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Hyperspectral Classification Based on Lightweight
3-D-CNN With Transfer Learning

Haokui Zhang , Ying Li , Yenan Jiang, Peng Wang, Qiang Shen , and Chunhua Shen

Abstract— Recently, hyperspectral image (HSI) classification
approaches based on deep learning (DL) models have been
proposed and shown promising performance. However, because
of very limited available training samples and massive model
parameters, DL methods may suffer from overfitting. In this
paper, we propose an end-to-end 3-D lightweight convolutional
neural network (CNN) (abbreviated as 3-D-LWNet) for limited
samples-based HSI classification. Compared with conventional
3-D-CNN models, the proposed 3-D-LWNet has a deeper network
structure, less parameters, and lower computation cost, resulting
in better classification performance. To further alleviate the small
sample problem, we also propose two transfer learning strategies:
1) cross-sensor strategy, in which we pretrain a 3-D model in the
source HSI data sets containing a greater number of labeled
samples and then transfer it to the target HSI data sets and
2) cross-modal strategy, in which we pretrain a 3-D model in the
2-D RGB image data sets containing a large number of samples
and then transfer it to the target HSI data sets. In contrast
to previous approaches, we do not impose restrictions over the
source data sets, in which they do not have to be collected by the
same sensors as the target data sets. Experiments on three public
HSI data sets captured by different sensors demonstrate that our
model achieves competitive performance for HSI classification
compared to several state-of-the-art methods.

Index Terms— 3-D lightweight convolutional network
(3-D-LWNet), deep learning (DL), hyperspectral classification,
transfer learning.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) typically contain
abundant spectral and spatial information, offering a

significant opportunity for land-cover classification. Rich spec-
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tral and spatial information is particularly beneficial to dis-
criminate different objects of interest and also increases the
dimensionality of samples that may affect the classification
accuracy and efficiency [1]–[3]. In order to avoid this problem,
effective and efficient feature extraction methods are necessary.
However, HSIs are more complex than RGB images; there-
fore, performing HSI feature extraction is still a challenging
task [4], [5].

In the early days of HSI classification, feature extraction
focused only on spectral information. Approaches exploiting
merely the spectral information fail to capture important
spatial variability, generally resulting in poor performance.
In fact, in HSIs, different objects may exhibit similar spectral
features, whereas the same objects in different locations may
emerge with different spectral features. For such objects, it is
very difficult to classify with the use of spectral features alone.

To improve classification performance, recent studies have
recommended combining spectral information with spatial
information to extract spectral–spatial features. There are
two main spectral–spatial feature extraction strategies. The
first exploits the spectral and spatial contextual features
separately [6], [7] and the second strategy works by fusing
spatial information with spectral features to produce joint
features [8]. For example, 3-D scattering wavelet filters [9]
generated at different scales and frequencies have been applied
on hyperspectral data to extract spectral–spatial features. Such
a combination of spectral information and spatial information
further improves the classification accuracy [6]–[9].

Most classification approaches are, however, based on hand-
crafted features and conventional learning models. First of
all, handcrafted features are highly dependent on domain
knowledge. Second, it is difficult to address the requirement of
considering all the details embedded in all forms of real data
using predesigned handcrafted features. To further improve the
accuracy of HSI classification, more robust features and more
powerful models are necessary.

Since 2012, when AlexNet [10] won the ImageNet
classification challenge, deep learning (DL) has become a hot
topic in computer vision including image classification [11],
object detection [12], [13], tracking [14], and semantic
segmentation [15]. One of the most significant advantages of
DL is that it allows the extraction of efficient deep features
from raw images in an end-to-end manner. Very recently,
DL models have been introduced into HSI classification,
leading to significant achievements [16]–[19]. For instance,
Chen et al. [16], [17] first applied unsupervised deep feature
learning, including stacked autoencoder (SAE) and deep belief
network (DBN), for spectral–spatial feature extraction and
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classification. Supervised convolutional neural network (CNN)
models, such as 2-D-CNN [18], 3-D-CNN [19], [20], and
ResNet [21], [22], have been successfully exploited to extract
deep spectral–spatial features and show the state-of-the-art
performance.

Unlike natural image classification, HSI classification is a
classification task involving 3-D data. As such, in HSI, the data
structure is more complex but the number of labeled samples
may be very limited. Almost all advanced CNN models such
as ResNet [23] and MobileNet [24] are 2-D models, while the
applications of which are focused on 2-D visual tasks. It is
practically difficult to employ such 2-D models to perform
3-D HSI classification without any appropriate adjustments.
Another problem is the number of available training samples.
With the development of CNN techniques, the model
scales (especially the depths ) increase rapidly. For instance,
the depth of ResNet has increased to more than 1000 convolu-
tion layers. A large number of training samples are necessary
in order to train such large scale networks. Without enough
sufficient training samples, a very deep model that has a
powerful representation capacity may suffer from overfitting.

For natural image classification, the number of labeled
samples in the widely used data sets may vary from tens of
thousands to tens of millions, such as ImageNet, VOC2007,
VOC2012, and COCO data sets. For HSI classification,
the number of available training samples in the commonly
studied HSI data sets still varies from thousands to tens of
thousands, such as Indian Pines and Pavia University scene
data sets. Recent experimental results have shown that deep
models generally perform better than shallow models. How-
ever, because of limited training samples, the CNN models
employed in HSI classification typically consist of only less
than five convolution layers. In other words, it is challenging
to apply very deep CNN models to 3-D HSI classification with
limited training samples, thereby restricting the achievement
of the full potential of CNN models.

In this paper, we propose a deep 3-D lightweight convo-
lutional network (3-D-LWNet) for HSI classification. Unlike
conventional 3-D-CNN models in the HSI literature (see [19],
[20]), which only use three 3-D convolution layers, the pro-

posed 3-D-LWNet can employ tens of 3-D convolution layers.
This development is more in line with the current trend of
building DL models. In the meantime, the parameters involved
within the 3-D-LWNet are much fewer than those of conven-
tional 3-D-CNNs, which is more beneficial for problems with
limited samples. In addition, to further alleviate the problem
of HSI having limited training samples, we also adopt two
transfer learning strategies in our framework: 1) pretraining a
3-D model in the HSI data sets that contain a relatively larger
number of training samples and, subsequently, transferring
it to suit the target HSI data sets and 2) pretraining a 3-
D model in the natural image data sets that contain a large
number of 2-D image samples and then transferring it to fit
the target HSI data sets. We compare our framework with
the aforementioned state-of-the-art CNN-based techniques on
three real HSI data sets. Experimental results demonstrate
that the proposed approach outperforms those conventional
3-D-CNN-based HSI classification methods.

