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Causal Inference in Geoscience and Remote
Sensing from Observational Data

Adrián Pérez-Suay, Gustau Camps-Valls

Abstract—Establishing causal relations between random vari-
ables from observational data is perhaps the most important
challenge in today’s science. In remote sensing and geosciences
this is of special relevance to better understand the Earth’s system
and the complex interactions between the governing processes.
In this paper, we focus on observational causal inference, thus
we try to estimate the correct direction of causation using a
finite set of empirical data. In addition, we focus on the more
complex bivariate scenario that requires strong assumptions and
no conditional independence tests can be used. In particular,
we explore the framework of (non-deterministic) additive noise
models, which relies on the principle of independence between
the cause and the generating mechanism. A practical algorithmic
instantiation of such principle only requires 1) two regression
models in the forward and backward directions, and 2) the esti-
mation of statistical independence between the obtained residuals
and the observations. The direction leading to more independent
residuals is decided to be the cause. We instead propose a
criterion that uses the sensitivity (derivative) of the dependence
estimator, the sensitivity criterion allows to identify samples
most affecting the dependence measure, and hence the criterion
is robust to spurious detections. We illustrate performance in
a collection of 28 geoscience causal inference problems, in a
database of radiative transfer models simulations and machine
learning emulators in vegetation parameter modeling involving
182 problems, and in assessing the impact of different regression
models in a carbon cycle problem. The criterion achieves state-
of-the-art detection rates in all cases, it is generally robust to
noise sources and distortions. The presented approach confirms
the validity in observational bi-variate problems in the Earth
sciences.

Index Terms—Causal inference, Dependence estimation, Re-
gression, Noise, Sensitivity, Hilbert-Schmidt Independence Crite-
rion (HSIC), Gaussian Process

I. INTRODUCTION

“... observational studies are an interesting and challenging
field which demands a good deal of humility, since we can

claim only to be groping toward the truth.”
William Cochran (1972) [1].

THE Earth is a highly complex and evolving networked
system that we strive to understand better to deal with

societal, economical and environmental challenges, such as
climate change [2], [3]. There is an urgent need for tools
that help us observe and study the Earth system. Nowadays,
machine learning and signal processing play a crucial role
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for the production and analysis of Earth observation empirical
data provided by a plethora of sensory systems and platforms.
However, most statistical methods focus on prediction and
estimation problems so they are only designed to take advan-
tage of association relationships without considering causal
mechanisms. Such methods provide little information about
how variables actually interact with each other and, in this
sense, are not very helpful to understand the underlying pro-
cesses governing the system. The purpose of causal inference
is precisely to go beyond association and to determine and
discover links of causes and effects. Unlike association (e.g.
correlation) studies, causal studies allow for understanding
the underlying processes, and thus enable making inferences
(i.e. predictions) of the effects of actions on the observed
system [4]–[6].

Causal inference should be ideally performed through the
design of controlled experiments that try to avoid variable
selection and confounding biases. Considering all possible
variables and controlling all possible interactions would be
of course the ideal scenario. Setting up such experiments is,
however, not always possible, notably for ethical, economical
or simply feasibility reasons [7]. This is often the case in
empirical sciences, such as remote sensing, climate science
and the geosciences, where one cannot control the whole set
of variables affecting a given experiment. This is why actual
causal experiments on the Earth system are often replaced by
factorial experiments done with an ensemble of Earth-system
model simulations [8]. Actually, a vast literature collectively
perform model-based causal inference, and they focus on
climate data only. The studies typically rely on climate mod-
els [9], and explore schemes for detection and attribution of
plausible causes by running models under different scenarios
that consider or not the variable (forcing) under inspection.

The main advantages of model-based approaches is that, in
general, models encapsulate all the current knowledge about
the system and thus they account for all the factors that can
influence it. However, even though climate, biogeochemical
or radiative transfer models are based on well-known physics
equations, the combination of all internal processes and their
couplings still make the interpretation of outputs very compli-
cated, and it turns to be very difficult to disentangle internal
from external induced variabilities. It is also worth noting that
models are not a perfect representation of reality and many
assumptions are made, so the eventual conclusions derived
from these studies can be limited, or even wrong.
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As an alternative to the use of models, one can resort to pure
observational data, which opens a wide field in the current
era of data deluge. It is acknowledged that the problem of
inferring causation from empirical data has been traditionally
considered unsolvable. Indeed, given two variables, identifying
which is the cause and which one is the effect requires
adopting (strong) assumptions. For example, it is assumed
the absence of ‘confounding factors’ that might drive both
variables. This means that the system is fully described by
two variables only, so there is not a third variable driving
both. A second important assumption is known as the problem
of ‘selection bias’. This implies that the observed variables
should be representative of the causal relationship. A final
third assumption commonly adopted is that no feedback loops
can be found or created neither [4]. A plethora of methods
of causal discovery exist that try to remedy such limitations
by 1) considering all potentially explanatory variables of
the phenomenon, 2) selecting the most impactful ones, and
3) estimating conditional independence between (subsets of)
observed variables to create directed graphs. Advances in
observational causal inference have permitted to draw (partial)
conclusions about the causal relationships in real-life prob-
lems [4], [5], [10], [11]. In remote sensing and geosciences,
this is of special relevance to better understand the Earth’s
system and the complex and elusive interactions between the
involved processes. Answering key questions may have deep
societal, economical and environmental implications [3], [12].

