
 

Abstract— In this paper we consider the development of 

algorithms for the automatic detection of buried threats using 

ground penetrating radar (GPR) measurements.  GPR is one of 

the most studied and successful modalities for automatic buried 

threat detection (BTD), and a large variety of BTD algorithms 

have been proposed for it.  Despite this, large-scale comparisons of 

GPR-based BTD algorithms are rare in the literature.  In this 

work we report the results of a multi-institutional effort to develop 

advanced buried threat detection algorithms for a real-world GPR 

BTD system.  The effort involved five institutions with substantial 

experience with the development of GPR-based BTD algorithms. 

In this paper we report the technical details of the advanced 

algorithms submitted by each institution, representing their latest 

technical advances, and many state-of-the-art GPR-based BTD 

algorithms.  We also report the results of evaluating the algorithms 

from each institution on the large experimental dataset used for 

development. The experimental dataset comprised 120,000 𝒎𝟐 of 

GPR data using surface area, from 13 different lanes across two 

US test sites.  The data was collected using a vehicle-mounted GPR 

system, the variants of which have supplied data for numerous 

publications.  Using these results, we identify the most successful 

and common processing strategies among the submitted 

algorithms, and make recommendations for GPR-based BTD 

algorithm design.   

 

Index Terms—ground penetrating radar, landmine detection, 

buried threat detection 

I. INTRODUCTION 

In this paper we consider the development of algorithms for 

the automatic detection of buried threats in ground penetrating 

radar (GPR) data.  GPR is one of the most well studied and 

successful modalities for buried threat detection (BTD), and a 

large variety of BTD algorithms have been proposed in the 

literature for GPR-based BTD [1]–[18]. For example, GPR-

based BTD algorithms have employed techniques from fields 

as varied as statistics [19]–[21], computer vision [22]–[24], and 

machine learning [6], [25]–[27].   

Prolific development within the research community has 

advanced the effectiveness of GPR-based BTD systems, 

however most modern studies focus on proposing new 

algorithms, and they often compare their results against just one 

or two other algorithms [2], [22], [23], [28]–[31].  Systematic 

comparisons of modern algorithms are rare, and therefore it can 

be difficult to discern which algorithms, and more generally 

which processing practices, are best.   

A. A multi-institutional comparison of algorithms 

In this work we report the results of a recent multi-

institutional effort to develop, and compare, advanced buried 

threat detection algorithms. The effort involved five institutions 

with substantial GPR-based BTD experience: Duke University, 

University of Louisville, University of Missouri, University of 

Florida, and Chemring Sensors and Electronic Systems (CSES).  

A major objective of this effort was to identify the best 

processing approaches, and evaluate them in an unbiased 

manner, for potential inclusion in a real-world BTD system.  As 

a result, each institution was provided with the same period of 

time for algorithm development; the same experimental dataset; 

and advanced knowledge of the scoring criteria.   

The institutions were specifically tasked with developing 

discriminators.  Discriminators must accept a small cube of 

GPR data (e.g., centered at a suspicious spatial “alarm” 

location), and return a decision statistic. The decision statistic 

indicates the relative likelihood that a buried threat is located at 

that location.  An example cube of GPR data is shown in Fig. 1.  

The discriminators produced in this effort were compared using 

a large GPR dataset collected using a vehicle-mounted GPR-

based BTD system, the variants of which have been involved in 

numerous publications over the preceding years [18], [23], [25], 

[32]–[36].  The GPR dataset collected using this system, and 

used to compare the discriminators, was comprised of 120,000 

m2 of surface area, collected over 13 lanes at two different US 

test sites, and encompassing 4,552 buried threat encounters.   

 

B. Contributions of this work 

The first major contribution of this work is a technical 

description of the discrimination algorithms submitted by each 

institution. While some algorithms represent the latest advances 

to previously proposed GPR-based BTD discriminators (e.g., 
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Fig. 1: Illustration of a cube of GPR data of the kind considered in this work.  

A slice of the data (i.e., an image) indicated by the solid line is projected onto 
Spatial axis 1, and the slice of data indicated by the dashed line is projected 

onto Spatial axis 2, for visualization of the contents of the GPR cube.  

Discrimination algorithms must distinguish between data cubes corresponding 
to threats and non-threats. This particular example corresponds to data collected 

at the location of a buried threat.   



 

gprHOG, EHD, LG), others are novel GPR-based BTD 

discriminators (e.g., SED).  In either case, these algorithms 

incorporate the latest technical advances from each institution, 

and therefore represent state-of-the-art algorithms within the 

GPR-based BTD community.    

The second major contribution of this work is a presentation 

and analysis of the results of the algorithm performance 

comparison. Notably, we compare and contrast the 

discrimination algorithms in order to distill the underlying 

processing strategies that are most effective for GPR-based 

BTD.  Based upon these analyses we make recommendations 

for the design of effective BTD algorithms. 

Our final contribution is comprised of two additional analyses 

of the results.  The first analysis involved a rudimentary fusion 

of the algorithms, which yielded performance improvements.  

This result suggests that the discrimination algorithms provide 

complementary detection capabilities.  Additional analysis also 

reveals relative advantages of some algorithms on shallow and 

deeply buried threats, respectively.  

