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Linking Persistent Scatterers to the Built
Environment Using Ray Tracing on Urban Models

Mengshi Yang , Student Member, IEEE, Paco López-Dekker , Senior Member, IEEE,

Prabu Dheenathayalan , Member, IEEE, Filip Biljecki , Mingsheng Liao , Member, IEEE,

and Ramon F. Hanssen , Senior Member, IEEE

Abstract— Persistent scatterers (PSs) are coherent measure-1

ment points obtained from time series of satellite radar images,2

which are used to detect and estimate millimeter-scale displace-3

ments of the terrain or man-made structures. However, asso-4

ciating these measurement points with specific physical objects5

is not straightforward, which hampers the exploitation of the6

full potential of the data. We have investigated the potential7

for predicting the occurrence and location of PSs using generic8

3-D city models and ray-tracing methods, and proposed a9

methodology to match PSs to the pointlike scatterers predicted10

using RaySAR, a ray-tracing synthetic aperture radar simulator.11

We also investigate the impact of the level of detail (LOD) of the12

city models. For our test area in Rotterdam, we find that 10%13

and 37% of the PSs detected in a stack of TerraSAR-X data14

can be matched with point scatterers identified by ray tracing15

using LOD1 and LOD2 models, respectively. In the LOD1 case,16

most matched scatterers are at street level while LOD2 allows17

the identification of many scatterers on the buildings. Over18

half of the identified scatterers easily correspond to identify19

double or triple-bounce scatterers. However, a significant fraction20

corresponds to higher bounce levels, with approximately 25%21

being fivefold-bounce scatterers.22

Index Terms— Level of detail (LOD), persistent scatterers23

(PSs), ray tracing, simulation, synthetic aperture radar (SAR).24

I. INTRODUCTION25

PERSISTENT scatterer (PS) interferometry (PSI) [1] is26

a geodetic technique to measure surface displacements27

using multiepoch synthetic aperture radar (SAR) images.28
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PSI estimates the displacement parameters from phase obser- 29

vations from selected coherent points, known as PSs, with 30

millimeter-level precision. Using advanced high-resolution 31

SAR satellite systems, such as TerraSAR-X and COSMO- 32

SkyMed, this technology can be used to monitor individual 33

structures [2]–[6]. 34

However, PSs differ from traditional well-defined geodetic 35

benchmarks. It is not clear that whether the observed signal 36

stems from one dominant reflector, like a corner reflector, 37

or from the effective summation of several reflectors within 38

the resolution cell. Moreover, even if the PS is one domi- 39

nant reflector, its precise localization remains a challenging 40

task. Obviously, the capability to link PSs to (locations on) 41

particular objects would enhance PSI analyses, for exam- 42

ple, by reducing the uncertainty in the interpretation of 43

the observed displacements in relation to specific driving 44

mechanisms. 45

The relevance of establishing a one-to-one link between 46

PSs and specific objects is most obvious when there are 47

different driving mechanisms involved. For example, points 48

may represent deep and/or shallow deformation, e.g., due to 49

gas production and groundwater-level changes, respectively. 50

Consequently, nearby PSs may show different deformation sig- 51

nals. In other cases, different parts of a building or infrastruc- 52

ture may deform differently, which may be a precursor of 53

a partial or full collapse of the structure. In these complex 54

scenarios, linking PSs to the objects in the built environment 55

would not only help identifying the local deformation in the 56

object but also facilitate the interpretation of the deformation 57

signals. 58

Using the precise geolocalization of each PS seems to be 59

the most straightforward approach to link the scatterer to an 60

object. In fact, the geolocalization accuracy of PS for high-res 61

(meter resolution) SAR data is shown to be in the order of 62

centimeters in azimuth and range [7], and several decimeters 63

up to 1.8 m for cross range [8]. This positioning uncertainty 64

can be described with a variance–covariance (VC) matrix 65

and visualized with an error ellipsoid [9], [10]. This way, 66

the relatively poor cross-range precision of radar scatterers 67

could be improved by intersecting the scaled error ellipsoid 68

with 3-D models [9], [10]. Alternatively, an improvement of 69

positioning precision could be obtained by using the SAR data 70

from different viewing geometries [11], [12], albeit only for a 71

selected number of targets, such as lamp posts. 72
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Yet, these methods all consider only the geometry of the73

problem and are not based on physical scattering mechanisms.74

Consequently, the estimated positions may be geometrically75

optimal but physically unrealistic. For example, for a perfect76

corner reflector, it is known that the effective scattering center77

is at the apex of the reflector, even though the pure geometric78

position estimate may turn out to be at different positions. As a79

result, understanding the physical scattering mechanisms may80

help in the realistic physical positioning of scatterers.81

Physical understanding of scattering mechanisms can be82

supported by SAR simulation methods. However, this requires,83

at the least, a 3-D geometrical representation of the scene84

(i.e., a 3-D city model) [13]. If this 3-D representation is85

realistic with sufficient detail, the observed SAR scene should86

be very similar to the simulated one. Subsequently, if there is87

sufficient similarity, we will know which scattering mechanism88

produced the observed scatterers and understand what caused89

the observed displacements.90

A list of current SAR simulators includes, but is91

not limited to, SARAS [14], [15], Pol-SARAS [16],92

CAS [17], Xpatch 4 [18], GRECOSAR [19], CohRaS [20],93

SARViz [21], and RaySAR [22]. SARAS and CAS are94

oriented to ocean applications and do not consider multiple95

scattering for complex targets [14], [15], [17]. Pol-SARAS96

is the polarimetric version of SARAS, and it allows97

the simulation of natural scenes [16]. Xpatch 4 is an98

object-oriented version of Xpatch, which provides 0-D radar99

cross section, 1-D range profile, 2-D SAR image, and 3-D100

scattering center signatures, based on the shooting and bounces101

rays with the support of parallel computation [18]. Xpatch102

has been widely used in studies of the vehicle, typically an103

airplane or a ground vehicle [23]–[25]. GRECOSAR can104

generate polarimetric SAR and polarimetric inverse SAR105

images of complex targets and is used extensively for vessel106

classification studies [19]. CohRaS is an SAR simulator107

based on ray tracing, mainly for small scenes with high108

resolution, and only supports geometries made up of convex109

polygons [20]. SARViz is an SAR image simulation system110

that only simulates single- and double-bounce reflections and111

does not include coherent addition of multiple echos [21].112

Finally, RaySAR is based on ray tracing, oriented toward113

the simulation of salient features in SAR images [26]–[28].114

Despite the natural limitations resulting from the ray-tracing115

approach, it has some key advantages that motivated its use116

for the research presented in this paper: 1) it can handle an117

arbitrary number of bounces; 2) it keeps track of individual118

scatterers; 3) providing their 3-D location and bounce level;119

and 4) it is computationally inexpensive, which allows the120

simulation of relatively large and complex urban scenes.121

Here, we investigate the potential for predicting the occur-122

rence and location of SAR scatterers (i.e., potential PS) based123

on physical scattering mechanisms, using generic 3-D city124

models. In particular, we analyze the influence of the level125

of detail (LOD) of these city models on this prediction. The126

LOD is a generic metric describing the degree of adherence127

of the data set to its real-world counterpart [29]. This paper128

focuses on the urban environment, where we are limited by129

the short supply of high-resolution 3-D city models. We use130

the ray-tracing SAR simulator RaySAR [22] to predict the 131

radar scattering by illuminating the 3-D scene with an SAR 132

sensor. The rays can follow multiple reflections within the 133

object scene, yielding a collection of pointlike multiple-bounce 134

scatterers that represent potential PS candidates. The use of 135

ray-tracing algorithm implies that a significant part of the radar 136

signal is not correctly modeled. Nevertheless, city models with 137

an LOD that allows a full electromagnetic solution are not 138

available nor expected to become available in the foreseeable 139

future. 140

Section II introduces the 3-D ray-tracing simulation as 141

well as the methodology to match the detected PSs with 142

the simulated point scatterers (SPSs). Results corresponding 143

to a test area in Rotterdam are presented and analyzed 144

in Section II-C. Finally, Section IV presents our conclusions 145

and future work. 146

II. METHODOLOGY 147

A. Point Scatterer Simulation With RaySAR 148

Ray tracing is a rendering method used to create an image 149

by following the path of a ray through a 3-D model and simu- 150

lating the reflections on the surfaces it encounters. Ray tracing 151

is based on geometrical optics, which is valid for surfaces that 152

are large and smooth relative to the wavelength. RaySAR is 153

one of the several SAR data simulators based on ray tracing. 154

It is built on the open source Persistence of Vision Ray- 155

tracer (POV-Ray) [30], using the PoV-Ray basic algorithms 156

for ray tracing, intersection tests between rays and objects, 157

the estimation of intensities, and shadow calculations [22]. 158

RaySAR generates a set of scattering centers positioned 159

in 3-D SAR coordinates, i.e., azimuth, range, and cross 160

range. RaySAR subsequently projects and interpolates these 161

scatterers on the 2-D range-azimuth grid, adding different 162

contributions coherently in order to generate a simulated SAR 163

image. In this paper, however, we are mostly interested in the 164

intermediate set of individual scatterers. 165

The set of scattering centers is provided by RaySAR as a 166

list of signal vectors V 167

V = [ai ri ci I b f ] (1) 168

where [ai ri ci ] gives the position of the scattering phase 169

center in azimuth, range, and cross range, I is a relative 170

intensity normalized between 0 and 1, b specifies the number 171

of bounces (trace level), and f is a Boolean indicating a 172

specular reflection [0 or 1]. The signals V are referred to 173

as contribution signals. These signals are the basis for the 174

simulated image generation and point scatterers identification. 175

Fig. 1 sketches the localization of the phase center of a 176

radar echo by RaySAR for a double-bounce signal. Starting 177

from the virtual sensor plane, a primary ray for each pixel 178

is followed along its path until intersection with the modeled 179

scene is found. At the intersection point, a reflected ray is 180

spawned in the specular direction and traced until the next 181

intersection with the model, and so on. The azimuth, cross- 182

range, and range coordinates of the double-bounce signal are 183
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TABLE I