The work of this paper focuses on employing deep
3-D-CNN to HSI classification under the condition of limited
training samples. The proposed 3-D-LWNet is combined with
transfer learning and achieves state-of-the-art performance in
terms of classification accuracy. The main contributions of this
paper are outlined as follows.

1) To the best of our knowledge, this is the first that
3-D-CNN consisting of tens of convolution layers is
introduced into HSI classification.

2) The proposed 3-D-LWNet reduces the number of para-
meters required by the network for HSI classifica-
tion with its parameters and computation cost being
much less than those required by 3-D convolutional
neural network and logistic regression (3-D-CNN-LR)
(which represents the state-of-the-art 3-D-CNN-based
HSI classification models). Interestingly, unlike natural
RGB image classification where the reduction of net-
work parameters and computation cost usually reduces
the classification accuracy (e.g., MobileNet [24]), in our
work, 3-D-LWNet greatly reduces network parame-
ters and computation while improving classification
accuracy.

3) In order to address the overfitting problem caused by
limited training samples, transfer learning is adopted.
Combined with 3-D-LWNet, two alternative transfer
learning strategies are proposed: cross-sensor strategy
and cross-modal strategy. With the former, we transfer
3-D-LWNet between different HSI data sets captured
by the same sensor or different sensors. This forms a
sharp contrast with the previous work that only transfers
models between HSI data sets acquired by the same
sensor, enabling model transfer between HSI data sets
captured by different sensors for HSI classification, for
the first time. The latter strategy has never been previ-
ously attempted, pretraining a 3-D-CNN on 2-D RGB
natural image data sets and transferring it to suit 3-D
HSI data sets through fine tuning, resulting in promising
classification performance.

The remainder of this paper is organized as follows.
Section II provides an introduction to the related work.
Section III presents the details of our frameworks including
the structure of 3-D-LWNet and the implementation details of
transfer learning. We describe the data sets and experimen-
tal setups, discuss the experimental results, and empirically
compare the proposed method with other 3-D-CNN-based HSI
classification methods in Section IV. Finally, conclusions are
presented in Section V with future work pointed out.

II. RELATED WORK

A. DL for HSI Classification

Generally speaking, DL consists of four basic types of
model, including SAE, DBN, CNN, and recurrent neural
network (RNN). All four DL model types have found their
applications in HSI classification literature.

An initial attempt can be found in [16], where Chen et al.
adopted an SAE to extract spectral features and spatial fea-
tures and then joint them to form spectral–spatial features.
Spectral information does not require any preprocessing, but
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spatial information has to be flattened to a 1-D vector, as SAE
can only handle 1-D input. Following this original work,
the use of a DBN instead of SAE is reported in [17]. Similarly,
Ma et al. [25] employed an SAE to learn effective features and
added a relative distance prior in the subsequent fine-tuning
process. Both SAE and DBN can extract deep features, but
SAE and DBN cannot extract the spatial information effi-
ciently because they need to flatten the spatial information into
1-D vectors, which does not retain the same spatial information
that the original image may contain.

Compared to SAE and DBN, CNNs have been employed
to HSI classification only recently. However, statistically,
the number of papers regarding the use of CNNs for HSI
classification grows fastest and the performance of CNNs
is generally better. There are three main types of CNN:
1-D-CNN, 2-D-CNN, and 3-D-CNN. Running 1-D-CNN-
based HSI classification, the kernels of a convolution layer
convolve the input samples along the spectral dimension.
Hu et al. [26] carried out HSI classification with 1-D-CNN
containing four layers: one convolution layer followed by one
pooling layer and two fully connected layers. Mei et al. [27]
exploited a similar 1-D-CNN to classify HSI. For 2-D-
CNN-based HSI classification approaches, HSIs are always
compressed via a certain dimension reduction algorithm, such
as principal component analysis (PCA) [28] and independent
component analysis [29], and then convolved with 2-D
kernels. Makantasis et al. [30] exploited randomized PCA to
condense the spectral dimensionality of the entire HSI first,
followed by applying a 2-D-CNN to extract deep features
from the compressed HSI. In [31], the top three principal
components are extracted from the raw HSI by the use of
PCA, with the condensed HSI put through a 2-D-CNN to
extract spatial features. As HSIs are 3-D data, it is reasonable
to expand 2-D-CNN to 3-D-CNN for HSI classification. Both
in [19] and [20], 3-D-CNNs are directly employed to learn
deep spectral–spatial features. In particular, the former utilizes
a large-scale 3-D-CNN that takes cubes of 27 × 27 in space
size as input, whereas the latter uses a much more compact
3-D-CNN with input cubes of 5 × 5 in size. Zhong et al. [21]
employed spectral and spatial residual blocks consecutively
to learn spectral and spatial representations separately.

RNN is mainly designed to handle sequential data. HSIs
can be seen as a set of orderly and continuing spectral
sequences. Therefore, the RNN models have been recently
introduced into HSI classification by analyzing HSI data
in spectral sequences. Compared with HSI classification
methods based on SAE, DBN, or CNN, approaches based
on RNNs are relatively few. Mou et al. [32] attempted
to use RNN to capture the sequential property of a pixel
vector of hyperspectral data to perform HSI classification.
Wu and Prasad [33] proposed a convolutional RNN for HSI
classification, consisting of a few convolution layers followed
by recurrent layers. As can be seen later, these approaches
are all different from what we are proposing in this paper.

B. CNN Architectures

Since AlexNet was proposed in 2012, a number of effi-
cient DL models have been proposed. Among all these,
four models GoogleNet [11], ResNet [23], DenseNet [34],

and MobileNet [24] are related to our model proposed in the
following, and they also show the development trends of DL,
deeper in depth while lower in computation cost. The first one
of these is the most basic of so-called Inception series, ResNet
and DenseNet are famous for their extreme depth, and the last
one is well known for its low computation cost.

