We employed the Caffe [49] framework to 

train the proposed HSID-CNN on a PC with 16 GB RAM, an 

Intel Xeon E5-2609 v3 CPU, and an NVIDIA Titan-X GPU. 

The training process for each model cost roughly 7 h 30 mins. 

For training the proposed model, the Washington DC Mall 

image obtained by the Hyperspectral Digital Imagery 

Collection Experiment (HYDICE) airborne sensor [50], with 

the size of 1280 303 191  , was divided into two parts of 

200 200 191   for testing and other parts of 1080 303 191   

for training. These training data were then cropped in each 

patch size as 20 20 , with the stride equal to 20. The simulated 

noisy patches are generated through imposing additive white 

Gaussian noise (AWGN) with different spectrums. The noise 

intensity is multiple and conforms to a fixed distribution or 

random probability distribution for different experiments. From 

the point of view of increasing the number of HSI training 

samples to better fit the HSI denoising mode, multi-angle image 

rotation (angles of 0, 90, 180, and 270 degrees) and multi-scale 

resizing (scales of 0.5, 1, 1.5, and 2 in our training data sets) 

were both utilized during the training procedure. 

 

2) Test data sets: Three data sets were employed in the 

simulated and real-data experiments, as follows. The gray 

values of each HSI band were all normalized to [0,1] . 

a) The first data set was the Washington DC Mall image 

mentioned above in Section IV-B, which was cropped to 

200 200  for the simulated-data experiments. The image 

contained 191 bands after removing the water absorption bands. 

b) The second data set was the AVIRIS Indian Pines 

hyperspectral image with the size of 145 145 220  , which 

was employed for the real-data experiments. A total of 206 

bands was used in the experiments after removing bands 150–

163, which are severely disturbed by the atmosphere and water. 

c) The third data set was acquired by the ROSIS and covered 

the University of Pavia, Italy. The image scene is of 

200 200 103   after removing 12 water absorption bands. 

 

A. Simulated-Data Experiments 

In the simulated HSI denoising process, the additional noise 

was simulated as the following three cases. 

Case 1: For different bands, the noise intensity is equal. For 

example, 
n  are set from 5 to 100, as listed in Table II. 

Case 2: For different bands, the noise intensity is different 

and conforms to a random probability distribution (as shown in 

Table II ‘ (25)n rand = ’). 

(a) (b) (c) (d) (e) (f)