In the field of remote sensing and geosciences, two main
methodological approaches exist, and both of them consider
the multivariate setting and that time is involved. Time gives
an obvious intuition on causality (“the cause should precede
the effect”) and having access to multiple time series allows
to overcome the selection bias problem. The seminal work by
Granger [13] proposed a rather simple statistical concept of
causality based on prediction, and has been applied in many
fields of Earth system science: to perform attribution of cli-
mate change [9], [14]–[16]; to study the feedback mechanism
between soil moisture and precipitation [17]; or to identify
the relationship between sea surface temperature (SST) and
the North Atlantic Oscillation (NAO) [18]. Recently, Granger
causality has been adapted to consider nonlinear relations
in vegetation dynamics [19]. As an alternative to prediction,
a second family of methods consider that it is sometimes
possible to retrieve, at least partially, the causal structure using
conditional independence tests between the variables in PC
schemes [20]. The family is called constraint-based search,
and has been used to study the causal interactions between
climate modes of variability [21], as well as to construct
climate causal networks [22], [23]. Similar methodologies
were applied to study the causal relationships with the Atlantic
meridional overturning circulation (AMOC) [24], to analyze
potential drivers of Artic Oscillation [25], or to investigate
the interactions between El Niño-Southern Oscillation (ENSO)
and the Walker circulation [26].

In this paper, unlike in the previous approaches, we will
focus on the more challenging problem of inferring causality
from observational data with two important constraints:
• Bivarate case. We will consider the case of having access

to two variables only, hence no conditional independence
tests can be computed to guide the causal identification.

• Time is not explicitly considered. We will not consider
time-series explicitly in general, hence we deal with the
problem of ‘instantaneous causality’. This hampers the
adoption of the ‘causes precede effects’ rationale, so
specific time-series approache such as those based on
Granger causality methods cannot be applied. Note that,
however, time is often not necessary to discuss concepts
such as statistical dependence and, in causal models,
time is often not even needed to discuss the effect of
interventions.

We call this setting the bivariate instantaneous case, which
has been recently treated in [6], [27]. Let us thus assume that
only two variables, x and y, have been observed, and we aim
to distinguish x causing y (indicated as x→ y) from y causing
x (that is y → x) using only purely observational data, i.e.,
a finite i.i.d. sample drawn from the joint distribution p(x, y).
Following the Bayes’ theorem, there are two admissible par-
titions of the joint distribution:

p(x, y) = p(y|x)p(x) = p(x|y)p(y),

and the question is to decide which one is the causal one. The
first one describes variable x and the conditional p(y|x) that
can be interpreted as a function that translates the information
contained in x to y, so it assumes that x causes y. The second
decomposition assumes that modeling y and the conditional
p(x|y) better explains the joint distribution, thus assuming
that y causes x. A possible answer to this question could
be obtained through an intervention analysis (alter a variable
and see the plausibility of the effect on the system), but this
is not possible in our Earth science problems for obvious
reasons. An alternative pathway is to rely on the principle
of independent mechanisms [6], [28]: if we assume x→ y so
the causal partition is p(x, y) = p(y|x)p(x), one would expect
the conditional density p(y|x) to provide no information about
the marginal density p(x), or at least less information than
p(x|y) would provide about p(y). Therefore, a solution to
the bivariate case reduces to estimate independence between
the cause density and the mechanism producing the effect
distribution. This is called the ‘independence of cause and
mechanism’ (ICM) [29], [30], which is the one adopted in
this paper. We should note that not all systems satisfy this
principle. The problem is to achieve good density estimates
of the conditionals and potential causes, and to measure
independence between them accurately.

Following the previous rationale, and focusing on the non-
deterministic scenario, we here explore the framework of non-
linear additive noise models (ANMs) [31], which rely on the
principle of independence between the cause (prior) and the
generating mechanism (conditional). A practical algorithmic
instantiation of such principle only requires 1) two regression
models to learn the two possible forward and backward
directions of causation, and 2) the estimation of statistical in-
dependence between the obtained residuals by the factorization
and the observation. The direction leading to more independent
residuals is decided to be the cause. The method has achieved
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state-of-the-art results in an exhaustive comparison involving
bivariate causal problems in biology, geosciences, economy
and social sciences, as illustrated in [27]. Authors in [31] sug-
gested the use of Gaussian processes [32], [33] for regression
fitting arbitrarily complex functions, and the Hilbert Schmidt
Independence Criterion (HSIC) [34] as dependence test based
on the excellent converge properties to the true dependence and
ease of calculation. HSIC has been previously used in remote
sensing for feature selection and dependence estimation [35],
[36].

We here propose an alternative criterion to the direct
dependence of the residuals, and focus on the sensitivity
(derivative) of the HSIC dependence estimate. The paper
extends our previous work in [37] with more theoretical
insight and a larger set of experimental evidence. In particular,
we illustrate performance in a collection of 28 geoscience
causal inference problems, in a large database of radiative
transfer models simulations and machine learning emulators in
vegetation parameter modeling leading to 182 causal problems
with ground truth, and in assessing the impact of different
regression models in a carbon cycle problem. The criterion
achieves state-of-the-art detection rates above chance levels, it
is robust to noise sources and distortions, and the adoption of
different regression models. The presented approach confirms
the validity in observational bi-variate problems in the Earth
sciences.

The remainder of the paper is organized as follows. Sec-
tion II reviews the main aspects of the adopted causal frame-
work, and the needed tools for the practical implementation:
Gaussian processes for regression and the HSIC estimate for
dependence estimation. Section III derives the HSIC sensitivity
maps and describes the proposed causal criterion. Section IV
gives experimental evidence of performance in a wide range
of bivariate Earth system problems. Finally, we conclude in
Section V with some remarks and future outlook.

