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Abstract—In this paper we introduce a novel approach
to enhance the spatial resolution of single-pass microwave
data collected by meso-scale sensors. The proposed ra-
tionale is based on an Lp-minimization approach with a
variable p exponent. The algorithm automatically adapts
the p exponent to the region of the image to be re-
constructed. This approach allows taking benefit of the
advantages of both the regularization in Hilbert (p = 2)
and Banach (1 < p < 2) spaces. Experiments are under-
taken considering the microwave radiometer and refer to
both actual and simulated data collected by the Special
Sensor Microwave Imager (SSM/I). Results demonstrate
the benefits of the proposed method in reconstructing
abrupt discontinuities and smooth gradients with respect
to conventional approaches in Hilbert or Banach spaces.

Index Terms—Resolution enhancement, inverse problem,
microwave radiomenter.

I. INTRODUCTION

The microwave radiometer (MWR) is a passive remote
sensing instrument whose measurements are related to
the natural emission from the observed scene. MWR is
a very important sensor for global monitoring of environ-
mental parameters due to its dense revisit time associated
with all-day and all-weather observation capabilities.
Over the past few decades, a number of operational satel-
lites equipped with MWRs have been launched for earth
observation purposes. Among them, one can distinguish
multi-frequency radiometers, e.g. Special Sensor Mi-
crowave Imager (SSM/I), Special Sensor Microwave Im-
ager Sounder (SSMIS), Advanced Microwave Scanning
Radiometer - EOS (AMSR-E), Advanced Microwave
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Scanning Radiometer 2 (AMSR2), Microwave Radiation
Imager (MWRI) and single-frequency radiometers, e.g.,
Soil Moisture Active Passive (SMAP) radiometer and the
Microwave Imaging Radiometer using Aperture Synthe-
sis (MIRAS) operated by the European Space Agency
(ESA) Soil Moisture and Ocean Salinity (SMOS) mis-
sion. MWR measurements are generally available into
two formats: swath and gridded measurements. The
former one consists of the irregularly sampled brightness
temperature measurements; while the latter is obtained
converting swath-based measurements into brightness
temperature at fixed gridded locations [1]. Gridded prod-
ucts are of paramount importance when dealing with
applications that rely on the analysis of parameters
extracted at fixed location through time. A straightfor-
ward approach to generate gridded products consists
of the conventional drop-in-the-bucket (DIB) method or
weighted averaging based on the squared inverse dis-
tance [2], [3]. Those methods provide a gridded product
whose spatial resolution is rather coarse (e.g., 25 km
[3]).
Nowadays, there is an increasing interest towards grid-
ded products at enhanced spatial resolution for a broad
range of applications. Operational methods have been
proposed that consist of either augmenting radiometer
measurements with complementary observations [4] or
reconstructing the brightness field on a finer resolution
grid using image reconstruction methods that rely on
the knowledge of the antenna pattern [5]–[11]. The first
class of methods includes approaches based on the com-
bination of MWR measurements with radar observations
(e.g. [12]) and optical measurements (e.g. [13]). In [14]
an approach based on the combination of measurements
collected by the low- and high-frequency channels of a
multi-frequency radiometer was proposed that is based
on the Smoothing Filter-based Image Modulation tech-
nique (SFIM). According to methods based on image
reconstruction approaches, resolution enhancement is
possible due to the oversampling that characterizes the
measurement process, i.e., radiometer measurements are
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not independent from each other since adjacent beams
are generally partially overlapped [8]. It is worth noting
that the improved spatial resolution is obtained at the
expense of a larger noise level [15]. This means that
a tradeoff between resolution enhancement and noise
amplification is due.
In this study a new reconstruction approach is proposed
to enhance the spatial resolution of MWR measurements.
In literature, the reference reconstruction method is the
Backus-Gilbert (BG) technique [16] commonly used,
for instance, to generate the SMAP Level 2 Enhanced
Passive Soil Moisture product where the moisture map
is provided on a 9 km spatial grid, instead of the conven-
tional 36 km grid that characterizes the Level 2 SMAP
soil moisture product [17]. In addition to BG method, a
reconstruction algorithm based on the radiometer version
of the Scatterometer Image Reconstruction (SIR) method
[8] has been successfully applied to SMMR, SSM/I
and AMSR-E measurements [18] and it is shown to
provide performances similar to BG while improving the
processing time and noise propagation (when multiple
passes are used). Both BG and SIR are used to generate
gridded radiometer products at both low and enhanced
spatial resolution in the frame of the NASA-sponsored
MEaSURES programme [19].
In addition to these two reference methods, other image
reconstruction approaches have been developed to en-
hance the spatial resolution of radiometer measurements
that are based on the minimization of the Lp norm
of the residual with p = 2, which is the classical
least square minimization approach. This means that the
reconstruction is addressed in a Hilbert space. Among
these methods, it is worth mentioning the approaches
based on the Truncated Singular Value Decomposition
(TSVD) [9], [11] that is shown to outperform the BG
method, the approaches based on the Tikhonov reg-
ularization [10], [20] and iterative methods based on
gradient-like kernels [21]. Although Hilbert-space recon-
structions provide satisfactory results when dealing with
the reconstruction of gradients and, in general, signals
resulting from phenomena that do not call for abrupt
discontinuities, the main drawbacks are related to over
smoothness and Gibbs-related oscillations that appear in
presence of abrupt discontinuities [22].
Recently, reconstruction techniques in Banach spaces
have been proposed that aim at minimizing the Lp-
norm of the residual [21], [23], [24]. Reconstructions
in Banach spaces are shown to be very promising since
they allow overcoming drawbacks of classical Hilbert-
space reconstructions, i.e., over smoothness and Gibbs
oscillations. The key problem of Banach-space recon-
structions relies on the choice of the optimal 1 < p < 2.
Theoretical and experimental analyses suggest p values

