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Fine-Scale SAR Soil Moisture Estimation in the Subarctic Tundra
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In the subarctic tundra, soil moisture information can benefit permafrost monitoring and ecological studies, but fine-scale remote
sensing approaches are lacking. We explore the suitability of C-band SAR, paying attention to two challenges soil moisture retrieval
faces. First, the microtopography and the heterogeneous organic soils impart unique microwave scattering properties, even in absence
of noteworthy shrub cover. Empirically, we find the polarimetric response is highly random (entropies > 0.7). The randomness
limits the applicability of purely polarimetric approaches to soil moisture estimation, as it causes a tailor-made decomposition to
break down. For comparison, the L-band scattering response is more surface-like, also in terms of its angular characteristics. The
second challenge concerns the large spatial but small temporal variability of soil moisture observed at our site. Accordingly, the
Radarsat-2 C-band backscatter has a limited dynamic range (∼2 dB). However, contrary to polarimetric indicators, it shows a
clear surface soil moisture signal. To account for the small dynamic range while retaining a 100 m spatial resolution, we embed an
empirical time-series model in a Bayesian framework. This framework adaptively pools information from neighboring grid cells,
thus increasing the precision. The retrieved soil moisture index achieves correlations of 0.3–0.5 with in-situ data at 5cm depth and,
upon calibration, RMSEs of < 0.04 m3 m−3. As this approach is applicable to Sentinel-1 data, it can potentially provide frequent
soil moisture estimates across large regions. In the long term, L-band data hold greater promise for operational retrievals.

Index Terms—Radar remote sensing, Radar polarimetry, Synthetic aperture radar, Soil moisture, Soil properties, Arctic.

I. INTRODUCTION

Subarctic tundra ecosystems are responding rapidly to cli-
mate change, as evidenced by widespread changes in their
vegetation cover and permafrost conditions [1], [2]. These
ecosystems are characterized by organic soils that host mosses,
lichens, graminoids and forbs of limited biomass as well
as, increasingly, higher-biomass shrubs. The permafrost has
widely been observed to be warming, often associated with
local permafrost degradation [2], thus threatening infrastruc-
ture. Soil moisture plays a central role in the changing ecology
and permafrost conditions [3], [1], [4]. It exerts an important
control on plant growth and a wide range of biogeochemical
processes, and it alters the soil thermal dynamics through its
control on the surface energy balance and the soil thermal
properties.

Despite the clear need for frequent, spatially extended soil
moisture information, we currently lack reliable operational
satellite remote sensing solutions [5]. The coarse-scale passive
microwave SMAP product is widely considered to be the most
accurate global product, but it has been found to provide
poor estimates in the subarctic tundra [5]. Alternatively, fine-
scale SAR approaches seem promising, as the large spatial
heterogeneity in land surface properties at the 100-200 m scale
would make them attractive for a wide range of applications.
However, the applicability of SAR data for soil moisture
inversion in the subarctic tundra remains largely unknown.
This also applies more generally to high-latitude regions,
although pioneering studies over the high arctic tundra and
boreal peatlands and fire scars give reason for hope [6], [7],
[8], [9], [10], and recent efforts such as NASA’s ABoVE and
the German-Canadian PermaSAR (DLR) campaigns [11], [12]
are paving the way for further algorithmic advances in high-
latitude regions.
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SAR remote sensing of soil moisture faces numerous po-
tential challenges in the subarctic tundra, in terms of the
hydrology and microwave scattering properties. The hydro-
logical behavior is complex, owing partially to the meter-scale
microtopographical features. These can take on many forms;
in the subarctic, hummocks of ∼ 20 cm height are widespread
[13]. They modify the soil moisture distribution not only due
to their relief but also because they impart a sizable small-scale
variability in soil properties. In general, the near-surface soils
are largely organic in nature, characterized by large porosities,
but their porosities and water retention characteristics vary
greatly [13]. The implications for SAR retrievals are that soil
moisture is highly heterogeneous on the sub-resolution scale
[14], thus posing a challenge to validating the retrievals. Also,
the temporal variability can be small by comparison, which
again makes time-series analyses of SAR data difficult [5].

In terms of the complex microwave scattering, the most
obvious challenge are the shrubs, as above-ground vegetation
influences the observed signals in complex ways and generally
reduces the sensitivity to soil moisture variations [15], [16],
[17]. But above-ground biomass remains very limited in vast
areas, and even the open tundra presents challenges of its
own. First, the microtopography likely makes the surface
appear very rough in terms of its polarimetric and angular
backscattering behavior [18]. As the size and spacing of the
hummocks vary, the variability needs to be accounted for when
interpreting the SAR measurements. Second, the organic soils
also complicate soil moisture retrieval. When these soils are
dry, microwaves can penetrate easily into the subsurface, and
subsurface scattering can contribute appreciably to the received
signal [7], [19]. In the subarctic tundra subsurface scattering
may, for instance, originate from the interface between the
organic and the underlying mineral soil [13]. The microto-
pography and the organic soils likely impart unique scattering
characteristics (polarimetry, angular dependence), but these
have not been quantified, and dedicated scattering models are
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lacking.
In light of these complexities, the most expedient approach

to soil moisture estimation remains an open question. Three
general approaches are commonly applied, but none has been
tested in the subarctic tundra. First, model-based backscatter
approaches furnish soil moisture estimates by inverting a
model of the backscatter magnitude. Existing models vary
greatly in complexity, ranging from computer-intensive elec-
tromagnetic simulations to simple semi-empirical models [20],
[21], [22]. However, there are no dedicated scattering models
available for the hummocky organic soils in the subarctic
tundra, and it is not clear whether existing ones can replicate
the angular dependence and other scattering characteristics.
Second, simple time-series approaches have been applied
successfully to a wide range of land covers, even those
with appreciable vegetation [23], [17], [24]. However, their
flexibility comes at a price, namely that the estimates are not
calibrated, i.e. they are only relative indicators of moisture
content. Third, there are purely polarimetric methods that do
not rely on the backscatter magnitude, chief amongst them
being decomposition methods [16], [25]. They try to isolate
the surface response whose observed polarimetric scattering
mechanism can then be converted into an absolute soil mois-
ture estimate. Numerous such approaches have been applied
with some success in agricultural regions [16], [26], but most
approaches cannot account for the variable microtopography.
In light of their simplicity, polarimetric methods and simple
empirical methods seem to constitute a promising first step,
which could ultimately lead to bespoke backscatter-based
models.

To address these open questions, and more generally provide
a first overview of the limitations and opportunities of soil
moisture estimation in the subarctic tundra, we pursue 3
closely linked objectives

1) to characterize key polarimetric properties of the hum-
mocky tundra, and to develop a tailor-made Micro-
Topography and Vegetation (MTV) decomposition to
separate the surface (with variable microtopography)
from the volume scattering contribution.

