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Nonlinear Hyperspectral Unmixing
With Graphical Models

Rob Heylen , Member, IEEE, Vera Andrejchenko , Student Member, IEEE, Zohreh Zahiri,
Mario Parente, Senior Member, IEEE, and Paul Scheunders, Senior Member, IEEE

Abstract— In optical remote sensing, phenomena such as
multiple scattering, shadowing, and spatial neighbor effects
generate spectral reflectances that are nonlinear mixtures of
the reflectances of the surface materials. Using hyperspectral
images, the obtained spectral reflectances can be unmixed.
We present a general method for creating nonlinear mixing
models, based on a ray-based approximation of light and a
graph-based description of the optical interactions. This results
in a stochastic process which can be used to calculate path
probabilities and contributions, and their weighted sum. In many
cases, a closed-form equation can be obtained. We illustrate the
approach by deriving several existing mixing models, such as
linear, bilinear, and multilinear mixing (MLM) models popular
in remote sensing, layered models for vegetation canopies, and
intimate mineral mixtures. Furthermore, we use the proposed
technique to derive a new mixing model, which extends the MLM
model with shadowing. Experiments on artificial and real data
show the positive traits of this model, which also demonstrates
the power of the graphical model approach.

Index Terms— Hyperspectral unmixing, spectral mixing
models.

I. INTRODUCTION

HYPERSPECTRAL unmixing [1] concerns the decom-
position of the spectra captured in the pixels of a

hyperspectral image into their constituent components, or
endmembers. In most applications, one assumes that a finite
number of elemental pure materials exist, and that each of
these endmember materials might be present in the instan-
taneous field of view (IFOV) of the pixel. Spectral mixing
will then take place, where incoming light can undergo
complex interactions with different components in the scene,
resulting in the observed spectrum. Spectral mixing models
attempt to describe these optical interactions as a function
of the endmember spectra, their abundances, and possibly
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other parameters such as geometrical, atmospheric, or physical
parameters [2].

One of the most basic mixing models is the linear mixing
model (LMM), where one assumes that an observed spectrum
is a linear combination of endmember spectra, with the abun-
dances as their linear coefficients, and Gaussian noise present.
One often assumes that the abundances cannot be negative,
leading to an abundance nonnegativity constraint (ANC).
Many authors also consider an abundance sum-to-one con-
straint (ASC), reasoning that the entire spectral signal has
to be decomposed into endmember contributions. This latter
constraint is often dropped in recent publications due to several
reasons, such as allowing shadows and scaling, to describe
nonlinear mixing effects [3], and to allow for L1 sparsity in
the abundance vectors [4].

The physical interpretation behind the LMM is that every
incoming photon or light ray will interact once with a specific
endmember before reaching the observer. The probability of
interaction is proportional to the abundance of the endmember
in the pixel’s IFOV, leading to the ANC and ASC. This
interpretation breaks down when the scene is more complex—
geometrical structures such as tree canopies and those found
in urban scenarios will cause shadowing, multiple reflections,
and secondary illumination. Transmittance through objects, for
instance, in canopies or mineral mixtures, can play a large
role and is not considered in the LMM. Intimate mixtures,
where the scene is more adequately described by a space filled
with particles, also show drastically different mixing behaviors
compared to linear mixtures [5].

Several more advanced mixing models have been derived
that attempt to improve upon this situation, and these can be
divided into several classes [6], [7] depending on the com-
plexity. A popular class of nonlinear mixing models in remote
sensing is the bilinear models. These models extend the LMM
with second-order reflections, which describe photons or light
rays interacting with two materials instead of one, in order
to describe secondary illumination effects. Many bilinear
models have been proposed, with wildly varying assump-
tions on the free parameters or underlying physics [8]–[17].
Although bilinear models can be useful to address some
forms of nonlinearity caused by secondary reflections, they are
often not based on sound physical principles, and the mixing
equations can allow highly unphysical spectra (e.g., reflectance
values far outside the [0, 1] interval).

The second class of nonlinear models is based on sim-
plified geometrical modeling of the scene and the resulting
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reflection processes. These techniques often resort to layered
structures for modeling certain scenarios, such as tree canopies
[18] or intimate mineral mixtures [19]–[21]. Due to the layered
structure, an infinite number of reflections between the layers
are allowed, and by employing ray-based or radiosity-based
analysis, mixing models can often be derived as a series of
higher order interactions between objects.

Alternatively, one can attempt to extend bilinear models
to all orders of interactions, taking care that the physical
interpretation of the mixing model is not lost, and by avoid-
ing the introduction of a large number of free parameters.
Recently, such extensions were introduced, e.g., based on a
polytope decomposition method [22] or a harmonic description
of higher order combinations of endmembers, beyond the clas-
sical polynomial combinations [23]. Another recent attempt at
such an extension is the multilinear mixing (MLM) model
[24], based on a simple probabilistic model of endmember
interactions—at each interaction with an endmember, the light
ray will have further interactions with a probability P , and go
to the observer with probability (1 − P). This way, all orders
of interactions between endmembers can be accommodated
while introducing only a single additional free parameter on
top of the abundances.

Alternatively, kernel-based nonlinear models were defined
that include additive nonlinear fluctuations on top of the linear
model, defined in reproducing kernel Hilbert spaces [25], [26].
Pure data-driven methods, based on manifold learning [27],
[28], or making use of machine learning [29], [30] were
developed as well.