close to 1 to obtain remarkable reconstructions of abrupt
discontinuities, e.g., sea/land edges etc. [23]. However,
this choice will result in fictitious oscillations over areas
where the background is not properly subtracted. In fact,
the subtraction of the background, which is an important
step when dealing with image reconstruction methods, it
is even more important when the problem is addressed
in Banach spaces, since it increases sparsity and reduces
ringing effects. [15].
In this study, a single-pass spatial resolution enhance-
ment method is proposed that aims at bridging the
gap between reconstructions undertaken in Banach and
Hilbert spaces. This is achieved by addressing the recon-
struction in the Lp space with an adaptive p exponent
that spans in the range 1.2 ≤ p ≤ 2. This approach
is expected to result in reconstructions that share the
benefits of Hilbert and Banach spaces, while mitigating
their drawbacks. In particular, the exponent is forced to
be close to 1.2 (which was found to be a good compro-
mise between sparsity and reliability of reconstruction
in [23]) in the presence of abrupt discontinuities, while
a p exponent that tends to 2 is adopted when areas with
smooth gradients are to be reconstructed.

This paper is organized as follows: in Section II, after
a brief review of resolution enhancement methods in
classical Hilbert and Banach spaces, we describe the
generalization to variable exponent Lebesgue spaces.
In Section III, we present numerical results obtained
by applying the proposed algorithm to both simulated
and actual microwave radiometer measurements, while
conclusions are shown in Section IV.

II. THEORETICAL BACKGROUND

In this section, after a brief primer on the recon-
struction in Hilbert and Banach spaces, the adaptive Lp

reconstruction method, with a variable p exponent is
described.

The general MWR measurement, neglecting atmo-
spheric effects, can be modeled as the surface brightness
temperature Tb(θ, φ) weighted by the antenna pattern
Gi(θ, φ). In particular, the single t-th measurement,
denoted as the antenna temperature TAt , can be written
as:

TAt
= Ḡ−1t

∫ ∫
Gt(θ, φ)Tb(θ, φ)dθdφ , (1)

where
Ḡ−1t =

∫ ∫
Gt(θ, φ)dθdφ . (2)

Eq. (1) is a Fredholm integral equation of the first
kind with a smooth kernel; hence it represents a linear
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problem that, after discretization, can be cast in matricial
form [11] as