2) to characterize the backscatter’s angular dependence,
and to determine the applicability of semi-empirical
backscatter models and of a linear empirical backscatter
model.

3) to assess simple soil moisture inversion approaches over
the open tundra: we study two polarimetric approaches
and one magnitude-based approach based on the empir-
ical time-series model.

We analyze two years (2014, 2016) of fully polarimetric
C-band Radarsat-2 data at a well instrumented study site in
the Northwest Territories, Canada. While C-band is rarely
considered optimal for soil moisture estimation, such data are
the most widely available, especially since Sentinel-1 started
to frequently image northern Canada in late 2016. Instead
of C-band, lower frequency data are generally considered
preferable, and NISAR and TanDEM-L will provide frequent
fine-scale data at L-band. To provide a first insight into the
scattering properties at L-band, we also studied one airborne

UAVSAR acquisition (objectives 1 and 2).
We first provide an overview of the study site in Sec. II,

highlighting the large observed subresolution spatial variabil-
ity in soil moisture, which contrasts with a low temporal
variability. In Sec. III, we present the Radarsat-2 C-band
and UAVSAR L-band data. We then address each objective
in turn in Sec. IV–VI, describing first the methods and
subsequently the results. Our polarimetric (objective 1) and
angular (objective 2) analyses inform our investigation of C-
band soil moisture estimation (objective 3). We focus on a
simple linear time series model of the backscatter magnitude.
In light of the low dynamic range of surface soil moisture
observed at our site, we modify the standard pixel-level time-
series approach by embedding it in a Bayesian framework
that adaptively pools information across adjacent pixels, thus
reducing the noise level. We assess the soil moisture retrievals
at two instrumented plots in the open tundra, for both the
VV backscatter (available from Sentinel-1) and the surface
backscatter extracted using the MTV decomposition from
objective 1.

II. STUDY SITE AND IN-SITU DATA

Located around 80 km south of the Arctic Ocean in the
Northwest Territories, Canada, the Trail Valley Creek (TVC;
68◦45’N, 133◦30’W) study site is at the northern edge of
the taiga-tundra transition zone (Fig. 1a,b). Three main types
of land cover can be distinguished [1]. The open tundra’s
sparse vegetation cover is dominated by lichen, bryophytes and
graminoids (Fig. 1c) [13], [5]. Dwarf shrub tundra additionally
supports erect dwarf shrubs of / 50 cm height (Fig. 1d).
Finally, tall shrubs (40 - 200 cm) occur along water channels,
in disturbed areas and, increasingly, in patches on hillslopes
(Fig. 1d). The rolling morainal landscape is underlain by
continuous permafrost [2]. During the short summer season,
the soil thaws to a depth of 0.4–1.3 m, depending on, amongst
other things, the soil profiles.

The soils and the microtopography reflect the area’s glacial
and periglacial history. The soils are organic cryosoils. The
silty clay mineral soils are overlain by organic materials of up
to 50 cm depth [13]. The organic materials are characterized
by a large porosity (0.60 - 0.95). Their nature and depth
vary on small scales, as they are closely associated with
the microtopography. This microtopography takes the form of
hummocks, which rise up to 30 cm above the surrounding
interhummocks (Fig. 1c). The hummocks, which are around
50-100 cm in diameter, consist of a mineral soil core overlain
by a thin layer of organic soil. The layer is about 15 cm deep
in Fig. 2a but can vary greatly in depth on short spatial scales.
The interhummocks, by contrast, are characterized by thicker
organic layers, mainly comprising living mosses and peat.
Apart from the hummocky tundra, there are isolated patches
of degraded ice-wedge polygons, where such hummocks are
largely absent.

Soil moisture varies on a range of scales, as its distribution
is shaped by the microtopography, topographic position and
vegetation cover. Ideally, SAR remote sensing should capture
the hillslope-scale variability (100-300 m). However, the sub-
resolution variability has to be considered in the following,
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a) Trail Valley Creek b) Main study area c) Open tundra with hummocks d) Shrub communities
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Fig. 1. Study area and its land cover. a) Overview of the study area and its rolling topography, highlighting the three sub-areas of main interest: MM around
the Main Met station, where most of the plots are located; UP, site of permanent plot OT-UP; W, western area where suitable L-band radar data were available.
b) Zoom into the surroundings of the MM station, with a false-color Sentinel-2 showing the higher near-infrared reflectance (in red) over the dwarf shrubs
(DS) and tall shrubs (TS). c) Hummocky microtopography at the OT-MM plot. d) The two important types of hillslope shrubs: Dense dwarf shrubs (birch)
of around 40 cm height in the foreground, tall shrubs (alder, ∼ 1.5 m) in the background.

as it was observed to be large. Large spatial variability in
tundra landscapes is associated with the microtopography and
variations in thaw depths [14]. To quantify it, we conducted
a manual sampling campaign in September 2017 in four plots
with variable shrub cover (OT-MM, DS-1, DS-2, TS-2, see Fig.
1b). Each plot comprised two parallel transects of 20 samples
each, spaced 1 m apart. The measurements were made using
a Stevens Hydra Probe II capacitance probe (5 cm prongs,
inserted vertically). Once calibrated to the soils at TVC [27],
this probe was previously found to achieve an accuracy <0.05
m3 m−3. Our measurements shown in Fig. 2b) revealed a large
plot-level interquartile range of 0.08-0.29 in the four plots,
corresponding to up to 70% of the median soil moisture.

The temporal variability in surface soil moisture is subdued
compared to the spatial variability. To capture the tempo-
ral dynamics of soil moisture, we employed permanent soil
moisture probes during two summer seasons (2014, 2016;
coincident with the Radarsat-2 data). Each plot was located
in hummocky open tundra and was instrumented with 3-6
near-surface probes distributed across hummocks and inter-
hummocks. The probe locations were chosen to represent the
spatial variability within the 100–200 m plot, but owing to the
limited number of probes per plot, representativeness errors
remain. The probes we used were Stevens Hydra Probe II
sensors at 5 cm depth. A location-specific calibration was used
to derive soil moisture (spatial scale of <10 cm) from the
measured dielectric constant [5]. We instrumented two plots,
OT-MM and OT-UP, where OT indicates the tundra vegetation
(open tundra with very little above-ground biomass). OT-
MM was located on a plateau close to the camp’s main
meteorological station, and OT-UP was located on the Upper
Plateau, 10 km to the southwest of the main study area (Fig.
1). To obtain a representative volumetric surface soil moisture
value, we aggregated the probe-level measurements within
each plot. As shown in Fig. 2c, the individual probe-level
measurements indicated a limited temporal variability. At any
point in time, the spatial variability of the five probes is con-
siderably larger than the change in the spatial mean over the

entire summer season. For all plots, the aggregated plot-level
observations exhibited a lower temporal variability than the
spatial variability we observed in our dense transects. Similar
findings have been reported from Alaska, where surface soil
moisture was highly variable but also showed a clear but
subdued response to precipitation events [14], [28].