60 60 60 60 60 60 60

Residual

…

Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

60 60

Layer 1 Layer 2

https://github.com/WHUQZhang/HSID-CNN


TABLE II 

QUANTITATIVE EVALUATION OF THE DENOISING RESULTS OF THE SIMULATED EXPERIMENTS 

Noise level Index HSSNR LRTA BM4D LRMR Proposed 

5n =  

MPSNR 39.890  0.0023 39.009  0.0034 41.188  0.0023 40.878  0.0036 41.684  0.0025 

MSSIM 0.9946  0.0001 0.9926  0.0002 0.9962  0.0001 0.9952  0.0001 0.9966  0.0001 

MSA 2.3552  0.0013 2.7008  0.0015 1.9326  0.0008 2.2760  0.0011 1.8318  0.0012 

25n =  

MPSNR 28.018  0.0024 30.672  0.0033 31.136  0.0025 33.029  0.0023 33.050  0.0028 

MSSIM 0.9361  0.0001 0.9629  0.0002 0.9685  0.0002 0.9809  0.0001 0.9813  0.0001 

MSA 8.1332  0.0034 5.7962  0.0056 5.0514  0.0048 4.6097  0.0028 4.2641  0.0026 

50n =  

MPSNR 22.232  0.0036 26.832  0.0052 26.752  0.0034 28.806  0.0043 28.968  0.0039 

MSSIM 0.8233  0.0001 0.9246  0.0001 0.9208  0.0002 0.9532  0.0001 0.9536  0.0001 

MSA 14.413  0.0048 7.4996  0.0054 7.1405  0.0056 6.8008  0.0034 6.2197  0.0045 

75n =  

MPSNR 18.780  0.0047 24.682  0.0054 24.261  0.0035 26.306  0.0046 26.753  0.0039 

MSSIM 0.7082  0.0002 0.8866  0.0001 0.8670  0.0001 0.9192  0.0001 0.9273  0.0001 

MSA 19.904  0.0053 8.4426  0.0057 8.6010  0.0064 8.5644  0.0067 7.5246  0.0052 

100n =  

MPSNR 16.314  0.0065 23.175  0.0048 22.577  0.0054 24.310  0.0047 25.296  0.0043 

MSSIM 0.6049  0.0001 0.8494  0.0003 0.8119  0.0002 0.8799  0.0002 0.9014  0.0001 

MSA 24.732  0.0065 9.1219  0.0072 9.7611  0.0068 10.468  0.0074 8.4061  0.0063 

(25)n rand =  

MPSNR 32.797  0.0028 28.843  0.0025 34.424  0.0034 36.094  0.0033 37.367  0.0028 

MSSIM 0.9756  0.0001 0.9331  0.0001 0.9833  0.0002 0.9856  0.0001 0.9916  0.0001 

MSA 5.0027  0.0023 10.434  0.0016 4.0766  0.0027 3.4254  0.0019 2.9571  0.0026 

(200,30)n Gau =  

MPSNR 34.461  0.0028 28.200  0.0023 34.109  0.0037 35.962  0.0025 36.804  0.0029 

MSSIM 0.9757  0.0001 0.9119  0.0002 0.9794  0.0001 0.9893  0.0001 0.9895  0.0001 

MSA 5.1619  0.0014 10.708  0.0018 3.6714  0.0012 3.4922  0.0024 3.3156  0.0017 

 

Case 3: For different bands, the noise intensity is also 

different, where the noise level 
n  is added along the spectral 

axis and is varied like a Gaussian curve [10]. 
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
=

− −
=

− −
  (6) 

where the intensity of the noise is restricted by  , with   

behaving like the standard deviation for the Gaussian curve. In 

the simulated experiments, the noise was defined as 

( , )n Gau  = , where 200 =  and 30 = . 

To acquire an integrated comparison for the other methods 

and the proposed HSID-CNN, quantitative evaluation indexes 

(MPSNR, MSSIM, and MSA), a visual comparison, curves of 

the spectra, and the spectral difference results were used to 

analyze the results of the different methods. The averages and 

standard deviations of contrasting evaluation indexes of the 

three cases with various noise levels and types in 10 times are 

listed in Table II. To give detailed contrasting results, 

100n = , (25)n rand = , and (200,30)n Gau =  are chosen 

to demonstrate the visual results, corresponding to Fig. 6, Fig. 

8, and Fig. 10, respectively. Due to the large number of bands in 

an HSI, only a few bands are selected to give the visual results 

in each case with pseudo-color. Fig. 6 shows the denoising 

results of the different methods in simulated Case 1 with the 

pseudo-color view of bands 17, 27, and 57 (see enlarged details 

in Fig. 7); Fig. 8 gives the denoising results of the different 

methods in simulated Case 2 (see enlarged details in Fig. 9); 

Fig. 10 shows the denoising results of the different methods in 

simulated Case 3 (see enlarged details in Fig. 11). The values of 

PSNR and SSIM within the different bands of the restored HSI 

are depicted to assess the per-band denoising result in Fig. 12. 

Furthermore, to verify the outputs from the spectral point of 

view, the spectral curves of the restoration results are displayed 

in Fig. 13. Meanwhile, the spectral difference curves of the 

roof, grass, and road classes are also given in Fig. 14, 

respectively. 

In Table II, the best performance for each quality index is 

marked in bold and the second-best performance for each 

quality index is underlined. Compared with the other 

algorithms, the proposed HSID-CNN achieves the highest 

MPSNR and MSSIM values and the lowest MSA values in all 

the noise levels, in addition to showing a better visual quality in 

Figs. 6–12. Although the HSSNR algorithm has a good noise 

reduction ability under weak noise levels, as shown in Table II 

with 5n = , it cannot well deal with strong noise levels such as 

100n = , and the results still contain obvious residual noise, 

especially in Figs. 6 and 7. LRTA performs well under the equal 

noise intensity for different spectra in Table II; however, it 

generates some fake artifacts in Figs. 6 and 7. From Table II, 

BM4D shows a good noise reduction ability, under both the 

uniform/non-uniform noise intensities for different bands. 