Ax = b , (3)

where A is the matrix containing the projected antenna
patterns related to the radiometer measurements, the
unknown vector x stands for the brightness temperature
TB and b is the measurement vector. Since we aim at
reconstructing the signal on a finer resolution grid (i.e.,
spatial resolution enhancement), x ∈ Rm and b ∈ Rn

with m > n.
To perform spatial resolution enhancement, the ill-

conditioned and undetermined linear problem (3) is to
be solved [25]. The ill-conditioning, which is physically
due to the fact that the direct operator (1) is a Fredholm
integral with a smooth kernel, implies that a small error
in the data can result in extremely large errors in the
reconstructed field. Therefore, regularization methods
must be invoked to reduce noise amplification and to
obtain a reasonable approximation of the solution. In
this study, the simplest iterative method, i.e. the gradient
(also known as Landweber) regularization method is
used. Moreover, the reconstruction of the brightness
field on a finer spatial grid makes the problem (3)
underdetermined. Hence, in order to invert the system,
constraints on the signal to be reconstructed must be
imposed. In this study, the adopted constraint consists
of searching the minimum norm solution; hence, we first
review the Lp−norm minimization with p = 2 (Hilbert
spaces) and p = 1.2 (Banach spaces). Then, the novel
minimization approach that is based on Lp spaces with
a variable p exponent, will be described.

A. Iterative regularization in Hilbert and Banach spaces

When dealing with regularization in Hilbert spaces,
the 2-norm of the residual Ax− b must be minimized.
This corresponds to minimizing the following least
square functional:

Ω2 =
1

2
||Ax− b||22 =

1

2

n∑
i=1

(Ax− b)2i . (4)

This minimization can be straightforwardly obtained
with the conventional gradient method, whose k-th it-
eration xk is given by:

xk = xk−1 − λk∇Ω2(xk−1) , (5)

where λk is the step-size of the iteration. Considering
that ∇Ω2(x) = A∗(Ax− b), equation (5) becomes:

xk = xk−1 − λkA∗(Ax− b) . (6)

It can be shown [26], [27] that (6) represents a regu-
larization scheme whose regularization parameter is the
number of iterations k. Regarding the step-size λk, an
optimal choice is possible [23]:

λk = λ =
1

||A∗A||
, (7)

which leads to the well known Landweber method in
Hilbert spaces.

When moving from Hilbert to Banach spaces, the
functional to be minimized becomes:

Ωp =
1

p
||Ax− b||pp =

1

p

n∑
i=1

(Ax− b)pi . (8)

From a theoretical viewpoint, the iterative scheme
(6) is not well-defined in Lp Banach space, since the
operator A∗ cannot be applied to the residual Ax − b
[11], [28]. More specifically, Ax−b belongs to Lp space
and A∗ acts to its dual space (Lp)∗ = Lq , for p > 1,
where q is the Hölder conjugate of p (i.e. 1

p + 1
q = 1).

To overcome this issue, the so-called duality maps are
introduced to link the elements of a Banach space with
the elements of its dual space [29]. In this study, the
following duality maps are used:

Jp : Lp → Lq

Jq : Lq → Lp
, (9)

where:

Jp(x)i = |xi|p−1sign(xi), i = 1, . . . ,m , (10)

with sign(·) being the sign function. Hence, using (9)
the k-th iteration of the Landweber method in the Banach
spaces can be written as follows [28]:

xk+1 = Jq(Jp(xk)− λkA∗Jp(Axk − b)) . (11)

Unfortunately, in Banach spaces there is no formula to
set the optimal step size λk. However the Landweber
method has been proved to converge in [28].

B. Iterative regularization in variable exponent
Lebesgue spaces

In the case that the p exponent is no longer forced to
be a fixed value, the minimization is to be performed
in Lebesgue spaces with variable exponent Lp, i.e., the
exponent p is a function p(t) : Ω → [1,∞] [30].
This corresponds to fix a constraint that consists of
choosing the unique solution that minimizes ||x||p(·)
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with a variable exponent p(·) [28], [30]. To formulate a
gradient-like regularization scheme whose k-th iteration
mimics equation (11), a key issue must be addressed
that relies on the definition and the computation of the
norm.
We recall that in the constant p exponent case, the p-
norm is defined as:

||x||p =
p

√√√√ N∑
i=1

|xi|p (12)

When the exponent p is not constant, the p-th root
extraction, which is necessary to satisfy the homogeneity
condition in the definition of the norm, is no longer
defined. To overcome this issue, the adopted strategy
consists of evaluating the argument of the p-th root, i.e.
the so-called modulus:

ρ(x) =

N∑
i=1

|xi|pi . (13)

In this case, the variable p case is a straightforward
generalization of the constant exponent case. Then, the
so-called Luxemburg norm [30] is used, which can
be calculated by solving the following minimization
problem:

||x||Lp(·) = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}

. (14)

Once the modulus and the Luxembourg norm are
defined, the residual Ωp(·) becomes:

Ωp(·) = ||Ax− b||Lp(·) , (15)

where the scale factor 1/p, which appears in the constant
case (8), can be straightforwardly omitted without affect-
ing the result. To minimize the residual, the Landweber
iterative scheme is used. However, even in the variable
p exponent case, the generic iteration exhibits the same
problem of eq. (6) in the Banach space, since the
subtraction is not well-defined. This implies that duality
maps must be used. To generalize the duality map to the
variable p exponent case, the seminal guideline provided
in [31] is followed. Hence, the variable-p case duality
map JLp(·)(x) is a vector whose i-th component is given
by:

(JLp(·)(x))i =
pi|xi|pi−1sign(xi)

||x||pi−c
p(·)

∑m
k=1

pk|xk|pk
||x||pk

p(·)

i = 1, . . . ,m ,

(16)
where the constant c > 1 just acts as a scalar factor, since
||x||c is constant for all the i-th entries of JLp(·)(x). Note

that the duality map (16) reduces to (10) when p is no
longer variable and c = p.

Once the norm and the duality map have been gener-
alized to the variable p exponent case, the k-th iteration
of the Landweber in the Lp(·) spaces can be written as:

xk+1 = JLq(·)(JLp(·)(xk)−λkA∗Jr(Axk−b)) , (17)

where:

JLp(·) : Lp(·)(Rm)→
(
Lp(·)(Rm)

)∗
JLq(·) : Lq(·)(Rm)→

(
Lq(·)(Rm)

)∗ , (18)

are the duality maps with vectorial exponent, defined in
accordance to (16), with q(·) being the vector Holder
coniugate of p(·), that is, 1

pi
+ 1

qi
= 1 for any element

i = 1, . . . ,m. It is interesting to note that, unlike the
constant exponent case of [28], the duality map JLq(·)

is not the inverse of the duality map JLp(·) , but rather it
is only an approximation. The iteration scheme is well
defined due to the isomorphism between

(
L(·)(Rm)

)∗
and Lq(·)(Rm) [30].
Since for a dimensional issue the maps (18) cannot be
applied to the term Axk − b (which belongs to the Rn

space) the following duality map

Jr : Lr(Rn)→ Ls(Rn) (19)

has been defined in accordance to (10), with 1
r + 1

s = 1.
Since this map has a scalar exponent, a key issue consists
of selecting it in a way that is linked to the variable
exponent p(·). Hence, at any iteration k, we search for
a scalar value rk such that

‖xk‖Lp(·) = [ρ(xk)]
1
rk . (20)

By taking the logarithm on both the sides one obtains:

1

rk
ln(ρ(xk)) = ln(||xk||p(·)) , (21)

which leads to:

rk =
ln(ρ(xk))

ln(||xk||p(·))
, (22)

where ρ(xk) is the modulus (13) and the norm ||·||p(·)
is computed according to (14).

To apply the proposed approach, the values assumed
by the variable p exponent need to be specified. In
this study, we force p to vary in the [1.2, 2] interval.
The extrema of this range of values correspond to:
a) the well-known L2 norm, which guarantees stable
and accurate enough reconstructions when gradient-like
discontinuities are in place; b) the L1.2 norm, which has
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been shown in [21] to represent the best compromise be-
tween reconstruction performance and algorithm stability
when Banach spaces are considered. Note that, the value
p = 1 cannot be used in our scheme, since the adopted
duality maps are not well defined for p = 1. In addition,
it is worth to point out that minimization in L1 Banach
spaces performs badly when the reference signal is not
sparse enough., as in our numerical case [21]. Once the
range of admissible p values has been selected, the rule
that allows updating the k-th p(·) vector must be defined.
In this study, a simple linear updating scheme is adopted:

p(·)i = pmin +
pmax − pmin

M −m
(xi −m) , (23)

where m = min(x), M = max(x), pmin = 1.2,
pmax = 2. This updating function makes the p(·) vector
a rescaled version of x in the interval [1.2,2].