SURFACE PARAMETERS

Fig. 1. Sketch of how RaySAR localizes a double-bounce signal and projects
it in the sensor plane.

given by184

ai = a1 + a2

2
185

ci = c1 + c2

2
186

ri = r1 + r2 + r3

2
. (2)187

The trace level is the number of bounces of the signal.188

To select potential PS candidates (simulated point scat-189

terers), contribution signals with specular multiple scattering190

characteristics (I > 0, b > 1, and f = 1) are chosen. The191

selection criteria are based on the premise that many PSs are192

physically associated with multiple specular reflections of the193

radar signal on relatively large surfaces.194

B. Definition of a 3-D Scene for RaySAR195

The input to RaySAR is a 3-D scene model including:196

1) a virtual SAR system; 2) 3-D building models,197

and 3) surface parameters.198

1) Virtual SAR System: The virtual SAR system is described199

by the observation geometry and the system resolution. The200

geometry is defined using an orthographic projection and201

a parallel ray approximation. This parallel ray approxima-202

tion makes the observation geometry azimuth invariant, as it203

should. However, it also makes the geometry elevation (hence204

range) invariant, which is not entirely correct. We will, nev-205

ertheless, assume that this approximation is good enough for206

a small scene. Thus, the observation geometry is defined by207

an incident angle and an azimuth angle with respect to the208

scene, which has to be specified in RaySAR as a position of 209

the sensor with respect to the center of the scene. 210

2) 3-D Scene Model: In this paper, the building model is 211

reconstructed with 3dfier [31] by combining the large-scale 212

topographic data set of the Netherlands, Basisregistratie 213

Grootschalige Topografile in Dutch data set and the laser 214

altimetry, Actueel Hoogtebestand Nederland in Dutch data 215

sets. The acquisition of 3-D models can be constructed 216

directly with a text editor or software, which can assist in 217

visual controlling modeling (e.g., CAD). Importing available 218

3-D model into the POV-Ray format is an option considering 219

there are a lot of city models available. 220

The 3-D object model has to provide sufficient geometric 221

detail for SAR simulation. The amount of detail and spatial 222

resolution of a 3-D city model is specified as LOD, denoting 223

the abstraction level of a model as opposed to the real-world 224

object [29]. The LODs have been described by CityGML [32], 225

a prominent standard for the storage and exchange of 3-D city 226

models. LOD1 is a model in which buildings are represented 227

as blocks (usually obtained by extruding their footprint to a 228

uniform height). LOD2 is a more detailed model including 229

roof shapes [32], [33]. As it is the case with many other 230

applications of 3-D city models [34], it is to be expected 231

that the LOD and quality of the used 3-D model will have 232

an influence on the performance of the simulation of radar 233

signals, a topic that we investigate in this paper. 234

3) Surface Parameters: The scattering properties of the 235

scattering surfaces in the 3-D model are specified by the 236

parameters described in Table I. The first parameter, Fw , 237

controls multiple scattering by setting the fraction of the ray 238

intensity that is specularly reflected. Thus, setting Fw = 0 will 239

completely suppress multiple scattering. 240

The second parameter, Fs , controls the relative intensity of 241

the first reflection, counting from the illumination source. The 242

roughness parameter, Fr , controls the angular width of the first 243

reflection. Values of low roughness and medium roughness 244

surfaces are given based on a constant relative permittivity of 245

5.7 + j · 1.3 for man-made objects [22]. 246

Fig. 2 shows four images simulated with varying 247

(Fw, Fs , Fr ) values according to Table I. The parameter Fr 248

works with specular coefficient Fs [see Fig. 2(a) and (b)]. 249

With increasing roughness, the number of features shown in 250

the simulated images increases. Fig. 2(c) and (d) illustrates the 251

results of a combination of three parameters. With the weight 252

factor Fw , the strong multiscattering is clearly described. The 253

intensity of a multireflected signal is weighted with Fw . In this 254

paper, we use the medium roughness Fw = 0.5, Fs = 0.5, 255
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Fig. 2. Parameters function on SAR image simulation. (a) Image with Fw = 0, Fs = 0.7, Fr = 8.5 ·10−4 . (b) Image with Fw = 0, Fs = 0.5, Fr = 3.3 ·10−3 .
(c) Image with Fw = 0.7, Fs = 0.7, Fr = 8.5 ·10−4. (d) Image with Fw = 0.5, Fs = 0.5, Fr = 3.3 ·10−3. (e) Mean intensity map of 49 TerraSAR-X images.

Fig. 3. Example of finding the corresponding simulation point of a PS based
on the 3-D error ellipsoid. The position of the PS is indicated by a black
triangle. A cigar-shaped error ellipsoid with a ratio of axis lengths 1/2/35
(with σr = 0.019 m) illustrates the PS position uncertainty. The corresponding
SPS is located inside of the error ellipsoid and indicated by a black dot. The
ellipsoid and PS are projected in east–north, north-up, and up-east planes to
illustrate their intersection with the SPS.

Fw = 3.3 · 10−3, compared to low roughness parameter256

setting, medium roughness parameters are closer to the reality257

using the X-band data [see Fig. 2(e)]. It is important to258

emphasize that the phase-center location of the simulated259

scatterers does not depend on the surface parameters. In the260

following, we focus solely on the phase-center location of261

multiple-bounce SPSs.262

Fig. 4. Schematic of the methodology.

C. Linking of Simulation Points With PSs 263

One of the main steps in the work presented is the matching 264

of the SPSs with the PSs identified in the InSAR time series. 265

The matching is done by evaluating the weighted Euclidean 266

distances between the positions of the simulated point scatter- 267

ers and the positions of the PSs. The weighting reflects the 268
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Fig. 5. Google Earth overview image of test site; azimuth and range directions
indicate the view of the TerraSAR-X data.

Fig. 6. Street orientation map of the AOI. Each bar represents the compass
bearing of the streets and its length indicates the frequency of streets with
those bearings. There are two main directions at 336◦ and 60◦.

3-D position error ellipsoids, as defined by the positioning269

VC matrices, of the PSs [9]. For each PS, the positioning270

uncertainty in the local reference frame (East, North, and271

Up/Height) is given by272

Qenh = R3×3 · Qrac · RT
3×3 =

⎡
⎣

σ 2
e σ 2

en σ 2
eh

σ 2
en σ 2

n σ 2
nh

σ 2
eh σ 2

nh σ 2
h

⎤
⎦ (3)273

where R is the rotation matrix from radar geometry to local274

reference frame, Qrac is the positioning VC matrix in 3-D275

radar geometry with diagonal component variances (σ 2
r , σ 2

a ,276

and σ 2
c ) in range, azimuth, and cross range, the diagonal277

(σ 2
e , σ 2

n , and σ 2
h ) and nondiagonal (σ 2

en, σ
2
eh, and σ 2

nh) are the278

variances and covariances in east, north, and up coordinates.279

For each PS, from the eigenvalues of Qenh, a 3-D error280

ellipsoid is drawn with the estimated position as its center.281

The semiaxis lengths of the ellipsoid are described by the282

Fig. 7. PS identified in TerraSAR-X data stack overlaid on TOP10NL map.
TOP10NL is the digital topographic base file of the Land Registry, the most
detailed product within the basic registration topography. Colors: estimated
PS heights (blue-low; red-high).

eigenvalues of Qenh, which are σ 2
r , σ 2

a , and σ 2
c . The shape of 283

ellipsoid is derived from the ratio of their axis lengths, given 284

by (1/γ1 /γ2), where γ1 = σa · σ−1
r and γ2 = σc · σ−1

r . The 285

orientation of ellipsoid is dependent on the local incidence 286

angle of the radar beam at the PSs. 287

Fig. 3 illustrates the matching of an SPS with a PS based 288

on the 3-D error ellipsoid. The position uncertainty of a 289

PS is illustrated by 3-D error ellipsoid with 0.01 level of 290

significance. The PS is matched to the corresponding SPS, 291

which has to be inside the error ellipsoid. 292

As part of the matching process, it is necessary to consider 293

and remove potential systematic positioning errors. The sys- 294

tematic errors may be the result of an oversimplified geometry 295

(e.g., the already mentioned range invariance) or errors in the 296

knowledge of the acquisition SAR geometry. 297

A fine coregistration is performed using the iterative closest 298

point (ICP) algorithm [35], [36], which minimizes the sum of 299

the weighted Euclidean distance between SPSs and PSs by 300

least square estimation in an iterative way. Each iteration of 301

the 3-D error ellipsoid-based ICP includes two steps: matching 302

pairs of SPS and PSs based on the 3-D error ellipsoid; and 303

finding the transformation that minimizes the weighted mean 304

squares distance between pairs of points. The transformation 305

results are applied to the point cloud of PSs, thereby changing 306

the correspondence. 307

D. Simulation Assessment 308

A quantitative evaluation of the matching between the PS 309

and the SPS is given by the confusion matrix M described 310

in Table II. Three performance ratios are considered as follows. 311
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Fig. 8. (a) Overview of the used 3-D city model, (b) closer look on the LOD1 variant of the data set, and (c) its more detailed (LOD2) counterpart including
roof shapes. Source of data: BGT, AHN, and City of Rotterdam.