II. CAUSALITY IN PAIRS OF INSTANTANEOUS VARIABLES

A. Deterministic setting

Let us first consider the case where noise is not present.
This deterministic causal problem has been treated before [6],
[38], [39], and is often known as Information-Geometric
Causal Inference (IGCI). Formally, let us assume a continuous
differentiable transformation, f : x → y. The function f has
to be a diffeomorphism (it is differentiable and bijective and it
has a differentiable inverse) of [0, 1] that is strictly monotonic
and satisfies f(0) = 0 and f(1) = 1. Now, using the standard
formula of densities under transformation

p(x) = p(y)

∣∣∣∣∂f(x)∂x

∣∣∣∣,
one could arguably identify the direction of causation from the
particular structure of the densities. If the structure of p(x)
is not correlated with the slope of f , then flat regions of f
induce peaks in p(y). The causal hypothesis y → x is thus
implausible because the causal mechanism f−1 appears to be
adjusted to the ‘input’ distribution p(y). Note that here the
principle of independence of cause and mechanism reduces to

Fig. 1: Cause-effect relations can be identified in a deterministic case
by looking at the correlation of the slope of f with the density of the
cause, p(x). The rationale is that the cause is generated independently
from the mechanism mapping it to the effect. Therefore, the shape
(slope) of the function should be more uncorrelated with the density
of the cause than the other way around. Otherwise, the inverse f−1

seems better fitted to the effect density p(y). The density asymmetry
is one of the footprints one can use to infer cause-effect relations.
When noise is present (blue dots), ANM can be applied here: two
models are developed (one that tries to explain x from y, and
vice versa) and then one looks which one yields residuals more
uncorrelated with the potential cause. In this example of x causes
y, one can see that the residual variance of x depends of y (red bars)
while the residual variance at y (green bars) is roughly constant for
all x, which suggests that is a more plausible model.

estimate the independence of p(x) and f , which interestingly
implies dependence between p(y) and f−1. This is illustrated
in Fig. 1.

We should note, however, that such justifications always
refer to oversimplified models that are unlikely to describe
realistic situations. After all, bijective deterministic relations
are rare in nature. Therefore, IGCI only provides a limited,
unrealistic scenario for which cause-effect inference is possible
by virtue of an approximate cause-mechanism independence
assumption.

B. Non-deterministic setting

The vast majority of real (and thus more interesting)
problems are not deterministic, the function f relating the
two variables is not bijective, and f is inaccessible so one
cannot compute its derivatives, and from there a criterion
of independence between the densities of the cause and the
mechanism. An alternative is to rely on the assumption made
in Additive Noise Models (ANM) for causal inference [31].

Given two random variables x and y with causal relation
x → y, under some conditions, one can demonstrate (cf. e.g.
Theorem 4.5 about the identifiability of ANMs in [6]) that
there exists an additive noise model

y = f(x) + nf ,

in the correct causal direction, but there exists no additive
noise model

x = g(y) + ng
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in the anticausal direction. The above mentioned Theorem can
be derived through the particular assumptions and it states that
generically, a distribution does not admit an ANM in both
directions at the same time.

This observation allowed Hoyer et al. [31] to design an
algorithm to distinguish cause from effect in pairs of variables
from empirical data. Essentially, the methodology performs
nonlinear regression from x→ y (and vice versa, y → x) and
assesses the independence of the forward, rf = y− f(x), and
backward residuals, rb = x − g(y), with the input variables
(drivers) y and x, respectively. The more independent residuals
tell us the right direction of causation.

Relevant assumptions are done in this approach. First, we
assume that the considered problem is described accurately
looking at the pairs (representational property). Another im-
portant assumption is the causal sufficiency, which states that
there is no hidden common cause in the considered variables
that is causing any of the latter, and thus acts as a confounder.
Third, the causal Markov assumption hold, which allows us
to treat the causal graph as a probabilistic one. In addition,
there are two extra conditions on the regression functions: (i)
f, g are either linear and noise is non-Gaussian, or (ii) f, g are
nonlinear and output’s densities are positive and smooth [6],
[27].

In order to define a practical criterion, two ingredients
are needed only: a regression method to learn functions f
and g, and a powerful dependence estimate to assess the
independence of the residuals. Therefore, the framework needs
two fundamental blocks: 1) a nonlinear regression model,
and 2) a dependence measure. We typically rely on Gaussian
Processes [33] and the HSIC [34], respectively. In what
follows, we briefly review the theory under these two kernel
methods [40]. Then we define the causality criterion.

1) Gaussian Processes (GPs): Standard regression approx-
imates observations (often referred to as outputs) as the sum
of some unknown latent function f(x) of the input data plus
constant power (homoscedastic) Gaussian noise of variance
λ2. Note that in our case, both inputs and outputs are uni-
dimensional, x, y ∈ R. Therefore, given n input-output data
pairs, the dataset is denoted as D = {(xi,yi)}ni=1, and the
model approximation is

yi = f(xi) + εi, εi ∼ N (0, λ2). (1)

Instead of proposing a parametric form for f(x) and learn-
ing its parameters in order to fit observed data well, GP
regression proceeds in a Bayesian, non-parametric way. A
zero mean1 GP prior is placed on the latent function f(x)
and a Gaussian prior is used for each latent noise term εi,
f(x) ∼ GP(0, kθ(x,x′)), where kθ(x,x′) is a covariance
function parametrized by θ and σ2 is a hyperparameter that
specifies the noise power. Essentially, a GP is a stochastic
process whose marginals are distributed as a multivariate
Gaussian. In particular, given the priors GP , samples drawn
from f(x) at the set of locations {xi}ni=1 follow a joint

1It is customary to subtract the sample mean to data {yi}ni=1, and then to
assume a zero mean model.

multivariate Gaussian with zero mean and covariance matrix
Kff with [Kff ]ij = kθ(xi,xj).

If we consider a test location x∗ with corresponding out-
put y∗, priors GP induce a prior distribution between the
observations y = [y1, . . . , yn]

> and y∗. Now it is possible
to analytically compute the posterior distribution over the
unknown output y∗ given the test input x∗ and the available
training set D,

p(y∗|x∗,D) = N (y∗|µGP∗, σ
2
GP∗), (2)

which is a Gaussian with the following mean and variance:

µGP∗ = k>f∗(Kff + λ2In)
−1y (3)

σ2
GP∗ = λ2 + k∗∗ − k>f∗(Kff + λ2In)

−1kf∗, (4)

where kf∗ = [k(x∗,x1), . . . , k(x∗,xn)]
> ∈ Rn contains the

kernel similarities of the test point x∗ to all training points in
D, Kff is a n × n kernel (covariance) matrix whose entries
contain the similarities between all training points, λ2 is a
hyperparameter accounting for the variance of the noise, k∗∗ =
k(x∗,x∗) is a scalar with the self-similarity of x∗, and In is the
identity matrix of size n. Note that both the predictive mean
and the variance can be computed in closed-form, and that the
predictive variance σ2

GP∗ does not depend on the outputs/target
variable.