III. REMOTE SENSING DATA

Our analyses focused on a dense time series of fully
polarimetric Radarsat-2 data [29], taken in the stripmap Fine
Quad mode with a native slant range and azimuth resolution
of ∼ 8 m. The data were acquired during the summers of
2014 and 2016 (01 July to 31 August). During these time
periods, there was no snow present, and the soils were thawed
to a depth of at least 25 cm. We thus considered the soil as
a thawed medium for the purpose of C-band remote sensing.
The dense temporal sampling facilitated the interpretation of
the data (every 3-5 days: 13 acquisitions in 2014, 16 in 2016).
However, not all of these acquisitions covered the OT-UP
plot, due to the limited swath width. The incidence angles
(IA, θ) varied from low (≈ 22◦) to high (≈ 45◦), with an
approximately equal split into low and high IA acquisitions.

We applied standard processing steps to convert the dissem-
inated Single Look Complex data into multilooked, calibrated,
georeferenced images of the radar backscatter [30], [7]. The
multilooking was implemented in two ways: a) a medium-
resolution (50 m at low IA, 40 looks) and b) a low-resolution
(100 m at low IA, 160 looks) version. The advantage of the
lower resolution is a doubling of the precision with which the
backscatter from a distributed target can be measured (0.34 vs
0.69 dB) [31]. The resulting multilooked images were stored
as polarimetric covariance matrices C (in the Pauli basis)
[18]. We adjusted the orientation angle [18], subtracted the
thermal noise power obtained from the Radarsat-2 metadata,
and calibrated the backscatter magnitude to σ0 using a tangent-
plane approach [32] with elevation information derived from
the TanDEM-X DEM (12 m resolution) [33]. These corrected
covariance matrices served as the basis for all analyses of
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a) Soil pit b) Spatial variability c) Temporal variability compared to spatial variability
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Fig. 2. Spatial variability in soil properties and moisture. a) Soil pit intersecting a hummock and the adjacent interhummock area. Mineral soils can be found
around 15 cm below the elevated hummock surface. b) The probability density functions (PDF) within the open tundra (OT-MM), dwarf shrubs (DS-1, DS-2)
and tall hillslope shrubs (TS-2) reveal a large spatial variability. c) Limited temporal variability observed in the open tundra at the permanent OT-UP plot, as
the five probes (gray) and their mean (black) vary less over time than the spread between the probes at any given moment.

the polarimetric and backscatter characteristics. Finally, the
results were geocoded to a geographic reference system using
the TanDEM-X DEM.

An airborne L-band (24 cm wavelength) image comple-
ments the higher-frequency C-band data. The fully polarimet-
ric image was acquired by NASA’s UAVSAR system on 13
Sept 2017. The incidence angle varied from 22◦ at near range
to more than 60◦. Unfortunately, the vicinity of the MM station
was only imaged partially, at the near-range edge of the image;
to characterize the tundra’s backscatter response at higher
incidence angles, we also analyzed areas to the west of our
study sites (W in Fig. 1). To provide a fair comparison between
L- and C-band data, we artificially degraded the resolution
of the UAVSAR data so that the resolution matched that of
the Radarsat-2 data. Otherwise, the radar processing paralleled
that of the C-band data.

IV. POLARIMETRIC RESPONSE OF THE TUNDRA

Polarimetric information can help to disentangle the scatter-
ing contributions from the vegetation (volume) from the under-
lying soil (surface), thus facilitating soil moisture estimation
[16]. A prerequisite for the separation of the two components
is an understanding of the scattering response across a gra-
dient of shrub density. To account for the spatially variable
microtopography, we introduced a tailor-made decomposition
method.

A. Methods

1) Scattering response across shrub gradient
To characterize the scattering behavior of the landscape

at C and L-band, we derived the Cloude-Pottier entropy H
and alpha ᾱ parameters from the eigen-decomposition of
the polarimetric covariance matrices C [18]. The entropy
reflects the randomness of the scattering process, with H = 0
corresponding to a deterministic target and H = 1 to one
of maximum polarimetric randomness, which contains no
further polarimetric information. The entropy is expected to
increase with both surface roughness and vegetation density
[16]. The mean alpha ᾱ parameter characterizes the scattering
mechanisms. Low values of ᾱ ≈ 0 are indicative of surface
scattering and are thus expected for barely vegetated terrain.

Conversely, intermediate values of ᾱ ≈ π
4 are indicative of

dipole volume scattering [18]. We focused on the three most
important land cover types: open hummocky tundra, dwarf
shrubs and tall hillslope shrubs (Fig. 1).

2) X-Bragg model for rough surface scattering
To interpret the observed polarimetric response of the bare

open tundra, we turned to the X-Bragg model. It can predict
the polarimetric response from a surface with microtopography
[18], [34], [16]. Its great strength is its ability to reproduce
the depolarization observed over rough surfaces [16]. It is a
two-scale surface scattering model: the micro-scale roughness
h of a small patch gives rise to zero-entropy Bragg scattering
(small perturbation model, SPM), but the combination of many
such patches on a hummock-interhummock sequence results
in polarimetrically random scattering. In the Pauli basis [18]

Cs = fs

 1 κ sinc(2ψ) 0
κ∗ sinc(2ψ) 1

2 |κ|
2(1 + sinc(4ψ)) 0

0 0 1
2 |κ|

2(1− sinc(4ψ))


(1)

fs controls the overall backscatter magnitude, and κ describes
the scattering mechanism of an individual patch. κ depends,
according to the SPM, only on the dielectric constant, which in
turn varies with soil moisture as described by a mixing model
like that of Mironov [35]. This makes κ a potentially useful
quantity for soil moisture estimation: as the soil moisture
increases, the real part Reκ becomes increasingly negative,
corresponding to larger α angles [16].

The microtopography is represented by ψ, the maximum
slope along a hummock, which is an indicator of the large-
scale surface roughness. With increasing ψ, the scattering
becomes successively more random (H deviates increasingly
from 0).