C. Paper organization  

Section II describes the GPR system used to collect data for 

this study, and provides details regarding the experimental 

dataset.  In Section III we discuss the experimental design that 

was used to evaluate the discriminators: the full detection 

processing pipeline for the GPR BTD system, data handling 

(e.g., how the data was used for training and testing supervised 

algorithms), and the scoring criteria.  Section IV describes the 

technical details of the prescreening algorithm, which identifies 

suspicious locations for processing by the discrimination 

algorithms.  Section V presents the technical details of the four 

discrimination algorithms submitted for the algorithm 

comparison.  Section VI presents the experimental results.  

Section VII presents an analysis of the results, including fusion 

of the discriminator outputs, and a breakdown of their 

performance by target burial depth.  Section VIII presents our 

conclusions, and recommendations for the design of effective 

GPR-based BTD algorithms. 

II. THE EXPERIMENTAL SENSOR AND DATASET  

In this section, we describe the vehicle-mounted radar system 

that was used to collect the GPR data used in our experiments, 

as well the GPR dataset that was collected using this system.   

A. The vehicle-mounted radar system  

The radar system employed to collect GPR data is comprised 

of an array of radar antennas that are mounted on the front of a 

vehicle.  The array is oriented perpendicular to the direction of 

travel (i.e., cross-track), and the antennas are equally spaced 

along the array.  During data collection, each antenna emits an 

ultra-wideband radar signal, consisting of a differentiated 

Gaussian pulse, and then measures the energy reflected back 

towards the array from the subsurface. The result of this 

procedure is a time-series of signal strengths, known as an A-

scan [12], [23], from each antenna.  As the vehicle moves 

forward down a path or lane, referred to as the “down-track” 

direction, each antenna records A-scans at regular down-track 

(spatial) intervals.  The recording of cross-track A-scans (across 

the array), and down-track A-scans (along the direction of 

travel) results in a volume of GPR data.  An example of a large 

GPR data volume is illustrated in Fig. 2.   

B. GPR dataset details 

The data in this experiment was collected at two distinct US 

testing sites, designated “Site A” and “Site B”.  A series of 

testing lanes (or pathways) were constructed at each site.  A 

mixture of government manufactured and improvised threats 

were buried at known locations throughout each lane in order 

to evaluate the detection capabilities of the BTD system.  The 

objects were buried at various depths, and contain varying 

levels of metal content.  The burial depths and metal content of 

the target population is summarized in Table 1.   

Site A was located in a temperate geographic location, and 

was comprised of 449 unique threats, distributed over 7 lanes.  

56 total runs (or passes) were made over the lanes at Site A, 

resulting in a total of 48,000 m2 of scanned lane area, and 3,368 

threat encounters.  Site B was located at an arid geographic 

location, and was comprised of 210 unique threats, distributed 

over 6 lanes.  34 total passes were made over the lanes, resulting 

in a total of roughly 72,000 m2 of scanned lane area, and 1,184 

threat encounters.  In total, the testing data consisted of 90 runs 

over 13 unique lanes, encompassing roughly 120,000 m2 of 

lane area.   

 
Table 1: Metal content and burial depth of the experimental threat (encounter) 

population.  The precise depth ranges for each burial depth category have 

been omitted to obscure the precise performance characteristics of the 
proprietary GPR-based BTD system.  Here the “Deep burial depths” category 

corresponds to threats that are buried at (roughly) the 90th percentile burial 

depth, or deeper.  

 Metal 
Low 

metal 
Non-
metal 

Total 

Standard  burial depths 1441 2121 465 4027 

Deep burial depths 308 0 217 525 

III. EXPERIMENTAL DESIGN 

In this section we present details of the experimental design 

employed in this study to evaluate and compare the 

performance of the discrimination algorithms submitted by 

each institution.  Importantly, this section also lays out the 

design specifications and/or constraints for the algorithms that 

were provided to each institution during development.  

A. The two-stage detection processing pipeline  

The full detection algorithm, or processing pipeline, 

employed on our BTD system is comprised of two sub-

processes: prescreening and discrimination (i.e., 

classification).  This processing pipeline is illustrated and 

described in Fig. 2, and has been applied in numerous previous 

studies that considered GPR-based BTD [1], [18], [23], [37]–

[39].  The prescreener employed in our experiments was 

developed by the CSES Corporation, while the discrimination 

algorithms were developed by at least one of the other 

institutions (all of which are University research groups). 

As discussed in Fig. 2, each discrimination algorithm must 

accept a cube of GPR data as its input, and return a real number 

indicating the relative likelihood that the location under 

consideration contains a buried threat.  These cubes are 

centered at suspicious spatial locations, called alarms,  that are 



 

identified by the prescreener.  The cube of GPR data has a 

predetermined spatial extent, imposed by the need to process 

the data in real-time during system operation.  Similarly, the 

radar system collects A-scans of a pre-determined, and fixed, 

(temporal) length.  All algorithms were required to operate 

within these constraints.   

 

B. Data handling: discriminator training and testing 

All of the discriminators submitted for this comparison 

contain some type of supervised statistical, or machine learning, 

model. Supervised models have parameters that must be 

inferred using labeled examples of the classes of data we wish 

to categorize (e.g., threats and non-threats in this case).  This 

process of parameter inference is often referred to as training, 

and it results in a trained algorithm that can then be applied to 

new, unlabeled, data in order to infer whether it is a threat or 

not (i.e., threat inference).  Supervised learning models obtain 

excellent performance when sufficient training data is 

available, and they have now become popular in the GPR BTD 

literature [2], [18], [25], [38], [40], [41].  