1) GoogleNet: It consists of multiple inception modules,
each of which contains four different convolution paths, and
it is the most basic model of the Inception series [11]. Based
on GoogleNet, Ioffe and Szegedy [35] proposed Inception-V1,
which introduced batch normalization into inception mod-
ules to overcome internal covariate shifts. Batch normal-
ization allows for the use of much higher learning rates
and offers more flexibility regarding model initialization.
As such, it almost has become a necessary layer for the
network models proposed since 2015. Szegedy et al. [36]
also further developed GoogleNet and proposed Inception-V2
and Inception-V3. In Inception-V2, they adopted batch nor-
malization, factorization, and made other additional minor
changes. Szegedy et al. [37] improved the previous Inception
modules and proposed Inception-V4 and Inception-ResNet,
where shortcut connections are also employed in Inception
modules.

2) ResNet: It employs shortcut connections to overcome the
degradation problem, where accuracy gets saturated and then
degrades rapidly with the network depth increasing. In addi-
tion, in order to reduce the time complexity, He et al. [23]
proposed a novel structure named “bottleneck.” Based on
shortcut connection and the newly introduced bottleneck lay-
ers, He et al. [23] increased the depth of the network to
more than 1000 layers and obtained excellent performance in
image classification. In addition, ResNet has also been used
for object detection, such as the work of faster region-based
convolutional neural network and you only look once.

3) DenseNet: It connects each layer to every other layer
in a feedforward fashion. As with ResNet that builds the
whole network by stacking several residual units, DenseNet
consists of multiple dense blocks. In an L-layer dense block,
there are L (L + 1)/2 direct connections. Most recently,
Wang et al. [52] have proposed a variant of DenseNet archi-
tecture called PeleeNet that follows the innovative connectivity
pattern of DenseNet while adopting two-way dense layers to
obtain different receptive fields.

4) MobileNet: It employs depthwise separable convolutions
to reduce the computation in the network and applies pointwise
convolutions to combine the features of separable channels.
Based on MobileNet-V1, MobileNet-V2 was also proposed to
employ inverted residuals and linear bottlenecks, leading to
further improved performance [24], [38].

C. Transfer Learning

DL models have already achieved significant successes in
a range of fields, including classification, detection, tracking,
and so on. However, many models work well only with a large
volume of training samples. In particular, for classification and
recognition, the success is based on both advanced models and
a large number of available training samples. Lack of sufficient
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Fig. 1. 3-D-LWNet-based HSI classification framework. The first step is sample extraction, where S × S × L-sized sample is extracted from a neighborhood
window centered around the target pixel. Once samples are extracted from raw HSI, they are put through the 3-D-LWNet to extract deep spectral–spatial
features and to calculate classification scores.

training samples may lead to a poor performance. In such
cases, it would be helpful if transfer learning is adopted.

Transfer learning focuses on storing knowledge gained
while solving one problem and applying it to a different but
related problem [39]. Broadly speaking, the goal of transfer
learning is to use training data from related tasks to aid
learning on a future problem of interest [40]. There are a
large number of transfer learning strategies that have been
proposed for different situations, including the learning of
small sets of relevant features that are shared across a variety
of tasks [41], [42]. In [41], when multiple classification tasks
and different labeled data sets have a common input space,
Jebara proposed a method to compute a common feature
selection and configuration of kernel for multiple support
vector machines trained on different yet interrelated data
sets. Argyriou et al. [42] presented a method for learning
a low-dimensional representation that is shared across a set
of multiple related tasks. In the work on learning intermedi-
ate representations, Ando and Zhang [43] reported a general
framework for learning predictive functional structures from
multiple tasks. Raina et al. [44] proposed an algorithm for
constructing the covariance matrix for an informative Gaussian
prior. Based on boosted decision stumps, Torralba et al. [45]
presented a multitask learning procedure to find common
features that can be shared across the classes.

A common strategy of transfer learning is pretraining a
model on one data set, which consists of a large number
of labeled samples, such as ImageNet, and then transferring
lightweight the pretrained model to the target data set to fine-
tune. For data sets that contain very limited training samples,
the use of transfer learning is extremely important, especially
when the adopted model is deep CNN, which generally has
a massive number of parameters. As HSI data sets always
contain very limited training samples, transfer learning can
play an important role. An early attempt to address this issue
can be found in [46], where Yang et al. combined transfer
learning with a two-branch CNN to learn the deep features
from HSIs.

III. PROPOSED METHOD

As indicated previously, DL models have been intro-
duced into HSI classification and obtained good performance.
However, HSI classification approaches based on DL still

have room for improvement. The outstanding performance
of ResNet proves that depth is very important for DL-based
image processing methods. Inspired by this, we developed a
very deep 3-D convolutional network for HSI classification.
In this section, we give the details of the proposed network.

A. 3-D-LWNet-Based Classification Framework

The framework of the HSI classification is shown in Fig. 1.
It consists of three parts, including samples extraction,
3-D-LWNet, and classification result. The structure of HSI
is 3-D, so it is intuitive to implement a 3-D model for
classification. In sample extraction, we extract S × S ×
L-sized cube as a sample and each cube is extracted from
a neighborhood window centered around a pixel. S and L are
the spatial size and the number of spectral bands, respectively.
The label of each sample is that of the pixel located in the
center of this cube.

1) 3-D-LWNet: Once 3-D samples are extracted from HSI,
we feed them into the 3-D-LWNet model that is itself com-
posed of three parts to obtain the classification scores.

1) In part one, samples are grouped in batches of size
b (where each batch is [b, 1, L, S, S]-sized) and put
through the first convolution layer, the batch normal-
ization layer with rectified linear unit (ReLU) function,
and 3-D max pooling layer. In the first convolution
layer, the input batch is convolved with 32 8 × 3 × 3-
sized 3-D kernels without padding. The output is a
b × 32 × (L − 7) × (S − 2) × (S − 2)-sized volume.
After applying batch normalization and ReLU function,
the b ×32 × (L − 7)× (S− 2)× (S − 2)-sized volume is
sent to the first 3-D max pooling layer with 3 × 3 × 3-
size kernel, stride of 2. The output of 3-D max pooling
is b × 32 × �(L − 7)/2� × �(S − 2)/2� × �(S − 2)/2�-
sized volume, where “� �” represents the operation of
returning the ceiling of the input.

