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 

Abstract—It is of great importance to preserve locality and 

similarity information in semi-supervised learning (SSL) based 

applications. Graph based SSL and manifold regularization based 

SSL including Laplacian regularization (LapR) and Hypergraph 

Laplacian regularization (HLapR) are representative SSL 

methods and have achieved prominent performance by exploiting 

the relationship of sample distribution. However, it is still a great 

challenge to exactly explore and exploit the local structure of the 

data distribution. In this paper, we present an effect and effective 

approximation algorithm of Hypergraph  -Laplacian and then 

propose Hypergraph  -Laplacian regularization (HpLapR) to 

preserve the geometry of the probability distribution. In 

particular,  -Laplacian is a nonlinear generalization of the 

standard graph Laplacian and Hypergraph is a generalization of 

a standard graph. Therefore, the proposed HpLapR provides 

more potential to exploiting the local structure preserving. We 

apply HpLapR to logistic regression and conduct the 

implementations for remote sensing image recognition. We 

compare the proposed HpLapR to several popular manifold 

regularization based SSL methods including LapR, HLapR and 

HpLapR on UC-Merced dataset. The experimental results 

demonstrate the superiority of the proposed HpLapR. 

 

Index Terms—hypergraph, manifold learning,  -Laplacian, 

remote sensing, semi-supervised learning 

 

I. INTRODUCTION 

he classification of remote sensing images [9] [11] has 

become an important branch of data mining owing to the 

speedy development of space technology. However, in 

practical applications, annotating images is costly and time 

consuming, so only a small number of labeled samples are 

available whereas a lot of unlabeled samples are easy to collect. 

Semi-supervised learning which can make use of labeled and 

unlabeled data has been investigated to solve this problem. One 

successful work is manifold regularization, which has attracted 

considerable attention due to its rich theoretical studies [1] [2] 

[3] and its excellent performance in multimedia data (e.g., text, 

image, video, audio, etc.) processing [4] [5] [6] [7] [8] [10]. The 

main idea is to explore the geometry of the intrinsic data 

probability distribution to leverage the learning performance. 

Another is graph based SSL [12] [13], which construct a 

 
Xueqi Ma and Weifeng Liu are with the College of Information and Control 

Engineering, China University of Petroleum (East China), Qingdao 266580, 

China. e-mail: liuwf@upc.edu.cn.  
Shuying Li is with The 16th Institute, China Aerospace Science and 

Technology Corporation, Xi’an 710100, China. email: angle lisy@163.com. 

Yicong Zhou is with the Faculty of Science and Technology, University of 

Macau, Macau, China. email: yicongzhou@umac.mo. 

similarity graph over data to exploit the local geometry of both 

labeled and unlabeled data and have achieved appealing due to 

its flexibility and low computation complexity in practice.  

Manifold regularization (MR) framework [2] exploits the 

geometry of the probability distribution that generates the data 

and incorporates it as a regularization term. Laplacian 

regularization is one prominent manifold regularization based 

SSL algorithm, which determines the underlying manifold by 

using the graph Laplacian. Wang et al. [15] presented a 

manifold regularized multi-view subspace clustering (MRMSC) 

method to better incorporate the correlated and complementary 

information from different views. The graph Laplacian is 

constructed to maintain the data manifold locally of each view. 

Luo et al. [5] employed manifold regularization to smooth the 

functions along the data manifold for multitask learning. Jiang 

et al. [4] presented a muti-manifold method for recognition by 

exploring the local geometric structure of samples. Liu et al. 

[16] proposed multiview Hessian regularized logistic 

regression (mHLR) which combining multiple Hessian 

regularization to leverage the exploring of local geometry. Lu 

et al. [17] built a model of sparse feature selection-based 

manifold regularization (SFSMR) to select the optimal 

information and preserve the underlying manifold structure of 

data for scene recognition.  