2) Kernel Dependence Estimation with HSIC: Let us con-
sider two spaces X ,Y ⊆ R, on which we jointly sample
observation pairs (x,y) from distribution p(x,y). The co-
variance matrix Cxy encodes first order dependencies between
the random variables. A statistic that efficiently summarizes
the content of this matrix is its Hilbert-Schmidt norm. This
quantity is zero if and only if there exists no second order
dependence between x and y.

The nonlinear extension of the notion of covariance was
proposed in [34] to cope with higher-order relations between
the data. The use of its linear formulation has some limita-
tions and cannot discover more complex relations, for this
purposed the use of nonlinear kernel functions allows to
capture higher-order effects. Let us define a (possibly non-
linear) mapping φ: X → F such that the inner product
between features is given by a positive definite (p.d.) kernel
function Kx(x,x

′) = 〈φ(x),φ(x′)〉. The feature space F has
the structure of a reproducing kernel Hilbert space (RKHS).
Let us now denote another feature map ψ: Y → G with
associated p.d. kernel function Ky(y,y

′) = 〈ψ(y),ψ(y′)〉.
Then, the cross-covariance operator between these feature
maps is a linear operator Cxy : G → F such that Cxy =
Exy[(φ(x) − µx) ⊗ (ψ(y) − µy)], where ⊗ is the tensor
product, µx = Ex[φ(x)], and µy = Ey[ψ(y)]. See more
details in [41], [42]. The squared norm of the cross-covariance
operator, ‖Cxy‖2HS, is called the Hilbert-Schmidt Independence
Criterion (HSIC) and can be expressed in terms of kernels [34].
Given the set D with n scalar pairs drawn from the joint
p(x,y) an empirical estimator of HSIC is [43]:

HSIC =
1

n2
Tr(HKxH Ky), (5)

where Tr(·) is the trace operation (the sum of the diagonal



5

entries), Kx, Ky are the kernel matrices for the input random
variables x and y, respectively, and H = I − 1

n11
> centers

the data in the feature spaces F and G, respectively. It is
important to note that HSIC= 0 occurs if and only if x and y
are independent, the proof of this theoretical result is provided
on [43].

3) Causal criterion: We build on the ANM approach
revised in Section II-B and originally presented in [31] to
discover causal association between variables x and y. The
method provided good results in a set of experiments. A
thorough comparison to other methods and in many real and
synthetic datasets was conducted in [27]. In general, the best
performing criterion to detect the causal direction was simply
defined as the difference in test statistic between both forward
and backward models:

Ĉ := HSIC(x, rf )− HSIC(y, rb) (6)

where rf = y − f(x) and rb = x − g(y) are the residuals
yielded by the forward (backward) models f and g, respec-
tively. See Section II-B. Intuitively, we compare which method
yields more independent residuals (lower HSIC value) as an
indicator of model plausibility. The sign of the criterion Ĉ
tells the causal direction: more negative values indicate that
the forward model is more plausible and thus one decides that
x causes y. While other criteria could be adopted, we take
this one as the baseline method because of its state-of-the-art
performance [27].

C. An illustrative example

The intuition behind the approach is that statistically sig-
nificant residuals in one direction indicates the true data-
generating mechanism (see Sections §I and §II-A). See an
illustrative example in Fig. 2. The problem contains values of
altitude and averaged temperature of n = 349 weather stations
in Germany, and the data was provided by the Deutscher
Wetterdienst (DWD). The problem reduces to identify the
common sense direction of ‘altitude causes temperature’ from
the data. Cities are obviously in the troposphere, so under
the inversion layer. Nevertheless, a potential confounder is the
latitude, since in Germany most of the mountains are in the
south, which leads to positive correlations between altitude and
temperature. Nevertheless, the direct causal relation between
altitude and temperature dominates over the confounder. Fol-
lowing Hoyer’s approach, two GPs were fitted to the forward
and backward directions, and we measured the independence
of the obtained residuals with both the standard correlation
coefficient ρ and the HSIC. Lower independence values are
obtained in the forward (causal) direction.

III. CAUSAL INFERENCE WITH SENSITIVITY MAPS

HSIC has been used in combination with ANM for causal
inference before [44], see Eq. (6). Since the most sensitive
points typically dominate the HSIC measure of dependence,
we here propose a criterion for causal discrimination in terms
of the derivative of the HSIC with respect both the drivers
and the residuals in ANM schemes. In the following, we
review the main ingredients of the proposed criterion: we give
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Fig. 2: Example of the method in [31] in the altitude causes temper-
ature problem. The fitted functions (top row) are used to approximate
f and g models. From here, the particular distribution of the obtained
residuals versus the potential cause (bottom) establish the direction of
causation as that showing more independent residuals from the driver.
We give the correlation coefficient and the HSIC values between
the residuals and the potential cause under examination for both the
forward and backward models, i.e. between residuals rf = y− ŷ and
x, and between residuals rb = x − x̂ and y. In this work we focus
on HSIC to capture the nonlinear dependence.

the formulation of the HSIC sensitivity maps, the proposed
causality criterion, and study their empirical and theoretical
properties.