2) In part two, the output of 3-D max pooling is put through
eight LW units one by one. Note that the eight LW
units are divided into four groups, which are shown
in different colors in Fig. 1. The first group contains
one LW unit whose output has 32 channels. The second
consists of two units, with the output of each unit having
64 channels. As with the second group, the third has two
128 channel units. The last group has a single unit and
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the output of which is 256 channels. Instead of using a
pooling layer to reduce the size of features, convolution
layers with stride = 2 are adopted in the depthwise
convolution layers of the first unit within the last three
groups.

3) In the last part, the output volume with size b × 256 ×
�(L − 7/24)� × �(S − 2/24)� × �(S − 2/24)� is fed to
adaptive average pooling in order to adjust the size
of features to a fixed value. In this paper, we use
adaptive average pooling to average the features along
the space and spectrum. In fact, it is important to employ
an adaptive average pooling here. If we just flatten
the output of the last unit into a vector as for other
conventional structures, we would have to adjust the
dimensionality of every fully connected layer for each
HSI data set as different HSI data sets have different
band numbers. When pretraining a model in one HSI
data set and transferring it to other different HSI data
sets, this problem will become more severe. In this
paper, the output of adaptive average pooling is of size
b × 256 × 1 × 1 × 1, for any input size. Finally, we feed
the output of the adaptive average pooling into fully
connected layers and calculate category scores via the
action function log_softmax [47]. For a C-dimensional
input vector X = (x1, x2, . . . , xC ), the log_softmax
formulation can be simplified as

log_softmax(xi ) = log

⎛
⎝exi /

C∑
j=1

ex j

⎞
⎠ . (1)

For this paper, C denotes the number of categories.

2) Training Strategy: CNNs are learning models, and the
kernels of convolution layers and the weight matrix of each
fully connected layer in 3-D-LWNet both need to be trained.
We take negative log-likelihood as the loss function. In order
to avoid overfitting, we add an L2-regularization term to the
negative log-likelihood loss to restrict the sum of the squares
of the parameters to be small; the formula of which is

loss =
N∑

i=1

−scoreyi
i + λ‖θ‖2

2 (2)

where N is the number of samples, and yi is the label
of sample i . λ is weight decay that is used to control the
proportion of regularization item in loss function, which is
herein empirically set to 1e − 5, for any data sets, and θ
donates all of the parameters of the network. Note that a test of
adding a dropout layer, where the probability of an element to
be zeroed is set to 0.5, has shown that dropout layer does not
work very well in 3-D-LWNet. This is not surprising since
adding a dropout layer does not always lead to a positive
impact on the improvement of the classification performance.
Whether it helps depends on what structure a certain DL
network has. He et al. [23] also did not use dropout in ResNet.
The optimizer we adopt is stochastic gradient descent (SGD)
with momentum [10].

Fig. 2. Lightweight units. (a) Lightweight unit with stride = 2. As for
the case where the channel number of the output is doubled and stride = 2,
an average pooling layer is added with stride = 2, kernel size = 2, and a
pointwise convolution layer is also added onto the shortcut path to reduce the
space size and double the channel dimensionality to match the output of the
corresponding part. (b) Lightweight unit with pointwise convolution (abbre-
viated as PW conv) and depthwise convolution (abbreviated as DW conv).

B. Lightweight Unit

A large number of kernels (parameters) may be prone to
overfitting. To alleviate this problem, we take an approach
that takes the advantage of depthwise convolution, pointwise
convolution, batch normalization, and shortcut connection,
resulting in a proposed novel LW unit. The details of this LW
unit are shown in Fig. 2. From the top to bottom, the unit
contains a pointwise convolution layer (abbreviated as PW
conv in the figure), 3-D depthwise convolution layer with
3×3×3-size kernel (3×3×3 DW conv, for short), and another
pointwise convolution layer. Each of the first two convolution
layers is followed by a batch normalization layer and a
ReLU activation layer, sequentially. After the second pointwise
convolution layer, there is only one batch normalization layer.
In the add layer, the output features of the right path are
added to the features obtained from shortcut connection in an
elementwise manner. In the first pointwise convolution layer,
the number of channels is increased to t times that of the input
channels. The channel number of depthwise convolution layer
is the same as that of the first pointwise convolution layer. The
parameter t was set empirically. We tested [1/4, 1/2, 2, 4, 6]
and empirically chose t = 4 as a tradeoff between the perfor-
mance and parameter size. Assuming the same width, as com-
pared to the depthwise convolution layer, the conventional
convolution layer contains many more parameters. Therefore,
when we replace the conventional convolution layer with a
depthwise convolution layer, it is reasonable to increase the
width slightly. Compared with bottleneck, both the parameter
size and FLOPs of the LW unit are much less. For instance,
in D input channels structure, bottleneck has 32D2 parameters,
whereas LW unit has 8D2 + 108D parameters. For S × S ×
L-sized input, bottleneck requires 32SSL D2 FLOPs and LW
unit has SSD

(
8D2 + 108D

)
FLOPs.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 3. Transfer learning strategies. (a) Cross-sensor strategy. Pretraining 3-D-LWNet in the source HSI data set that consists of relatively more labeled
samples than the target HSI data set. Here, no constraints are imposed in that the source HSI data set has to be collected by the same sensor as the target
HSI data sets. (b) Cross-modal strategy. Pretraining 3-D-LWNet in the 2-D RGB image data set. Inflating the 2-D RGB images to 3-D cubes then pretraining
the 3-D-LWNet in the inflated data set. (c) Fine-tuning strategy. After 3-D-LWNet is pretrained, the entire model is transferred except fully connected layers
to the network built for the target HSI data set as initialization and then the transferred part and the fully connected layer are fine-tuned on the target HSI
data set.

There are two types of shortcut connection designed for
different situations. Regarding the case where the stride of
LW unit is 2 and the channel number of the output is doubled,
we add an average pooling layer with stride = 2, kernel size = 2
on the shortcut path to ensure that the output size of the
shortcut connection is the same as that of the second pointwise
convolution layer of the right path, and add a pointwise
convolution layer on the shortcut path to double the width
of the output of the shortcut connection. This is different
from what bottleneck does. In bottleneck, only a pointwise
convolution layer is added with stride = 2 on the shortcut
path, which is similar to downsampling and may possibly miss
important information. Fig. 2(b) shows another case, where
both channel number and size of the output (light blue box)
are the same as that of the input (yolk yellow box). In this
situation, we add nothing on the shortcut path, just operating
on elementwise addition instead.