Typically, in graph based SSL, it is assumed that there is a 

graph over the data lying on data manifolds. In the graph, 

vertices represent samples and edge weights indicate the 

similarity between samples. For example, Zhou et al. [14] 

constructed a directed graph learned from labeled and 

unlabeled data for web categorization, in which each vertex 

represents a web page, and each edge represents a hyperlink 

between two web pages. For graph based SSL, it is essential to 

construct an effective graph over data with complex 

distribution. Compared with existing simple graph only models 

the pairwise relationship of images, Hypergraph learning using 

a hyperedge to link multiple samples can model the high-order 

relationship of samples.  

In [18], the hypergraph idea is first introduced to the field of 

computer vision, which is a generalization of a simple graph. 

Unlike a simple graph that take account of the relationship 

between two vertices, a set of vertices is connected by a 

hyperedge in a hypergraph. Thus, the hypergraph contains 

more local grouping information in comparison to simple graph. 

Hypergraph has been widely used to image classification [24], 

ranking [21] [33] and video segmentation [23]. Sun et al. [20] 

constructed a hypergraph to exploit the correlation information 

among different labels for multi-label learning. Zass et al. [19] 

presented a hypergraph based image matching problem in a 

probabilistic setting represented by a convex optimization 

problem. Huang et al. [22] proposed a hypergraph based 

Hypergraph  -Laplacian Regularization for Remote Sensing Image 

Recognition 
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transductive algorithm to the field of image retrieval. Yu et al. 

[24] proposed an adaptive hypergraph learning method for 

transductive image classification.  

In this paper, we propose a Hypergraph  -Laplacian 

regularized method for remote sensing image recognition. The 

hypergraph and  -Laplacian [32] [34] [37] [38] both provide 

convincing theoretical evidence to better preserve the local 

structure of data. However, the computation of hypergraph 

 -Laplacian is a strenuous task. We provide an effect and 

efficient fully approximation algorithm of Hypergraph 

 -Laplacian. Considering the higher order relationship of 

samples, we build the Hypergraph  -Laplacian regularizer for 

local structure preserving. We introduce Hypergraph 

 -Laplacian regularization (HpLapR) to logistic regression for 

remote sensing image recognition. We conduct experiments on 

the UC-Merced data set [25] by comparing with the popular 

algorithms including Laplacian regularization (LapR), 

Hypergraph Laplacian regularization (HLapR) and 

 -Laplacian regularization (pLapR). The contributions of this 

paper can be summarized as below. 

1) We present an efficient approximation algorithm of 

Hypergraph  -Laplacian, significantly improving 

computation efficiency. 

2) We propose HpLapR to preserve the local similarity of 

data.  

3) We integrate HpLapR into logistic regression and conduct 

comprehensive experiments to empirically analyze our 

method on UC-Merced data set. The experimental results 

validate the effectiveness of our method. 

The rest of the paper is organized as follows. Section 2 

briefly reviews related work on manifold regularization and 

hypergraph learning. Section 3 introduces the proposed 

HpLapR including an approximate computation of the 

Hypergraph  -Laplacian. Section 4 presents the HpLapR 

logistic regression. Section 5 presents the experimental results 

and analysis on UC-Merced data set. Finally, Section 6 gives 

the conclusions. 

II. RELATED WORK 

In this section, we briefly review related works of manifold 

regularization and hypergraph. 

A. Manifold Regularization 

Assume the estimated function, which is generated from the 

probability distribution on examples (labeled examples and 

unlabeled examples). The labeled examples are        pairs 

generated according to probability distribution. And supposing 

the labeled examples lied on the estimation curve in the ideal 

case. The unlabeled examples are drawn according to the 

marginal distribution. Based on the manifold assumption that if 

two examples are close in the intrinsic geometry, then the two 

examples have the similar labels, it is important to exploit the 

knowledge of the marginal distribution for better function 

learning.  

By introducing an additional regularizer for local structure 

preserving, the manifold regularization framework can be 

interpreted as regularization algorithms with different empirical 

cost functions, complexity measures in an appropriately chosen 

Reproducing Kernel Hilbert Space (RKHS) and additional 

information about the geometric structure of the marginal. 