A. Sensitivity analysis and maps

A general definition of the sensitivity map (SM) in the
context of kernel methods was originally introduced in [45].
Let us define HSIC as a function h : X × Y → R. The
sensitivity map is the expected value of the squared derivative
of the function (or the log of the function) with respect the
arguments z = (x, y). Formally, let us define the sensitivity
as

s =

∫
Z

(
∂h(z)

∂z

)2

p(z)dz, (7)

where p(z) is the probability density function over the inputs
z ∈ Z . Intuitively, the objective of the sensitivity map is to
measure the changes of the function h(z) along the inputs z.
In order to avoid the possibility of cancellation of the terms
due to its signs, the derivatives are typically squared, even
though other unambiguous transformations like the absolute
value could be equally applied. Integration gives an overall
measure of sensitivity over the observation space Z . The
empirical sensitivity map approximation to Eq. (7) is obtained
by replacing the integral with a summation over the available
n samples

s ≈ 1

n

n∑
i=1

∂h(z)

∂z

∣∣∣∣ 2

zi

. (8)
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Since the HSIC function h works on (x, y), we have to apply
this expression twice, which returns the sensitivity vector
s = [sx, sy]. This gives the relevance of variables x and y
in the function h. Alternatively, one can summarize the maps
variable-wise to obtain a point-wise relevance:

pi =

√(
∂h(z)

∂x

)2

+

(
∂h(z)

∂y

)2

, (9)

which will be used in this paper to evaluate the relevance
of points in the dependence measure. Actually, this way
of summarizing the information conveyed by the sensitivity
map is somewhat related to the concepts of leveraging and
influential points in statistics [46].

B. Sensitivity maps for the HSIC

In order to derive the sensitivity maps for HSIC which were
originally presented in [47], we need to compute its partial
derivatives w.r.t. points in variables x and y, i.e. xi and yi. By
applying the chain rule, and first-order derivatives of matrices,
we obtain:

sxi :=
∂HSIC
∂xi

= − 2

σ2n2
Tr (HKyH(Kx ◦Mi)), (10)

where matrix Mi depends on the i-th point sample and it is
formed by zeroes except in the i-th column which corresponds
to vec(xi)− x (i-th element minus vector x).

syi :=
∂HSIC
∂yi

= − 2

σ2n2
Tr (HKxH(Ky ◦Ni)) , (11)

where matrix Ni depends on the i-th point sample and
it is formed by zeroes except in the i-th column which
corresponds to vec(yi) − y (i-th element minus vector y).
The joint sensitivity map is defined as the concatenation of
individual sensitivities, s = [sx, sy], where sx = 1

n

∑n
i=1(s

x
i )

2

and sy = 1
n

∑n
i=1(s

y
i )

2; and the point-wise sensitivity as
pi =

√
(sxi )

2 + (syi )
2.

C. Proposed causal criterion with sensitivity maps

We here propose an alternative criterion for bivariate causal-
ity based on the sensitivity maps of HSIC in both directions:

Ĉs := (syb + srb)− (sxf + srf ), (12)

where subscripts f and b stand for the forward and backward
directions respectively, and the superscripts refer to the sensi-
tivities of either the observations x and y, or the corresponding
residuals, rf and rb. The criterion now accounts for the relative
relevance of points and residuals in the dependence estimate
according to the sensitivity measure. Besides, note the intuitive
connection to the deterministic case in section II-A. Here we
do not focus on the derivative of the underlying function, but
the derivative of the dependence estimate itself [39]. Following
the same “altitude causes temperature” example, we show in
Fig. 3 the point sensitivities in the distributions. It becomes
clearer the structured (more dependent) distribution in the
backward direction (Fig. 3[right]), which suggests that the
forward direction is the causal one.
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Fig. 3: Sensitivity maps of the points most affecting the independence
measure (follow-up from example in section II-C). Colors reflect
the importance of the particular example in the dependence measure
(HSIC), as computed with the sensitivity map.

D. Consistency Properties

Let us now study the consistency properties of proposed
criterion. Following [44], a plausible criterion of causality for
ANMs has to rely on a consistent dependence criterion, and
the combination of the ANM and the dependence estimator
should be consistent too.
Let us show first that the norm of the sensitivity map acts as
a consistent dependence measure. Note that in [31] originally
proposed to use the p-value of HSIC to define the causality
criterion which leads to a consistent procedure, and in [44] it
is shown that the same happens for the HSIC itself. Therefore,
we have to ensure here that the norm of the sensitivity maps
acts as a consistent dependence measure. It is customary to
consider that if an estimator ρ(X,Y ) fulfills that “ρ∗(X,Y)= 0
iff X and Y are statistically independent”, then it is con-
sidered a dependence measure. Let us first give an empirical
demonstration that the norm of the sensitivity maps of HSIC is
a consistent estimator: under the hypothesis of independence
(Fig. 4[a-b]) both HSIC and ‖SHSIC‖ converge to zero with
N ; while in an example of increasing dependence (Fig. 4[c])
convergence is ensured too.
In theoretical terms, to ensure consistency of the proposed
criterion, we must demonstrate that for each of the four terms
in

Ĉs := Cb − Cf = (syb + srb)− (sxf + srf ).

We will show it for the forward term Cf , the same arguments
apply for Cb:

Cf (x, r) := sxf + srf = ‖∂xHSIC‖2 + ‖∂rHSIC‖2.

Note that for real numbers, the norm of the sensitivity maps of
HSIC should be Lipschitz continuous to ensure convergence,
that is, we need to demonstrate |Cf (x, r) − Cf (x, r

′)| ≤
L‖r− r′‖. For that, we can show that a multivariate function
f : RD → R with bounded partial derivatives, which is
our case, is Lipschitz, and that the bound is exactly L =√
2maxi(sup |∂riHSIC|), i = 1, . . . , N . This is an equivalent

result to Lemma 16 in [44] for the HSIC sensitivity map.
The second condition to fulfill is that the norm of the
sensitivity map in ANMs should be consistent. This can be
demonstrated following the same procedure that the one in
Theorem 20 (Appendix A.3) in [44] for HSIC, and using the
previous consistency lemma for the proposed estimator here.
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(a) (b) (c)

Fig. 4: Convergence of (a) the HSIC and the norm of its sensitivity map; (b) the criteria for causal detection, both under the independence
hypothesis. Data are drawn from uniform distributions independently, x, y ∼ U(0, 1) with different number of samples. Both estimators
converge to zero with the number of samples at similar rates. (c) Convergence of the criteria under the hypothesis of varying dependence.
We generate different problems from independence (left) to dependence (right) by rotating the X-OR gate for different angles, θ ∈[0, π/4].
We show the HSIC and the norm of the HSIC sensitivity maps when varying the θ angle.