To assess the applicability of the X-Bragg scattering model
over the open tundra, we compared the observed H and ᾱ
values to those that the model can predict across all feasible
values of ψ (0 to π

2 ) and all values of κ, which are simulated
using the Mironov mixing model for Arctic organic soils
[18], [35]. A priori, the validity is restricted by the micro-
scale roughness h < λ

2π . As this limit is approached or
exceeded, higher-order scattering becomes increasingly impor-
tant. Ballester-Berman et al. [36] showed how the higher-order
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Fig. 3. The MicroTopography and Vegetation (MTV) decomposition partitions
the observed polarimetric covariance matrix into a surface (4 real parameters)
and a vegetation (1 real parameter) component.

scattering can largely be accounted for by a volume-like high-
entropy return that is commonly used to represent vegetation
like shrubs.

3) MTV decomposition
To isolate the surface contribution from volume contribu-

tions, we introduced a novel decomposition. It is very similar
to the approach by [36] in that it explicitly estimates the
variable large-scale roughness ψ, here associated with the
hummocky terrain sketched in Fig. 3. It accounts for the
rough surface and volume scattering by combining the X-
Bragg surface model (1) with a random volume of dipoles
of magnitude f̃v [18], [16]:

CMTV = Cs + f̃v

1 0 0
0 1

2 0
0 0 1

2

 (2)

In this model the relative importance of surface scattering is
given by

η =
fs
(
1 + |κ|2

)
fs (1 + |κ|2) + f̃v

(3)

However, attributing the volume component to vegetation
scattering is difficult in the presence of higher-order surface
scattering, as the higher-order contribution that is not included
in the X-Bragg model is polarimetrically indistinguishable
from vegetation scattering in the framework by [36] (see Sec.
IV-A2). The surface contribution was, on the other hand,
shown to be amenable to soil moisture estimation [36].

A priori, a random volume model seems appropriate as the
shrubs do not exhibit conspicuous canopy orientation, and
the observed ᾱ ≈ 45◦ over tall shrubs at C-band are also
consistent with random dipoles. Note that there is no dihedral
scattering mechanism because the low ᾱ � 90◦ do not
indicate an important double bounce contribution at C-band.
All these assumptions are subject to reservations. Testing the
assumptions with observations is, however, difficult because
the inversion is not overdetermined. An observed covariance C
matrix provides five constraints (assuming reflection symme-
try), and we want to determine the five parameters summarized
in Fig. 3: fs, the surface scattering parameter κ (real and
imaginary part), ψ, and the volume power f̃v .

To solve for all MTV model parameters, it is expedient to
rearrange the matrix expressions into a five-dimensional vector
of real observables x:

x =


x1
x2
x3
x4
x5

 =


C22 + C33

C11 − C22 − C33

C22 − C33

|C12|
argC12

 =


fs|κ|2 + 2f̃v
fs(1− |κ|2)

fs|κ|2 sinc(4ψ)
fs|κ| sinc(2ψ)

arg(κ)


(4)

We split the estimation in two parts. The first part solved
for u = [|κ|, fs, ψ, f̃v]T from the sub-vector xs =
[x1, x2, x3, x4]T by formulating it as a least-squares problem
subject to the physical constraints ψ ≤ π

2 , |κ| < 1, fs&f̃v ≥ 0.
We applied the trust-region quasi-Newton approach by Voglis
and Lagaris [37], using initial values obtained by assuming
ψ0 = π

8 and solving for the other parameters. This yielded
an estimate of u. In the second part of the estimation, the
remaining parameter arg(κ) was computed from x5.

To assess the accuracy of the inversion, we conducted
a simulation study. For each scenario, we simulated 5000
observable covariance matrices C0 subject to speckle (40 and
160 looks) and estimated the parameters for each C0. Three
scenarios served to study the accuracy as a function of the
prescribed scattering characteristics. The first scenario Vegeta-
tion: low IA was meant to illustrate the impact of an increasing
vegetation contribution at low incidence angles. To this end,
we varied its relative contribution η from (3) while keeping the
prescribed ψ0 small ( π10 ) and κ = −0.1, a typical value for low
incidence angles. The simulation results in Fig. 4 show that
the estimation of Reκ and fs is accurate for small η (Fig. 4).
However, it quickly deteriorates as η and with it H increase,
as relative errors of a factor 2-5 are common, irrespective of
the number of looks. The errors are also large in the second
scenario Vegetation: high IA, whose value of κ = −0.2 is
more characteristic for higher incidence angles (Fig. 4). This
scenario formed the baseline for all further scenarios. The
third sensitivity scenario, Roughness, was intended to elucidate
the dependence of the retrieval accuracy as a function of the
microtopographic roughness expressed by the angle ψ0 for
moderate vegetation (η = 0.5). Fig. 4 illustrates the small
impact of varying ψ0 on the accuracy in this scenario.

In summary, the biggest problem is high-entropy scattering,
which we will see is dominant in the tundra at C-band. The
reason for the difficulties is that both a surface component with
large |ψ| and the vegetation return induce high-entropy scat-
tering that is (nearly) azimuthally symmetric. Consequently,
for high entropies the attribution to these two terms is highly
sensitive to the observed C, as our simulations suggest that
relative errors in Reκ and fs of >100% occur just due to
speckle (e.g. Fig. 4, Vegetation: low IA). Especially the low
accuracy with which κ can be retrieved is a problem for
soil moisture inversion. These problems are not restricted to
the MTV estimation, as they have also been documented for
related decompositions [25].

We also tested the robustness to the model parametrization
by applying the MTV inversion to simulated data that were
generated by extensions of the MTV forward model. When us-
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ing a raised-cosine instead of the X-Bragg uniform distribution
for the microtopographic roughness in the forward simulations
(scenario: Surface model in Fig. 4), the estimates based on a
uniform distribution barely change. They are similarly barely
affected (e.g. <10% for Reβ) in the scenario Heterogeneity:
bare, in which we let dielectric heterogeneity induce a range
of surface scattering mechanisms (within κ±∆κ; shown for
a bare soil with η = 0). Next, however, a misspecified volume
particle shape cannot be handled (scenario: Volume shape),
as the inversion cannot disentangle the surface and volume
contributions correctly. To this end, we replaced the random
dipole volume model by a generic azimuthally symmetric
volume model (normalized to span 1, so that the meaning of
f̃v does not change, cf. [18])

Cv,a =
1

4R2
p +Rp + 9

diag

2R2
p + 6Rp + 7

R2
p − 2Rp + 1

R2
p − 2Rp + 1

 (5)

The response is governed by the shape parameter Rp, which
varies between zero (dipole) and one (sphere). It corresponds
to the ratio of the polarizability of the spheroidal particles
in the Rayleigh limit. We find that, as the particles become
more spherical (Rp → 1), the estimation of both κ and fs
breaks down. A similar problem occurs in the final scenario
(Volume orientation), where we dropped the random volume
assumption and replaced it by an oriented volume. To this
end, we replaced the random dipole volume model by an
oriented dipole model [18], where the orientation angle of the
vegetation particles, ψv , varies from 0 (perfectly aligned in the
horizontal direction) to 0.5 π (random volume):