Even more advanced are the radiative transfer models,
often employed for modeling intimate mixtures of minerals.
Typically, the medium is represented as a half-space filled
with particles with a given density and distribution of phys-
ical attributes. By solving the radiative transfer equations,
excellent forward models can be created that predict the
resulting reflectance [5], [31]–[33]. These models are often
hard to invert, and therefore less fit for use in remote sensing.
A notable exception is the Hapke model [5] which is often
encountered in the remote sensing literature. However, it must
be noted that several severe simplifications have been applied
in order to make the model invertible, and that the full Hapke
model is much more advanced than the approximations used
in remote sensing.

A common issue between these different classes of models
is the varying levels of motivation from a physics standpoint.
The purely data-driven unmixing techniques do not assume
any underlying physics at all. Others employ highly ideal-
ized models (e.g., the LMM), or focus on only a single
aspect (e.g., second-order interactions in bilinear models)
without taking the possible consequences on the mixing
equation into account, resulting in mixing equations that
allow highly nonphysical behavior such as reflectances that
are negative or significantly higher than one. Layered and
radiosity-based approaches typically do start from a detailed
physical modeling of the allowed interactions, but show
significant differences in the interpretation, description, and
solving method, which make it hard to compare or unify such
models.

In this paper, our goal is to develop a more general frame-
work for deriving mixing models, aimed at the hyperspectral
unmixing application. The proposed framework allows the
preservation of the simplicity provided by spectral mixture
analysis while allowing the introduction of some of the phys-
ical effects of the radiative transfer modeling.

The framework is based on graphical models, where the
starting point is to describe the allowed optical interactions
that a light ray can undergo when it travels from light source
to observer. Here, it is important to ensure that physical and
mathematical constraints are incorporated at each allowed
interaction, such as conservation of energy or sum to one of
probabilities. These graphical models then lead to a set of
allowed paths, where each path has a given probability and
contribution to the total spectral signal. A weighted sum over
all these paths leads to the mixing equation of the model.

This framework allows the user to focus on the allowed
physical interactions first, avoiding many pitfalls commonly
encountered in the construction of mixing models. Several
constraints often arise naturally, such as nonnegativity or sum-
to-one constraints. Furthermore, several existing mixing mod-
els can be derived in this framework, and we will provide some
simple and more advanced examples, such as the LMM, bilin-
ear models, the layered model of Borel and Gerstl [18], the
Shkuratov model for intimate mineral mixtures [21], and the
MLM model [24]. Next, as an example, we will employ
the framework to derive a new mixing model, which extends
the MLM model with shadows. This shadow model will be
illustrated on several artificial and real data sets, where we
show the excellent performance in detecting shadows and
higher order interactions, further demonstrating the power of
the proposed framework.

Note that the forward formulation of illumination, multiple
scattering, and other nonlinear effects is common to any
optical image not only to hyperspectral images but the latter
allows for spectral unmixing.

The simplicity of the framework is, at the same time, its
weakness, since more complicated spectral interaction effects
such as fluorescence, luminescence, absorption and diffusion,
and external effects such as multiple viewing angles and
dependence from the digital elevation model cannot be taken
easily into account.

This paper is organized as follows. In Section II, the pro-
posed framework is introduced. Section III presents several
examples, where we employ this framework to derive the mix-
ing equations of well-known mixing models, such as linear,
bilinear, multilinear, and layered models, and one example of
an intimate mixing model. Section IV introduces a new mixing
model, where the MLM model is extended with the capability
of handling shadows. Section V describes the illustrating
experiments and Section VI contains the conclusions, followed
by the bibliography.

II. STOCHASTIC PROCESS OF OPTICAL REFLECTIONS

In a hyperspectral image, the signal captured in each pixel
is a composite of all photons that have reached the sensor in a
certain time frame. Typically, one assumes that these photons
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are emitted by a light source and interact with the objects in
the scene before reaching the sensor. Note that, typically, a pre-
processing chain is employed to remove atmospheric effects,
perform geometrical correction, pixel resampling, calibration,
and optical corrections. We do not consider these in this paper,
and assume that a perfect reflectance image of the scene is
available.

To predict the observed signal as a function of the scene
composition, one can build a statistical model for the possible
paths that a single photon can follow. As we are interested in
the overall average of photons reaching the sensor, we employ
a ray-based approximation of light to model these paths,
where light rays are emitted by the source and interact with
objects, and each interaction alters the optical properties of the
light ray.

We assume that the number of possible interactions is finite,
leading to a discrete state space, and that the interaction
process is a discrete-time stochastic process. Let the discrete
set S contain all possible interactions that a light ray can
undergo. A light path is then defined by the random variable
{Xn}n≥0 with ∀n : Xn ∈ S. The probability of observing a
certain path is given by

P(X0 = s0, X1 = s1, . . . , Xn = sn), s0, . . . sn ∈ S. (1)

It is often convenient to assume that this stochastic process
obeys the Markov property

P(Xn+1 = s|X0, . . . , Xn) = P(Xn+1 = s|Xn) (2)

P(Xn+1 = s j |Xn = si ) = pi j . (3)

This means that the stochastic process is memoryless. The
next state depends only on the current state, and not previous
states. Furthermore, the transition probabilities between states
are constant, and can be represented by a transition matrix.
Such processes can be easily represented by directed graphs,
where each node represents a state, and the directed edges
represent the transition probabilities between states.