A common approach to assess the performance of any 

supervised algorithm (i.e., an algorithm containing a supervised 

model), is to employ cross-validation. This process involves 

training the models on some subset of the data, and then 

evaluating their ability to discriminate between the desired data 

classes on data that was excluded from training.  In this work 

the discrimination algorithms were evaluated using a lane-

based cross-validation approach, which we illustrate and 

describe in Fig. 3.   

C. Scoring the algorithms 

The output of the discriminators (and prescreener) is a list of 

spatial alarm locations and their associated decision statistics.  

Before scoring these alarms, we must establish which of them 

should be considered correct alarms (i.e., they occur over real 

threats), and which of them are false alarms.  In this work, any 

alarm located within a radius of 0.25m of a buried threat was 

considered to be a correct alarm, while all other alarms were 

considered false. This is a popular criterion that has been 

employed in numerous previous GPR-based BTD studies [30], 

[33], [42]–[45].   

Given the true identity of each alarm (threat or non-threat), 

we can score the performance of the discriminators, and the 

prescreener. In this work we employ receiver operating 

characteristic (ROC) curves to measure performance.  ROC 

curves quantify the tradeoff between the correct alarm rate (or 

probability of detection), 𝑃𝑑, and the false alarm rate (or 

probability of false detection), 𝐹𝐴𝑅, as we vary the sensitivity 

of the algorithm.  The ROC curve is a popular metric in the GPR 

BTD literature [1], [6], [18], [23], [39], [46], where it is 

common to scale the FAR metric so that it corresponds to the 

number of false alarms per square meter of scanned surface 

area.  This representation of the BTD system’s FAR is often 

more interpretable and operationally relevant than false alarm 

probabilities.  Unless otherwise stated, any reference to FAR in 

this work refers to false alarms per square meter.  

The vehicle-mounted BTD system considered in this work is 

proprietary, and therefore it was necessary to obscure its precise 

performance capabilities.  In order to meet this need, while still 

effectively comparing the algorithms, we omitted all of the FAR 

values from the ROC curves reported in this work (i.e., the 

values on the x-axis are omitted).  Although FARs were 

omitted, all of the ROC curves in this work (except Fig. 10 

involving the prescreener) use exactly the same range of FAR 

values on the x-axis.  The presented range of FAR values 

corresponds to those FARs that were considered most 

operationally relevant for the discrimination algorithms. 

Consequently, the algorithm designers were tasked with 

developing discrimination algorithms to achieve the highest 

possible 𝑃𝑑 over this FAR range.   

 

 
Fig. 2: Illustration of the two-stage detection processing approach employed in 

the BTD system in this study.  (a) The first stage of processing is 

“prescreening”, in which a relatively fast algorithm (a prescreener) is applied 
to the raw incoming volume of GPR data to identify a small set of suspicious 

locations, called alarms, for processing by the more computationally intensive 

discrimination algorithms. The prescreening operation reduces the amount of 
data considerably, making it possible to apply the discrimination algorithms in 

real-time (e.g., on a moving vehicle).  (b) In the second stage of processing, 

discrimination algorithms are applied to cubes of GPR data extracted at each 
alarm location identified by the prescreener.  The goal of the discrimination 

algorithm is to assign a “decision statistic” to each alarm location indicating the 

relative likelihood that the data corresponds to a true buried threat.  Note that 
the discriminators operate only on the locations identified by the prescreener, 

and therefore any buried threats that are missed by the prescreener cannot be 

identified by the discriminators.   

 

 

 
Fig. 3: Illustration of the lane-based cross-validation procedure used to evaluate 

the discrimination algorithms.  Training of the supervised portions of the 
discrimination algorithms (i.e., parameter inference) is performed on 

prescreener alarms from 𝑁 − 1 lanes. This process yields a trained 

discrimination algorithm that can be deployed for threat inference on new, 

previously unseen, GPR data.  The trained algorithm is applied for threat 

inference on prescreener alarms on the remaining lane that was withheld from 
training.  This yields a list of decision statistics, indicating the relative 

likelihood that each of the prescreener alarms corresponds to a true buried 

threat.  This process is performed 𝑁 times, so that each lane is employed exactly 

once for threat inference.  The decision statistics from each lane are then 

aggregated and used to compute performance metrics for the algorithm.  

  



 

IV. THE PRESCREENING ALGORITHM 

In this section we describe the prescreener algorithm, which 

is comprised of a fusion two individual prescreeners: the F2 

prescreener, and the CCY prescreener.  Each prescreener 

operates independently, and then their outputs are fused.  First, 

we describe the two prescreeners, followed by the technique for 

fusing their outputs.  

Note that, prior to prescreening, preprocessing is applied in 

which the time of the ground response is estimated at each 

spatial location, and then each A-scan is shifted so that the 

ground response occurs at the same time index across all spatial 

locations.  Subsequently all data at, or above, the ground 

response is removed.  These two preprocessing steps are 

common in GPR BTD [21], [29], [47], [48].   

A. The F2 prescreener 

The F2 pre-screener is an updated version of F1 (Fast One) 

which in turn was derived from a LMS-based pre-screener 

developed by [42] to reduce its run time while maintaining 

comparable performance. The overall strategy of F2 is to 

identify locations in the GPR data with high signal energy, 

relative to the surrounding data.  This strategy is implemented 

through a series of smoothing and constant false alarm rate 

(CFAR) processing [21], [49]. In this context, CFAR filtering 

usually refers to a process of statistically whitening data with a 

locally computed mean and standard deviation.  With this in 

mind, F2 involves the following major processing steps: 

(1) At each time index, median filtering the GPR volume in 

the down-track direction, to mitigate noise. 