Cv,o =

 1 sinc(2ψv) 0

sinc(2ψv)
1+sinc(4ψv)

2 0

0 0 1−sinc(4ψv)
2

 (6)

4) Sensitivity to soil moisture: time series analysis
To explore the dependence of polarimetric parameters on

the incidence angle θ and on soil moisture v at C-band, we
applied regression analysis. We expressed a radar observable
y (Cloude-Pottier parameters: H and ᾱ; MTV parameters: η,
fs, f̃v , Reκ; and VV σ0):

y = a+ bθ(θ − 30◦) + bv(v − v̄) + bθ·v(θ − 30◦) · (v − v̄)
(7)

We thus accounted for the influence of θ (angular slope bθ),
v (surface soil moisture dependence bv) and their interaction
(bθ·v). The parameters were estimated using ordinary least
squares. As time series were required, we only applied re-
gression analysis to the C-band data. Due to the additional
requirement of soil moisture data, we applied the regression
analysis at the OT-MM (open hummocky tundra) site, and we
did so for the 2016 data because of the superior availability
of Radarsat-2 data.

B. Results and discussion

1) Scattering characteristics
The open hummocky tundra is characterized by high-

entropy scattering at C-band, contrary to what would be

expected for barely vegetated terrain. At the two open tundra
plots, the H-ᾱ plots in Fig. 5 show H values of 0.6-0.8 (Fig.
5: 2016-08-16 at 22◦, 2016-08-15 at 45◦), increasing with
incidence angle. These high values are due to the physical
scattering behavior, rather than due to measurement noise
(detailed analysis not shown). The mean alpha angle ᾱ shows
that the scattering is approximately azimuthally symmetric in
the bare tundra [18]. This is indicated by values close to the
lower boundary of feasible ᾱ for a given entropy (Fig. 5).

At L-band, the bare tundra looks more like a typical surface,
with entropies of 0.1 to 0.2 (Fig. 5). Also the alpha angles
are largely consistent with surface scattering. The comparison
across incidence angles is complicated by the fact that the
values shown in Fig. 5 derive from different areas. Specifically,
the shallow incidence angle data were taken from areas with
analogous land cover further west, as the main study area was
only partially imaged (and at steep incidence angles). These
indicators suggest that L-band data will be more amenable
to soil moisture estimation using purely polarimetric methods
than C-band data.

There is little contrast between the open tundra and shrub
patches at C-band, underscoring the volume-like scattering of
the open tundra. At C-band, the scattering at dwarf or tall
shrubs is slightly more random than over the open tundra, with
H > 0.7 (Fig. 5). At such high entropies, the ᾱ angles are
not very meaningful, as they are constrained to a small range.
However, they appear to be on the low end of the feasible
range, consistent with the MTV assumption of negligible
dihedral scattering. The low contrast in polarimetric scattering
characteristics between the open and the shrub tundra is also
clearly evident in the RGB Pauli and entropy images of Fig.
6. They show a heterogeneous region 10 km west of the MM
site (Fig. 1a), where both C-band and the L-band data are
available at an incidence angle of ∼ 45◦. They underscore the
high entropies at C-band across the landscape, apart from the
lakes and, to a lesser extent, the polygonal fields. Conversely,
at L-band the different shrub communities are more clearly
distinguished from the open tundra sites, as the increase in
entropy from shrub-free (H ≈ 0.1) to shrub sites (∼ 0.4) is
much larger, Fig. 5. The ᾱ angles deviate markedly from the
lower bound (azimuthal symmetry), as they move towards the
dipole scattering region.

2) Applicability of the X-Bragg model
The scattering from the open hummocky tundra cannot

be reconciled with the X-Bragg surface model at C-band.
The open tundra plots outside the range of potential soil
responses in Fig. 5 (X-Bragg with Mironov mixing model;
the lower/upper blue line represents a dry/saturated soil as ψ
varies). The observed entropies are higher than the model pre-
dicts, whereas at L-band the model fits much better. What else
could induce such highly random scattering? One possibility is
that it is the variability in soil moisture and thus the polarimet-
ric scattering mechanism κ across the microtopography, but
our model results of Fig. 4 (Heterogeneity:bare) suggests that
this mechanism cannot account for such high H . Alternatively,
volume scattering from either the very limited above-ground
biomass or from the subsurface could account for it. Finally,
also higher-order surface scattering could contribute. We will
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now turn to the MTV decomposition to tease out the surface
scattering component.

3) MTV decomposition
Also the MTV decomposition highlights the volume-like

scattering response over the tundra at C-band. While the
estimated surface contribution decreases with increasing shrub
cover in Fig. 6 and 7, there is limited contrast between shrubs
and the open tundra. In particular, the surface contribution
does not dominate (η ≈ 0.5) over the open hummocky tundra,
despite the very limited shrub cover. The decomposition’s
restricted applicability at high H becomes evident by the
very noisy appearance of η in Fig. 6. At C-band, dominant
surface scatter is only observed over the road, the lakes, and
certain polygonal fields. Conversely, at L-band, the surface
contribution always dominates in the open tundra in Fig. 6.
The L-band relative surface contribution η drops to values
close to 0 over dense and tall riparian shrubs, with intermediate
values of 0.5-0.7 over the hillslope tall shrubs and the dwarf
shrubs. Overall, at C-band (in contrast to L-band) the high-

entropy, volume-like scattering indicates a lack of information
content for purely polarimetric approaches.

4) Sensitivity to soil moisture: time series analysis

Time series analysis at C-band suggests that the backscatter
magnitude is more amenable to soil moisture estimation than
purely polarimetric indicators. According to our regression
analysis using (7), the surface backscatter fs is a good
predictor of surface soil moisture (Tab. I). Also the VV
backscatter and the volume power f̃v increase with surface
soil moisture, but the relationships are weaker. Conversely, the
relative surface contribution η exhibits a very weak relation
with soil moisture (Tab. I). The other polarimetric indicators,
Reκ, as well as H and ᾱ do not show a significant soil
moisture signal either. The magnitude thus appears to be
promising for soil moisture estimation, and understanding its
angular dependence is crucial for this task.
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Comparison of C- and L-band polarimetric responses
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Fig. 6. Mosaic of land surface types to the west of the main study sites (W in Fig. 1a). First column: 40-look RGB Pauli polarimetric image (red: Pauli 1,
green: Pauli 2, blue: Pauli 3) at C-band (2016-08-12, θ ≈ 47◦) and L-band (2017-09-13, θ ≈ 45◦). Second column: polarimetric entropy H . Third column:
Relative surface contribution according to the MTV decomposition. Fourth column: Sentinel-2 false-color image in the top row and an overview of the main
land cover classes (manually derived) in the bottom row.