E. Computational cost and efficient criterion

Note that both HSIC and its sensitivity map give raise to
closed-form solutions, just involving simple matrix multipli-
cation and a trace operation. Both HSIC and its sensitivity
scale quadratically with the number of examples N since the
involved kernel matrices and the centering matrix are N ×N .
This makes both HSIC and its sensitivity map unfeasible with
moderate to large datasets. In [47] we provided with fast ver-
sions of both HSIC and its sensitivity map through the use of
random Fourier features. The cost of a naive implementation of
HSIC is O(N3), and its randomized version is O(D3), where
D is the number of Fourier features chosen to approximate the
kernel matrices, which is typically smaller than the number of
points, i.e. D � N . Respectively, the naive implementation
of the sensitivity of HSIC is O(N3 +N2) ≈ O(N3) and its
randomized version scales as O(D3+D2N) so in the cases of
N � D the cost reduces to O(D2N). The cost of the causal
criteria is thus defined by these operations. In addition, we
demonstrated the convergence of both the randomized HSIC to
HSIC, and their corresponding sensitivity maps, which allows
a practical use of the method.

IV. RESULTS

In this section we show the performance of the proposed
methodology in three experimental settings: (1) in a collection
of 28 geoscience causal inference problems, (2) in a database
of radiative transfer models simulations and machine learning
emulators in Sentinel-2 vegetation parameter modeling con-
forming a set of 182 causal problems with groundtruth, and
(3) in assessing the impact of different regression models based
on GPs in discovering causality in Net Ecosystem Production
variables. All problems are bivariate and a annotated ground
truth is available based on expert knowledge or common sense,
which allows us to assess performance quantitatively.

We quantify the accuracy in detecting the direction of
causation using standard scores like the receiver operating
curves (ROC), precision-recall curves (PRC) curves, and the
areas under these curves. We compare in all cases the state-
of-the-art criterion in (6) with our criterion in (12). Methods

TABLE I: Problems and causal direction for the geoscience problems
in the CEP database.

id x y Cause
01 Altitude Temperature →
02 Altitude Precipitation →
03 Longitude Temperature →
04 Altitude Sunshine hours →
20 Latitude Temperature →
21 Longitude Precipitation →
42 Day of the year Temperature →
43 Temperature at t Temperature at t+ 1 →
44 Pressure at t Pressure at t+ 1 →
45 Sea level pressure at t Sea level pressure at t+ 1 →
46 Relative humidity at t Relative humidity at t+ 1 →
49 Ozone concentration Temperature ←
50 Ozone concentration Temperature ←
51 Ozone concentration Temperature ←
72 Sunspots Global mean temperature →
73 CO2 emissions Energy use ←
77 Temperature Solar radiation ←
78 PPFD Net Ecosystem Productivity →
79 NEP Diffuse PPFDdif ←
80 NEP Diffuse PPFDdif ←
81 Temperature Local CO2 flux, BE-Bra →
82 Temperature Local CO2 flux, DE-Har →
83 Temperature Local CO2 flux, US-PFa →
87 Temperature Total snow →
89 root decomposition root decomposition (grassland) ←
90 root decomposition root decomposition (forest) ←
91 clay content in soil soil moisture →
92 organic carbon in soil clay cont. in soil (forest) ←
93 precipitation runoff →
94 hour of day temperature →

performance are also studied under different situations of
number of available points, presence of different noise sources
and distortions, and impact of different GP regression models
on the detection accuracy.
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Fig. 5: Scatter plots in the CEP benchmark dataset. See a brief description of all individual problems in Table I and more details in [27].

A. Experiment 1: Geoscience Cause Effect Pairs

We used Version 1.0 of the CauseEffectPairs (CEP) col-
lection freely2. The database contains 100 pairs of random
variables along with the right direction of causation (ground
truth). Data has been collected from various domains of
application, such as biology, climate science, health sciences
and economics, just to name a few. More information about
the dataset and an excellent up-to-date review of observational
causal inference methods is available in [27]. We conducted
experiments in 28 out of the 100 pairs that contain one-
dimensional variables and that are related to geosciences
and remote sensing: problems involving carbon and energy
fluxes, ecological indicators, vegetation indices, temperature,
moisture, heat, etc. We summarize the involved variables in
Table I, and show the scatter plots of the selected pairs (x, y)
in Fig. 5.

1) Experimental Setup: The experimental setting is as fol-
lows. Once the two predictive models f and g were developed,
we computed the two HSIC terms, as well as their sensitivity
maps between the x (or y) and the residuals rf (or rb).
The final causal direction score was simply defined as the
difference in test statistic between both models, either using
Ĉ or the proposed Ĉs. Note that this is a particular form of
‘ranked-decision’ setting that needs to account for the bias
introduced by pairs coming from the same problem, i.e. it
is customary to down-weight the precision for every decision
threshold in the curves (e.g. four related problems receive 0.25
weights in the decision)3. This is the case, for example of
problems 81, 82, 83 and 87 that receive 0.25 weights.