Hence, the objective function can be written as 

              

 

 
                  

  
          

 . (1) 

Where   is some loss function, such as the hinge loss function 

                  for Support Vector Machines (SVM). 

The corresponding norm      
   is used to control the 

complexity of the classification model, while     
  is an 

appropriate penalty term corresponding to the probability 

distribution. The parameters    and    control the complexity 

of the function in the ambient space and the intrinsic geometry, 

respectively.  

Graph Laplacian has been widely used to explore and exploit 

the local geometry of data distribution. As a nonlinear 

generalization of the standard graph Laplacian, graph 

 -Laplacian has attracted attentions from machine learning 

community. Zhou and Schölkopf [34] proposed a general 

discrete regularization framework of  -Laplacian for the 

classification problem, and its objective function can be 

computed as follows: 

                                (2) 

where        
 

 
       

   is the  -Dirichlet form of the 

function  ,   is a parameter balancing the two competing 

terms,            depends on the label of example.  

Bühler and Hein [32] used the graph  -Laplacian for spectral 

clustering and demonstrated the relationship between the 

second eigenvalue of the graph  -Laplacian and the optimal 

Cheeger cut as follows: 
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or 

              
 

  (4) 

where      and     as the ratio/normalized Cheeger cut 

values obtained by tresholding the second eigenvector of the 

unnormalized/normalized  -Laplacian,    is the degree of 

vertex  ,     and     as the optimal ratio /normalized 

Cheeger cut. 

Luo et al. [35] used the  -Laplacian for multi-class 

clustering and provided an approximation of the whole 

eigenvectors by solving the tractable optimization problem: 
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Where     is the edge weight,    is an eigenvector of 

 -Laplacian,                are whole eigenvectors. 

Liu et al. [36] proposed  -Laplacian regularized sparse 

coding for preserving the manifold structure. 

B. Hypergraph  

In machine learning issues, we generally assume pairwise 

relationships among the objects set. An object set endowed 

with pairwise relationships can be considered as a graph. The 

graph can be undirected or directed. However, in a number of 

questions, it is not complete to represent the relations among 

samples only by simple graphs. Hypergraph learning [22] 

addresses the problem. Comparing with traditional graph, a 

hypergraph illustrates the complex relationships by hyperedges 

which connect three or more vertices (see in Fig. 1).   
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Fig. 1. The block scheme of hypergraph. Left: A simple graph in which two pionts are joined together by an edge if they are highly similarity. A hypergraph 

completely illustrates the complex relationships among points by hyperedges. Right: The   matrix of the hypergraph. The entry         is set to 1 if a hyperedge    

contains   , or 0 otherwise.  

 

Let   denote a finite set of vertices and   a family of subsets 

of   such that       . A hypergraph         

corresponding to the vertex set   and the hyperedge set  . 

Denote the weight associated with each hyperedge   as     .  

The degree of a vertex     is defined by      
              . The degree of a hyperedge     is denoted as 

        . Denote the incident matrix   by a      
     matrix, whose entry           if    , and        
  otherwise. Then                    ,      
          . Let    denote the diagonal matrices containing 

the degree of vertex,    denote the diagonal degree matrices of 

each hyperedge, and   is the diagonal matrix of edge weights. 

Then, the hypergraph Laplacian can be defined.  

There have been many methods for building the graph 

Lapalcian of hypergraphs across literature. The first category 

includes star expansion [28], clique expansion [28], 

Rodriquez’s Laplacian [29], etc. These methods aim to 

construct a simple graph from the original hypergraph, and then 

partitioning the vertices by spectral clustering techniques. The 

second category of approaches defines a Hypergraph Laplacian 

using analogies from the simple graph Laplacian. 