TABLE I
REGRESSION RESULTS FROM THE OT-MM PLOT (2016, 160 LOOKS, 16 ACQUISITIONS), WHEREBY A C-BAND OBSERVABLE y IS MODELLED BY (7),

WHERE θ IS IN RAD. THE ESTIMATES ARE GIVEN ± THEIR STANDARD ERROR. THE EXPLANATORY POWER IS SUMMARIZED BY R2 AND THE STANDARD
ERROR OF THE REGRESSION SER.

y a bθ bv bθ·v R2 SER
fs [dB] -11.4±0.3 -13.7±1.4 45.8±19.5 -141±87 0.90 0.83
VV [dB] -11.6±0.3 -8.2±1.3 45.0±19.2 -61±85 0.76 0.82
η [-] 0.64±0.02 -0.6±0.1 0.5±1.0 -10±5 0.87 0.04
f̃v [dB] -11.0±0.4 -4.1±1.6 39.2±23.3 -48±104 0.40 1.00
Reκ [rad] -0.05±0.03 -0.17±0.14 -1.1±2.0 15±9 0.35 0.08
H [-] 0.69±0.01 0.4±0.1 -0.5±0.7 6±3 0.88 0.03
ᾱ [rad] 0.46±0.01 0.5±0.1 -0.3±0.8 6±3 0.90 0.03

V. ANGULAR CHARACTERISTICS

The angular dependence of the backscatter is another impor-
tant indicator of the scattering behavior, and it is particularly
useful for distinguishing surface from volume scattering. For
surfaces, the backscatter decreases more quickly with θ than
for volumes, especially when the surface is smooth. Further,
understanding the angular dependence is of great value for soil
moisture estimation, as satellite data are often acquired across
a range of incidence angles.

A. Methods

To estimate the angular dependence at C-band, we used
ordinary least squares (OLS) regression. As opposed to the

regression model of (7), we only included the angular depen-
dence i.e. y = a + bθ(θ − 30◦), which allowed us to apply
the approach to the entire study region. We thus implicitly
assumed that there was no systematic relation between θ and
the soil moisture. At L-band, we had to resort to comparing
similar land cover types and near and far range to estimate the
angular dependence.

We compared the angular dependence bθ of the VV σ0

backscatter (in dB, 2016 data) to literature values of forests,
short vegetation (crops and shrublands) and bare mineral soils
at C-band [38], [39], [17], [40], [41], [42], [43].

Two semi-empirical surface scattering models were assessed
in terms of their predicted angular characteristics. First, we
studied the one-parameter Baghdadi model, a semi-empirical
model that applies to a wide range of roughness conditions
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Fig. 7. a) RGB Pauli and b) MTV representation of Radarsat-2 acquisition (2016-08-12, θ = 45◦, 160 looks). c) Angular slope computed from Radarsat-2
time series. d) Sentinel-2 false-color image showing the main vegetation classes. Polygonal fields are annotated with a P. e) Angular slope for short vegetation,
bare soils and forest taken from the literature (top row) and extracted from the three vegetation classes at C- and L-band.

[22]. It has been found to accurately represent the angular
characteristics of bare mineral soils for a wide range of
roughness conditions, especially in comparison to theoretical
models of varying complexity. It is parameterized in terms of
the dielectric constant, which in turn depends on soil moisture;
here, we used the Mironov model for Arctic organic soils
[35]. The Baghdadi model’s only remaining parameter is the
roughness height h, which we fitted to the observations over
the open tundra by choosing h so that the angular dependence
matched, to first order, the observed one [22]. Second, we
replicated the analyses for the Oh model [21], a one-parameter
(h) semi-empirical model that was derived from measurements
of very rough soils.

One crucial aspect of the angular dependence is the extent
to which the dynamic range (due to soil moisture variations)
varies with incidence angle. Many models fail to capture the
very limited decrease of the dynamic range for steeper inci-
dence angles, thus limiting their suitability for soil moisture es-
timation from multi-angular time series data [17]. Conversely,
when the dynamic range stays essentially constant, a simple
linear model is often more suitable.

B. Results and discussion

The backscatter decreases slowly with incidence angle (0.11
dB/deg at VV, Fig. 7c) over the open tundra. This decrease

is much more subdued than what most previous studies have
found over bare or sparsely vegetated (shrubs, crops, grass) ar-
eas (Fig. 7e). To be more precise, this holds for the hummocky
terrain in most of the study area, rather than over the ice-
wedge polygons (Fig. 7c). The angular slope is even smaller
in magnitude over shrub patches, with values comparable
to previous observations over forest [17], [40]. Similar to
the polarimetric characteristics, at L-band the angular slope
conforms much more to expectations. The results in Fig. 7c
show that the angular decrease is larger for all land cover
classes. It is largest for the open tundra, which acts much
more like a surface scatterer than at C-band.

The angular characteristics of the open tundra are character-
ized by a slow linear decrease at a constant low dynamic range,
which the semi-empirical models can only partially reproduce.
According to the models, the observed backscatter magnitude
and angular slope require that the soils be rough (large h). The
Baghdadi model can reproduce them for a roughness height
of h = 6 mm (Fig. 8). However, it wrongly predicts that the
variability (due to soil moisture changes) decreases rapidly
with θ. In the data, the dynamic range remains approximately
constant. This is consistent with a near-constant soil moisture
sensitivity because the soil moisture distribution at the acqui-
sition times was essentially the same for θ above or below
30◦ according to the in-situ data (difference in mean <1%,
difference in variability ≈ 10%). It is also indicated by the
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small (and non-significant) interaction term bθ·v in the VV
regression analysis (Tab. I). Conversely, the observations in
Fig. 8 indicate that the Oh model can replicate these properties
more accurately. At such high h ≈ 1 cm, increasing h leads
to an increase in σ0 that is almost independent of θ. It
also more accurately captures the observed quasi-linear trend
with incidence angle, whereas the Baghdadi model predicts a
noticeably nonlinear dependence for wet soils.

The linear angular dependence and the constant variability
over the open tundra lend themselves to a simple linear model
that is amenable to soil moisture estimation.