(2) At each time index, subtraction of the mean in the cross-

track dimension, in order to remove panel-specific signal 

variations.  

(3) Depth binning, whereby each A-scan is divided into non-

overlapping bins (i.e., subsets of time indices).  The set of 

A-scan values within each bin is replaced by the average 

of the top two values within that bin.   

(4) CFAR filtering is applied along the time axis.  

(5) The processed GPR volume is summed along the time 

axis, resulting in a single value at each spatial location 

(i.e., a 2-dimensional spatial map of intensities).  

(6) 2-dimensional CFAR and Gaussian smoothing operations 

are applied, in that order, to the spatial map.  

Alarms are obtained from the processed spatial map by 

applying thresholding to the resulting intensity values, and 

identifying connected components of pixels with intensities 

above the threshold. 

B. The CCY prescreener 

To provide prescreening information complementary to that 

provided by F2 CSES developed a shape-based prescreener 

called Concavity (CCY).  Given that the signal returns from real 

buried threats manifest as hyperbolas in the GPR data, the 

estimated convexity or concavity of signals in the data serve as 

a useful metric for identifying threats.  This insight forms the 

basis for the CCY prescreener.  

The CCY prescreener implementation begins by statistically 

whitening each point in the GPR volume based upon statistics 

computed on neighboring points at the same depth (time index).  

This step mitigates signal attenuation with respect to depth.  

Once this preprocessing is completed, a concavity measurement 

is computed at every spatial location in the GPR volume.  This 

concavity measurement is itself computed from two concavity 

measurements: one computed on a down-track slice of GPR 

data, and one computed on a cross-track slice of GPR data.   

Given either slice of GPR data, the concavity calculation 

proceeds in the same manner, and produces two concavity 

measures, 𝑐+ and 𝑐− that are summed to obtain one concavity 

measure for the slice.  A detailed description of the algorithm 

used to compute 𝑐+ and 𝑐− is presented in Table 2, but we 

outline the algorithm here.  The algorithm attempts to identify 

sequences of high magnitude pixels that form a concave curve.  

This search proceeds by considering the positive signals and the 

negative signals separately.  For example, we consider only the 

positive signal by setting all of the negative pixel values to zero, 

and then identifying local maxima in the resulting image that 

exceed some value threshold. This processing is illustrated on 

real GPR data in Fig. 4 (middle image).  𝑐+ is a measure of the 

concavity of the sequence of local maxima identified in the 

image.  A similar process is applied to identify the negative 

signals to obtain 𝑐−.  The negative image maxima are also 

illustrated in Fig. 4.   

The final estimate of concavity at a particular spatial location 

consists of summing the two concavity measures from the 

down-track slice (i.e., 𝑐+ and  𝑐−) with those from the cross-

track slice (i.e., four total).  Once a concavity measure is 

computed for every spatial location, a smoothing filter is 

applied to the resulting 2-dimensional map of concavity values.  

The CCY pre-screener reports as alarms the maximum points 

from 9x9 windows that are above a predetermined threshold. 

 

C. Fusion of the prescreeners 

Due to the complementary nature of the F2 (energy-focused) 

and CCY (shape-focused) prescreeners, it has been 

advantageous to prescreening performance to fuse their 

respective outputs.  This can be accomplished by treating the 

alarms made by F2 and CCY as though they were generated 

from a single prescreener. However, it is likely that many pairs 

of alarms (i.e., one from F2 and one from CCY) will correspond 

to the same object (e.g., buried threat, subsurface rocks, roots, 

etc). This may result in wasteful processing of the same object 

via several different alarms, and create unnecessary vehicle 

stops or slowdowns if the object is perceived as a threat.   

To address this problem, we merge alarms that are likely to 

be redundant. A simple and effective proxy for alarm 

redundancy is the relative proximity of the two alarms, and so 

alarms are merged using a proximity threshold.  The exact 

details of the merging process are omitted here due to space 

considerations.  In the event of a merger, however, the two 

 
Fig. 4: (left) Illustration of a GPR slice.  (middle) The sequences of local 

maxima values (in red) that were identified for computing 𝑐+.  This sequence 

was identified within the black dashed box in the GPR slice.  The full 

procedure for identifying such sequences, and computing 𝑐+, are described in 

Table 2.  The sequences of local minima values (in blue) that were identified 

for computing 𝑐−.   

  



 

alarms are usually replaced with a single alarm, and the decision 

statistic assigned to the new alarm is given by a weighted sum 

(i.e., an average) of the statistics from the individual alarms.  

In general, the F2 and CCY decision statistics can differ by 

orders of magnitude, potentially interfering with the 

effectiveness of the weighted average, because the magnitude 

of one prescreener statistic dominates the other.  To mitigate 

this problem, the CCY statistics are re-scaled as follows: 

a*CCYb+c. In our experiments the three parameters, a, b, and 

c, were determined using training data to maximize the area 

under the ROC curve on the training data.   

 

V. DISCRIMINATION ALGORITHMS 

This section presents the technical details of each of the 

discrimination algorithms submitted for the comparison.  