For our purpose, we are only interested in paths reaching
the observer, which means that every path eventually ends
in the state in S associated with the observer, where it will
never leave. This is an example of an absorbing Markov chain.
Furthermore, the path always begins at a light source, meaning
that X0 is always associated with a light source state. Note that
there can be multiple light sources.

At each state, the optical properties of the light ray will
be altered. Let T (si ) be the operator that acts on the light
ray in state si ∈ S. The total effect on the light ray when
a path (X0 = s0, X1 = s1, . . . , Xn = sn) is followed is then
given by

∏n
i=1 T (si ). In the context of optical interactions, this

alteration typically involves a relative change in the spectrum
of the light ray according to the reflectance of the object
associated with that state, but more exotic effects can be
modeled as well, e.g., fluorescence and luminescence.

To determine the observed signal x, a weighted average over
all possible paths needs to be taken. Let L describe the path
length, i.e., number of interactions that the light ray undergoes

Fig. 1. States and transition probabilities in the LMM, for a two-endmember
scenario. Unmarked edges have an implicit probability of one.

between the source state s and the observer state o

x =
∞∑

L=1

⎛
⎝∑

s1∈S

. . .
∑
sL∈S

⎞
⎠ P(path)

L∏
i=1

T (si )

P(path) = P(X0 = s, X1 = s1, . . . , X L =sL , X L+1 =o). (4)

In practice, the spectrum of the light ray is described by
a vector in spectral space. The states in S are typically light
sources, endmember interactions, the observer state, and pos-
sibly other states depending on the model. The operators T (s)
that act on the light ray are constant vectors in the case of light
sources, componentwise multiplication with a reflectance vec-
tor for reflections, or an identity operator for the observer state.

In the next section, several examples will be given where we
cast existing mixing models in the proposed stochastic process
framework.

III. EXAMPLES

A. Linear Mixing Model

In the LMM, one assumes the presence of p endmember
spectra {ei }p

i=1, and an observation model where the spectrum
is represented as a d-dimensional vector, representing the
reflectance at specific wavelength intervals. The LMM is then
given by

x =
p∑

i=1

ai ei ,

⎧⎨
⎩

∑
i

ai = 1

∀i : ai ≥ 0
(5)

where the abundances {ai}p
i=1 are positive and sum to one

(convexity constraints). In the proposed description, this cor-
responds to a state space S = {s, e1, e2, . . . , ep, o}, with s
the light source, ei endmember i , and o the observer. The
operators associated with these states are

1) T (s)x = 1.
2) T (ei )x = ei x.
3) T (o)x = x.

The transition probabilities between states pi j can be
derived from the graph in Fig. 1, which describes the states
and possible transitions in the LMM for a two-endmember
scenario. From this graph, it is clear that each path must orig-
inate from the source s. The next state will be one of the end-
members ei with probability ai . After reaching an endmember,
the next state is the observer state o, where the path finishes.
There are, hence, p unique paths of path length one (see also
Table I), and the weighted summation over all these paths
immediately leads to mixing equation (5) and its constraints.
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TABLE I

POSSIBLE PATHS IN THE LMM, THEIR PROBABILITIES,
AND THE CONTRIBUTION TO THE TOTAL SPECTRAL

SIGNAL OF EACH PATH

Fig. 2. States and transition probabilities in a subset of bilinear models.
Unmarked edges have an implicit probability of one.

TABLE II

SEVERAL POPULAR BILINEAR MODELS, AND THEIR

PARAMETERS FOR THE GRAPH IN FIG. 2

B. Bilinear Models

In bilinear models, the LMM is extended with second-
order interactions, representing secondary illumination. Many
bilinear models have been proposed in the recent literature,
and several of them can be represented by a single generic
graph, shown in Fig. 2 for a two-endmember scenario. Two
layers of endmembers have been employed to accommodate
both first- and second-order interactions. Light rays coming
from the source first go to the endmembers in the first layer,
with probabilities equal to their abundances. Next, two paths
are followed simultaneously: The light ray goes to the observer
with probability one but also goes to the endmembers in
the second layer with probabilities dependent on the model.
At each interaction with an endmember, the light ray is
attenuated by the reflectance value of the endmember.

The values for the generic transition probabilities {bi j }i j

are given in Table II for several well-known bilinear mod-
els. These are the Fan model [11], the generalized bilinear
model (GBM) [12], [34], [35], and the polynomial post-
nonlinear model (PPNM) [14]. Note that several additional
constraints are present, such as the ANC and ASC on the
abundances {ai}i , and possible constraints on the additional
free parameters.

Note that the sum of outgoing probabilities in the endmem-
ber nodes in the first layer is larger than or equal to one,
and often significantly so. This causes the modeled spectra
to have larger reflectances than those obtained by the LMM.
Furthermore, these models often contain asymmetries, such as
light rays that are allowed from e1 to e2 but not from e2 to
e1, or missing self-interactions. Several of these issues can

be easily resolved by reformulating the mixing equations with
symmetrized equations, or by deriving new models with slight
changes, such as allowing self-interactions or inclusion of a
sum-to-one constraint on outgoing probabilities.

Furthermore, several other bilinear models exist that can-
not be represented by the diagram in Fig. 2, such as
the model proposed by Nascimento and Bioucas-Dias [8],
Somers et al. [9], Halimi et al. [12], Chen and Vierling [15],
Meganem et al. [16], or Qu et al. [17]. For each of these
models, a graph representation can be created as well.