C. Transfer Learning

In HSI, sample annotation is both time-consuming and
resource-consuming, so the number of labeled samples is
limited. In this paper, we adopt transfer learning to overcome
this problem. The flowchart is shown in Fig. 3.

In Fig. 3, we can see that there are three parts in this
system: two pretraining parts and one fine-tuning part. Here,
we introduce the transfer learning strategies in detail.

1) Cross-Sensor Strategy: Pretraining the model in the
source HSI data sets [Fig. 3(a)] consists of relatively
more labeled samples than the target HSI data sets and

then transferring the pretrained model to the target HSI
data sets to fine-tune [Fig. 3(c)]. There are two key
points that should be noticed.

a) The relationship between the source HSI and the
target HSI; ideally, we hope that the source HSI
data sets and the target HSI data sets are captured
by the same hyperspectral remote sensor. For HSIs,
this constraint is really onerous. Among the several
public HSI data sets, only two pairs of data sets can
meet this restriction. In this paper, we implement
the proposed approach without such a restriction.
To overcome the problem that the data sets cap-
tured by different sensors may have different num-
bers of spectral bands, adaptive average pooling is
added to the front of each fully connected layer to
adjust the dimensionality of the output features of
LW units to a fixed size.

b) The HSI data sets collected by different sen-
sors may have different spectral configurations.
We believe that knowledge learned from different
HSI data sets with different spectral configurations
can be transferred. This is supported by the obser-
vation that knowledge transferring between data
sets in different fields has been reported in [48].

2) Cross-Modal Strategy: Pretraining the model in a natural
RGB image data set [Fig. 3(b)] and then transferring
it to target HSIs for fine-tuning. As the strategy that
transferring classification models between HSI data sets
collected by different sensors has been shown to work,
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we go one step further here, that is, we transfer models
between data sets of different data modalities that exhibit
different data characteristics (namely, from natural RGB
image modality to HSI modality). Compared with HSI
data sets, natural RGB image data sets (e.g., ImageNet,
COCO, and CIFAR) have many more labeled samples.
The biggest problem for transfer learning strategy two is
dimensionality mismatch. There are two different ways
to resolve this problem: 1) pretraining a 2-D model in
a natural image data set and then inflating the model
to 3-D model and 2) inflating the 2-D natural images
to 3-D cubes and then pretraining the 3-D model on
inflated data sets. In this paper, we adopt the latter for
easy implementation. More specifically, we repeat each
m × n × 3-sized RGB image l times along the third
dimension to get the m × n × 3l-sized cubes. In this
paper, l is empirically set to 12.

3) Fine-Tuning Strategy: After the model is pretrained
via transfer learning strategy one or two, we transfer
the entire model except fully connected layers to the
network built for the target HSI data set as initialization.
Note that the fully connected layers of the network of
target HSI are randomly initialized. During fine-tuning,
both the transferred part and the randomly initialed part
are trained with the same learning rate α by the use of
SGD with momentum.

IV. EXPERIMENTAL RESULTS

A. Data Description and Experiment Design

In order to evaluate the performance of 3-D-LWNet with
transfer learning, we compare it with two other DL-based HSI
classification methods: 3-D-CNN-LR [20] and two-CNN [46],
on three public HSI data sets: Pavia University, Indian Pines,
and Kennedy Space Center (KSC). We also employ two HSI
data sets, Salinas and Pavia Center, as source HSI data sets and
take two natural RGB image data sets, CIFAR-10 and CIFAR-
100, as source data sets to pretrain the models in conducting
the transfer learning experiments.

1) Data Description: Pavia University and Pavia Cen-
ter were captured by the reflective optics system imaging
spectrometer (ROSIS) sensor in 2001, during a flight cam-
paign over Pavia, northern Italy. Uncorrected data sets con-
tain 115 spectral bands, ranging from 0.43 to 0.86 μm,
with each having a spatial resolution of 1.3 m per pixel.
After removing the noisiest data points, Pavia University
has 103 bands and Pavia Center has 102 bands. Both Pavia
University and Pavia Center are differentiated into nine ground
truth classes. The false-color composites of these two data are
shown in Fig. 4(a) and (d), respectively.

Indian Pines and Salinas were acquired by the airborne vis-
ible/infrared imaging spectrometer (AVIRIS) sensor in 1992.
The former was gathered over the Indian Pines test site in
North-western Indiana. Uncorrected data contain 224 spectral
bands, ranging from 0.4 to 2.5 μm. It consists of 145×145 pix-
els with a moderate spatial resolution of 20 m. The number
of bands of corrected data is reduced to 200 by removing
bands covering the region of water absorption. The next

TABLE I

SAMPLES DISTRIBUTION FOR PAVIA UNIVERSITY

data set was collected over Salinas Valley, California. It has
512×512 pixels and a higher spatial resolution of 3.7 m per
pixel. As with Indian Pines, the water absorption bands are
also removed in corrected data. The ground truths of them
both contain 16 classes.

The last HSI data set KSC was acquired by the AVIRIS
instrument over KSC, Florida, in 1996. It has a spatial
resolution of 18 m and wavelength coverage ranging from
0.4 to 2.5 μm. After removing water absorption and low SNR
bands, 176 bands remain for the analysis, with 13 classes
representing the various land-cover types were defined for
classification.

In transfer learning between RGB natural images and HSIs,
we employ two data sets CIFAR-10 and CIFAR-100, each con-
sisting of 60 thousand 32×32 color images. The CIFAR-10 has
ten classes, with 6000 images per class. There are 50 000 train-
ing images and 10 000 test images. The CIFAR-100 has
100 classes. For each class, there are 500 training images and
100 test images.

2) Experiment Design: There are two comparative parts of
experiments on classification: those without transfer learning
and those with transfer learning.

In experiments of classification without transfer learning,
we split each target HSI data set into three subsets, training
set, validation set, and test set. The details of distribution are
listed in Tables I–III.

In experiments of classification with transfer learning,
we randomly extracted 200 samples from each category as
test samples and take the rest as the training samples in Pavia
Center. Also, 100 labeled samples are randomly extracted
from each class for testing in Salinas because the number
of labeled samples in Salinas is less than that of Pavia
Center. For CIFAR-10 and CIFAR-100, we adopt the default
distribution. Thus, the experimental investigations collectively
show a diversity of data set usages in training and testing.