Although it was not a design constraint, all of the submitted 

discriminators follow the same basic processing pipeline, 

involving feature extraction and classification.  This pipeline is 

illustrated and described in Fig. 5.  For simplicity, we will refer 

to each discriminator by its feature extraction approach.  For 

example, the first algorithm is based on the edge histogram 

descriptor (EHD) feature and we will therefore refer to it as “the 

EHD algorithm”.  Using the aforementioned nomenclature, a 

total of four discriminators were submitted for the comparison: 

EHD, Log-Gabor (LG), the Histogram of Oriented Gradients 

for GPR (gprHOG), and Spatial Edge Descriptors (SED).  The 

description of each algorithm is broken down into three parts: 

feature extraction, classifier and training, and threat inference 

(i.e., how predictions are made on new data).   

As described in Section III, all of these discriminators were 

required to operate on 3-Dimensional cubes of GPR data.  All 

of the discriminators apply two initial pre-processing steps: (i) 

alignment of all A-scans so that the ground response in each A-

scan occurs at the same time (depth) index; and (ii) the removal 

of all GPR data at, and above, the ground time index.  LG only 

applies (i) for preprocessing.  

All of the discriminators submitted to the comparison apply 

some form of depth-based calibration of the data. Although the 

precise approaches varied slightly, this calibration procedure 

always consisted of normalizing, or whitening, each pixel by 

removing a locally computed mean from the data, and dividing 

by a locally computed standard deviation.  For example, at a 

given time index (depth), the mean and variance can be 

computed using a set of leading and trailing GPR samples, and 

subsequently used for whitening all pixels at that time index.  

   

A. Edge Histogram Descriptors (EHD) 

The EHD uses translation invariant features that are based on 

the histogram of edges in the GPR signature [32]. It is an 

adaptation of the MPEG-7 EHD feature [50] which encodes 

image texture information. It has been adapted to capture the 

spatial distribution of the edges within a 3D GPR volume. To 

keep the computation simple, 2D edge operators are used, and 

two types of edge histograms are computed. The first one, 

called EHDDT, is obtained by fixing the cross-track dimension 

and extracting edges in the (time, down-track) plane. The 

second edge histogram, called EHDCT, is obtained by fixing the 

down-track dimension and extracting edges in the (time, cross-

track) plane. 

Feature extraction: The EHDDT and EHDCT features are 

extracted from a GPR volume located at the prescreener alarm 

location with sizes (T,XT,DT) = (60, 15, 15). Let S(t,x,y) 

denote this volume, and let 𝑆𝑡𝑦
(𝑥)

denote the xth plane of S. First, 

for each 𝑆𝑡𝑦
(𝑥)

, four categories of edges are computed using 3x3 

Sobel filters: vertical, horizontal, 45o diagonal, and 135o anti-

diagonal. If the maximum of the edge strengths exceeds a preset 

threshold, the corresponding pixel is considered to be an edge 

pixel and is labeled according to the direction of the maximum 

edge. Otherwise, it is considered a non-edge pixel. Next, each 

𝑆𝑡𝑦
(𝑥)

 image is vertically subdivided into 7 overlapping sub-

images 𝑆𝑡𝑦,𝑖
(𝑥)

, 𝑖 = 1, … , 7. For each 𝑆𝑡𝑦,𝑖
(𝑥)

, a 5 bin edge histogram, 

𝐻𝑡𝑦,𝑖
(𝑥)

, is computed. The bins correspond to the 4-edge categories 

and the non-edge pixels. The EHDDT is defined as the 

concatenation of the 7 five-bin histograms. That is, 

TABLE 2 

Algorithm to compute concavity measures, 𝑐+and 𝑐− 

Input: A GPR slice, 𝑆(𝑡, 𝑧), where 𝑡 is the temporal axis and 𝑧 is 

the spatial dimension. Denote the spatial center of the patch by 𝑧0.  

Parameters:  

𝜔 = Size of the search window for maxima (positive integer) 

𝛾 = The threshold to retain maxima values 

Output: Two concavity measures, 𝑐+ and 𝑐− 

1. Compute 𝑆′(𝑡, 𝑧) = |max( 𝑆(𝑡, 𝑧), 0)|  ∀(𝑡, 𝑧) 

2. Compute 𝑡∗ = max
𝑖

𝑆′(𝑖, 𝑧0)   

3. If 𝑆′(𝑡∗, 𝑧0) ≥ 𝛾 set 𝑐+ = 0 and go to step (9), else,  initialize 

the set of coordinates Χ = {(𝑡∗, 𝑧0)} 

4. For 𝑗 = 1 … 5 

(a) Set 𝑖∗ = argmin
𝑖∈[−𝜔,𝜔]

 |𝑡∗ − 𝑖| 𝑠. 𝑡.  𝑆′(𝑡∗ + 𝑖, 𝑧0 + 𝑗) ≥ 𝛾   

(b) If no 𝑖∗ = ∅, go to step (5),  

  else add (𝑡∗ + 𝑖∗, 𝑧0 + 𝑗) to Χ and set 𝑡∗ = 𝑡∗ + 𝑖∗ 

End 

5. Repeat step (4), with 𝑗 = −1 … − 5.  The set 𝐶 now contains a 

sequence of (spatially) neighboring points, with a maximum 

potential length of 11 points.  See Fig. 4 for examples on real data.  

6. Construct Χ′ as the set of all possible sequences of consecutive 

points that can be constructed from the points in X. 

7. 𝑐+ = 1/|𝑋′|  ∑ 𝑓(𝑥)𝑥∈𝐶′ , where f(.) is a function that 

measures concavity as the difference between a sequence’s mid-

point and the average of its end-points.   