Fig. 9. (a) Point scatterers simulated based on the model of LOD1 with color represents height. (b) Point scatterers simulated based on the model of
LOD2 with color represents height. The background image is TOP10NL map.

1) True Positive Rate (TPR): The ratio of the PSs that312

are matched to SPSs, with regards to the total number313

of PSs.314

2) False Negative Rate (FNR): The ratio of the 315

PSs that have not been matched to an SPS, 316

with regards to the total number of PSs, 317
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TABLE II

CONFUSION MATRIX M BETWEEN SPS AND PS

also known as miss rate. For FNR, we have318

FNR = 1 − TPR.319

3) False Positive Rate (FPR): The ratio of the SPSs that320

have not been matched, with regards to the total number321

of SPSs.322

Hereby, the metric TPR describes the matching ratio between323

simulation points and PSs and is the primary evaluation indi-324

cator of simulation scatterers. FPR also an important indicator325

for describing the ratio of redundant simulation points.326

Note that the PS or SPS selection criteria will have an327

impact on the performance metrics. For example, a low ampli-328

tude dispersion threshold may lead to selecting less actual329

point scatterers and lead to a higher FPR. Since the final330

goal of our research is to improve our capability to analyze331

deformation signals, we focus on the group of PSs that are332

deemed reliable. PSs are chosen with an amplitude dispersion333

threshold set to 0.45 and further checked based on network334

phase consistency [37]. Here, SPSs are scatterers predicted335

by the simulator based on the geometry. Therefore, the final336

number of PSs is less than the SPSs from the simulator because337

we eliminated many points during the PSI processing, which338

increases the FPR.339

E. Work Flow340

The flowchart shown in Fig 4 outlines the work flow of341

this paper, which consists basically of three parts: generation342

of simulation points, detection of PSs, and the matching of343

two point cloud sets. The generation of simulation points344

consists of scene modeling, signals detection with Pov-Ray,345

and selection of SPSs. The SAR data stack is processed with346

the Delft implementation of PSI (DePSI) [37], which is based347

on the Delft framework of geodetic estimation, testing, and348

quality control. DePSI detects PS with consistent reflection349

properties over time as input for time series deformation and350

height estimation. Then, matching of two point cloud sets is351

carried by ICP based on the 3-D error ellipsoid.352

RaySAR is not demanding in terms of computational353

resources. It is built on POV-ray, an open source tool that traces354

rays in the reverse direction. In this paper, the calculation355

of 48 million contribution signals took about 10 min on a356

four-core workstation with 16 GB of RAM.357

III. EXPERIMENT358

A. Test Site and Data359

The test area is located southeast of Rotterdam Central360

Station in the city of Rotterdam, the Netherlands. The size of361

Fig. 10. Height profile of PSs, SPSs from LOD1 and LOD2, in the box
indicated in Fig. 7 along the x-axis.

TABLE III

BASIC PARAMETERS OF TERRASAR-X DATA STACK

the area of interest (AoI) is around 1×0.5 km2. Fig. 5 shows an 362

overview of the test site, and its orientation with respect to the 363

trajectory of TerraSAR-X. 49 TerraSAR-X strip-mode images 364

are obtained from January 19, 2014 to February 25, 2017. 365

Table III illustrates the basic parameters of TerraSAR-X data. 366

Fig. 2(e) is the mean intensity map of 49 TerraSAR-X images 367

over the AoI. 368

Fig. 6 shows a polar histogram describing the orien- 369

tation of the streets within the AOI calculated based on 370

OpenStreetMap [38]. The direction of each bar represents the 371

compass bearings of the streets and its length indicates the 372

relative frequency of streets with those bearings. In Fig. 6, 373

two main orthogonal directions can be identified, one at about 374

336◦ (red bars), and another at about 60◦ (cyan). 375

The results of the PSI analysis are illustrated in Fig. 7: 376

2290 points are selected as PS in the AoI. The results 377

are projected in the Dutch National Reference System 378
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Fig. 11. Correspondence between SPSs, shown as solid circles color-coded by bounce level, and matched PSs, shown as empty circles. (a) Left and (b) right
correspond to simulations using the LOD1 and LOD2 models, respectively.

Rijksdriehoeksstelsel (RD) in Dutch and vertical Normaal379

Amsterdams Peil in Dutch reference system. The axes shown380

in Fig. 7 show X (RD) and Y (RD) in meters, in East and North381

directions, respectively. The estimated heights are indicated by382

colors, showing some higher buildings in the northwest and383

northeast corner of the AoI, which can be found in Fig. 5.384

Two 3-D city models with different LODs were employed385

to simulate scatterers using RaySAR. Fig.8 displays the386

3-D models at LOD1 and LOD2 of the AoI. In LOD1 model,387

buildings are represented as boxes with flat roof structures388

[Fig. 8(b)], opposed to buildings in LOD2 (Fig. 8c), which389

have differentiated roof structures with varying heights, pro-390

viding a more realistic representation of the reality.391

From the enlarged partial picture of the LOD1 model392

[Fig. 8(b)] and the LOD2 model [Fig. 8(c)], it is clear that393

buildings in LOD2 include many different parts with varying394

roof shapes and heights. Data sets with LOD1 and LOD2 are395

the most common instance, in practice, because it is possible to396

obtain them automatically, e.g., from LiDAR data by automatic397

building reconstruction [33].398

B. Simulated Point Scatterer399

POV-Ray/RaySAR detects all contributing signals within400

the AoI. The total number of received signals from the401

LOD1 and LOD2 models is about 50 million. We detect402

Fig. 12. Histograms of simulation points from LOD1 model and LOD2
model in double, triple, fourfold, and fivefold bounce. The X-axis is
LOD1 and LOD2. The Y -axis is the count numbers from 0 to 2500. There
were 742 and 799 double-bounce signals from LOD1 and LOD2 models.
Among these signals, 6% and 12% points were linked to the PSs. Likewise,
for triple-bounce signals, and fourfold-bounce signals and fivefold-bounce
signals.

potential point scatterers and consider these as signals that 403

exhibit the characteristics of PS (I > 0, b > 1, and f = 1) 404

from the contribution signals. 405
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Fig. 13. Number of matched PSs as a function of the standard deviation of
the disturbance added to the position of the simulated scatterers. The rapid
decrease in matched pairs supports the assumption that the vast majority of
matches is correct.

Fig. 14. Marched and unmatched PSs. A-labeled area: new building absent
in the LOD2 model. B-labeled area: green-area free of buildings, where the
PPs correspond to urban structures not included in the model. C-labeled areas:
examples of predicted PSs at the linear structures of buildings and identified
as triple bounce.