B. 3-D-ResNet

For spectral–spatial classification methods that are based on
3-D-CNN, there are two key points to notice as follows.
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Fig. 4. False color composites of experiment HSI data sets. (a) Pavia University. (b) Indian Pines. (c) KSC. (d) Pavia Center. (e) Salinas.

TABLE II

SAMPLES DISTRIBUTION FOR INDIAN PINES

1) The space (window) size of samples. The space size
decides on how much contextual information is to be used in
each sample cube. A bigger space size implies more contextual
information and a smaller space leads to less contextual
information. In this paper, we set the space size to 27 × 27,
following the practice in [20].

2) The structure of 3-D-CNN employed. In general, different
network structures mean different classification performances,
especially for DL-based methods. Yet, to design an appropri-
ate structure for one specific task is very hard. The depth,
width, kernel size, and convolution method all need to be
tested. To the best of our knowledge, there is no generic
theoretical approach for architecture design. Having observed
the outstanding performance of 2-D ResNet, we employ 3-D
ResNet to act as the basic structure. Note that He et al. [23]

TABLE III

SAMPLES DISTRIBUTION FOR KSC

proposed five 2-D ResNets: ResNet-18, ResNet-34, ResNet-
50, ResNet-101, and ResNet-152. The last two are too deep
for HSI in the situation of limited samples, so we employ
the first three models and inflate them into corresponding
3-D ResNets: ResNet-18, ResNet-34, and ResNet-50. Finally,
we adjust the depth of these three 3-D ResNets and propose
seven other 3-D ResNets. Thus, there are ten 3-D ResNet in
total, five 3-D ResNets (ResNet-10, ResNet-14_a, ResNet-18,
ResNet-34, and ResNet-38) that do not employ bottleneck
in their structure and their counterparts that use bottleneck
layers. We present the specification of different architectures
employed in the experiments in Table IV.

Based on ResNet, we propose ten models as candidates
for HSI classification. For selecting the best one from the
ten candidate models, we implement fivefold cross validation
to estimate these models. The one with the highest average
accuracy (AA) in validation sets is taken as the baseline. All of
the ten models are applied to three target HSI data sets and
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TABLE IV

ARCHITECTURES OF 3-D-RESNETS

trained with the same settings. The results of the ten candidates
are listed in Table V and shown in Fig. 6.

In our experiments, we employ SGD as the optimizer and
empirically set the initialization learning rate and momen-
tum to 0.01 and 0.9, respectively, which are widely used
for training DL models in image classification and action
recognition tasks [10], [23], [34], [49], [50]. We train models
with different weight decays to find the optimum weight decay
from { 1e-3, 1e-4, 1e-5, 1e-6, 1e-7}. Based on the performance
in validation sets, we set the weight decay to 1e-5.

Note that a large batch size means taking more GPU
memory. As the tested HSI data sets involve 16 categories
at most per data set, setting the batch size to 20 is suffi-
cient to perform optimization. The number of training epochs
and the learning rate adjustment strategy are empirically
decided by analyzing the convergence curve, which is shown
in Fig. 5.

In Fig. 5, we can see that the validation loss is saturated
after 40–50 epochs for all the three data sets. Thus, we divide
the learning rate by 10 at epoch 50 and train the model for ten

more epochs. A similar strategy to this is also adopted in [49]
and [50].

In conclusion, we employ SGD as our optimizer, where the
momentum, weight decay, batch size, the number of training
epochs, and the initialization learning rate for SGD optimizer
are set to 0.9, 1e-5, 20, 60, and 0.01, respectively. During the
final ten epochs, the learning rate is decreased to 0.001.

The results of 3-D ResNets are shown in Fig. 6 and listed
in Table V. Compared with models without any bottleneck,
those structures that use bottlenecks generally achieve a better
performance in terms of classification accuracy, as shown
in Fig. 6. These results are close to those in [23]. On the
experiments regarding Pavia University and KSC, almost all
the networks with bottleneck outperform their corresponding
versions that do not use bottlenecks. These experimental
results again demonstrate the efficacy of using bottleneck
layers. In addition, both structures exhibit a peak in accuracy
over the test samples. For instance, in the experiments on the
Pavia University scene data set, the classification accuracy over
the test set reaches peak in ResNet-20 but starts falling as
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TABLE V

CROSS-VALIDATION RESULTS OF RESNETS

Fig. 5. Convergence curves. (a) Pavia University. (b) Indian Pines. (c) KSC.

the depth of network increases. Similarly, among the models
that do not employ bottlenecks, ResNet-34 obtains the best
performance. As the depth of the network continues to grow,
the accuracy drops down.

Among the three target HSI data sets, ResNet-20 obtains its
peak in accuracy on Pavia University and Indian Pines, and
ResNet-26 achieves the best performance on KSC. However,
on KSC, the gap between the accuracies of ResNet-20 and
ResNet-26 is small. The overall accuracy (OA) of ResNet-20 is
95.35%, a mere 0.16 less than that of ResNet-26. Therefore,
we choose a unified structure ResNet-20 as the baseline model.

C. 3-D-LWNet

In this section, we replace the residual unit in the basic
model (that employs a unified ResNet-20) with an LW unit
for further improvement. The details of the LW unit have been
introduced previously (Section III-B). In order to evaluate the

performances of 3-D ResNet-20 and 3-D-LWNet, we apply
them to three target data sets and compare the classification
results with those of running 3-D-CNN-LR [20]. The com-
parisons are carried out under the same situation as that used
in [20] with the training set and test set distributed in the same
proportion while running the experiment several times in an
effort to achieve statistically averaged performance measures.
Tables VI–VIII list the experimental results.

These tables jointly demonstrate the effectiveness of
3-D-LWNet, being capable of obtaining the best performance
regarding a range of criteria, including OA, AA, and kappa
coefficient (K ). Here, OA is the ratio between the number
of correctly classified samples and that of all samples in
the test set, AA is the mean value of the OAs measured
over each class, and K is a statistic measurement over
the interrate agreement among qualitative items [51]. The
3-D-CNN-LR that is employed adopts the conventional struc-
ture and its performance is not so good. 3-D-ResNet employs
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Fig. 6. Classification results of three HSI data sets based on different ResNets. (a) Pavia University. (b) Indian Pines. (c) KSC.