The proposed approach is based on an iterative reg-
ularization algorithm whose regularization parameter is
represented by the iteration number k. Hence, the choice
of k at which the method has to be stopped is a crucial
step to achieve a successful reconstruction. In this work
we stop the iterations as soon as the residual stops
to decrease in a stable way (i.e., it becomes flat or,
surprisingly enough, even starts to increase). This very
simple strategy that, although not theoretically proved,
has been validated using the discrepancy principle [23].

III. NUMERICAL RESULTS

In this section, the performance of the adaptive Lp

approach is contrasted with reference p = 2 (Hilbert),
and p = 1.2 (Banach) reconstructions schemes. Experi-
ments refer to both simulated and actual Special Sensor
Microwave Imager (SSM/I) radiometer measurements.
The latter is a seven-channel, four-frequency, linearly
polarized radiometer that flew aboard the United States
Defense Meteorological Satellite Program. SSM/I col-
lects both horizontally and vertically polarized radiation
at 19.35, 37.0 and 85.5 GHz and vertical only at 22.2
GHz [32]. In this study, reference is made to the lowest
spatial resolution channel, i.e. the 19.35 GHz channel.
The SSM/I nominal swath width covers about 1400 km,
which results in an almost complete global coverage
in 24 h [32]. It performs 64 measurements along the
across-track direction with a spatial resolution that (in
the cross-track direction) ranges between 43 km and 13
km with a spacing that ranges between 25 km and 12.5
km. The reconstruction problem is formulated according
to (3) where n = 64 and m = 1400. This implies
that the brightness field will be reconstructed on a
finer resolution grid whose spacing is 1 km. The first

set of experiments concerns simulated SSM/I-like mea-
surements that are obtained through (3), approximating
the integrated antenna pattern with a Gaussian function
where the maximum gain is 43 dB [11], [32]. To simulate
realistic measurements, a zero mean additive Gaussian
noise with a standard deviation 1.06 K is used [8]. Both
1D profiles and a 2D brightness field are considered to
test the performance of the proposed approach.

A. Simulations

Fig. 1. Simulated reference brightness field signals: (a) Rect f1(x),
(b) Double Rect f2(x), (c) Spike f3(x). The red circles represent
simulated noisy measurements.

With respect to the 1D case, three reference bright-
ness profiles are simulated, which are shown in Fig.
1(a),(b),(c) (blue line):
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f1(x) = a rect
(
x− x1
δ1

)
f2(x) = a rect

(
x− x2
δ2

)
+ a rect

(
x− x3
δ2

)
f3(x) = a rect

(
x− x4
δ3

) ,

(24)

where a = 200, x1 = 500, δ1 = 600, x2 = 350, x3 =
850, δ2 = 300, x4 = 725, δ3 = 50, and:

rect(t) =

{
1 |t| < 1

0 |t| > 1
. (25)

The functions f1(x), f2(x) can be considered to model
abrupt discontinuities which are related, for instance, to
land/sea interface while f3(x) resembles small isolated
islands. The simulated low-resolution noisy measure-
ments are depicted in Fig.1(a),(b),(c) (red circles).

Fig. 2. Reference brightness profile (dotted blue line) and reconstruc-
tions at enhanced resolution obtained with gradient method in Lp with
p = 2 (red line), p = 1.2 (yellow) and variable p (purple line) for:
(a) rect-like signal (b) double rect-like signal.

The first experiment refers to the reference brightness
profiles f1(x) and f2(x), see Fig. 1(a),(b). Reconstruc-
tions obtained using the variable p exponent method are