However, it also produces over-smoothing in the results in Figs. 

6–11, since the different non-local similar cubes in the HSI may 

result in the removal of small texture features. By exploring the 

low-rank property of the HSI, LRMR also provides better 

denoising results. However, there are still some noise residuals 

in the magnified areas in Fig. 7, especially for the high noise 

intensity condition such as 100n =  in Fig. 6. 

 



      

(a) (b) (c) (d) (e) (f) 

Fig. 6. Results for the Washington DC Mall image with 100n =  in Case 1. (a) Pseudo-color noisy image with bands (57, 27, 17). (b) HSSNR. (c) LRTA. (d) 

BM4D. (e) LRMR. (f) The proposed method. 

 

      

(a) (b) (c) (d) (e) (f) 

Fig. 7. Magnified results for the Washington DC Mall image in Case 1. (a) Noise-free image. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) The proposed 

method. 

 

 

      

(a) (b) (c) (d) (e) (f) 

Fig. 8. Results for the Washington DC Mall image with (25)n rand =  in Case 2. (a) Pseudo-color noisy image with bands (57, 27, 17). (b) HSSNR. (c) LRTA. (d) 

BM4D. (e) LRMR. (f) The proposed method. 

 

      

(a) (b) (c) (d) (e) (f) 

Fig. 9. Magnified results for the Washington DC Mall image in Case 2. (a) Noise-free image. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) The proposed 

method. 

 

 

      

(a) (b) (c) (d) (e) (f) 

Fig. 10. Results for the Washington DC Mall image with (200,30)n Gau =  in Case 3. (a) Pseudo-color noisy image with bands (57, 27, 17). (b) HSSNR. (c) 

LRTA. (d) BM4D. (e) LRMR. (f) The proposed method. 

 

      

(a) (b) (c) (d) (e) (f) 

Fig. 11. Magnified results for the Washington DC Mall image in Case 3. (a) Noise-free image. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) The proposed 

method. 

 



  

Fig. 12. PSNR and SSIM values of the different denoising methods in each band of the simulated experiment with noise level (25)n rand = . 

 

The spectral reflectivity is also crucial for HSI interpretation, 

such as classification, object detection, and unmixing [6], due 

to the physical properties of different ground objects. To 

validate the effectiveness after denoising in the spectral 

dimension with the different methods, Fig. 13 reveals the 

spectral curves of pixel (83, 175) in the restoration results of 

HSSNR, LRTA, BM4D, LRMR and the proposed method, 

respectively. The vertical axis named DN stands for the 

per-band value of the pixel in the same position, and the 

horizontal axis represents the band number. As displayed in 

Fig. 13, the proposed method outperforms HSSNR, LRTA, 

BM4D, and LRMR in terms of the performance in the spectral 

dimension and is closest to the ground truth. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 13. Spectra of pixel (83, 175) in the restoration results. (a) Original. (b) 

HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) The proposed method. 

 

In addition, to reveal the changes in the spectral reflectance 

after denoising, the spectral difference curves between the 

noise-free spectrum and the restoration results of the roof class 

at pixel (83, 175), grass class at pixel (105, 62), and road class 

at pixel (48, 120) are given in Fig. 14(a)–(c), respectively. In 

Fig. 14, the vertical axis of the figures represents the DN value 

difference between the restoration results and the noise-free 

HSI, and the horizontal axis represents the spectral band 

number. The difference curve of the proposed approach is 

smoother than the other algorithms for all three classes, with the 

residual value closer to zero, demonstrating that the presented 

method is more reliable in preserving the original spectral 

feature of the noisy HSI, as shown in Fig. 14. 

  

(a) (b) 

 

(c) 

Fig. 14. Difference between the noise-free spectrum and the restoration results 

of (a) the roof class; (b) the grass class; (c) the road class. Curves (1)–(6) denote 

the results of the noisy image, HSSNR, LRTA, BM4D, LRMR, and the 

proposed method, respectively. 