TABLE VI

CLASSIFICATION RESULTS OF PAVIA UNIVERSITY

both shortcut connection and bottleneck, thereby improving
the structure and achieving better performance. For HSI clas-
sification, however, the structure of 3-D-ResNet is still not suf-
ficiently efficient with room for further improvement. Based on
the use of 3-D-ResNet, 3-D-LWNet replaces residual units
in 3-D-ResNet with LW units and, hence, reduces the number
of parameters involved. From 3-D-CNN-LR to 3-D-ResNet
and, then, to 3-D-LWNet, the performance increases step by
step. We argue that this is because the structure of the network
employed is increasingly more effective. Indeed, on the Pavia
University data set, the OA of 3-D-ResNet and 3-D-LWNet is
lower than that of 3-D-CNN-LR. Note that 3-D-ResNet and

TABLE VII

CLASSIFICATION RESULTS OF INDIAN PINES

3-D-LWNet are trained with 1800 training samples, less
than half of the training samples required for train-
ing 3-D-CNN-LR. Nonetheless, the gap between the OAs
of 3-D-CNN-LR and 3-D-LWNet is only 0.14%, with the aver-
aged accuracy of 3-D-LWNet being slightly higher than that
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TABLE VIII

CLASSIFICATION RESULTS OF KSC

of 3-D-CNN-LR. Both 3-D-ResNet and 3-D-LWNet have
outperformed 3-D-CNN-LR on Indian Pines and KSC. This is
particularly significant for 3-D-LWNet, as it achieves a 1.31%
improvement on Indian Pines and 1.91% on KSC.

At the first glance, it may seem that the scale of 3-D-LWNet
is much larger than that of 3-D-CNN-LR because 3-D-LWNet
consists of 20 learnable layers and 3-D-CNN-LR just contains
four learnable layers. In fact, benefiting from the depthwise
convolution, 3-D-LWNet contains much less parameters than
3-D-CNN-LR. We assume that the 3-D-CNN-LR also employ
3-D convolution layers without bias. Take the network built
for Indian pines, for example, the 3-D-CNN-LR has three 3-D
convolution layers that contain 44 892 160 parameters in total
(the first layer contains 4×4×32×1×128 = 65 536 parame-
ters, the second 5×5×32×128×192 = 19 660 800 parameters,
and the last 4×4×32×192×256 = 25 165 824 parameters).
3-D-LWNet has a total of 19 convolution layers (the first con-
volution layer and six LW units, each of which contains three
convolution layers), which only involves 763 008 parameters
(the first convolution layers have 2304 parameters, the four
LW unit groups, respectively, contain 11 648, 71 168, 257 024,
and 420 864 parameters), that is, our model saves more than
98.3% compared to the parameters required by the existing
work.

D. Transfer Learning Between Different HSI Data Sets

3-D-LWNet alleviates the problem of limited training sam-
ples by reducing the number of parameters and optimizing
the structure of the network. It also supports the utilization
of transfer learning to provide a good initialization model.
In this section, experimental studies are focused on combining
3-D-LWNet with transfer learning.

Note that we do not require that the source HSI data sets and
the target HSI data sets have to be captured by the same sensor.
This is very different from previous work. Yang et al. [46] also
employed transfer learning in their work, but they restricted
the data for pretraining to those collected by the same sensor
as the target data.

Here, we use five HSI data sets in total. Two data sets, Pavia
Center and Salinas, are used for pretraining. Three data sets,
Pavia University, Indian Pines, and KSC, are taken as target
data sets. Pavia Center and Pavia University were captured
by the same sensor ROSIS, both their spatial and spectral
resolution are close. Salinas and Indian Pines were collected
by AVIRIS, and their spectral resolution is roughly identical.
The last target data set KSC was also gathered by AVIRIS, but
it only has 176 bands, much less than Salinas. Thus, the basic
attributes involved in KSC are rather different from those in
the other two source data sets.

Experimental results of transfer learning are listed
in Tables IX–XI, where 3-D-LWNet+Pavia and
3-D-LWNet+Salinas represent the models that are pretrained
with the Pavia Center data set and the Salinas data set,
respectively. In Table IX, we compare the proposed approach
with another state-of-the-art transfer learning-based HSI
classification method on Pavia University. We randomly
chose {25, 50, 75} samples from each class of Pavia
University for training. From the table, we can obtain the
following two conclusions.

1) 3-D-LWNet is better than two-CNN. No matter whether
transfer learning is used, the OA of 3-D-LWNet is higher
than that of two-CNN (especially when the number of
training samples is very small).

2) Transfer learning is useful. When we extract 25 samples
per class for training, the OA is improved for 2.76%
with transferring from Pavia Center and 4.17% with
transferring from Salinas. When we increase the number
of training samples to 50 per class, the improvement
reduced to 1.36% with transferring from Pavia Center
and 2.68% with transferring from Salinas. When the
number of training samples is increased to 75 per class,
the improvement becomes even smaller. Of course, it can
be expected that the improvement provided by transfer
learning drops with the increase in training samples.
As the number of training samples increases, the model
can directly obtain more guidance information from the
target HSI data set, so the 3-D-LWNet can work well
even without transfer learning.

Note that pretraining in Salinas often achieves better per-
formance than pretraining in Pavia Center. This is also the
case regarding Pavia University, which was also collected
by the same sensor used for collecting Pavia Center. The
experimental results on KSC also illustrate a similar trend.
In fact, the models pretrained on Pavia Center and Salinas
obtained a similar OA during pretraining and despite the Pavia
Center data set contains more labeled samples than Salinas.
This implies that transfer learning between homologous data
sets (data sets collected by the same sensor) does not neces-
sarily work better than transfer learning between heterologous
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TABLE IX

TRANSFER LEARNING RESULTS OF PAVIA UNIVERSITY

Fig. 7. Transfer learning experiments, 25 training samples per class. (a) Pavia University. (b) Indian Pines. (c) KSC.

Fig. 8. Transfer learning experiments, 50 training samples per class. (a) Pavia University. (b) Indian Pines. (c) KSC.

data sets. The experimental results shown in this section reveal
such a seemingly counterintuitive model behavior. This may
be because Salinas contains more classes of objects than
Pavia Center. In other words, Salinas contains more diverse
information. The model pretrained on Salinas has a better
generalization ability. In Table X, the experimental results
are implemented on Indian Pines and KSC. These results
show that transferring from Pavia Center may even harm
the performance of 3-D-LWNet on Indian Pines. This may
be caused by the fact that Indian Pines contains 16 object
classes, whereas Pavia Center only involves 9 object classes.
The generalization ability of the model pretrained on Pavia
Center is, therefore, not sufficiently powerful to handle the
Indian Pines data set.