Representative methods in this category include Bolla’s 

Laplacian [30], Zhou’s normalized Laplacian [31], etc. In [31], 

the normalized Hypergraph Laplacian is defined as 

                 
          . (6) 

Note that    is positive semi-definite. The adjacency matrix of 

hypergraph can be formulated as follows: 

            . (7) 

For a simple graph, the edge degree matrix    is replaced to 2  . 

Thus, the standard graph Laplacian is 

    
 

 
   

 
        

 
  

               
 

 
                   . (8) 

III. HPLAPR 

In SSL, we are given   training samples including   labeled 

samples             
  and   unlabeled samples              

   
. 

Class labels are given in          
 , where        . 

Typically,     and the goal is to predict the labels of unseen 

examples. 

According to the manifold regularization framework, the 

proposed HpLapR can be written as the following optimization 

problem: 

               

 

 
                  

  
     

   
  

      
    

  
 . (9) 

Here,   is given as                           ,   
  

 is the 

Hypergraph  -Laplacian.  

A. Approximation of Hypergraph  -Laplacian 

In this sub-section, we briefly describe the approximating of 

Hypergraph  -Laplacian   
  

.  

Assume that the Hypergraph  -Laplacian has   

eigenvectors                          associated with 

unique eigenvalues         
   

   
   

     
   

 , we compute 

the approximation of   
  

 by   
  

              
. Thus, it is 

important to get all eigenvectors and eigenvalues of 

Hypergraph  -Laplacian. 

Although a complete analysis of Hypergraph  -Laplacian is 

challenging, we can easily generate a hypergraph with a group 

of hyperedges [31]. In details, we construct the hypergraph 

Laplacian     and compute adjacency matrix     by (6) and 

(7), respectively. 

Then, we introduce the basic definition of  -Laplacian   
  

including eigenvalue and eigenvector. 

The real number    is called as an eigenvalue for   
 , if there 

exists a function        satisfying the relationship as 

following: 

    
   

 
             . (10) 

The function   is called a  -eigenfunction (also called 

eigenvector) associated with   . Where    is defined by 

                   . Note that the operator   
    

becomes the regular graph Laplacian. 
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Following previous studies on  -Laplacian [32], the 

computation of eigenvalue and the corresponding eigenvector 

on nonlinear operator   
  can be solved by the theorem: 

The functional    has a critical point at   if and only if   is 

an eigenvector of    
 .    is defined as: 

       
             

 

     
  (11) 

where 

     
 
      

 
 . 

Here     is the edge weight, the corresponding eigenvalue    is 

given by           . The above theorem serves as the 

foundational analysis of eigenvectors and eigenvalues. 

Moreover              apply for all real value   .  

Naturally, we can extend the above theorem to the 

Hypergraph  -Laplacian as follows: 

      is an eigenvector of hypergraph  -Laplacian, if and 

only if the following function   
  

 has a critical point at    :  

   
        

    
  

     
  

   
  

 
 

       
 

 (12) 

where 

       
 
     

  
 
 

 . 

The eigenvalue       associated with     is given by        

  
       .   

If we want to get all eigenvectors and eigenvalues of 

hypergraph  -Laplacian, we have to find all critical points of 

the function   
  

. Following this idea, we can get the full 

eigenvectors space by solving local solution of the following 

optimization problem: 

 
   
             

           

              
   

      
   

    ,     (13) 

where                       . 

We analyze the full eigenvectors by solving the following 

Hypergraph  -Laplacian embedding problem instead of (13): 

   
            

    
  

     
   

   
   

 
 

       
 

 

 

            
     . (14) 

Differentiating with respect to   
   

 yields the following 

equation: 

   

  
 
    

 

       
      

  
      

   
   

   
  

     
   

 

       
  . (15) 

Solving the problem (14) with the gradient descend 

optimization, the gradient is defined in the following way: 

     
   

         
   

     
 

   . (16) 

Meanwhile, the full eigenvalue        
  

   
  

     
  

  can 

be computed by   
  

 
    

  
     

   
   

   
 
 

       
 .   