We identify 2770 potential point scatterers from the model406

at LOD1, as described in Section II. Fig. 9(a) shows the407

distribution of simulated points in the LOD1 model. The colors408

TABLE IV

CONFUSION MATRIX BETWEEN MEASURED PSS AND PREDICTED
SCATTERERS BASED ON LOD1 MODEL AND LOD2 MODEL

indicate the height of simulation points. In comparison to 409

the real radar results shown in Fig. 7, the height values 410

of the SPSs is mainly below 15 m. The simulation points 411

include 742 double bounces, 890 triple bounces, 590 fourfold 412

bounces, and 548 fivefold bounces [see the pie chart in the top 413

right of Fig. 9(a)]. Most signals correspond to triple-bounce 414

scatterers, followed by double-bounce ones. 415

Using the LOD2 model results in 4390 potential point 416

scatterers, as illustrated [see Fig. 9(b)]. Compared to the 417

real PS data, see Fig.9(b), more points, and with higher 418

heights are detected. Spatial distribution in height values of 419

SPSs from the LOD2 model is similar to the measured PS 420

[see Fig. 9(b)]. PSs with higher heights are clustered in the 421

northeast corner of the test site, which is also predicted by 422

the simulation. The height of simulation points in the corner 423

of the northwest is lower than PSs shown in Fig. 7 because 424

the buildings in the corner of the northwest are missed in 425

the LOD2 model(equal to LOD1). The Google Earth image 426

shown in Fig. 5 also indicate the newly built in the corner 427

of the northwest. Simulated points from the LOD2 model 428

include 799 double bounce, 2267 triple bounce, 632 fourfold 429

bounce, and 692 fivefold bounce [see the pie chart in the top 430

right of Fig. 9(b)]. More than half of the points are the triple 431

bounces. 432

Fig. 10 shows the height profile of PSs, the SPSs of 433

LOD1 and LOD2, in the box indicated in Fig. 7 along the 434

x-axis. The height profile of PSs and SPSs from LOD2 is 435

similar while the SPSs from LOD1 missed points with higher 436

height. 437

C. Linking of PSs and SPSs 438

Following Section II-C, PSs (Fig. 7) were matched to the 439

point scatterers predicted using the LOD1 [Fig. 9(a)] and 440

LOD2 [Fig. 9(b)] models. Fig. 11(a) and (b) shows the spatial 441

distribution of PSs and the corresponding SPSs. The dark 442

circle indicates the location of PSs that have been matched 443

to SPSs. The dots represent the corresponding SPSs, color 444

coded by bounce level (see legend on the figure). 445

Table IV shows the confusion matrix between SPSs based 446

on LOD1 and LOD2 models and PSs. Scatterers from the 447

model of LOD1 predicted 10% PSs correctly (correspondingly, 448

around 90% PSs were missed). The 92% simulation points 449

have not been matched to a PS. By using the LO2 model, 450

the amount of PSs matched with simulated scatterers increased 451

to 37%. Naturally, the number of predicted point targets not 452

matched to PSs also increased. However, it is noteworthy, that, 453
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Fig. 15. Rendering of matched scatterers overlaid on the LOD2 city model.

in relative terms, the number of scatterers matched to PSs grew454

much stronger than the overall amount of predicted scatterers.455

Moreover, the ratio of simulation points that have not match456

to a PS is decreased to 80%.457

Fig. 12 shows a quantitative overview of the number of458

point scatterers predicted for the LOD1 and LOD2 models,459

segregated by bounce level. In each of the bars, it is also460

indicated which fraction of the SPSs was matched to a PS. Not461

surprisingly, the increase in the LOD leads to a very strong462

growth (close to a factor 3) of the predicted triple-bounce463

scatterers. The fraction of predicted triple-bounce scatterers464

matched to actual PSs increased from 11% to 16%.465

For the other bounce levels considered, the increase in466

predicted scatterers was quite modest. However, the fraction467

of these scatterers that was matched to PSs increased by a468

factor two for double-bounce scatterers, a factor three for469

fourfold-bounce scatterers, and by more than a factor six for470

fivefold-bounce scatterers.471

The total number of matched scatterers increased from472

223 in the LOD1 case to 842 with the LOD2 model.473

Triple-bounce scatterers, 100 and 358, respectively, remained474

dominant. However, 226 of the LOD2-model scatter-475

ers, or about one-fourth of the total, corresponded to476

fivefold-bounce signals.477

The number of predicted point scatterers for the478

LOD1 (2770) and LOD2 (4390) models was larger than the479

number of detected PSs. This can be explained by considering480

that PS selection is done based on the amplitude stability of481

individual resolution cells in the interferometric data stack.482

Typically, the amplitude will be stable if a single pointlike483

scatterer is a dominant factor in the radar echo for that484

resolution cell. Thus, even if we know for sure that we have a485

stable pointlike target within our resolution cell, as this does486

not exclude contributions from other scattering mechanisms,487

it does not imply that it will result in a PS. Moreover, as stated488

in Section II-D, the selection criterion also contributes to the489

fact that the number of simulation points was larger than the490

number of PSs.491

D. Target Matching Validation 492

A potential pitfall in the matching process is that if the 493

local density of either PSs or SPSs is higher, the amount of 494

random matches increases as well (false positives). However, 495

the amount of random matches should be insensitive to their 496

exact position. Hence, while some pairs would be disassoci- 497

ated roughly the same number is expected to appear. 498

Following this reasoning, we added random disturbances 499

with Gaussian distribution to the coordinates of the simulated 500

points and performed the PS matching, following the proce- 501

dure discussed in Section II. In order to consider the worst 502

case, the random disturbances are aligned along the dominant 503

orientation of the buildings. The x-, y-, and z-coordinates of 504

the simulated points with random disturbances are given by 505

x̃sim = xsim + �x 506

ỹsim = ysim + �y 507

z̃sim = hsim + �z (4) 508

where xsim, ysim, and zsim are the original coordinates of 509

the SPSs, �x = n1 · sin(t), �y = n1 · cos(t), and �z = n2. 510

The angle t = 336◦ is the main orientation angle of the 511

streets and buildings as presented in Fig. 6. n1 and n2 are 512

the zero-mean Gaussian-distributed random disturbances with 513

a standard derivation of σ meter. 514

Fig. 13 shows the number of matched PSs as a function 515

of σ . The number of matched pairs decreases rapidly as the 516

position disturbance σ increases. Introducing a position error 517

with σ = 4 m, which is close to the spatial resolution of 518

TerraSAR-X in stripmap mode, reduces the amount of matches 519

by a factor 4 while a further increase in the positioning error 520

has only a limited effect on decreasing the amount of matches. 521

As less than 10% of the number of matches remains if the 522

positioning error is increased to an unrealistically high value, 523

this analysis suggests that the vast majority of matched pairs 524

is physically correct. 525

Fig. 14 shows all PSs detected in the AoI, with iden- 526

tified PSs represented by green triangles and unidentified 527
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PSs indicated by magenta plus signs. The area labeled A,528

where most PSs were missed by the simulation, correspond529

to a newly built building not present in the LOD2 model.530

Moreover, the building model did not include the public531

facilities, like the flower boxes in the area labeled B. Most532

predicted PSs are located at linear structures of buildings and533

identified as triple bounce, such as the points in the area534

labeled C. Those scatterers originated from the roof and ghost535

corners, e.g., the corner of the wall and the ground, which is536

in agreement with the previous research [28].537

Simulation points have precise locations in the model. The538

object snap of PSs can be achieved by the correlation of PSs539

and SPSs. Fig. 15 displays an overview of matched simulation540

points in the LOD2 model. The supplementary file of this541

paper includes a movie that is a 360◦ view of model and542

simulation points that matched to measured PSs.543

IV. CONCLUSION544

PSI can yield deformation with an accuracy of millimeter545

order by exploiting PSs. As discussed in the Introduction, two546

key issues in PSI are the precise geolocation of the scatterers in547

the 3-D space, and the association of the scatterers to specific548

physical features. In this paper, we have investigated the use of549

ray-tracing tools to address the second issue by illuminating550

3-D city models with different levels of detail (LOD1 and551

LOD2 according to the CityGML standard). As expected,552

the results obtained depend strongly on the LOD of the553

3-D model given as input to the ray-tracing tool.554

For our area of study in Rotterdam, we were able to555

associate 37% of the PSs identified in a stack of TerraSAR-X556

data with simulated scatterers using a LOD2 city model.557

Using LOD1 models not only reduced the fraction of identified558

PSs to around 10% but also put most of them on the ground.559

We did not have models for real cities with a higher LOD.560

Nevertheless, from the observation of high-resolution SAR561

data, it is generally understood that many pointlike scatterers562

result from features, such as windows, which are not captured563

in LOD2. It is expected that using higher LOD models might564

further increase the fraction of identified scatterers.565

Considering the details of the results, it worth noting that566

roughly one-fourth of the identified PSs were associated with567

fivefold bounces. These types of scatterers cannot be linked568

to physical objects by simply intersecting their location with569

the 3-D models.570

LOD2 models can be produced automatically from, for571

example, laser-scanning data. Therefore, it should be expected572

that the LOD2 city models may become commonplace in the573

near future. The positive results of this paper underpin the574

usefulness of integrating this information in the PS processing.575

Associating PSs to physical features is a necessary step if we576

want to fully exploit the InSAR signal of individual scatterers,577

for example, to detect deformation of specific sections of a578

building. In this paper, we have shown that this association579

can be made. Each simulated PS can be traced back one or580

multiple reflections on specific locations of the 3-D model.581

However, with the tools used, the bookkeeping necessary582

to trace scatterers back to individual features in the model583

(specific walls, roofs, and floors) is still missing. A logical next 584

step in our research is to implement this bookkeeping, which 585

includes identifying practical approaches to label features and, 586

in particular, visualizing the results. 587

Another important intermediate objective is to investigate, 588

with the support of simulations, how different deformation 589

sources translate to individual PS deformation signals. For 590

example, in the case of a fivefold-bounce scatterer, structural 591

deformation may produce a signal with the opposite sign than 592

for a triple-bounce scatterer. As already indicated, the long- 593

term goal of the work presented is to improve the interpreta- 594

tion of deformation signals in complex environments, where 595

the observed deformation signals may have different causes. 596

This relies on the anticipated increased availability of high 597

resolution city models. 598
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Abstract— Persistent scatterers (PSs) are coherent measure-1