8. Set 𝑆 =  −𝑆 and repeat steps (1)-(7) to obtain 𝑐− 

 

 
Fig. 5: Although not a design constraint, each discrimination algorithm 

submitted for the algorithm comparison adopted the same processing pipeline, 
illustrated here.  (a) Feature extraction is the first step of processing, and 

consists of extracting of measures or statistics from the GPR data, with the aim 

of concisely (e.g., in a low dimensional vector) summarizing the important 
characteristics of the data.  For example, many features attempt to encode the 

strength and orientation of edges in GPR slices.  (b) The features extracted in 

(a) are provided to a supervised classification model that has been trained to 
distinguish between features corresponding to threats and non-threats, 

respectively.  The classifiers assign a decision statistic to the input feature, 

indicating the relative likelihood that it corresponds to a threat.   

  



 

𝐸𝐻𝐷𝐷𝑇(𝑆(𝑡, 𝑥, 𝑦)) = [𝐻𝑡𝑦,1 … 𝐻𝑡𝑦,7], where 𝐻𝑡𝑦,𝑖 is the 

cross-track average of the edge histograms of sub-images 𝑆𝑡𝑦
(𝑥)

 

over the 7 middle channels, i.e., 𝐻𝑡𝑦,𝑖 =
1

7
∑ 𝐻𝑡𝑦,𝑖

(𝑥)11
𝑥=5 . To 

compute the EHD output in the cross-track direction, i.e., 

EHDCT, the y plane of S(t,x,y) is fixed and edges are extracted 

from 𝑆𝑡𝑥
(𝑦)

 in a similar  way. 

Classifier and training: Support Vector Machine (SVM) [51] 

classifiers, with the radial basis function, were used for class 

prediction. One SVM for the EHDDT features (SVMDT) is 

trained and a second SVM for the EHDCT (SVMCT) is also 

trained. Both classifiers were implemented using the libSVM 

package [52]. All parameters were set to their default values.  

At each spatial location indicated by the prescreener, EHDDT 

and EHDCT features are extracted at multiple depths down the 

temporal axis by sampling one S(t,x,y) every 25 temporal 

indices. That is, we extract features from S(t=1..60, x, y), 

S(t=25..84,x, y), ... . This results in a total of 14 EHD features, 

fi, i=1,…,14,  per spatial location identified by the prescreener. 

For non-target alarms, any of the 14 features could be included 

in the training data. To maintain a balance between the number 

of training samples from both classes, we randomly select 5 of 

the 14 features. For targets, we use a kernel density estimator 

(KDE) to identify the few features that correspond to the most 

likely temporal location of the buried threat signal. Let 𝑃− =
{𝑝1

−, 𝑝2
−, … 𝑝𝑘

−} be a set of k prototypes that summarize all of the 

non-target training alarms. Then, for each target training alarm, 

we estimate the KDE of its 14 EHD feature using  

𝐾𝐷𝐸(𝑓𝑖) =
1

𝑍
∑ 𝑒𝑥𝑝(−𝛽‖𝑓𝑖 − 𝑝𝑗

−‖)

𝑘

𝑗=1

 (1) 

where  is a resolution parameter (learned during 

summarization of the non-target training alarms) and Z is a 

normalization factor. The 𝑓𝑖 features with very low KDE (close 

to zero) are selected as the most likely temporal locations that 

correspond to the actual target signatures and will be used for 

training. 

Threat inference: For threat inference on new data, 14 𝐸𝐻𝐷𝐷𝑇  

features and 14 EHDCT features are extracted from each 

prescreener alarm at multiple temporal locations. Then, the 

trained SVMDT and SVMCT classifiers are used to assign 

confidence values to each EHDDT and EHDCT feature 

respectively. Next, we fuse the decision statistics from both 

directions by taking their geometric mean at each temporal 

location. The final decision statistic is computed by summing 

the 3 top fused values. 

B. Log-Gabor (LG) 

The Gabor filter, which is essentially a modulated Gaussian 

function at some frequency fo, has been useful for many filtering 

tasks in signal processing.  The Gabor filter bank is a series of 

Gabor filters created by imposing the constraint that the 

standard deviation governing the spread of the Gaussian 

function is inversely proportional to the modulation frequency 

𝑓0. Allowing the modulation frequency to increase in a dyadic 

manner creates the Gabor wavelets that are common for time-

frequency signal analysis [53].  A distinct property of the Gabor 

filter is that its Fourier transform follows a Gaussian shape as 

well. Thereby the Gabor wavelets define a filter bank with each 

bandpass filter having a Gaussian shape frequency response. 

In the processing of GPR data, the frequency spectrum of the 

radar echo reflected by a threat is asymmetric and has a long 

tail towards the high frequency region.  To better capture the 

characteristics of the threat signal to aid detection, we apply the 

log-Gabor wavelets instead.  The log-Gabor filter was first 

proposed by Field [54] in 1987 for image processing to better 

preserve the edge behavior in a natural image.  The log-Gabor 

filter has a Gaussian frequency response in the log-frequency 

axis, thereby having a long tail response in frequency.  Fig. 1 

illustrates the difference in frequency responses between the 

Gabor and the log-Gabor filter. 