C. Layered Models

In the past, several layered models have been proposed for
hyperspectral mixing [18]. Such models may also be described
in the proposed framework. Consider, for instance, the model
proposed by Borel and Gerstl [18], which models a vegetation
canopy as a single layer with a certain leaf area index (LAI)
above soil, and a light source that emits radiation E0. By using
radiosity theory, three fluxes of light are defined as follows.

1) B1: Upwelling radiation from the leaves in the canopy
layer, which consists of reflected downwelling source
radiation, and upwelling soil radiation that is transmitted
through these leaves.

2) B2: Downwelling radiation from the leaves, consist-
ing of transmitted downwelling source radiation, and
reflected upwelling soil radiation.

3) B3: Upwelling radiation from the soil, consisting of
reflected source radiation and reflected downwelling
radiation from the leaves.

This leads to the following set of coupled equations. Let τ be
the transmittance of the leaves in the canopy, el and es be the
reflectance of the leaves and soil, respectively, and a be the
LAI of the leaves in the canopy layer

B1 = ael E0 + aτ B3 (6)

B2 = aτ E0 + ael B3 (7)

B3 = (1 − a)es E0 + es B2. (8)

By defining an upside and downside of a leaf as Lu and Ld ,
respectively, and soil as S, this model can be described with a
directed graph (see Fig. 3). Note that the sum-to-one constraint
on outgoing edge probabilities in the leaf vertices does not
apply here. When a leaf is reached, both the transmitted and
reflected paths have to be considered, leading to a branching
into two paths, both with probability one. All possible paths,
and their probabilities and contributions, are given in Table III.

After grouping similar terms together, this leads to the total
weighted sum

x = ael +
∞∑

n=0

(aes el)
n ((1 − a)es(1 − a + aτ ))

+
∞∑

n=0

(aes el)
naesτ (1 − a + aτ)

= ael + (1 − a + aτ )2es

1 − aes el
. (9)
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Fig. 3. States and transition probabilities in the layered model. Unmarked
edges have an implicit probability of one.

TABLE III

POSSIBLE PATHS UP TO LENGTH 4, THEIR PROBABILITIES AND
CONTRIBUTIONS IN THE LAYERED MODEL FROM [18]. ALL

RAYS ORIGINATE FROM THE SOURCE s AND END IN THE

OBSERVER STATE o, THESE ARE OMITTED FOR BREVITY

This solution is identical to the off-hotspot bidirectional
reflectance distribution function provided in [18] [(13) and
(2)], up to a multiplicative constant π .

D. Intimate Mixing Models

Some intimate mixing models can be cast into the proposed
framework as well, and as an example, we consider the
Shkuratov model [21]. The derivation of this model consists
of several steps. Consider a parallel light beam falling onto
an infinite half-space, partly filled with a homogeneously
distributed particulate medium. We make a distinction between
forward and backward scattering, and consider only the
average optical properties of particles (see [21] for detailed
calculations of these averages). First, we want to derive
the optical properties of a single particle. We define the
following.

1) Te and Ti are the average transmittances of light pen-
etrating into a particle from the outside, and exiting a
particle from the inside, respectively.

2) Ri is the average coefficient of internal reflection.
3) Rb and R f are the average backward and forward

reflectance coefficients for light reflecting off the outside
of the particle.

4) Wm is the probability of the light beam emerging
backward at the mth interaction, and (1 − Wm) is
the probability of emerging forward. An interaction is

Fig. 4. States and transition probabilities in the Shkuratov model for a single
particle.

TABLE IV

POSSIBLE PATHS, THEIR PROBABILITIES, AND CONTRIBUTIONS

IN THE SHKURATOV MODEL FOR A SINGLE PARTICLE

defined as reaching a particle interface, either from the
inside or the outside.

5) Attenuation of light inside the particle is a volumet-
ric effect and can be described by an average optical
density τ .

Some simplifications are considered in [21]. By defining
Re = Rb + R f , we can write Te = 1 − Re and Ti =
1 − Ri . Specifically, this means that a light beam will either
reflect or transmit at a particle boundary, and that there is
no absorption or attenuation at this interface. Furthermore,
we consider that a light beam forgets its past, and that the
probability of emerging backward or forward after internal
reflections is equal: ∀i > 2 : Wi = 1/2. This changes for
W2, which describes a light beam that enters and exits a
particle without internal reflections. Such a light beam has
zero probability of emerging backward, hence W2 = 0.

The reflection/transmission process can be described by
a directed graph, as shown in Fig. 4. The probabilities are
indicated on each vertex and obey the sum-to-one constraint.
There are two “Inside” states defined, to accommodate light
going straight through a particle (the W2 = 0 exception).
Note that this diagram can be simplified significantly if one
also considers W2 = 1/2, as the “Inside1” state is then no
longer required. The “Outside” state does not alter the optical
properties, while each “Inside” state represents an internal
traversal of the particle, and will attenuate the light by a factor
e−τ , with τ the average optical density of the particles. There
are also two observer states, one for forward and one for
backward scattering.