ment points obtained from time series of satellite radar images,2

which are used to detect and estimate millimeter-scale displace-3

ments of the terrain or man-made structures. However, asso-4

ciating these measurement points with specific physical objects5

is not straightforward, which hampers the exploitation of the6

full potential of the data. We have investigated the potential7

for predicting the occurrence and location of PSs using generic8

3-D city models and ray-tracing methods, and proposed a9

methodology to match PSs to the pointlike scatterers predicted10

using RaySAR, a ray-tracing synthetic aperture radar simulator.11

We also investigate the impact of the level of detail (LOD) of the12

city models. For our test area in Rotterdam, we find that 10%13

and 37% of the PSs detected in a stack of TerraSAR-X data14

can be matched with point scatterers identified by ray tracing15

using LOD1 and LOD2 models, respectively. In the LOD1 case,16

most matched scatterers are at street level while LOD2 allows17

the identification of many scatterers on the buildings. Over18

half of the identified scatterers easily correspond to identify19

double or triple-bounce scatterers. However, a significant fraction20

corresponds to higher bounce levels, with approximately 25%21

being fivefold-bounce scatterers.22

Index Terms— Level of detail (LOD), persistent scatterers23

(PSs), ray tracing, simulation, synthetic aperture radar (SAR).24

I. INTRODUCTION25

PERSISTENT scatterer (PS) interferometry (PSI) [1] is26

a geodetic technique to measure surface displacements27

using multiepoch synthetic aperture radar (SAR) images.28
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PSI estimates the displacement parameters from phase obser- 29

vations from selected coherent points, known as PSs, with 30

millimeter-level precision. Using advanced high-resolution 31

SAR satellite systems, such as TerraSAR-X and COSMO- 32

SkyMed, this technology can be used to monitor individual 33

structures [2]–[6]. 34

However, PSs differ from traditional well-defined geodetic 35

benchmarks. It is not clear that whether the observed signal 36

stems from one dominant reflector, like a corner reflector, 37

or from the effective summation of several reflectors within 38

the resolution cell. Moreover, even if the PS is one domi- 39

nant reflector, its precise localization remains a challenging 40

task. Obviously, the capability to link PSs to (locations on) 41

particular objects would enhance PSI analyses, for exam- 42

ple, by reducing the uncertainty in the interpretation of 43

the observed displacements in relation to specific driving 44

mechanisms. 45

The relevance of establishing a one-to-one link between 46

PSs and specific objects is most obvious when there are 47

different driving mechanisms involved. For example, points 48

may represent deep and/or shallow deformation, e.g., due to 49

gas production and groundwater-level changes, respectively. 50

Consequently, nearby PSs may show different deformation sig- 51

nals. In other cases, different parts of a building or infrastruc- 52

ture may deform differently, which may be a precursor of 53

a partial or full collapse of the structure. In these complex 54

scenarios, linking PSs to the objects in the built environment 55

would not only help identifying the local deformation in the 56

object but also facilitate the interpretation of the deformation 57

signals. 58

Using the precise geolocalization of each PS seems to be 59

the most straightforward approach to link the scatterer to an 60

object. In fact, the geolocalization accuracy of PS for high-res 61

(meter resolution) SAR data is shown to be in the order of 62

centimeters in azimuth and range [7], and several decimeters 63

up to 1.8 m for cross range [8]. This positioning uncertainty 64

can be described with a variance–covariance (VC) matrix 65

and visualized with an error ellipsoid [9], [10]. This way, 66

the relatively poor cross-range precision of radar scatterers 67

could be improved by intersecting the scaled error ellipsoid 68

with 3-D models [9], [10]. Alternatively, an improvement of 69

positioning precision could be obtained by using the SAR data 70

from different viewing geometries [11], [12], albeit only for a 71

selected number of targets, such as lamp posts. 72

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Yet, these methods all consider only the geometry of the73

problem and are not based on physical scattering mechanisms.74

Consequently, the estimated positions may be geometrically75

optimal but physically unrealistic. For example, for a perfect76

corner reflector, it is known that the effective scattering center77

is at the apex of the reflector, even though the pure geometric78

position estimate may turn out to be at different positions. As a79

result, understanding the physical scattering mechanisms may80

help in the realistic physical positioning of scatterers.81

Physical understanding of scattering mechanisms can be82

supported by SAR simulation methods. However, this requires,83

at the least, a 3-D geometrical representation of the scene84

(i.e., a 3-D city model) [13]. If this 3-D representation is85

realistic with sufficient detail, the observed SAR scene should86

be very similar to the simulated one. Subsequently, if there is87

sufficient similarity, we will know which scattering mechanism88

produced the observed scatterers and understand what caused89

the observed displacements.90

A list of current SAR simulators includes, but is91

not limited to, SARAS [14], [15], Pol-SARAS [16],92

CAS [17], Xpatch 4 [18], GRECOSAR [19], CohRaS [20],93

SARViz [21], and RaySAR [22]. SARAS and CAS are94

oriented to ocean applications and do not consider multiple95

scattering for complex targets [14], [15], [17]. Pol-SARAS96

is the polarimetric version of SARAS, and it allows97

the simulation of natural scenes [16]. Xpatch 4 is an98

object-oriented version of Xpatch, which provides 0-D radar99

cross section, 1-D range profile, 2-D SAR image, and 3-D100

scattering center signatures, based on the shooting and bounces101

rays with the support of parallel computation [18]. Xpatch102

has been widely used in studies of the vehicle, typically an103

airplane or a ground vehicle [23]–[25]. GRECOSAR can104

generate polarimetric SAR and polarimetric inverse SAR105

images of complex targets and is used extensively for vessel106

classification studies [19]. CohRaS is an SAR simulator107

based on ray tracing, mainly for small scenes with high108

resolution, and only supports geometries made up of convex109

polygons [20]. SARViz is an SAR image simulation system110

that only simulates single- and double-bounce reflections and111

does not include coherent addition of multiple echos [21].112

Finally, RaySAR is based on ray tracing, oriented toward113

the simulation of salient features in SAR images [26]–[28].114

Despite the natural limitations resulting from the ray-tracing115

approach, it has some key advantages that motivated its use116

for the research presented in this paper: 1) it can handle an117

arbitrary number of bounces; 2) it keeps track of individual118

scatterers; 3) providing their 3-D location and bounce level;119

and 4) it is computationally inexpensive, which allows the120

simulation of relatively large and complex urban scenes.121

Here, we investigate the potential for predicting the occur-122

rence and location of SAR scatterers (i.e., potential PS) based123

on physical scattering mechanisms, using generic 3-D city124

models. In particular, we analyze the influence of the level125

of detail (LOD) of these city models on this prediction. The126

LOD is a generic metric describing the degree of adherence127

of the data set to its real-world counterpart [29]. This paper128

focuses on the urban environment, where we are limited by129

the short supply of high-resolution 3-D city models. We use130

the ray-tracing SAR simulator RaySAR [22] to predict the 131

radar scattering by illuminating the 3-D scene with an SAR 132

sensor. The rays can follow multiple reflections within the 133

object scene, yielding a collection of pointlike multiple-bounce 134

scatterers that represent potential PS candidates. The use of 135

ray-tracing algorithm implies that a significant part of the radar 136

signal is not correctly modeled. Nevertheless, city models with 137

an LOD that allows a full electromagnetic solution are not 138

available nor expected to become available in the foreseeable 139

future. 140

Section II introduces the 3-D ray-tracing simulation as 141

well as the methodology to match the detected PSs with 142

the simulated point scatterers (SPSs). Results corresponding 143

to a test area in Rotterdam are presented and analyzed 144

in Section II-C. Finally, Section IV presents our conclusions 145

and future work. 146

II. METHODOLOGY 147

A. Point Scatterer Simulation With RaySAR 148

Ray tracing is a rendering method used to create an image 149

by following the path of a ray through a 3-D model and simu- 150

lating the reflections on the surfaces it encounters. Ray tracing 151

is based on geometrical optics, which is valid for surfaces that 152

are large and smooth relative to the wavelength. RaySAR is 153

one of the several SAR data simulators based on ray tracing. 154

It is built on the open source Persistence of Vision Ray- 155

tracer (POV-Ray) [30], using the PoV-Ray basic algorithms 156

for ray tracing, intersection tests between rays and objects, 157

the estimation of intensities, and shadow calculations [22]. 158

RaySAR generates a set of scattering centers positioned 159

in 3-D SAR coordinates, i.e., azimuth, range, and cross 160

range. RaySAR subsequently projects and interpolates these 161

scatterers on the 2-D range-azimuth grid, adding different 162

contributions coherently in order to generate a simulated SAR 163

image. In this paper, however, we are mostly interested in the 164

intermediate set of individual scatterers. 165

The set of scattering centers is provided by RaySAR as a 166

list of signal vectors V 167

V = [ai ri ci I b f ] (1) 168

where [ai ri ci ] gives the position of the scattering phase 169

center in azimuth, range, and cross range, I is a relative 170

intensity normalized between 0 and 1, b specifies the number 171

of bounces (trace level), and f is a Boolean indicating a 172

specular reflection [0 or 1]. The signals V are referred to 173

as contribution signals. These signals are the basis for the 174

simulated image generation and point scatterers identification. 175

Fig. 1 sketches the localization of the phase center of a 176

radar echo by RaySAR for a double-bounce signal. Starting 177

from the virtual sensor plane, a primary ray for each pixel 178

is followed along its path until intersection with the modeled 179

scene is found. At the intersection point, a reflected ray is 180

spawned in the specular direction and traced until the next 181

intersection with the model, and so on. The azimuth, cross- 182

range, and range coordinates of the double-bounce signal are 183
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TABLE I