2) Accuracy and robustness of the detection: We run the
experiments with different numbers of (randomly selected)
points n from both variables. This situation impacts regression
models performance, both in terms of the regression accuracy
and the dependence estimation. We evaluate Ĉ and Ĉs criteria
by limiting the maximum number of training samples in each
problem, nmax = {50, 100, 200, 500, 2000}. Results were

2https://webdav.tuebingen.mpg.de/cause-effect/
3The MATLAB function perfcurve can produce such (weighted) ROC and

PRC curves and the estimated weighted AUC.

averaged over 10 realizations. Figure 6 shows the AUC under
the curve as a function of nmax. The proposed sensitivity-
based criterion consistently performed better than the stan-
dard approach using HSIC alone. Lower values of AUC are
obtained by our proposal only when the number of samples
is relatively low (50 and 100). This particular behavior is
plausible because our criterion is defined through an empirical
estimator (the sensitivity) and when the number of samples
is moderately low it can give rise to underestimated values.
Looking more in detail at the ROC in Fig. 7, we note that
the proposed Ĉs yields the best recognition curves, both ROC
and the PRC. Note that this happens for all decision rates,
especially in low false positive rates regimes, and for all
number of training points.

50 100 200 500 10002000
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0.7
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Ĉs

Fig. 6: AUCs in the CEP causality problems dataset for different
amounts of training data per problem.

B. Experiment 2: Causation in RTM assessment

Using input-output data pairs generated by radiative transfer
models (RTMs) allow us to assess performance of obser-
vational causality algorithms: it is obvious that the forward

https://webdav.tuebingen.mpg.de/cause-effect/
perfcurve
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Fig. 7: Receiver operating curve (ROC) (top) and Precision-Recall
(PR) (bottom) curves for the causality problems in the Geoscience
Cause Effect Pairs (experiment section 1) using n = 200 (thin lines)
and n = 2000 (thick lines). Higher area under the curves are obtained
with the proposed criterion Cs and for both situations.

RTM simulation gives the right direction of causation: state
vectors (parameters) cause radiances and not the other way
around. The strength of the causation is not considered here.
In this second experiment, we deal with data generated by the
standard PROSAIL RTM4. PROSAIL is the combination of
the PROSPECT leaf optical properties model and the SAIL
canopy bidirectional reflectance model. PROSAIL has been
used to develop new methods for retrieval of vegetation bio-
physical properties. Essentially, PROSAIL links the spectral
variation of canopy reflectance, which is mainly related to
leaf biochemical contents, with its directional variation, which
is primarily related to canopy architecture and soil/vegetation
contrast. This link is key to simultaneous estimation of canopy
biophysical/structural variables for applications in agriculture,
plant physiology, and ecology at different scales. PROSAIL
has become one of the most popular radiative transfer tool
due to its ease of use, robustness, and consistent validation by
lab/field/space experiments over the years.

1) Experimental Setup: We used PROSAIL to generate
n = 1000 pairs of Sentinel-2 spectral (13 spectral channels)
by varying 7 parameters in reasonable ranges: Total Leaf

4http://teledetection.ipgp.jussieu.fr/prosail/

TABLE II: Configuration parameters of the simulated data.

Parameter Sampling Min Max
RTM model: Prospect 4
Leaf Structural Parameter Fixed 1.50 1.50
Cab, chlorophyll a+b [µg/cm2] U(14, 49) 0.067 79.97
Cw, equivalent water thickness [mg/cm2] U(10, 31) 2 50
Cm, dry matter [mg/cm2] U(5.9, 19) 1.0 3.0
RTM model: 4SAIL
Diffuse/direct light Fixed 10 10
Soil Coefficient Fixed 0 0
Hot spot Fixed 0.01 0.01
Observer zenit angle Fixed 0 0
LAI, Leaf Area Index U(1.2, 4.3) 0.01 6.99
LAD, Leaf Angle Distribution U(28, 51) 20.04 69.93
SZA, Solar Zenit Angle U(8.5, 31) 0.082 49.96
PSI, Azimut Angle U(30, 100) 0.099 179.83

Area Index (LAI), Leaf angle distribution (LAD), Solar Zenit
Angle (SZA), Azimut Angle (PSI), chlorophyll a+b content
Cab [µg/cm2], equivalent water thickness Cw [g/cm2] and dry
matter content, Cm [g/cm2]. Several parameters were kept
fixed in the simulations. See Table II for the configuration de-
tails used in our PROSAIL simulations. Building the database
assumes that every individual parameter impacts (causes) a
particular spectral channel, and that spectral channels cannot
cause the parameters. This returns a simulated dataset with
2× 13× 7 = 182 causal problems with ground truth.

2) Accuracy and robustness of the detection: We run the
different criteria and obtained the corresponding ROCs and
AUCs. We did observe very high accuracy levels for all cri-
teria. We then assessed robustness of the methods to different
additive white Gaussian noise levels, varying the SNR in the
range [0,40] dB. Figure 8 shows the obtained results for all
causal criteria and accuracy measures as a function of SNR.
Our proposed criterion Ĉs shows better performance than Ĉ
for all SNR levels, with an average improvement of +5% in
AUC. Both criteria degrade in scenarios dominated by noise
(SNR<10dB), where neither the functions nor independence
can be estimated correctly.

C. Experiment 3: Causation in RTM Emulation

As observed before, noise plays a fundamental role in causal
discovery. In this experiment we studied the impact of other
types of distortions in remote sensing data. In particular, we
aim to assess the non-linearities introduced when approxi-
mating a physical model via machine learning. This form of
surrogate modelling is known in the literature as emulation,
and has captured the attention in recent years because it allows
to replace RTMs with more efficient statistical algorithms [33],
[48]. Emulators, however are just function approximators and
the simulated radiances are subject to complicated distortions.
We evaluate the identifiability of the causal links in such cases.

Here we trained a neural network using the n = 1000 points
generated by PROSAIL in the previous experiment to build
an emulator. Performance showed less than 5% of normalized
RMSE in all bands. Once trained, the emulator was run to

http://teledetection.ipgp.jussieu.fr/prosail/
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Fig. 8: Area under the curve (AUC) of Precision-Recall (top) and
AUC of the ROC curves (bottom) both against the amount of noise
included in the experiments. Higher detection power is obtained with
the proposed Cs for all noise levels and measures.

generate n = 106 samples. The same amount of 182 cause-
effect bivariate problems as before was generated. We run the
different criteria training the regression models with different
amounts of data points, n = {10000, 20000, 30000}, and the
standard AUC and PR criteria are shown in Fig. 9. Results
show that (1) all criteria improve performance with an in-
creasing amount of data, and (2) our criterion Ĉs outperforms
the state-of-the-art Ĉ in all cases (by around +2-4%).