 

B. Real-Data Experiments 

To further verify the effectiveness of the proposed method, 

two real-world HSI data sets were employed in our real-data 



experiments. The classification accuracy of the HSI before and 

after denoising is listed for comparison purposes with the 

different algorithms. Support vector machine (SVM) [51] was 

employed as the classifier under the same environment for all 

the restoration results. The overall accuracy (OA) and the 

kappa coefficient are given as evaluation indexes. 

 

1) AVIRIS Indian Pines Data Set: The first few bands and 

several other bands of the Indian Pines HSI are seriously 

degraded by Gaussian noise and impulse noise [52]. Figs. 15 

and 16 show the denoising results of contrast and the proposed 

method, which represent band number 2, and the pseudo-color 

result with combined bands (2, 3, 203), respectively. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 15. Results for the Indian Pines image. (a) Real image band 2. (b) HSSNR. 

(c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 16. Results for the Indian Pines image. (a) Pseudo-color noisy image with 

bands (2, 3, 203). (b) HSSNR. (c) LRTA. (d) LRMR. (e) BM4D. (f) Proposed. 

 

In Figs. 15–16, it can be clearly seen that HSSNR can reduce 

some of the noise, but some dense noise and stripes still remain 

in the restored results. The LRTA method also shows the ability 

of noise suppression, but some detailed information is 

simultaneously smoothed and lost. BM4D does well in 

suppressing noise, but it appears to be virtually powerless 

against heavy striping. LRMR also behaves well in reducing 

both noise and heavy striping. However, the restored result of 

LRMR still shows obvious residual noise and stripes. 

HSID-CNN performs the best, effectively removing the noise 

and stripes, while simultaneously preserving the local details 

and structural information of the HSI. 

In the supervised classification experiment with the SVM 

algorithm, 16 ground-truth classes were employed for testing 

the classification accuracy. The training sets included 10% of 

the test samples randomly generated from each class. The 

classification results with the Indian Pines image before and 

after denoising are revealed in Fig. 17. The OA and kappa 

coefficient are also given in Table III. Before denoising, as 

shown in Fig. 17(a), the classification results appear 

discontinuous, and the OA and kappa are only 75.96% and 

0.7220, respectively. After denoising, as shown in Fig. 17(c)–

(h), the OA and the kappa reveal different degrees of 

improvement. However, the classification results of HSSNR, 

LRTA, and LRMR still show an obvious fragmentary 

phenomenon, due to the noise removal of the original data 

being incomplete. BM4D, MH [53] and HSID-CNN suppress 

the fragmentary effect in most regions of the image, whereas 

HSID-CNN produces a better classification result, with the 

highest OA and kappa values of 85.65% and 0.8338, 

respectively. 
TABLE III 

CLASSIFICATION ACCURACY RESULTS FOR INDIAN PINES. 

 Original HSSNR LRTA BM4D MH LRMR Ours 

OA 75.96% 78.78% 77.49% 83.97% 81.37% 79.44% 85.65% 

Kappa 0.7220 0.7437 0.7387 0.8162 0.7895 0.7641 0.8338 

 

 

  

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 17. Classification results for the Indian Pines image using SVM before and 

after denoising. (a) Ground truth. (b) Original. (c) HSSNR. (d) LRTA. (e) 

BM4D. (f) MH. (g) LRMR. (h) The proposed method. (i) 16 classes. 

 

 



2) ROSIS University of Pavia Data Set: The noise is mainly 

concentrated in the first bands of the ROSIS University of 

Pavia HSI data. Figs. 18 and 19 show the denoising results of 

HSSNR, LRTA, BM4D, LRMR, and the proposed method, 

which represent the pseudo-color image with combined bands 

(2, 3, 97) and band number 2, respectively. 

In Figs. 18 and 19, it can be clearly observed that LRTA 

cannot suppress the noise well. HSSNR and LRMR can reduce 

some of the noise, but some non-uniform noise still remains in 

the restored results. BM4D does well in suppressing noise, but 

it also introduces over-smoothing in some regions. HSID-CNN 

again performs the best, effectively removing the noise, while 

simultaneously preserving the local details and structural 

information, without obvious over-smoothing. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 18. Results for the Pavia University image. (a) Pseudo-color image with 

bands (2, 3, 97). (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 19. Results for the Pavia University image. (a) Real image band 2. (b) 

HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed. 