Finally, the approximation of   
  

can be solved by the full 

eigenvectors and eigenvalues of hypergraph  -Laplacian in this 

paper. We summarize the approximation of Hypergraph 

 -Laplacian in Algorithm 1. In the algorithm, the step length   

is set to be       
     

  
   

   
  
  

   

. 

 

Algorithm 1  The Approximate of Hypergraph  -Laplacian 

Input:  Training examples  ; Embedding dimension  ;    

output:  hypergraph  -Laplacian:   
  

 

Step1: Construct hypergraph Laplacian matrix     and 

compute data adjacency matrix    . 

Step 2:  Decomposition of graph Lapalcian:         . 

Initialize:              

Step 3:  While not converged do: 

             
   

         
   

     
 

   , where 
   

     is given by 

Equation (14) 

                      

End 

Step 4:    
  

 
    

  
     

   
   

   
 
 

       
  

return:    
  

           
 

 

IV. HPLAPR LOGISTIC REGRESSION 

Actually, the proposed HpLapR can be applied to variant 

applications by integrating different choices of loss function 

           into manifold regularization framework. In this 

section, we apply the HpLapR to logistic regression and give 

the complexity analysis. 

Substitute logistic loss function into (9), the HpLapR can be 

rewritten as 

          
    

 

 
                   

 

   

       
  

                    
  

      
    

  
  

.   (17) 

The classical Representer Theorem indicates the solution of 

(17) w.r.t.   exists and can be expressed as 

          
    

          . (18) 

The ambient kernel   is symmetric positive definite. Thus, we 

finally construct the HpLapR as the following optimization 

problem: 

          
    

 

 
                      

 

   

 

         
  

           
  

  . (19) 

To solve the optimization problem in (19), we can employ the 

conjugate gradient algorithm. We take derivative of the 

objective function as 

       
      

 
  

  

             
          

     

                 
  

          
  

      
  

  
 
  . (20) 

The optimization procedure of conjugate gradient algorithm for 

HpLapR logistic regression is described in Algorithm 2. 

Suppose we are given   samples. Denote the embedding 

dimension as  , and the number of iteration as    for 

approximating of Hypergraph  -Laplacian. The time cost for 

constructing Hypergraph p-Laplacian is       
        . 

When   is much smaller than  , the time cost is around 

     
  . Denote the number of iterations as    for HpLapR 
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logistic regression and the number of candidate parameters that 

need the m-fold cross-validation as  . The time cost for 

HpLapR logistic regression is       
  .  

 

Algorithm 2  HpLapR Logistic Regression 

Input:  l labeled samples             
 ,  

u unlabeled samples             

   
. 

output:  Estimated function:          
     

 
      . 

Step1:  Construct approximate Hypergraph  -Lapalcian   
  

. 

Step2: Choose a kernel function and compute the Gram 

matrix             . 

Step3:  Compute   : 

Initialize:      ,          ,  ,     ,     

while                    

do: 

             

                
          

 

            

       

return:         

 

V. EXPERIMENTS 

In this section, we will evaluate the effectiveness of the 

proposed HpLapR by compared with other local structure 

preserving algorithms including LapR, HLapR and pLapR. We 

apply the logistic regression for remote sensing image 

classification. Fig. 2 illustrates the framework of HpLapR for 

UC-Merced data set. 

UC-Merced data set [25] consists of totally 2100 land-use 

images collected from aerial orthoimage with the pixel 

resolution of one foot. The original images were downloaded 

from the United States Geological Survey National Map of 20 

U.S. regions. These images were manually selected into 21 

classes: agricultural, airplane, baseball diamond, beach, 

buildings, chaparral, dense residential, forest, freeway, golf 

course, harbor, intersection, medium density residential, mobile 

home park, overpass, parking lot, river, runway, sparse 

residential, storage tanks, and tennis courts. In this paper, we 

organized these 21 classes into six groups (see in Fig. 3). Note 

that UC-Merced data set contains a variety of land-use classes, 

which make the data set more challenging. Specially, some 

highly overlapped classes, e.g., sparse residential, medium 

density residential, and dense residential that mainly differ in 

the density, make it a difficult classification task.  