VI. SOIL MOISTURE INVERSION

To estimate soil moisture at C-band, we adapted the widely
employed linear empirical model, which is based solely on the
backscatter magnitude [17], [23]. It has two key advantages:
i) it does not require external soil moisture or vegetation data
for calibration, and ii) it is very flexible in that it can be
applied – at least in theory – to any surface irrespective of its
roughness or vegetation cover, provided these characteristics
remain constant. A disadvantage is that only a relative index
of soil moisture can be retrieved. We adapted this model to
account for the high noise (at 160 looks: 0.3 dB) relative to the
limited dynamic range observed over our tundra site (<2 dB,
Fig. 8). The limited dynamic range is likely associated with
the low temporal variability of soil moisture (Fig. 1). To in-
crease the signal-to-noise ratio, we embedded it in a Bayesian
hierarchical framework, whereby neighboring grid cells are
dependent. The dependence reflects the temporal similarity of
the backscatter. While the large microtopographical variability
of soil moisture cannot be resolved, the idea is to exploit the
temporal correlation of soil moisture and backscatter on larger
scales of several hundred meters in response to the atmospheric
forcing [14]. The degree of correlation, and hence the amount
of pooling of information across pixels, is estimated in an
adaptive way, thus reducing the noise level while keeping all
the advantages of the linear model.

The reasons for focusing on the empirical backscatter model
are that the polarimetric and angular characteristics identi-
fied above render more physical approaches inappropriate. In
particular, they illustrate why purely polarimetric approaches
failed in the hummocky tundra. Instead of discussing the
results obtained with two polarimetric approaches in detail, we
only provide a quick summary of the problems. First, we tried
the multipolarimetric Oh model inversion for bare surfaces
[21], as the Oh model could replicate the most important
angular characteristics (Sec. V-B). However, the inversions
were not successful because of the model’s inability to predict
the HV backscatter (too small at large incidence angles).
Second, the κ value of the MTV surface return, predicted
to vary with soil moisture, was too noisy and commonly
outside the physical range of the SPM/X-Bragg model (Fig.
9). The noisy nature was expected as the simulations in Sec.
IV suggested that κ estimation is infeasible for high-entropy
scattering (Fig. 4). The problem of observed Reκ values
exceeding 0 could be partially mitigated by using a Fresnel
instead of the SPM/X-Bragg model to estimate soil moisture

from κ [36], but the inability to reliably estimate κ in the
open tundra precluded such an approach. This is not to say
that polarimetric information is useless: in our soil moisture
retrievals using the linear model, we thus compare the MTV
surface component with the VV backscatter.

A. Methods

The linear model relates the observed backscatter σ0
ij at

resolution cell i for acquisition j to the soil moisture vij in
a linear fashion [17], [23]. In our probabilistic framework, it
reads

σ0
ij ∼ N

(
µi + βi(θij − θ?) + γi(vij − v?), s2L

)
. (8)

It further assumes that the dependence on the incidence angle
θij is linear with slope βi, and that the variability is dominated
by speckle noise, whose variance s2L depends on the number
of looks L. We focused on the VV channel, because it is
widely available; in particular, the Sentinel-1 satellites started
acquiring VV Interferometric Wide Swath Data across the
Canadian tundra in late 2016. Additionally, we studied the
MTV surface scattering component, not only because the
residual influence of volume scattering is potentially reduced,
but also because it had a higher R2 with the soil moisture
observations (Tab. I).

The forward model (8) rests on several crucial assumptions.
First, it assumes that the backscatter at a given location
increases linearly with soil moisture. Indeed, our preliminary
regression analysis showed a positive, approximately linear
relation (Tab. I). Second, the coefficients are assumed constant
in time, which seems reasonable owing to our focus on July
and August, the period after leaf out but before freeze-back.
Third, the θ-dependence is assumed to be linear, as there
is no indication for strong higher-order terms (Fig. 8, Sec.
V). Finally, it assumes there are no interactions between θ
and v. This implies that the dynamic range of the observed
backscatter should be independent of θ. Fig. 8 shows that the
observed dynamic range does not vary substantially with θ.
An approximately θ-independent soil moisture sensitivity is
also commonly found in temperate regions [17].

Inferring soil moisture using a time-series approach is
plagued by measurement noise and by problems of non-
uniqueness [30]. We attempted to address these problems
by estimating all parameters and vij in a one-step Bayesian
procedure [44]. It estimates the posterior probability of the
parameters and the soil moisture given the observed σ0

ij using
Hamiltonian Monte Carlo sampling. The Bayesian estimation
reduces the impact of measurement noise, which is compara-
tively large due to the high resolution (limited multilooking)
in comparison to the small dynamic range observed in the
tundra (Fig. 8), by pooling information from neighboring
resolution cells. The mathematical details are provided in
the appendix. The non-uniqueness cannot be avoided, but we
implemented two strategies to cope with it. First, the Bayesian
approach imposed regularization via the prior distribution.
It is, however, contingent on assumptions about the true
soil moisture distribution; in particular, that vij and θij are
independent, enabling the identification of βi (see Appendix).
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with the Mironov mixing model), thus precluding its use in estimating soil
moisture.

This assumption seemed reasonable as the association between
the in-situ measurements and θ is small (Sec. V). Second, we
used validation metrics that are insensitive to an overall shift
or scaling of the soil moisture time series, neither of which
can be identified uniquely. For instance, an overall increase in
vij has the same effect as an increase in µi.

We applied the Bayesian inversion procedure over two
small (about 3 km2) study regions shown in Fig. 1 (gray
rectangles: MM and UP), at the center of each was one of
the instrumented plots. The study regions were chosen so as
not to include lakes, because the Bayesian model would likely
have to be adapted to handle the lakes well. We validated the
retrievals at these two instrumented plots in the open tundra
by comparing the retrievals to the spatially aggregated in-situ
observations. The validation metrics we employed were the
correlation coefficient ρ and the calibrated root mean square
error cRMSE, which is the RMSE between the in-situ surface
soil moisture and the SAR estimates calibrated using ordinary
least squares (offset, dynamic range).

B. Results and discussion

The soil moisture estimated using the VV time series
approach tracks the in-situ measurements to some extent in
Fig. 10a, but there are issues. First of all, the dynamic range of
the in-situ measurements series is very small (<0.1 m3 m−3),
making it difficult to pick out the temporal agreement between
the two data sets. The temporal sampling of the Radarsat-

2 acquisitions compounds the issue, as some of the largest
wetting/drying events are not adequately sampled. Second,
there are a few conspicuous outliers, and these tend to be
associated with precipitation events. The more common type
is an underestimation by Radarsat-2 compared to in-situ data
(three such occasions are marked by diamonds in Fig. 10a).
The observation on 2016-07-21 illustrates the phenomenon
(OT-MM), as the Radarsat-2 soil moisture indicates dry con-
ditions despite recent rainfall. The low soil moisture estimate
is due to low backscatter: it is 1.8 dB lower than 12 days
previously, even though θ is the same and the in-situ soil
moisture values are comparable (|∆v| < 0.01). While the
change in VV backscatter is large compared to 2-3 dB dynamic
range, the polarimetric indicators are almost constant (|∆ᾱ| <
1◦, ∆H < 0.01; not shown), illustrating the difficulty in
detecting such an event based on time series data.