 

For the Pavia University HSI data, the noise is mainly 

focused in some of the first bands. Therefore, in order to better 

manifest the denoising effects of the different methods, the first 

20 spectral bands were selected as the classification data. The 

classification accuracy results in Table IV also confirm the 

effectiveness of the proposed HSID-CNN, which acquires the 

highest OA and kappa coefficient values of 86.99% and 0.8319. 

In Fig. 20, it can be clearly distinguished that the proposed 

method can reduce the fragmentary effect better than the 

HSSNR, LRTA, BM4D, MH and LRMR methods. 

TABLE IV 

CLASSIFICATION ACCURACY RESULTS FOR PAVIA UNIVERSITY. 

 Original HSSNR LRTA BM4D MH LRMR Ours 

OA 70.09% 71.66% 72.56% 78.88% 84.87% 83.95% 86.99% 

Kappa 0.6157 0.6373 0.6467 0.7302 0.8089 0.8148 0.8319 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 20. Classification results for the Pavia University image using SVM before 

and after denoising. (a) Ground truth. (b) Original. (c) HSSNR. (d) LRTA. (e) 

BM4D. (f) MH. (g) LRMR. (h) The proposed method. (i) 9 classes. 

 

C. Further Discussion 

1) Adjacent spectral band number K : As described in 

Section III-B, the redundant spectral information in the HSI can 

be of great benefit to improve the precision of the restoration, 

since a spatial-spectral cube usually has a high correlation and 

similarity in the surface properties and textural features. 

Therefore, in the proposed framework, the current spatial band 

and its K  adjacent bands are simultaneously set as the inputs 

in the proposed network, employing a spatial-spectral strategy 

for HSI denoising. Hence, the adjacent spectral band number 

K  is a crucial parameter in the denoising procedure. In all of 

the simulated and real-data experiments, the number of 

adjacent spectral bands was set as 24K = . In fact, the choice 

of K  has a large effect on the restoration results of the 

proposed HSID-CNN method. To explore the influence of K  

for HSID-CNN, Fig. 21 reveals the quantitative evaluation 

results (MPSNR) with different numbers of adjacent spectra K

(the horizontal axis represents a half value of K ) in the 

simulated experiment. It can be clearly seen that the results of 

the proposed HSID-CNN method first quickly rise with the 

increase of K , and when 24K = , the results reach the highest 



MPSNR value. The results then gradually descend with the 

increase of K . Clearly, the spatial-spectral strategy is 

significant for the proposed method. 

 
Fig. 21. Restoration results under different numbers of adjacent spectra / 2K . 

 

2) Multi-scale feature extraction: In the procedure for 

recovering the original information in HSI data, the feature 

expression may rely on contextual information in different 

scales, since ground objects usually have multiplicative sizes in 

different non-local regions in remote sensing imagery. 

Therefore, the proposed model introduces a multi-scale 

convolutional unit to extract more features for the multi-context 

information. To demonstrate the impact with/without 

multi-scale feature extraction, two comparison experiments 

were implemented with Indian Pines HSI data, as shown in Fig. 

22. Some stripe noise is still residuary in the enlarged regions, 

where the model with multi-scale feature extraction performs 

better than the model without. This also certified that the 

proposed unit is beneficial for extracting multi-scale contextual 

information, which is critical and universal for 

diverse-resolutions HSIs denoising. 

   

(a) (b) (c) 

Fig. 22. With/without multi-scale feature extraction unit in Indian Pines HSI 

data. (a) Original. (b) Without multi-scale feature extraction unit. (c) With 

multi-scale feature extraction unit. 

 

3) Multi-level feature representation: Due to the various 

levels of feature information in the different depth layers, as 

displayed in Fig. 4(b)–(e), it is worth merging these different 

feature representations for the final restoration. To efficiently 

transfer these comprehensive features between indirectly 

connected layers without attenuation, a multi-level feature 

representation unit is employed in the proposed HSID-CNN, as 

shown in Fig. 5. The unit integrality concatenates the multiple 

feature maps of the convolutional layers (layers 3, 5, 7, and 9) 

with different depths. To assess the impact on different levels of 

noise with/without multi-level feature representation, two 

comparison experiments were implemented with different 

noise levels, as shown in Fig. 23. With the increase of the noise 

intensity, the model with multi-level feature representation 

performs better than the model without. It can be clearly 

demonstrated that the proposed unit is beneficial for 

suppressing strong noise, through merging the different feature 

representations for the final restoration. 