SURFACE PARAMETERS

Fig. 1. Sketch of how RaySAR localizes a double-bounce signal and projects
it in the sensor plane.

given by184

ai = a1 + a2

2
185

ci = c1 + c2

2
186

ri = r1 + r2 + r3

2
. (2)187

The trace level is the number of bounces of the signal.188

To select potential PS candidates (simulated point scat-189

terers), contribution signals with specular multiple scattering190

characteristics (I > 0, b > 1, and f = 1) are chosen. The191

selection criteria are based on the premise that many PSs are192

physically associated with multiple specular reflections of the193

radar signal on relatively large surfaces.194

B. Definition of a 3-D Scene for RaySAR195

The input to RaySAR is a 3-D scene model including:196

1) a virtual SAR system; 2) 3-D building models,197

and 3) surface parameters.198

1) Virtual SAR System: The virtual SAR system is described199

by the observation geometry and the system resolution. The200

geometry is defined using an orthographic projection and201

a parallel ray approximation. This parallel ray approxima-202

tion makes the observation geometry azimuth invariant, as it203

should. However, it also makes the geometry elevation (hence204

range) invariant, which is not entirely correct. We will, nev-205

ertheless, assume that this approximation is good enough for206

a small scene. Thus, the observation geometry is defined by207

an incident angle and an azimuth angle with respect to the208

scene, which has to be specified in RaySAR as a position of 209

the sensor with respect to the center of the scene. 210

2) 3-D Scene Model: In this paper, the building model is 211

reconstructed with 3dfier [31] by combining the large-scale 212

topographic data set of the Netherlands, Basisregistratie 213

Grootschalige Topografile in Dutch data set and the laser 214

altimetry, Actueel Hoogtebestand Nederland in Dutch data 215

sets. The acquisition of 3-D models can be constructed 216

directly with a text editor or software, which can assist in 217

visual controlling modeling (e.g., CAD). Importing available 218

3-D model into the POV-Ray format is an option considering 219

there are a lot of city models available. 220

The 3-D object model has to provide sufficient geometric 221

detail for SAR simulation. The amount of detail and spatial 222

resolution of a 3-D city model is specified as LOD, denoting 223

the abstraction level of a model as opposed to the real-world 224

object [29]. The LODs have been described by CityGML [32], 225

a prominent standard for the storage and exchange of 3-D city 226

models. LOD1 is a model in which buildings are represented 227

as blocks (usually obtained by extruding their footprint to a 228

uniform height). LOD2 is a more detailed model including 229

roof shapes [32], [33]. As it is the case with many other 230

applications of 3-D city models [34], it is to be expected 231

that the LOD and quality of the used 3-D model will have 232

an influence on the performance of the simulation of radar 233

signals, a topic that we investigate in this paper. 234

3) Surface Parameters: The scattering properties of the 235

scattering surfaces in the 3-D model are specified by the 236

parameters described in Table I. The first parameter, Fw , 237

controls multiple scattering by setting the fraction of the ray 238

intensity that is specularly reflected. Thus, setting Fw = 0 will 239

completely suppress multiple scattering. 240

The second parameter, Fs , controls the relative intensity of 241

the first reflection, counting from the illumination source. The 242

roughness parameter, Fr , controls the angular width of the first 243

reflection. Values of low roughness and medium roughness 244

surfaces are given based on a constant relative permittivity of 245

5.7 + j · 1.3 for man-made objects [22]. 246

Fig. 2 shows four images simulated with varying 247

(Fw, Fs , Fr ) values according to Table I. The parameter Fr 248

works with specular coefficient Fs [see Fig. 2(a) and (b)]. 249

With increasing roughness, the number of features shown in 250

the simulated images increases. Fig. 2(c) and (d) illustrates the 251

results of a combination of three parameters. With the weight 252

factor Fw , the strong multiscattering is clearly described. The 253

intensity of a multireflected signal is weighted with Fw . In this 254

paper, we use the medium roughness Fw = 0.5, Fs = 0.5, 255
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Fig. 2. Parameters function on SAR image simulation. (a) Image with Fw = 0, Fs = 0.7, Fr = 8.5 ·10−4 . (b) Image with Fw = 0, Fs = 0.5, Fr = 3.3 ·10−3 .
(c) Image with Fw = 0.7, Fs = 0.7, Fr = 8.5 ·10−4. (d) Image with Fw = 0.5, Fs = 0.5, Fr = 3.3 ·10−3. (e) Mean intensity map of 49 TerraSAR-X images.

Fig. 3. Example of finding the corresponding simulation point of a PS based
on the 3-D error ellipsoid. The position of the PS is indicated by a black
triangle. A cigar-shaped error ellipsoid with a ratio of axis lengths 1/2/35
(with σr = 0.019 m) illustrates the PS position uncertainty. The corresponding
SPS is located inside of the error ellipsoid and indicated by a black dot. The
ellipsoid and PS are projected in east–north, north-up, and up-east planes to
illustrate their intersection with the SPS.

Fw = 3.3 · 10−3, compared to low roughness parameter256

setting, medium roughness parameters are closer to the reality257

using the X-band data [see Fig. 2(e)]. It is important to258

emphasize that the phase-center location of the simulated259

scatterers does not depend on the surface parameters. In the260

following, we focus solely on the phase-center location of261

multiple-bounce SPSs.262

Fig. 4. Schematic of the methodology.

C. Linking of Simulation Points With PSs 263

One of the main steps in the work presented is the matching 264

of the SPSs with the PSs identified in the InSAR time series. 265

The matching is done by evaluating the weighted Euclidean 266

distances between the positions of the simulated point scatter- 267

ers and the positions of the PSs. The weighting reflects the 268
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Fig. 5. Google Earth overview image of test site; azimuth and range directions
indicate the view of the TerraSAR-X data.

Fig. 6. Street orientation map of the AOI. Each bar represents the compass
bearing of the streets and its length indicates the frequency of streets with
those bearings. There are two main directions at 336◦ and 60◦.

3-D position error ellipsoids, as defined by the positioning269

VC matrices, of the PSs [9]. For each PS, the positioning270

uncertainty in the local reference frame (East, North, and271

Up/Height) is given by272

Qenh = R3×3 · Qrac · RT
3×3 =

⎡
⎣

σ 2
e σ 2

en σ 2
eh

σ 2
en σ 2

n σ 2
nh

σ 2
eh σ 2

nh σ 2
h

⎤
⎦ (3)273

where R is the rotation matrix from radar geometry to local274

reference frame, Qrac is the positioning VC matrix in 3-D275

radar geometry with diagonal component variances (σ 2
r , σ 2

a ,276

and σ 2
c ) in range, azimuth, and cross range, the diagonal277

(σ 2
e , σ 2

n , and σ 2
h ) and nondiagonal (σ 2

en, σ
2
eh, and σ 2

nh) are the278

variances and covariances in east, north, and up coordinates.279

For each PS, from the eigenvalues of Qenh, a 3-D error280

ellipsoid is drawn with the estimated position as its center.281

The semiaxis lengths of the ellipsoid are described by the282

Fig. 7. PS identified in TerraSAR-X data stack overlaid on TOP10NL map.
TOP10NL is the digital topographic base file of the Land Registry, the most
detailed product within the basic registration topography. Colors: estimated
PS heights (blue-low; red-high).

eigenvalues of Qenh, which are σ 2
r , σ 2

a , and σ 2
c . The shape of 283

ellipsoid is derived from the ratio of their axis lengths, given 284

by (1/γ1 /γ2), where γ1 = σa · σ−1
r and γ2 = σc · σ−1

r . The 285

orientation of ellipsoid is dependent on the local incidence 286

angle of the radar beam at the PSs. 287

Fig. 3 illustrates the matching of an SPS with a PS based 288

on the 3-D error ellipsoid. The position uncertainty of a 289

PS is illustrated by 3-D error ellipsoid with 0.01 level of 290

significance. The PS is matched to the corresponding SPS, 291

which has to be inside the error ellipsoid. 292

As part of the matching process, it is necessary to consider 293

and remove potential systematic positioning errors. The sys- 294

tematic errors may be the result of an oversimplified geometry 295

(e.g., the already mentioned range invariance) or errors in the 296

knowledge of the acquisition SAR geometry. 297

A fine coregistration is performed using the iterative closest 298

point (ICP) algorithm [35], [36], which minimizes the sum of 299

the weighted Euclidean distance between SPSs and PSs by 300

least square estimation in an iterative way. Each iteration of 301

the 3-D error ellipsoid-based ICP includes two steps: matching 302

pairs of SPS and PSs based on the 3-D error ellipsoid; and 303

finding the transformation that minimizes the weighted mean 304

squares distance between pairs of points. The transformation 305

results are applied to the point cloud of PSs, thereby changing 306

the correspondence. 307

D. Simulation Assessment 308

A quantitative evaluation of the matching between the PS 309

and the SPS is given by the confusion matrix M described 310

in Table II. Three performance ratios are considered as follows. 311
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Fig. 8. (a) Overview of the used 3-D city model, (b) closer look on the LOD1 variant of the data set, and (c) its more detailed (LOD2) counterpart including
roof shapes. Source of data: BGT, AHN, and City of Rotterdam.