 
Feature extraction: As noted previously, the threat signature 

often appears with a hyperbolic pattern in the B-scan.  To 

capture the frequency as well as spatial responses, we shall 

apply the log-Gabor filters in 2-D for extracting the features for 

threat detection.[55] The 2-D log-Gabor filter is defined in the 

frequency domain through the polar coordinates.  Let  be the 

radius from the center and  the angle from the x-axis.  The 

frequency response of the log-Gabor filter response is given by  

𝐺𝐿(𝜌, 𝜃) = 

exp (−
1

2[log(𝜎𝜌)]
2 [𝑙𝑜𝑔 (

𝜌

𝜌0
)]

2

) exp (−
1

2𝜎𝜃
2 (𝜃 − 𝜃𝑜)2). (2) 

The parameters o and o control the location and the 

orientation of the filter response, and  and  determine the 

spreads in the frequency and angle. We create a set of 36 filters 

to represent the log-Gabor curvelets, by using 4 values of o 

that decompose the frequency range and 9 values of o that 

provide an angle resolution of 20 degrees.  These 36 log-Gabor 

filters cover the frequency plane of a threat’s GPR signal with 

4 different filters at each of the 9 orientations.  Fig. 7 shows the 

frequency as well as the spatial responses of the filters.  The left 

part of the filters extract the rising edge behavior in the B-scan, 

the right part the trailing edge and the middle portion the 

horizontal. 

The B-scan at the prescreener alarm location is separated into 

three spatial regions, with overlap: the left, middle and right.  

The left part of the image is processed by the filters in the first 

three columns in Fig. 7, the right part by the filters in columns 

6 to 8 and the middle part by the filters in columns 4, 5 and 9.  

The filtering process is performed in the frequency domain. 

Each filter output is separated into 15 depth bins with 50% 

overlap. The element of the feature vector is the maximum of 

the energies over the 15 depth bins of each log-Gabor filter 

output. 

In addition to applying the filters to the B-scan in the down-

track, we also apply the log-Gabor filters to the 2-D image 

 
Fig. 6: Frequency response of the Gabor and the log-Gabor filter 

  

 



 

collected over the cross-track, as well as those from the 

positive-diagonal and anti-diagonal in the 3-D data cube at the 

alarm location.  Each 2-D image results in 36 features. Since 

there are 4 total images, this yields a final feature vector of 144 

total feature values.  

 
Classifier and training: The feature vectors are used to train 

two SVM classifiers with an RBF kernel to perform target vs 

non-target classification.  The first SVM is trained on the 

feature vector associated with each alarm.  The second SVM is 

trained on a transformation of the feature vector.  Before the 

max-operation is performed depth-wise, each alarm is 

represented by a matrix of feature vectors of dimension 15 ×
144.  The feature matrix is sorted in descending order of 

magnitude and the top 4 rows are used as individual feature 

vectors with the same label as that of the corresponding alarm.  

To avoid overtraining either SVM, a subset of the data is used 

for training.  For the dataset of feature vectors for each SVM, 

the feature vectors of deeply buried threats are replicated once 

(because there are fewer deeply buried threats).  Second, only 

5% of the resulting samples are selected randomly to train the 

SVM classifier. 

Threat inference: For threat inference, each SVM is applied 

to the feature vector transformation that corresponds to the data 

on which it was trained.  Thus, the first SVM is tested on the 

feature vector that is the maximum value depth-wise for each 

of the 144 features for that alarm.  The second SVM is tested 

on each of the 15 feature vectors for an alarm, resulting in 15 

output confidences.  The output confidences are sorted and the 

sum of the top 3 confidences is the final confidence for this 

classifier.  The final confidence is the sum of the confidences 

of the two SVM classifiers. 

C. gprHOG: histogram of oriented gradients for GPR 

Histogram of Oriented Gradients (HOG) is an image 

descriptor that was originally developed in the computer vision 

literature [56].  HOG was first applied for GPR-based BTD in 

[23] and has since become a very popular feature in the 

literature for BTD [2], [7], [28], [33], [57], [58].  Here we 

employ gprHOG, which incorporates several improvements to 

the original HOG implementation for GPR-based BTD in [23]. 

Further details and experimental justification for gprHOG can 

be found in the original paper [59].  

Feature extraction:  Before feature extraction, the data is 

downsampled in the temporal axis by a factor of 2, in 

accordance with [23] (although our numbers are slightly 

different due to differences in the radar system).  The gprHOG 

feature is extracted on a cube of the pre-processed GPR data, 

denoted S(t,x,y), that is [T,XT,DT]=[18,18,18] in size. Similar 

to [23], we extract two gprHOG features: one cross-track 

feature, denoted 𝐻𝑡𝑥, and one down-track feature, denoted 𝐻𝑡𝑦.  

In [23], a single down-track B-scan was used to compute 𝐻𝑡𝑥 

and 𝐻𝑡𝑦, respectively. With gprHOG however, 𝐻𝑡𝑥 is an 

average of features computed over several neighboring cross-

track B-scans, as illustrated in Fig. 8.  This averaging step 

reduces noise in the feature and improves performance. Another 

important modification of HOG is the removal of the histogram 

(or block) normalization step. It was demonstrated in [33] that 

this substantially improves the effectiveness of the HOG 

descriptor for GPR-based BTD.   

Classifier and training:  In order to create a training dataset, 

we extract four image patches at threat locations using the 

MSEK algorithm [38].  MSEK identifies locations along GPR 

time axis that exhibit high levels of signal energy.  At non-threat 

locations, 24 patches are extracted at regular intervals along the 

time axis. gprHOG features are extracted on all of the 

aforementioned patches and used for training.  Another 

important improvement of the gprHOG algorithm (compared to 

[1]) is the use of two Random Forest classifiers [60]: one trained 

on downtrack gprHOG features, and one trained on cross-track 

gprHOG features.  Both classifiers are trained with 100 trees.   