 
Fig. 23. HSI denoising results under different noise levels, with/without 

multi-level feature representation. 

 

4) Comparisons with DL-based Denoising Methods: For 

further verifying the designed deep learning-based structure, 

we also compare with several CNN-based denoising method, 

such as DnCNN [42] and 3D extension of DnCNN with nine 

layers (3D-DnCNN). The contrasting evaluation indexes with 

noise level 25n =  are listed in Table V. Fig. 24(b)-(d) show 

the denoising results with detailed parts of noisy image, 

DnCNN, 3D-DnCNN, and the proposed method, which 

represent the pseudo-color result, respectively. Due to the 

ignoring of spectral information, DnCNN only considers the 

spatial feature through band-by-band mode, which doesn’t 

completely remove the spectral noise and damages spatial 

details for HSI data. Therefore, the authenticity of this single 

band-based denoising method is insufficient. This manifests 

that necessity of spatial-spectral strategy in HSIs processing. 

3D-DnCNN employs the 3D convolutions, which takes the 

joint spatial-spectral information into consideration. 

Nevertheless, this model doesn’t make allowances for the scale 

difference between ground objects in remote sensing data. In 

comparison, the proposed method both achieves the best 

evaluation indexes and visual effects, which demonstrate the 

superiorities of the combination with joint spatial-spectral 

strategy, multi-scale feature extraction and multi-level feature 

representation. 

  

(a) (b) 

  

(c) (d) 

Fig. 24. Comparisons with deep learning-based HSI denoising methods. (a) 

Noisy. (b)DnCNN. (c) 3D-DnCNN. (d) Proposed. 

 



TABLE V 

COMPARISONS INDEXES WITH DL-BASED DENOISING METHODS. 

Index DnCNN 3D-DnCNN HSID-CNN 

MPSNR 24.874  0.0032 31.953  0.0034 33.050  0.0028 

MSSIM 0.8805  0.0003 0.9706  0.0002 0.9813  0.0001 

MSA 9.7423  0.0048 5.4274  0.0036 4.2641  0.0026 

 

5) Runtime Comparisons: For evaluating the efficiency of 

denoising algorithms, we make statistics of average runtime in 

the simulated experiments under the same environment with 

MATLAB R2014b, as listed in Table VI. Distinctly, 

HSID-CNN exhibits the lowest run-time complexity than other 

HSI denoising algorithms with GPU mode, because of the high 

efficiency of end-to-end deep learning framework. 

TABLE VI 

AVERAGE RUNTIME COMPARISONS FOR HSI DENOISING METHODS 

IN THE SIMULATED EXPERIMENTS. 

Method HSSNR LRTA BM4D LRMR Proposed 

Time/s 383.9 118.5 483.1 541.8 3.5 

 

V. CONCLUSION 

In this paper, we have proposed a deep learning based HSI 

denoising method, by learning a non-linear end-to-end 

mapping between the noisy and clean HSIs with a deep 

combined spatial-spectral convolutional neural network 

(named HSID-CNN). Both the spatial information and adjacent 

correlated bands are simultaneously assigned to the proposed 

network, where multi-scale feature extraction is employed to 

capture both the multi-scale spatial feature and spectral feature. 

The simulated and real-data experiments indicated that the 

proposed HSID-CNN outperforms many of the mainstream 

methods in both evaluation indexes, visual effect, and 

classification accuracy of the denoising results. 

In our future work, we will investigate more efficient 

learning structures to remove the mixed noise in HSI data, such 

as stripe noise, impulse noise, and dead lines [54]. Furthermore, 

another possible strategy which will be explored in our 

subsequent research will be to add a priori constraint or 

structure to the deep CNNs to reduce the spectral distortion and 

improve the texture details. 
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