contrasted with reconstructions obtained using the fixed
p = 2 and p = 1.2 exponent, see Fig. 2 (a),(b). The step
size of the p = 1.2 and variable p exponent methods
is empirically chosen and it is equal to 0.07 and 0.5,
respectively.
All the methods result in a satisfactory reconstruction
performance, since they provide reconstructions that
well-fit the reference profile. As expected, p = 2 method
(see red line) results in a reconstructed profile that
presents Gibbs oscillations and a slight over-smoothness.
Those drawbacks are mitigated by the p = 1.2 method
(see yellow line) that results in a reconstructed profile
where fluctuations are significantly reduced at the lower
edges of the discontinuities. However, there are ficti-
tious spikes at the upper edges of the discontinuities
that call for significant overestimation of the brightness
temperature by an amount of ∼ 40 K. These spikes,
which appear at both the sides of the discontinuity,
represent a key drawback when dealing with the esti-
mation of geophysical parameters from the resolution-
enhanced measurements In addition, the mean level
of TB along the upper-part of the rect-like signal is
not correctly reconstructed, showing an underestimation
of around 50 K. Reconstructions obtained using the
gradient method with the variable p exponent are shown
in purple line. It can be noted that the method results
in remarkable reconstructions where: a) the fictitious
fluctuations (that appeared in the p = 1.2 reconstruction)
disappeared; b) the upper-edge of the discontinuities
is well-reconstructed (there is a small oscillation of
about 5 K when dealing with the reference field f2(x)),
see Fig. 2(b); c) the abrupt discontinuity is very well
reconstructed with the exception of the upper edges of
the discontinuities that are over-smoothed with respect
to both p = 2 and p = 1.2 reconstructions; d) no Gibbs-
related oscillations appear.
The second experiment refers to the reference brightness
profile f3(x), see Fig.1(c). Reconstructions (see Fig.
3) show that a remarkable performance is obtained by
the p = 2 and p = 1.2 methods, with the p = 1.2
performing best in reconstructing the reference field pro-
file without any Gibbs related oscillation. The variable
p exponent method does not reconstruct correctly the
reference profile since neither its amplitude nor its width
are correctly reconstructed (see Fig. 3 in green line). This
odd result is due to the choice of the step-size λ = 0.5.
When a lower step-size is selected, i.e., λ = 0.04,
a remarkable reconstruction is achieved, see Fig. 3 in
purple line. In particular, the abrupt discontinuity is well-
reconstructed and the upper side of the reference profile
is well-reconstructed although slightly underestimated
(∼ 2 K). Note that, at the moment, no analytical formula
is available to optimally select the step-size λ both in
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Fig. 3. Reference field (dotted blue line) and reconstructed field at
enhanced resolution obtained with gradient method in Lp with p = 2
(red line), p = 1.2 (yellow) and variable p (purple line) using: step-size
λ = 0.5 (green line) and step-size λ = 0.04 (purple line).

the p = 1.2 and variable p cases. However, to check
the robustness of the choice we made for the rect-like
profile (λ = 0.5) and the spike-like profile (λ = 0.04),
we made tailored experiments where we varied λ in
the range [0.1,0.9] and [0.01,0.09] respectively. Results
(not shown to save space) demonstrate that negligible
differences apply in the reconstructed profiles as far as
λ belongs to the above-mentioned ranges.
To quantitatively analyze the reconstructions perfor-
mance, 4 indices are used to quantify the distance
between the reconstructed and the reference profiles, see
Fig. 4. In particular, a1 and a2 (whose reference value
should be 0) refer to the reconstruction error with respect
to the top of the edge and the background, respectively;
while d1 and d2 (whose reference value should be 0
as well) refer to the reconstruction error with respect
to the upper and lower-part of the discontinuity. Results
related to the reconstructions obtained using L2, L1.2

and Lp(·) are listed in Table I for the three reference
brightness profiles. Results show that the variable p
exponent method performs best with all the indexes with
the exception of d1. The latter witnesses that the Lp(·)

method provides the worst result when the brightness
profile f1(x) and f2(x) are used. This means that the
p = 2 and p = 1.2 provide better reconstructions of
the upper part of the discontinuity. However it must be
noted that, as shown in Fig. 2 those methods fail in
reconstructing the correct level of the brightness profile,
resulting in an error that is around 20 K (p = 1.2) and
15 K (p = 2), respectively.