In our experiments, we extract high-level visual features 

using the deep convolution neural network (CNN) [26]. We 

randomly choose the 50 images per class as training samples 

and the rest as testing samples. For hypergraph construction, we 

regard each sample in the training set as a vertex, and generate a 

hyperedge for each vertex with its   nearest neighbors (so the 

hyperedge connects     samples) [33]. It is worth noticing 

that, for our experiments, the  NN-based hyperedges 

generating method is not implemented in the overall training 

samples, but in six groups. For example, for a sample of 

baseball diamond, the vertices of the corresponding hyperedge 

are just choosed from the first group (baseball diamond, golf 

course and tennis courts) of Fig. 3.  

In semi-supervised classification experiments, we assign 

10%, 20%, 30%, 50% samples of training data as labeled data, 

while the rest are used as unlabeled data. The process is 

repeated for five times independently to avoid any bias 

introduced by the random partitioning of data.  

We conduct the experiments on our data set to get the proper 

modal parameters. The neighborhood size   of a hypergraph 

varies in a range              through cross-validation. The 

regularization parameters    and     are selected from the 

candidate set                        through 

cross-validation, and the parameter   for pLapR and HpLapR 

are chosen from                 through cross-validation 

with 10% labeled samples on the training data, respectively. 

We verify the classified performance by average precision (AP) 

performance for single class and mean average precision (mAP) 

[27] for overall classes.  

Fig. 4 illustrates the mAP performance of pLapR and 

HpLapR on the validation set when   varies. The x-axis is the 

parameter   and the y-axis is mAP for performance measure. 

We can see that the best mAP performance for pLapR can be 

obtained with       while best performance for the HpLapR 

is achieved when   is equal to 2.6. 

We compare our proposed HpLapR with the representative 

LapR, HLapR and pLapR. From Fig. 5, we can observe that, 

HpLapR usually outperforms other methods especially when 

only a small number of samples labeled. This suggests that our 

proposed method which considering the hypergraph learning 

and  -Laplacian has the superiority to preserve the local 

structure of the data. 

To evaluate the effectiveness of HpLapR for single class, Fig. 

6 shows the AP results of different methods on several selected 

land-use classes including beach, dense residential, freeway 

and tennis court. From Fig. 6, we can find that, in most cases, 

the HpLapR performs better than both pLapR and HLapR, 

while pLapR and HLapR consistently outperforms than LapR. 

VI. CONCLUSION 

The existing successful SSL algorithms have achieved great 

performance in computer vision applications including 

classification, clustering, ranking, etc. However, how to obtain 

the high-order relationship and exploit the local geometry of the 

data distribution is still challenging. Therefore, we present a 

Hypergraph  -Laplacian regularized method to preserve the 

geometry of the probability distribution. Both hypergraph and 

 -Laplacian have the advantage in local structure preserving. 

Furthermore, we introduced a fully approximation algorithm of 

Hypergraph  -Laplacian lowing down its computation 

difficulties. Finally, we propose Hypergraph  -Laplacian 

regularized logistic regression for remote sensing recognition. 

We present the experimental results on UC-Merced dataset to 

demonstrate the efficacy of our proposed method in 

comparison to other regularized methods including LapR, 

HLapR and pLapR. 
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Fig. 2.  The framework of HpLapR for remote sensing image classification. 

 

 

  

 
 

Fig. 3.  Some examples of UC-Merced data set. The dataset totally has 21 remote sensing categories that can be simply grouped into six groups according to the 

distinction of land use. Each column represents one group. 
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Fig. 4.  Performance of mAP with different   on validation set. 

 
Fig. 5.  mAP performance of different algorithms.
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Fig. 6.  AP performance of different methods on some classes including beach, dense residential, freeway and tennis court. 
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