The validation metrics are 0.3–0.5 for the correlation ρ and
0.02 m3 m−3 for the calibrated RMSE on average (Fig. 10b).
When interpreting these metrics, it is important to keep the
small dynamic range during the study period in mind. For
both metrics, there is little difference between the results for
VV and those for the MTV surface component fs, again on
average. For both polarizations, there is some variability across
years (2014, 2016) and sites (OT-MM and OT-UP). Finally, the
incidence angle seems to have a minor impact on the quality
of the retrievals, as there are no conspicuous differences in
variability when plotting the retrievals against the in-situ data
in Fig. 10c.

To explore the soil moisture estimates over shrub-covered
surfaces, we had to compare them to the in-situ measurements
over the open tundra rather than within the shrub patches,
due to lack of in-situ measurements in the shrub patches. The
estimates over the dwarf shrubs (DS-1) and the tall shrubs (TS-
2) have lower correlations (0.26 and 0.31, respectively) with
the in-situ measurements in the open tundra (OT-MM) than
the estimates over the open tundra. Overall, the time series
of retrieved soil moisture for the different shrub communities
plotted in Fig. 11 are similar. For instance, the correctly
estimated drying trend during July is common to all. However,
the lack of in-situ measurements precludes a more in-depth
assessment.
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VII. DISCUSSION AND CONCLUSIONS

We analyzed the potential of C-band SAR remote sensing
to estimate soil moisture in the subarctic tundra. We identified
two challenges that soil moisture inversion in the subarctic
tundra faces. One is to do with the complex scattering in terms
of the polarimetric and angular response, the other one with
the spatiotemporal variability of soil moisture. Regarding the
latter, we observed large spatial variations in soil moisture on
the sub-resolution scale (<100 m). Consequently, we required
3-6 in-situ measurements for validating SAR retrievals within
a single resolution cell (∼ 100 m). Conversely, the observed
temporal variability was small (<0.1 m3 m−3).

The microwave scattering signal in the subarctic tundra is
complex and difficult to interpret. The difficulties are not only
to do with the shrubs, whose structure, density and biomass
varies across the different shrub communities. After all, the
polarimetric characteristics differ only marginally between
dense shrubs and the open tundra at C-band. Despite the very
low biomass in the open tundra, we observed high entropies

at C-band (H ≈ 0.7, Fig. 5), which are considered unusual
for barely vegetated surfaces [18]. They are likely related
to the pronounced hummock-interhummock microtopography.
However, the entropies are much larger than what would
be expected theoretically (X-Bragg model) for a very rough
surface, so that the organic soils (subsurface scattering) and
the limited above-ground biomass also likely play a role. The
very rough and volume-like scattering characteristics of the
open tundra also became evident in terms of the incidence
angle behavior, which was more akin to previous observations
over forest than over bare soils (Fig. 7).

The high entropies made soil moisture estimation using
purely polarimetric methods impracticable for our study site.
We found that we could not reliably isolate the ground contri-
bution using our tailor-made MicroTopography and Vegetation
(MTV) decomposition approach that could account for the
microtopography. This lack of robustness was due to the low
information content (high H), according to our theoretical
analyses and simulations. The low information content also
limits the applicability and range of values of complemen-
tary polarimetric quantities such as the alpha angle or the
anisotropy.

This left the backscatter magnitude as the main signal for
soil moisture estimation. Indeed, the magnitude tracks the
overall wetting and drying over the open tundra. To account
for the limited dynamic range of both backscatter and soil
moisture, we embedded a simple time-series method in a
Bayesian framework within which the noisy observations from
adjacent pixels were partially pooled to increase the precision.
The retrievals achieved correlations of 0.3–0.5 (Fig. 10b) with
in-situ surface soil moisture, for both the polarimetrically
derived MTV surface power and the VV backscatter. These
correlations are not as high as one would want, but they are not
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uncommon in practice [17], [16], [45], [20]. As the time-series
approach can be applied to single-pol VV data, it appears
to be promising for the future given the recent availability
of frequent Sentinel-1 data at constant incidence angles. One
open question in this context is the decrease in backscatter
that we observed in response to precipitation events. This is
a challenge for soil moisture estimation in general, as the
decrease is contrary to the usual increase in backscatter with
soil moisture. While the data set is small and this behavior
was not universally observed, we conjecture that this may
be caused by sub-surface scattering. As the surficial organic
material becomes wet, it attenuates the return from the under-
lying denser organic materials and mineral soil, even though
it also becomes a stronger scatterer [19]. To better understand
the hummocky tundra’s backscatter response to soil moisture
changes, we recommend dedicated observations of moisture
and backscattering profiles, and tailor-made scattering models.

For the future, L-band SAR seems more promising. The
polarimetric and angular characteristics we observed are more
in line with what would be expected from sparsely vegetated
terrain (Fig. 5, 6). However, the limited data at our disposal
do not rule out several of the problems identified at C-band.
In particular, the subsurface contributions may also be critical
because of the increased penetration into organic soils at larger
wavelengths. Overcoming these challenges is critical, because
fine-scale soil moisture estimates can make vital contributions
to ecology, biogeochemistry and permafrost research.

APPENDIX

The Bayesian time series approach exploits the spatial
similarity across the study region to increase the precision of
the soil moisture estimates. It does this by pooling information
across resolution cells and acquisitions. The pooling was
induced by postulating that the model parameters (e.g. µi) and
the vij were similar in space, where a cell is denoted by i and
a Radarsat-2 acquisition by j. The degree of similarity is part
of the model structure and was estimated within the inference.
The model parameters µi, βi and γi were each assumed to be
distributed according to a normal distribution N (ϕmean, ϕ

2
std),

with each of the ϕ population parameters being themselves
assigned a weakly informative prior distribution (Tab. II).
In the inference, these parameters were also updated: for
instance, by adjusting the standard deviation φµ,std, the degree
of similarity of the µi could be learned from the data.

For the soil moisture, we pooled information across space
and time by decomposing vij into a spatial average wj and a
cell-specific anomaly uij :

vij = Φ [πiwj + (1− πi)uij ] , (9)

where Φ = 0.8 is the porosity and πi describes the propensity
of cell i to reflect the regional-scale soil moisture. The
factor πi as well as uij , wj can take on values between
0 and 1 and were assumed to be distributed according to
Beta(φπ,alpha, φπ,beta). The same restriction and an analogous
population distribution applied to the degree of saturation
values wj and uij , see Tab. II.

We estimated the posterior distribution by Hamiltonian
Markov Chain Monte Carlo (MCMC) as implemented in

the pymc3 package [46]. Following common practice, we
simulated four chains of 2000 samples each and discarded
the first 1000 samples.
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