The possible paths, and their probabilities and contributions,
are given in Table IV. From this table, we can derive that
the total reflectance observed by the forward and backward
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Fig. 5. Different orders of reflections in the Shkuratov model, with a
reflection off the upside of the layer, and the first- and second-order reflections
between the layer and the stack.

observers is given by

r f = R f + TeTi e
−τ + Te Ri Ti e−2τ

2

+ Te R2
i Ti e−3τ

2
+ Te R3

i Ti e−4τ

2
+ · · ·

= R f + TeTi e
−τ + TeTi Ri e−2τ

2(1 − Ri e−τ )
(10)

rb = Rb + Te Ri Ti e−2τ

2
+ Te R2

i Ti e−3τ

2
+ · · ·

= R f + TeTi Ri e−2τ

2(1 − Ri e−τ )
. (11)

These equations describe the forward and backward
reflectances of a single particle and are equal to [21, eqs.
(9a) and (9b)]. In the next step, one considers a homogeneous
distribution of such particles in a half-space, with parallel
incoming light. This setup is regarded as an infinite stack of
layers of particles, where each layer has a thickness equal to
the average particle diameter. If the volume fraction filled by
particles is denoted by q ∈ [0, 1], the probability that a light
ray hits a particle when traversing a single layer is also given
by q if the packing is random [21]. The forward and backward
reflectances of a single layer are then given by

ρb = qrb (12)

ρ f = qr f + (1 − q). (13)

If one considers a half-infinite stack of such layers, the total
reflectance of this stack will not change if one layer is
added or removed. This observation allows us to calculate the
total reflectance (see Fig. 5). Note that transmission through
a single layer corresponds with a factor ρ f , reflection off a
single layer with a factor ρb , and reflection off an infinite stack
of layers with the reflectance A, which is the property to be
determined

A = ρb + ρ2
f A + ρ2

f ρb A2 + ρ2
f ρ

2
b A3 + · · · (14)

= ρb + ρ2
f

1 − ρb A
. (15)

This leads to solution (12) found in [21], which we omit for
brevity.

Fig. 6. States and transition probabilities in the MLM model for a two-
endmember scenario.

E. Multilinear Mixing Model

Recently, we have proposed the MLM model [24] as an
extension of bilinear models to include infinitely many interac-
tions. This model has been derived by employing the proposed
framework. We make the following assumptions.

1) A light ray incoming from the source will interact with
at least one material.

2) After each interaction with a material, the ray will have
a probability P of undergoing further interactions, and
a probability (1− P) of escaping the scene and reaching
the observer.

3) The probability of interacting with material i is propor-
tional to its abundance ai .

4) When a light ray is scattered by material i , its intensity
changes according to that material’s reflectance ei .

This leads to the graphical model depicted in Fig. 6 for a
two-endmember model, and the possible paths, probabilities
and contributions, in Table V.

The probability for the sequence (ei1 , ei2 , . . . , eiR ) before
reaching the observer is given by

Prob(ei1 , ei2 , . . . , eiR ) = (1 − P)P R−1ai1 ai2 . . . aiR . (16)

The spectral contribution of such a path is
∏R

j=1 ei j . The
resulting mixing equation then becomes

x =
∞∑

R=1

⎛
⎝

p∑
i1=1

. . .

p∑
iR =1

⎞
⎠ (1 − P)P R−1

R∏
k=1

(aik eik )

= (1 − P)

p∑
i=1

ai ei + (1 − P)P
p∑

i=1

p∑
j=1

ai a j ei � e j

+(1 − P)P2
p∑

i=1

p∑
j=1

p∑
k=1

ai a j ak ei � e j � ek . . .

= (1 − P)
∑p

i=1 ai ei

1 − P
∑p

i=1 ai ei
. (17)

It is easy to see that the MLM model accommodates all
orders of interactions between end members, and scales these
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TABLE V

POSSIBLE PATHS UP TO LENGTH 3, THEIR PROBABILITIES AND
CONTRIBUTIONS IN THE MLM MODEL. ALL RAYS ORIGINATE

FROM THE SOURCE s AND END IN THE OBSERVER

STATE o, THESE ARE OMITTED FOR BREVITY

TABLE VI

POSSIBLE PATHS UP TO LENGTH 3, THEIR PROBABILITIES

AND CONTRIBUTIONS IN THE EXTENDED MLM MODEL

higher order interactions with a single parameter P with a clear
physical interpretation (the probability of interacting again
with an endmember). We refer to [24] for more details.

IV. SHADOW MODEL BASED ON

GRAPH REPRESENTATION

A. Extending the MLM With Shadows

In this section, we extend the MLM model with the capa-
bility of dealing with shadows by employing the proposed
framework, resulting in the shadow MLM (SMLM) model.
As seen in Section III-E, the MLM model extends the LMM
with the probability that a light ray undergoes additional
interactions with endmembers after each interaction with a
constant probability P (also see Fig. 6). This model has been
shown to be able to handle higher order interactions. Also,
shadows can play an important role in the composition of
the scene and are commonly encountered in many urban and
vegetation scenarios. These shadows can be partial, as only
part of the IFOV of a pixel can be shadowed, or the geo-
metrical structure which casts the shadow can be smaller than
the IFOV (e.g., small trees and bushes). By definition, any
object that is shadowed has no direct line of sight to the
light source. Disregarding possible atmospheric illumination,
this means that any light which is observed from a shadowed
area underwent multiple reflections. When we consider the
MLM model and its series expansion, this means that only
interactions of order two and higher are allowed in a shadowed
area, while the first-order interactions can only contribute in
directly illuminated parts of the pixel. This intuitive reasoning
leads to the path probability illustrated in Table VI, which
equals Table V, but with the first-order paths rescaled with a
shadow parameter (1 − Q), with Q ∈ [0, 1]. The value Q = 0
means no shadow, while Q = 1 indicates a situation with full
shadow. This leads to the following mixing equation for the
SMLM model

x = (1 − P)
∑p

i=1 ai ei

1 − P
∑p

i=1 ai ei
− Q(1 − P)

p∑
i=1

ai ei . (18)