D. Experiment 4: Impact of the regression model

In this last experiment, we are concerned about the use of
different regression algorithms that better account for noise
and non-linearities [33]. In particular, we will compare the
use of the standard (homoscedastic) GP regression model
(GP) [32] (cf. Section II), with the heteroscedastic GP model
(VHGP) introduced in [33], [49] (which accounts for signal-
to-noise relations), and a warped GP model (WGP) introduced
in [50], [51] (which further transforms model’s output to look
more like a Gaussian process).

We exemplify these different approaches in a relevant geo-
science problem. Terrestrial ecosystems absorb approximately
120 Gt of carbon annually from the atmosphere, about half is
returned as plant respiration and the remaining 60 Gt yr−1

represent the Net Primary Production (NPP). Out of this,
about 50 Gt yr−1 are returned to the atmosphere as soil/litter
respiration or decomposition processes, while about 10 Gt

TABLE III: Results in the ‘PPFD causes NEP’ causal problem.

Method HSICf HSICb C Cs Conclusion
GP 6.7525 10.5255 3.7729 -1.9204 PPFD(tot)→ NEP
VHGP 6.8220 11.7661 4.9441 -1.8758 PPFD(tot)→ NEP
WGP 6.8670 12.0412 5.1742 -1.6784 PPFD(tot)→ NEP
GP 8.0982 2.1020 -5.9961 0.8917 NEP ← PPFD(diff)
VHGP 8.1556 2.1865 -5.9691 0.8674 NEP ← PPFD(diff)
WGP 8.1707 2.0475 -6.1232 0.7270 NEP ← PPFD(diff)
GP 11.4727 1.5806 -9.8920 -0.7110 PPFD(dir)→ NEP
VHGP 13.0462 1.6848 -11.3614 -0.6062 PPFD(dir)→ NEP
WGP 13.0061 1.6028 -11.4033 -0.8046 PPFD(dir)→ NEP

yr−1 results in the Net Ecosystem Production (NEP). The
problem here deals with estimating the causal relation between
the photosynthetic photon flux density (PPFD), which is a
measure of light intensity5, and the NEP, which results from
the potential of ecosystems to sequestrate atmospheric carbon.
Discovering such relations may be helpful to better understand
the carbon fluxes and to establish sinks and sources of carbon.
We use here three data sets taken at a flux tower at site
DE-Hai involving PPFD(total), PPFD(diffuse), PPFD(direct)
drivers and the NEP consequence variable [52].

Results for all three scenarios are shown in Table III. We
show the values of HSIC in forward and backward directions,
as well as the criteria obtained by all regression models. The
heteroscedastic GP accounts for the signal-to-noise relations
in a more sensible way, so the dependency estimate becomes
slightly more reliable. Nevertheless performance of WGP
excels in these particular problems, probably because of the
better estimation of conditionals in higher density regions (see
Fig. 1 in [53]). Future work will involve testing these models
in a wider range of applications.

V. CONCLUSIONS

This paper introduced for the first time the issue of
observation-based causal inference in bivariate instantaneous
problems in remote sensing and geosciences. Approaching this
kind of problems requires taking some (strong) assumptions,
so results must be taken with extreme caution. Nevertheless,
the obtained results confirm that in general causal detection
accuracy is well above chance, and opens the field to further
experimentation.

To tackle this challenging problem, we used a simple
method based on regression and dependence estimation, and
proposed a new criterion based on the sensitivity (derivative)
of the dependence estimator instead of the dependence itself.
This allows us to better capture the asymmetry of the forward
and inverse densities with regard to the causal mechanism.

State-of-the-art accuracy was obtained in a wide range
of situations with known ground truth. We illustrated per-
formance in a collection of 28 geoscience causal inference
problems, in a large database of PROSAIL simulations and
emulators in vegetation parameter modeling, and in a carbon

5The total PPFD was measured here as the number of photons falling on a
one square meter area per second, while NEP was calculated by photosynthetic
uptake minus the release by respiration, which is known to be driven by either
the total, diffuse or direct PPFD.
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Ĉs(0.7603)

False positive rate
0 0.2 0.4 0.6 0.8 1

T
ru

e 
po

si
tiv

e 
ra

te

0

0.2

0.4

0.6

0.8

1
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Fig. 9: ROC (top row) and Precision-Recall (bottom row) curves for the emulation database of 182 causality problems.

cycle problem. We evaluated the impact of using different
regression models based on Gaussian Processes; as well as as-
sessed identifiability in the presence of different noise sources
and distortions. Models performance was evaluated in global
terms by measuring the right direction of causation using
standard metrics derived from detection curves.

We would like to finally note that the methodologies pro-
posed here were originally introduced for general-purpose
applications. We have nevertheless shown its applicability
in remote sensing and geosciences. We relied on a general
assumption of structural models in general and ANM in
particular. If the assumptions are not fulfilled, the method
should not perform well. This may happen in some cases,
such as in cases of post-nonlinear effects. Actually, we showed
this case experimentally where several regression models were
used. The WGP generalizes does not assume an additive noise
model in general and results actually confirm that, by replacing
the regression model, one can achieve more robust results in
cases where assumptions are not met.

The proposed scheme for bivariate causal inference can
actually include many independence criteria, such as e.g.
differential entropies, empirical Bayes scores or minimum
message length scores. We however restricted ourselves to the
(standard use of) HSIC, and included a novel causal criterion
(the sensitivity map) that can be computed analytically from
HSIC. Other more sophisticated criteria could be actually
derived from the combination of the sensitivity map and the
HSIC values and p-values, which will be matter of future
research.
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