With respect to the 2D case the 1400 × 900 km
simulated reference field is considered, see Fig. 5(a).
It includes 10 targets that call for different dimensions

Fig. 4. Pictorial view of the 4 indices used to quantify the recon-
structions performance with respect to the reference brightness profile.

and brightness temperatures. It can be noted that some
of the targets are very close to each other and they
call for very similar brightness temperatures. Hence, this
simulated scenario is very challenging. The simulated
measurements field is shown in 5(b) where one can
note that the low-pass filtering due to the band-limited
radiometer transfer function, results in a coarse spatial
resolution that, at once, limits the interpretability of the
image. In fact, edges are blurred and some hot spots
are not correctly detected. The field reconstructed at
enhanced spatial resolution using the variable exponent
p approach is shown in 5(c) where one can note that
the edges of the larger target are very well reconstructed
with negligible oscillations. In addition, the two pairs
of close targets (on the rightmost-hand-side and on the
upper-part of the image, respectively) are well resolved.
The very small targets (whose size is approximately
10× 20 km) are not visible in the reconstructed image.
A deeper analysis on the reconstruction performance
is undertaken contrasting reconstructions obtained using
the proposed variable exponent p approach with the
conventional p = 2 and p = 1.2 approaches in two
different cases. The first case, shown in Fig. 5(d), refers
to a transect that crosses the largest target (whose size is
200 × 200 km) along the along-track dimension. It can
be noted that, even in this case, the variable p approach
results in the best performance since it well fits both
the sides of the discontinuity resulting in the lowest d2
parameter. Moreover, it results in no oscillations at the
lower edge of the discontinuity (a2 ' 0) while it over-
smoothes a little the upper edge of the discontinuity.
The second case refers to a transect that crosses two
targets which are very close to each other (∼ 25 km
in the along-scan direction), see Fig. 5(e). In this case,
the targets are very small and no method succeeds in
can accurate reconstruction pot the upper part of the hot
spots that resembles Dirac-like delta functions. However,
it can be noted that the variable p-exponent approach
results in the best fitting of the abrupt discontinuity and
results in no oscillations.

March 27, 2019 DRAFT



8

TABLE I
QUANTITATIVE ANALYSIS OF THE RECONSTRUCTION PERFORMANCE AGAINST THE REFERENCE BRIGHTNESS PROFILE.

rect double rect spike
a1 a2 d1 d2 a1 a2 d1 d2 a1 a2 d1 d2

p = 2 12.1 22.9 28 26 17.2 17.1 28 27 9.3 19.9 - 25
p = 1.2 22.9 0 23 40 29.9 0 21 45 16 3.4 - 40
variable p 2.8 0 53 14 5.7 2.9 43 21 3.4 0 0 0

Fig. 5. (a) 2D reference brightness field where some discontinuities
of different sizes and brightness temperatures are present. (b) Noisy
simulated measurements obtained through (3) considering SSM/I pa-
rameters and a 1.09-K additive noise level. (c) Reconstructed field at
enhanced resolution obtained with the variable p exponent method. (d)
Brightness profile evolved according the along-track transect via the
variable p, p = 2 and p = 1.2 reconstructed fields. (e) Brightness
profile referred to the along-scan transect.

B. Real Data

Experiments undertaken on actual SSM/I measure-
ments refer to five H-polarized brightness temperature
fields collected in 1998 (day 278, F08 satellite) using
the 19 GHz channel.

The third experiment concerns the brightness field
measured over the Mediterranean sea, see Fig. 6 (a). A
transect that includes portions of Spain, Baleari Islands,
Sardinia and Italian peninsula is considered, see 6(b).
It can be noted that the 1D extracted profile includes
both rect-like and spot-like discontinuities that refers to
land/sea transitions and small islands, respectively. The
profiles reconstructed using the gradient method with
p = 2, p = 1.2 and with variable p exponent are shown
in Fig. 8(a) where the 19 GHz and 37 GHz non-enhanced
fields, interpolated at the finer-resolution grid, are also

Fig. 6. (a) SSM/I 19.3 GHz H-polarized brightness temperature field.
The white dotted line shows the along-scan transect selected for our
study. (b) Brightness temperature profile related to the selected along-
scan transect.

Fig. 7. (a) SSM/I 19.3 GHz H-polarized brightness temperature field.
The white dotted line shows the along-scan transect selected for our
study. (b) Brightness temperature profile related to the selected along-
scan transect.
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shown for reference purpose. Note that the latter channel
is intrinsically characterized by a finer spatial resolution.
All the methods provide satisfactory reconstruction per-
formance since they result in a reconstructed profile that
well-fits the reference profile resulting in better defined
edges. It can be noted that the L2 reconstruction suffers
of Gibbs-related oscillations that are not visible when
dealing with the L1.2 reconstruction. However, they both
exhibit significant oscillations in the upper-part of the
edges. The best performance is provided by the variable
p exponent method that results in a reconstruction that is
not affected by neither Gibbs oscillations nor fluctuations
over the top of the edges.