A graphical model supporting these observations can be
constructed by considering both the viewpoints of the light

Fig. 7. Graphical model describing the SMLM model. By introducing two
layers of endmembers, a distinction can be made between direct light rays
and ones that underwent multiple reflections.

source and the observer: while the source cannot observe shad-
ows by definition (this is the hotspot direction), the observer
can. Every light ray that leaves the source will have the
first interaction with some endmember, proportional to its
abundance. After this first interaction, we consider three possi-
bilities: the light ray goes directly to the observer, has another
interaction with an endmember, or it is absorbed because the
observer is not visible. We assign a variable Q ∈ [0, 1] to
this latter probability. Typically, the distances to source and
observer are much larger than the geometrical sizes of the
objects in the scene, and one can consider parallel illumination
and observation. In this case, the size of the illuminated part of
the scene, not visible to the observer due to occlusion, is equal
to the size of the shadowed fraction of the scene (this can be
easily seen by reversing the roles of source and observer). This
indicates that the Q variable plays the role of shadow weight,
indicating the size of the shadow component in the scene. The
corresponding graphical model is depicted in Fig. 7.

V. EXPERIMENTS

To illustrate the performance of the SMLM model, we have
unmixed several artificial and a real-world data set. The results
are evaluated quantitatively by employing the reconstruction
error (RE), given by the Fröbenius norm between the recon-
structed data set Y = {Y j }N

j=1 and the input data set x =
{x j }N

j=1, and the average absolute abundance error (AE)

RE = 1

N

√√√√
N∑

j=1

(X j − Y j )2 (19)

AE(X − Y ) = 1

pn

N∑
j=1

p∑
i=1

|a j i(X) − a j i(Y)|. (20)

We compared the results with two alternatives.

1) The first algorithm we used for comparison is the
standard fully constrained LMM, with the ANC and
ASC imposed on the abundances. The mixing equation
for the LMM is given by (5).
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2) As we observed that the REs from the LMM model are
sometimes relatively large, we also considered the LMM
with an artificial shadow endmember included [36].
This is accomplished by extending the endmember
matrix with a column of zeros, and results in the shadow
LMM (SLMM) model. It is easy to show that the
SLMM is related to nonnegatively constrained least-
squares (NCLS) unmixing, with the exception that all
abundances in the SLMM are restricted to the inter-
val [0, 1], while in the NCLS model, the endmember
abundances would be nonnegatively constrained, and
negative shadow contributions would be allowed. The
mixing equation for the SLMM model is equivalent to
the artificial addition of a zero-vector shadow endmem-
ber to the LMM

x = (1 − Q)

p∑
i=1

ai ei ,

⎧⎪⎪⎨
⎪⎪⎩

∑
i

ai = 1

∀i : ai ≥ 0

Q ∈ [0, 1]
(21)

=
p∑

i=1

âi ei + âp+10,

⎧⎪⎪⎨
⎪⎪⎩

p+1∑
i=1

âi = 1

∀i : âi ≥ 0

with

⎧⎪⎨
⎪⎩

∀i ∈ 1, . . . , p : âi = (1 − Q)ai

âp+1 = Q = 1 −
p∑

i=1

âi .
(22)

Equation (21) can be unmixed by employing con-
strained optimization, while (22) can be unmixed with
the fully constrained least-squares unmixing (FCLSU)
algorithm [37], and transformed into the equivalent
interpretation from (21).

3) The third algorithm we used for comparison is the MLM
model of Section III-E. The mixing equation for the
MLM model is given by (17).

The mixing equation for the proposed SMLM model is
given by (18). Furthermore, note that the P → 0 limit of
the SMLM model equals the SLMM model, the Q → 0 limit
gives the MLM model, and the P, Q → 0 limit gives the
LMM model.

For LMM and SLMM, we employed FCLSU, based on
the NCLS algorithm of Lawson and Hanson [38], and for
the MLM and SMLM model, we performed constrained opti-
mization of the RE versus the model parameters via sequential
quadratic programing.

A. Artificial Data Sets

We have first employed different algorithms on artificial data
sets that were generated by the mixing models themselves.
This allows us to assess the performance in an ideal scenario,
where all informations such as endmember spectra, abundance
vectors, and metadata, are known, and can be used to generate
quantitative measurements. As all the alternatives for the
SMLM model are limiting cases, these experiments also allow
us to assess the importance of adding higher order interactions,
shadowing, or both, in the LMM.

TABLE VII

RE FOR THE ARTIFICIAL UNMIXING EXPERIMENT, WITH p = 10 END-
MEMBERS, N = 104 PIXELS, AND SNR = 50 (TOP HALF) AND

SNR = 200 (BOTTOM HALF)

TABLE VIII

AVERAGE ABSOLUTE AES FOR THE ARTIFICIAL UNMIXING EXPERIMENT,
WITH p = 10 ENDMEMBERS, N = 104 PIXELS, AND SNR = 50 (TOP

HALF) AND SNR = 200 (BOTTOM HALF)

To generate the data sets, p endmember spectra were
randomly selected from the United States Geological Survey
spectral library of minerals.1 Next, N abundance vectors a j =
(a j1, a j2, . . . , a j p)

T ( j = 1, . . . , N) were randomly generated,
uniformly drawn from a unit simplex and hence obeying the
ANC and ASC. The shadow parameter Q and the nonlinearity
parameter P were both independently drawn from a half-
normal distribution with σ = 0.3. Values larger than one were
set to zero. The motivation here is that one typically does not
expect many pixels with very large contributions from higher
order interactions or that are fully shadowed.