Fig. 9. (a) Point scatterers simulated based on the model of LOD1 with color represents height. (b) Point scatterers simulated based on the model of
LOD2 with color represents height. The background image is TOP10NL map.

1) True Positive Rate (TPR): The ratio of the PSs that312

are matched to SPSs, with regards to the total number313

of PSs.314

2) False Negative Rate (FNR): The ratio of the 315

PSs that have not been matched to an SPS, 316

with regards to the total number of PSs, 317
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TABLE II

CONFUSION MATRIX M BETWEEN SPS AND PS

also known as miss rate. For FNR, we have318

FNR = 1 − TPR.319

3) False Positive Rate (FPR): The ratio of the SPSs that320

have not been matched, with regards to the total number321

of SPSs.322

Hereby, the metric TPR describes the matching ratio between323

simulation points and PSs and is the primary evaluation indi-324

cator of simulation scatterers. FPR also an important indicator325

for describing the ratio of redundant simulation points.326

Note that the PS or SPS selection criteria will have an327

impact on the performance metrics. For example, a low ampli-328

tude dispersion threshold may lead to selecting less actual329

point scatterers and lead to a higher FPR. Since the final330

goal of our research is to improve our capability to analyze331

deformation signals, we focus on the group of PSs that are332

deemed reliable. PSs are chosen with an amplitude dispersion333

threshold set to 0.45 and further checked based on network334

phase consistency [37]. Here, SPSs are scatterers predicted335

by the simulator based on the geometry. Therefore, the final336

number of PSs is less than the SPSs from the simulator because337

we eliminated many points during the PSI processing, which338

increases the FPR.339

E. Work Flow340

The flowchart shown in Fig 4 outlines the work flow of341

this paper, which consists basically of three parts: generation342

of simulation points, detection of PSs, and the matching of343

two point cloud sets. The generation of simulation points344

consists of scene modeling, signals detection with Pov-Ray,345

and selection of SPSs. The SAR data stack is processed with346

the Delft implementation of PSI (DePSI) [37], which is based347

on the Delft framework of geodetic estimation, testing, and348

quality control. DePSI detects PS with consistent reflection349

properties over time as input for time series deformation and350

height estimation. Then, matching of two point cloud sets is351

carried by ICP based on the 3-D error ellipsoid.352

RaySAR is not demanding in terms of computational353

resources. It is built on POV-ray, an open source tool that traces354

rays in the reverse direction. In this paper, the calculation355

of 48 million contribution signals took about 10 min on a356

four-core workstation with 16 GB of RAM.357

III. EXPERIMENT358

A. Test Site and Data359

The test area is located southeast of Rotterdam Central360

Station in the city of Rotterdam, the Netherlands. The size of361

Fig. 10. Height profile of PSs, SPSs from LOD1 and LOD2, in the box
indicated in Fig. 7 along the x-axis.

TABLE III

BASIC PARAMETERS OF TERRASAR-X DATA STACK

the area of interest (AoI) is around 1×0.5 km2. Fig. 5 shows an 362

overview of the test site, and its orientation with respect to the 363

trajectory of TerraSAR-X. 49 TerraSAR-X strip-mode images 364

are obtained from January 19, 2014 to February 25, 2017. 365

Table III illustrates the basic parameters of TerraSAR-X data. 366

Fig. 2(e) is the mean intensity map of 49 TerraSAR-X images 367

over the AoI. 368

Fig. 6 shows a polar histogram describing the orien- 369

tation of the streets within the AOI calculated based on 370

OpenStreetMap [38]. The direction of each bar represents the 371

compass bearings of the streets and its length indicates the 372

relative frequency of streets with those bearings. In Fig. 6, 373

two main orthogonal directions can be identified, one at about 374

336◦ (red bars), and another at about 60◦ (cyan). 375

The results of the PSI analysis are illustrated in Fig. 7: 376

2290 points are selected as PS in the AoI. The results 377

are projected in the Dutch National Reference System 378
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Fig. 11. Correspondence between SPSs, shown as solid circles color-coded by bounce level, and matched PSs, shown as empty circles. (a) Left and (b) right
correspond to simulations using the LOD1 and LOD2 models, respectively.

Rijksdriehoeksstelsel (RD) in Dutch and vertical Normaal379

Amsterdams Peil in Dutch reference system. The axes shown380

in Fig. 7 show X (RD) and Y (RD) in meters, in East and North381

directions, respectively. The estimated heights are indicated by382

colors, showing some higher buildings in the northwest and383

northeast corner of the AoI, which can be found in Fig. 5.384

Two 3-D city models with different LODs were employed385

to simulate scatterers using RaySAR. Fig.8 displays the386

3-D models at LOD1 and LOD2 of the AoI. In LOD1 model,387

buildings are represented as boxes with flat roof structures388

[Fig. 8(b)], opposed to buildings in LOD2 (Fig. 8c), which389

have differentiated roof structures with varying heights, pro-390

viding a more realistic representation of the reality.391

From the enlarged partial picture of the LOD1 model392

[Fig. 8(b)] and the LOD2 model [Fig. 8(c)], it is clear that393

buildings in LOD2 include many different parts with varying394

roof shapes and heights. Data sets with LOD1 and LOD2 are395

the most common instance, in practice, because it is possible to396

obtain them automatically, e.g., from LiDAR data by automatic397

building reconstruction [33].398

B. Simulated Point Scatterer399

POV-Ray/RaySAR detects all contributing signals within400

the AoI. The total number of received signals from the401

LOD1 and LOD2 models is about 50 million. We detect402

Fig. 12. Histograms of simulation points from LOD1 model and LOD2
model in double, triple, fourfold, and fivefold bounce. The X-axis is
LOD1 and LOD2. The Y -axis is the count numbers from 0 to 2500. There
were 742 and 799 double-bounce signals from LOD1 and LOD2 models.
Among these signals, 6% and 12% points were linked to the PSs. Likewise,
for triple-bounce signals, and fourfold-bounce signals and fivefold-bounce
signals.

potential point scatterers and consider these as signals that 403

exhibit the characteristics of PS (I > 0, b > 1, and f = 1) 404

from the contribution signals. 405
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Fig. 13. Number of matched PSs as a function of the standard deviation of
the disturbance added to the position of the simulated scatterers. The rapid
decrease in matched pairs supports the assumption that the vast majority of
matches is correct.

Fig. 14. Marched and unmatched PSs. A-labeled area: new building absent
in the LOD2 model. B-labeled area: green-area free of buildings, where the
PPs correspond to urban structures not included in the model. C-labeled areas:
examples of predicted PSs at the linear structures of buildings and identified
as triple bounce.