E. Influence of the Number of Object Classes

In Section IV-D, we have found that transferring from
Salinas always results in better performance than transfer-
ring from Pavia Center. In particular, we hypothesized that
this observation might be caused by the fact that Salinas
contains more classes of objects. In this section, we extract

TABLE X

TRANSFER LEARNING RESULTS OF INDIAN PINES

{4, 8, 12, 16} class subsets from Salinas, pretrain models on
these subsets, and then transfer the pretrained models to
suit Pavia University, Indian Pines, and KSC for fine-tuning.
The experimental results are listed in Table XI and shown
in Figs. 7 and 8. The accuracies of 3-D-LWNets are illustrated
in yellow–green in each graph, the accuracies of the methods
that are better than 3-D-LWNet are shown in dodgerblue, and
the accuracies of the methods that are poorer than 3-D-LWNet
are shown in cyan.
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TABLE XI

TRANSFER LEARNING RESULTS WITH DIFFERENT SUBSETS OF SALINAS DATA SET

In Figs. 7 and 8, we can see that the accuracy of transfer
learning grows with the increase in the number of classes of
subsets used for pretraining. In addition, when the number of
classes of subsets is reduced to 4, pretraining using this subset
of data generally causes harm to the resulting classification
performance. This is reflected in Fig. 7(a); the accuracy is
decreased from 88.37% to 87.78%. Even for Indian Pines
(collected by the same sensor as Salinas), pretraining in the
subset of Salinas that just involves 4 classes also has a negative
influence. The accuracy is reduced by 0.56% when the number
of training is set to 25 per class, and 2.14% when this number
is set to 50 per class.

F. Transfer Learning Between RGB Image
Data Set and HSI Data Sets

According to the experimental results of transfer learning
as summarized in Sections IV-D and IV-E, we find that
transferring between heterologous HSI data sets is feasible
and potentially very useful. To further improve this research,
in this section, we pretrain a 3-D-LWNet on an inflated RGB
images data set prior to fine-tune it on the target HSI data set.
Inflation operation has been introduced in Section III-C. Here,
we only discuss the experimental results.

Based on the experimental results listed in Table XII, we can
draw two main conclusions as follows.

1) Transfer learning between an RGB image data set and an
HSI data set works well for HSI classification. It is clear
that pretraining in CIFAR-10 and CIFAR-100 improves
the classification performance on all three target HSI
data sets. Especially for Pavia University, the improve-
ment is significant. When the number of training samples
is set to 25 per class, pretraining in Cifar-10 improved
the OA by 6.77%, and pretraining in Cifar-100 improved
that by 8.58%. Similar to transfer learning between HSI
data sets, the improvements provided by pretraining in
Cifar-10 and Cifar-100 are drops in the increase of
the number of training samples. For example, when
the training samples increased to 50 samples per class,
the improvements are dropped to 1.71% for Cifar-10 and
2.75% for Cifar-100. Nevertheless, the improvement is
still obvious.

2) Diversity of samples used for pretraining has a direct
influence on classification accuracy. In the last two
sections, the experimental results of transfer learning

TABLE XII

EXPERIMENTS RESULTS OF TRANSFER LEARNING BETWEEN

RGB IMAGE DATA SET AND HSI DATA SETS

have shown that the number of object classes within
the source HSI data sets plays an important role in
transfer learning. The larger such a number, the more
improvement in the target data sets. This phenomenon
is also shown in transfer learning between RGB images
and HSIs. We can see in Table XII that pretraining
in Cifar-100 usually achieves a higher classification
accuracy than pretraining in Cifar-10.

In addition, an interesting observation is that fine-tuning the
model transferred from Cifar-10 can lead to better performance
than the model directly trained with Pavia Center and this
relationship also exists between Cifar-100 and Salinas. This
may also be caused by the diversity of samples. Cifar-100 has
100 classes, which is much larger than the number of classes
in Pavia Center or Salinas. Cifar-10 has ten classes, whereas
Pavia Center has nine, and it seems that Cifar-10 and Pavia
Center are not very different in terms of diversity of samples.
In fact, in Cifar-10, even samples belonging to a single class
are different. This shows that, in general, the samples of Cifar-
10 are more diverse.

V. CONCLUSION

In HSI classification, typically only a limited number of
training samples are available. We have addressed this problem
with two novel ideas in this paper.

First, we have proposed 3-D-LWNet for spectral–spatial
classification of HSIs. Compared to conventional 3-D-CNN
that is used for HSI classification, the depth of 3-D-LWNet
is much deeper, whereas the number of parameters involved
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is much less and the classification accuracy of 3-D-LWNet is
higher.

Second, we have introduced two transfer learning strategies:
cross-sensor strategy and cross-modal strategy and integrated
them with 3-D-LWNet for further improvement of the classifi-
cation performance. With the cross-sensor strategy, we pretrain
a 3-D model in the source HSI data set and then transfer the
pretrained model to suit the target HSI data set. Unlike the pre-
vious work, we not only transfer models between homologous
HSI data sets but also do transfer learning between HSI data
sets collected by different sensors. Without the restriction that
the source HSI data set must be collected by the same sensor as
the target HSI data set, the cross-sensor strategy can be applied
on more HSI data sets. With the cross-modal strategy, we apply
transfer learning on 2-D RGB image data sets and HSI data
sets. This is useful as RGB image data sets are generally
much larger than HSI data sets, in terms of the amount of
labeled samples, and much richer than HSI data sets, in terms
of the diversity of samples. The cross-modal strategy builds a
bridge between 2-D RGB image data sets and 3-D HSI data
sets, which is helpful in taking a full advantage of 2-D RGB
image data sets to improve HSI classification performance.
To the best of our knowledge, this is the first time that transfer
learning between HSI data sets acquired by different sensors
and that comparisons between RGB image data sets and HSI
data sets have been applied for HSI classification.

CNN is a very powerful machine learning model and has
been widely and successfully applied in various fields. How-
ever, so far, the design of CNN architectures has been mainly
based on experience and empirical experiments. It would,
therefore, be very interesting to investigate to optimize the
structure of a CNN via intelligent algorithms. This remains an
important future work.
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