After parameter selection, the mixing models themselves
are used to generate the data sets [(5), (21), (17), and (18)
for the LMM, SLMM, MLM, and SMLM models, respec-
tively], and the Gaussian noise with a given signal-to-noise
ratio (SNR) is added. These data sets are then unmixed using
different mixing models. The RE and the AE can be found
in Tables VII and VIII, respectively, for several values of
the SNR.

These tables show that the SMLM model always gives the
smallest RE, regardless of the mixing model employed. This is
to be expected, as the SMLM model has the highest number
of free parameters, and the other models are limiting cases
of the SMLM model. Furthermore, the REs obtained by the
MLM model are close to those obtained by the SMLM model,
even on data sets that include shadowing. This suggests that
higher order interactions and shadowing are treated the same
way by the MLM model, by reducing all orders of interactions
instead of only the first order as in the SMLM model.

1https://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 8. (a) False color RGB image. (b) Shadow abundance values from the SLMM model. (c) Nonlinearity P-values from the MLM and (d) SMLM model.
(e) Q-values from the SMLM model, for the Pavia data set (all parameters range from 0 to 1 and are visualized using a colorcode, ranging from dark blue
to dark red). (f) Thresholded P (in red) and Q-values (in blue) of the SMLM model overlaid over the RGB image.

From the AE table, one can conclude that each model excels
at unmixing its own data set, achieving the smallest AEs. For
linearly mixed data, the proposed method performs slightly
worse than SLMM and MLM, while in the other cases, it is
the best alternative to the model that generated the data. Also,
obtaining comparably small REs does not mean that the AEs
will also be small.

B. Real Data Set—Pavia Image

The data set that was employed in this experiment was the
Pavia University data set. The Pavia University data set is
captured by the ROSIS sensor and is a 103-band data set in
the range of 430–838 nm [39], with a spectral resolution of

4 nm and 610 by 340 pixels. It depicts part of the campus
of Pavia University, Italy. Note that 59 pixels were removed
from the Pavia University data set as they contained improper
signals. A false color Red Green Blue (RGB) image of the
Pavia image is shown in the first column of Fig. 8, by using
bands 40, 20, and 10 for the R, G, and B images, respectively.

The following experiment is conducted on the Pavia image.
For this image, ground truth pixels are available for eight
material classes and a shadow class. In order to evaluate the
mixing models for their ability to model shadow, we generate
one endmember for each of the eight material classes, as the
average spectrum of all training pixels corresponding to that
material. No shadow endmember is generated, since we want
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to validate to what extent the shadow is treated by the mixing
models. In the case of the SLMM model, an additional shadow
endmember is defined as the zero vector, in the case of SMLM,
the Q-value should take the shadow into account.

After endmember selection, the data sets were unmixed
with the respective models. The SLMM, MLM, and SMLM
models also produce additional metadata. The MLM and
SMLM models contain a P-value for every pixel, indicating
the probability of higher order interactions, while the SLMM
and SMLM models contain a variable describing the level of
shadow in the pixel (this is the Q-value of the SMLM model,
and the abundance of the artificial shadow endmember in the
SLMM model). These maps are shown in Fig. 8.

The values of the metaparameters range from 0 to 1 and
are shown in a colormap ranging from dark blue to dark red.
We also include a figure showing for the proposed method,
in red, all pixels having P-values larger than 0.5, and in blue,
all pixels having Q-values larger than 0.6, overlaid on top of
the RGB image.

From visual inspection, the following observations can be
made.

1) In general, the shadow abundance map of SLMM is
very similar to the P-map of MLM, indicating that both
models use their respective parameter to model both
shadow and multiple reflections. At the same locations,
the SMLM model generates either P- or Q-values
or both.

2) The highest values of the parameters are observed
in shadowed areas from buildings. In these areas,
the shadow abundance values of SLMM and the
P-values of MLM are very similar and close to 1.
The SMLM model, on the other hand, shows high values
of Q but P is zero. These areas are expected to be
partially lit by higher order reflections, but the spectral
reflectance is very low and all the models seem to
overcompensate for this with shadow.

3) However, for partially shadowed pixels at the transitions
between these building shadows and fully lit areas,
SMLM shows high P-values.

4) High values of P and Q also appear at regions near
vegetation. In general, the tree canopies seem to be
modeled linearly (P = Q = 0), while high Q-values
appear in the shadows of these trees. Multiple reflections
become visible in partially shadowed pixels at the edges
of these shadows.

5) In some vegetation-related regions, the SMLM model
seems to show more multiple reflections than shadow.
This may indicate low and/or less dense vegetation.

These results are to be expected, as higher order inter-
actions are mainly expected in or near complex 3-D struc-
tures such as trees, and cause light to be received from
partially shadowed areas. This means that in the MLM model,
high P-values can be expected wherever the spectrum is
significantly smaller than the endmembers, whether due to
higher order interactions or shadowing. The SLMM model
also mixes up between shadowing and multiple interactions.
The SMLM model however can make this distinction, and

TABLE IX

AVERAGE ABSOLUTE ABUNDANCE DIFFERENCES BETWEEN THE
PROPOSED AND THE OTHER MODELS, FOR DIFFERENT

GROUPS OF PIXELS

shows differences between the effects of higher order interac-
tions and shadowing.