The fourth experiment concerns the brightness field
related to a portion of the Atlantic Ocean, see Fig. 7 (a).
A transect that includes the Canary Islands is considered,
see 7 (b). It can be noted that the 1D extracted profile in-
cludes both rect-like and several spot-like discontinuities.
The profiles reconstructed using the gradient method
with p = 2, p = 1.2 and with variable p exponent
are shown in Fig. 8(b) where the 19 GHz and 37 GHz
non-enhanced fields, interpolated at the finer-resolution
grid, are also shown for reference purpose. Again, all
the methods provide satisfactory reconstructions, but the
variabile p method provides the best result wiping out
the oscillations on the land-portion of the L2 and L1.2

reconstructions.
The fifth experiment concerns three transects extracted

from three different brightness fields (not shown to save
space). The first one contains a portion of Tunisia and the
islands of Sicily and Malta, see Fig. 9(a). The second one
concerns the Bristol Bay, Alaska, and the transect (see
Fig. 9(b) includes an isolated spike due to the presence of
an isle. The third transect (see Fig. 9(c), extracted from
a brightness field related to the central Africa, contains
the Lake Victoria. The profiles reconstructed using the
gradient method with p = 2, p = 1.2 and with variable
p exponent are shown in Fig. 10(a),(b),(c) where the 19
GHz and 37 GHz non-enhanced fields, interpolated at
the finer-resolution grid, are also shown for reference
purpose. All the methods provide a satisfactory recon-
struction performance since they result in a reconstructed
profile that well-fits the reference profile. However it
must be noted that L2 reconstruction is strongly affected
by Gibbs-related oscillations that are not visible when
dealing with the L1.2 reconstruction. Conversely, the
p = 1.2 method results in fictitious oscillations that
can be observed, for instance, in the top-part of the
edge of Fig. 10(a) and over the area of Fig. 10(b). With
respect to the the variable-p exponent method, it can be
noted that it results in a reconstruction performance that
significantly outperforms the p = 2 and p = 1.2 ones in
the case of Fig. 10(a). The performance is significantly

Fig. 8. Enhanced spatial resolution reconstructions obtained by Lp

minimization approach with: p = 2 (red line), p = 1.2 (green line), vari-
able p (blue line). The yellow and orange circles represent the 19 GHz
and 37 GHz non-enhanced profiles, respectively. (a) Reconstructions
related to the 1D transect of Fig. 5(b); (b) Reconstructions related to
the 1D transect of Fig. 6(b).

(slightly) better than the p = 2 (p = 1.2) method
in Fig. 10(b)-(c). Note that, in this case, the marginal
improvement with respect to the p = 1.2 case is due
to the presence of spot-like discontinuities that does not
result in fictitious oscillations when the reconstruction is
addressed in p = 1.2 Banach spaces.

CONCLUSIONS

A novel approach to enhance the spatial resolution
of single-pass microwave radiometer measurements is
proposed. The approach is mathematically based on the
theory of regularization in Lebesgue spaces Lp with a
variable p exponent. A reconstruction technique based
on the gradient method is proposed that exploits a p
exponent that varies in the range [1.2, 2]. The exponent
is adaptively rescaled according to the characteristics of
the non-enhanced brightness field in order to exploit the
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Fig. 9. Brightness temperature profile related to along-scan transects
selected from SSM/I 19.3 GHz H-polarized brightness temperature
field. The transects concern: (a) Tunisia and the island of Malta, (b)
Bristol Bay area, Alaska, (c) Lake Victoria, Africa.

benefits of reconstructions in Hilbert and Banach spaces
while mitigating their drawbacks. Experiments under-
taken on both actual one-dimensional and simulated two-
dimensional brightness profiles demonstrate the bene-
fits of the proposed approach that reduces oscillations
that characterize the L2 and L1.2 reconstructions while
resulting in a comparable enhancement of the spatial
resolution. Further developments will be devoted to the
best tuning of the algorithm’s parameters to reconstruct
actual 2D brightness fields.
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