We identify 2770 potential point scatterers from the model406

at LOD1, as described in Section II. Fig. 9(a) shows the407

distribution of simulated points in the LOD1 model. The colors408

TABLE IV

CONFUSION MATRIX BETWEEN MEASURED PSS AND PREDICTED
SCATTERERS BASED ON LOD1 MODEL AND LOD2 MODEL

indicate the height of simulation points. In comparison to 409

the real radar results shown in Fig. 7, the height values 410

of the SPSs is mainly below 15 m. The simulation points 411

include 742 double bounces, 890 triple bounces, 590 fourfold 412

bounces, and 548 fivefold bounces [see the pie chart in the top 413

right of Fig. 9(a)]. Most signals correspond to triple-bounce 414

scatterers, followed by double-bounce ones. 415

Using the LOD2 model results in 4390 potential point 416

scatterers, as illustrated [see Fig. 9(b)]. Compared to the 417

real PS data, see Fig.9(b), more points, and with higher 418

heights are detected. Spatial distribution in height values of 419

SPSs from the LOD2 model is similar to the measured PS 420

[see Fig. 9(b)]. PSs with higher heights are clustered in the 421

northeast corner of the test site, which is also predicted by 422

the simulation. The height of simulation points in the corner 423

of the northwest is lower than PSs shown in Fig. 7 because 424

the buildings in the corner of the northwest are missed in 425

the LOD2 model(equal to LOD1). The Google Earth image 426

shown in Fig. 5 also indicate the newly built in the corner 427

of the northwest. Simulated points from the LOD2 model 428

include 799 double bounce, 2267 triple bounce, 632 fourfold 429

bounce, and 692 fivefold bounce [see the pie chart in the top 430

right of Fig. 9(b)]. More than half of the points are the triple 431

bounces. 432

Fig. 10 shows the height profile of PSs, the SPSs of 433

LOD1 and LOD2, in the box indicated in Fig. 7 along the 434

x-axis. The height profile of PSs and SPSs from LOD2 is 435

similar while the SPSs from LOD1 missed points with higher 436

height. 437

C. Linking of PSs and SPSs 438

Following Section II-C, PSs (Fig. 7) were matched to the 439

point scatterers predicted using the LOD1 [Fig. 9(a)] and 440

LOD2 [Fig. 9(b)] models. Fig. 11(a) and (b) shows the spatial 441

distribution of PSs and the corresponding SPSs. The dark 442

circle indicates the location of PSs that have been matched 443

to SPSs. The dots represent the corresponding SPSs, color 444

coded by bounce level (see legend on the figure). 445

Table IV shows the confusion matrix between SPSs based 446

on LOD1 and LOD2 models and PSs. Scatterers from the 447

model of LOD1 predicted 10% PSs correctly (correspondingly, 448

around 90% PSs were missed). The 92% simulation points 449

have not been matched to a PS. By using the LO2 model, 450

the amount of PSs matched with simulated scatterers increased 451

to 37%. Naturally, the number of predicted point targets not 452

matched to PSs also increased. However, it is noteworthy, that, 453
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Fig. 15. Rendering of matched scatterers overlaid on the LOD2 city model.

in relative terms, the number of scatterers matched to PSs grew454

much stronger than the overall amount of predicted scatterers.455

Moreover, the ratio of simulation points that have not match456

to a PS is decreased to 80%.457

Fig. 12 shows a quantitative overview of the number of458

point scatterers predicted for the LOD1 and LOD2 models,459

segregated by bounce level. In each of the bars, it is also460

indicated which fraction of the SPSs was matched to a PS. Not461

surprisingly, the increase in the LOD leads to a very strong462

growth (close to a factor 3) of the predicted triple-bounce463

scatterers. The fraction of predicted triple-bounce scatterers464

matched to actual PSs increased from 11% to 16%.465

For the other bounce levels considered, the increase in466

predicted scatterers was quite modest. However, the fraction467

of these scatterers that was matched to PSs increased by a468

factor two for double-bounce scatterers, a factor three for469

fourfold-bounce scatterers, and by more than a factor six for470

fivefold-bounce scatterers.471

The total number of matched scatterers increased from472

223 in the LOD1 case to 842 with the LOD2 model.473

Triple-bounce scatterers, 100 and 358, respectively, remained474

dominant. However, 226 of the LOD2-model scatter-475

ers, or about one-fourth of the total, corresponded to476

fivefold-bounce signals.477

The number of predicted point scatterers for the478

LOD1 (2770) and LOD2 (4390) models was larger than the479

number of detected PSs. This can be explained by considering480

that PS selection is done based on the amplitude stability of481

individual resolution cells in the interferometric data stack.482

Typically, the amplitude will be stable if a single pointlike483

scatterer is a dominant factor in the radar echo for that484

resolution cell. Thus, even if we know for sure that we have a485

stable pointlike target within our resolution cell, as this does486

not exclude contributions from other scattering mechanisms,487

it does not imply that it will result in a PS. Moreover, as stated488

in Section II-D, the selection criterion also contributes to the489

fact that the number of simulation points was larger than the490

number of PSs.491

D. Target Matching Validation 492

A potential pitfall in the matching process is that if the 493

local density of either PSs or SPSs is higher, the amount of 494

random matches increases as well (false positives). However, 495

the amount of random matches should be insensitive to their 496

exact position. Hence, while some pairs would be disassoci- 497

ated roughly the same number is expected to appear. 498

Following this reasoning, we added random disturbances 499

with Gaussian distribution to the coordinates of the simulated 500

points and performed the PS matching, following the proce- 501

dure discussed in Section II. In order to consider the worst 502

case, the random disturbances are aligned along the dominant 503

orientation of the buildings. The x-, y-, and z-coordinates of 504

the simulated points with random disturbances are given by 505

x̃sim = xsim + �x 506

ỹsim = ysim + �y 507

z̃sim = hsim + �z (4) 508

where xsim, ysim, and zsim are the original coordinates of 509

the SPSs, �x = n1 · sin(t), �y = n1 · cos(t), and �z = n2. 510

The angle t = 336◦ is the main orientation angle of the 511

streets and buildings as presented in Fig. 6. n1 and n2 are 512

the zero-mean Gaussian-distributed random disturbances with 513

a standard derivation of σ meter. 514

Fig. 13 shows the number of matched PSs as a function 515

of σ . The number of matched pairs decreases rapidly as the 516

position disturbance σ increases. Introducing a position error 517

with σ = 4 m, which is close to the spatial resolution of 518

TerraSAR-X in stripmap mode, reduces the amount of matches 519

by a factor 4 while a further increase in the positioning error 520

has only a limited effect on decreasing the amount of matches. 521

As less than 10% of the number of matches remains if the 522

positioning error is increased to an unrealistically high value, 523

this analysis suggests that the vast majority of matched pairs 524

is physically correct. 525

Fig. 14 shows all PSs detected in the AoI, with iden- 526

tified PSs represented by green triangles and unidentified 527
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PSs indicated by magenta plus signs. The area labeled A,528

where most PSs were missed by the simulation, correspond529

to a newly built building not present in the LOD2 model.530

Moreover, the building model did not include the public531

facilities, like the flower boxes in the area labeled B. Most532

predicted PSs are located at linear structures of buildings and533

identified as triple bounce, such as the points in the area534

labeled C. Those scatterers originated from the roof and ghost535

corners, e.g., the corner of the wall and the ground, which is536

in agreement with the previous research [28].537

Simulation points have precise locations in the model. The538

object snap of PSs can be achieved by the correlation of PSs539

and SPSs. Fig. 15 displays an overview of matched simulation540

points in the LOD2 model. The supplementary file of this541

paper includes a movie that is a 360◦ view of model and542

simulation points that matched to measured PSs.543

IV. CONCLUSION544

PSI can yield deformation with an accuracy of millimeter545

order by exploiting PSs. As discussed in the Introduction, two546

key issues in PSI are the precise geolocation of the scatterers in547

the 3-D space, and the association of the scatterers to specific548

physical features. In this paper, we have investigated the use of549

ray-tracing tools to address the second issue by illuminating550

3-D city models with different levels of detail (LOD1 and551

LOD2 according to the CityGML standard). As expected,552

the results obtained depend strongly on the LOD of the553

3-D model given as input to the ray-tracing tool.554

For our area of study in Rotterdam, we were able to555

associate 37% of the PSs identified in a stack of TerraSAR-X556

data with simulated scatterers using a LOD2 city model.557

Using LOD1 models not only reduced the fraction of identified558

PSs to around 10% but also put most of them on the ground.559

We did not have models for real cities with a higher LOD.560

Nevertheless, from the observation of high-resolution SAR561

data, it is generally understood that many pointlike scatterers562

result from features, such as windows, which are not captured563

in LOD2. It is expected that using higher LOD models might564

further increase the fraction of identified scatterers.565

Considering the details of the results, it worth noting that566

roughly one-fourth of the identified PSs were associated with567

fivefold bounces. These types of scatterers cannot be linked568

to physical objects by simply intersecting their location with569

the 3-D models.570

LOD2 models can be produced automatically from, for571

example, laser-scanning data. Therefore, it should be expected572

that the LOD2 city models may become commonplace in the573

near future. The positive results of this paper underpin the574

usefulness of integrating this information in the PS processing.575

Associating PSs to physical features is a necessary step if we576

want to fully exploit the InSAR signal of individual scatterers,577

for example, to detect deformation of specific sections of a578

building. In this paper, we have shown that this association579

can be made. Each simulated PS can be traced back one or580

multiple reflections on specific locations of the 3-D model.581

However, with the tools used, the bookkeeping necessary582

to trace scatterers back to individual features in the model583

(specific walls, roofs, and floors) is still missing. A logical next 584

step in our research is to implement this bookkeeping, which 585

includes identifying practical approaches to label features and, 586

in particular, visualizing the results. 587

Another important intermediate objective is to investigate, 588

with the support of simulations, how different deformation 589

sources translate to individual PS deformation signals. For 590

example, in the case of a fivefold-bounce scatterer, structural 591

deformation may produce a signal with the opposite sign than 592

for a triple-bounce scatterer. As already indicated, the long- 593

term goal of the work presented is to improve the interpreta- 594

tion of deformation signals in complex environments, where 595

the observed deformation signals may have different causes. 596

This relies on the anticipated increased availability of high 597

resolution city models. 598
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