For a more quantitative study of the behavior of the meta-
parameters P and Q from the SMLM model, we subdivided
all pixels into four different groups, according to the obtained
values for P and Q. The different groups are as follows.

1) Group A (P = Q = 0): This group contains 77.910 pix-
els out of a total of 207.400 pixels. It is verified that
these are exactly the pixels for which P of MLM equals
zero, and almost identical to the group of pixels where
the shadow abundance of SLMM equals zero (total
of 77.677 pixels). For this group of pixels (let us refer to
them as linearly mixed pixels), the obtained abundance
values for all models are very similar (AE of 10−5, see
Table IX).

2) Group B (P = 0 and Q �= 0): This is the group
that is characterized by our model as (pure or par-
tially) shadowed pixels. This group contains 53.781 pix-
els. For these pixels P �= 0 in the MLM model,
while the obtained Q-values are almost identical to
the shadow abundance values in the SLMM model.
However, the differences in obtained abundance values
with the SLMM model are larger than with the MLM
model.

3) Group C (P �= 0 and Q = 0): This group con-
tains 65.158 pixels. This is the group that is char-
acterized by our model as pixels containing multiple
reflections, but without being shadow pixels. For these
pixels, the shadow abundances in the SLMM model
differ from 0. The obtained P-values are identical to
the P-values of the MLM model. For these pixels,
the obtained abundances are almost identical to the
abundances obtained by the MLM model.

4) Group D (P �= 0 and Q �= 0): This group contains
10.551 pixels. This is the group that is regarded by
our model as (partially) shadowed pixels containing
multiple reflections. For these pixels, we have verified
that SLMM compensates for this by larger values of
the shadow abundances, while MLM compensates for
this by larger values of P . For this group, the obtained
abundances by our method are closest to the ones
obtained by MLM. To verify whether our model pro-
vides more correct abundances, actual ground truth data
of fractional abundances of materials under shadowed
pixels would be required.

Overall, over all groups of pixels, the differences in abun-
dance values are the smallest between our model and MLM.
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Fig. 9. Scatterplots from the Pavia image of (a) shadow abundance of SLMM versus the P-value of MLM, (b) P-value of SMLM versus the P-value of
MLM, and (c) Q-value of SMLM versus the shadow abundance of SLMM.

TABLE X

RUNTIME IN SECONDS FOR THE PAVIA DATA SET

Scatterplots of the parameters, as shown in Fig. 9, confirm
these findings. It can be observed from Fig. 9(a) that indeed
the values of P of MLM correspond to the shadow abundance
values of SLMM. Moreover, Fig. 9(b) shows that the P-values
of SMLM are always equal to or lower than the ones of
MLM. We verified that all pixels in group C lie exactly on the
diagonal. Finally, Fig. 9(c) shows that the Q-values of SMLM
are always equal to or lower than the shadow abundance values
of SLMM (except for the values close to 1), we also verified
that all pixels in group B lie exactly on the diagonal.

A particular group of pixels is formed by the shadow
class. We performed a basic classification using an support
vector machine classifier based on all training pixels of the
Pavia image, including shadow as a class. The classifier
has identified 10.593 pixels as shadow pixels. From these
pixels, we found that none belong to group A, 7.426 to
group B, 898 to group C, and 2.269 to group D. The large
majority of the pixels of the shadow class are characterized
by our method as shadowed pixels with (D) or without
(B) multiple reflections. The observed abundance differences
between the models are larger than was the case for any of
different groups. All algorithms were developed in MATLAB
and run on an Intel Core i7 − 6700 K CPU, 4.00 GHz
machine with 4 cores. The runtimes of the algorithms on
the Pavia image are shown in Table X. As can be seen,
the runtimes increase with the increase in model complex-
ity from LMM to SLMM to MLM to SMLM. Note that
the runtimes for the multilinear models are relatively high
due to the use of sequential quadratic programing and can
be significantly improved by employing dedicated optimiza-
tion schemes, such as, for instance, the alternating direction
method of multipliers technique in [40] for unmixing with the
MLM model.

VI. CONCLUSION

In this paper, we have introduced a general method of
interpreting the optical interactions that lead to spectral mixing

models, based on graphical models. By performing a weighted
summation over all possible paths in such a graphical rep-
resentation, closed-form equations for the resulting mixing
model can often be obtained. This is illustrated by deriving
several popular mixing models in this framework with varying
levels of complexity, such as the LMM, the MLM, the layered
model by Borel and Gerstl, and the Shkuratov model for
intimate mixing. These illustrations show the flexibility of
this interpretation. Furthermore, new mixing models can be
easily derived within this framework. We give a demonstration
where we extend the existing MLM model with shadows,
defined as regions in the image that receive no direct illu-
mination from the source. The resulting mixing model is
demonstrated on artificial and real data sets and is capable of
correctly identifying shadowed areas. Future work concerns
the derivation of more powerful and flexible mixing models
within this framework. Possible examples are the inclusion
of skylight illumination (i.e., diffusive radiation from the
atmosphere) in the presented shadow model, radiation arising
from multiple reflections between neighboring pixels, point
spread functions, or the adjacency effect, and variability in
the endmember spectra.
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