Threat inference: At each prescreener alarm location, down-

track and cross-track gprHOG features are extracted, 

respectively, at small regular intervals down the time axis.  A 

final decision statistic is computed for each track by summing 

the top 12 classifier decision statistics. The two resulting 

statistics, one from cross-track and one from down-track, are 

multiplied to obtain a final statistic for the alarm. 

D. Spatial edge descriptors (SED) 

The SED algorithm is based upon extracting shape 

information, via gradient histograms, in 2-dimensional GPR 

images.  Unlike most descriptors proposed for GPR-based 

 
Fig. 7: Frequency and spatial responses of the 36 log-Gabor filters for feature 

extraction 

  

 

 
Fig. 8:  Illustration of the extraction of the (a) cross-track gprHOG feature, 

denoted 𝐻𝑡𝑦, and (b) the down-track gprHOG feature, denoted 𝐻𝑡𝑥.  𝐻𝑡𝑦
(𝑖)

 

represents a HOG feature (with no block normalization) extracted on a time-

crosstrack GPR slice located at the 𝑖𝑡ℎ downtrack location within the GPR cube 

provided for feature extraction.  The final cross-track gprHOG feature is given 

by the average of the the HOG features in each slice: 𝐻𝑡𝑦 = (1/𝑁) ∑ 𝐻𝑡𝑦
𝑖

𝑖 .  

Similarly, 𝐻𝑡𝑥
(𝑖)

 represents a HOG feature extracted on a time-downtrack GPR 

slice located at the 𝑖𝑡ℎ cross-track location within the GPR cube, and the final 

down-track feature is given by an average of the individual HOG features.    

  



 

BTD, SED operates on spatial imagery: images comprised of 

GPR returns collected at the same instance in time.  In these 

images, referred to as T-scans, buried threat signals appear 

circular rather than hyperbolic.  This is illustrated in Fig. 9.  The 

SED algorithm is designed to capture this shape to provide a 

descriptor of buried threats to the classifier.   

Feature extraction: The SED feature is extracted from a GPR 

volume with (𝑇, 𝑋𝑇, 𝐷𝑇) =  (50,15,15).  The process for 

computing SED is illustrated in Fig. 9.  For the 𝑖𝑡ℎ temporal 

sample in the volume, 𝑡𝑖, we extract an image 𝐼(𝑥, 𝑦) =
𝑆(𝑥, 𝑦, 𝑡 = 𝑡𝑖).  The image is divided into a 3 × 3 grid of cells.  

In each cell, a histogram of gradients is computed using four 

angle bins, resulting in a 36-dimensional descriptor for the 

image, 𝐻𝑥𝑦
(𝑖)

.  The final descriptor is constructed by averaging 

the descriptors over time, 𝐻𝑥𝑦 = (1/𝑇) ∑ 𝐻𝑥𝑦
𝑖

𝑖 .  The averaging 

step is intended to increase the signal-to-noise ratio of the 

descriptor, due to uncertainty in the temporal location of the 

threat signal, and the tendency of the threat signal to appear over 

many time samples.  

The gradients at each pixel are computed using four 3 × 3 

pixel Sobel filters, each rotated by 45 degrees.  An additional 

bin is added in this step corresponding to “no-edge” if the 

response to all templates is less than a specified threshold.  In 

that case, a count is maintained of the number of pixels in the 

cell whose gradient response was less than the threshold. The 

threshold we use is 3, and this parameter has been relatively 

insensitive to dataset changes.  We note that both using edge 

templates and a “no-edge” bin are similarly implemented in the 

EHD algorithm [32]. 

 
Classifier and training: A Support Vector Machine (SVM) 

[51] with the radial basis function was used for class prediction.  

This was implemented using the libSVM package [52], with 

parameters 𝛾 = 0.001 and SVM cost parameter 𝐶 = 15, which 

were chosen in cross-validation. At each spatial location 

indicated by the prescreener, the time index of the buried threat 

signal is estimated using an energy-based procedure referred to 

as MSEK [38].  The MSEK method computes the signal energy 

along an A-scan (i.e., over the GPR temporal dimension, 

smooths the energy time-series, and then identifies local 

maxima.  For both threat and non-threat data, we extract 

𝑡𝑤𝑜 local maxima for training. 

Threat inference: For threat inference on new data, SED 

features are extracted at regular intervals down the temporal (or 

depth) axis. The temporal locations are obtained, beginning 

with the first temporal index, and then by sampling one location 

every 25 temporal indices.  This results in a total of 14 temporal 

locations.  At each of these locations we extract SED features 

at each spatial location within a 5x5 spatial grid.  This results in 

a total of 350 full SED feature vectors for each prescreener 

alarm.  This extraction can be done very efficiently by reusing 

gradient computations between neighboring SED feature 

vectors.  A final decision statistic for a given prescreener alarm 

location is computed by applying the classifier to all 350 SED 

feature vectors, and then summing the top 25 resulting decision 

statistics.  We have found the performance to be largely 

insensitive to the number of decision statistics in the 

summation.   

VI. EXPERIMENTAL RESULTS 

A. Prescreener results 

The performance results obtained by applying the 

prescreeners to the experimental GPR dataset are presented in 

Fig. 9.  Each prescreener was applied to the same total area of 

lane, but obtained a different total number of false alarms, and 

so their respective ROC curves end at different FAR values.  

The FAR range of the x-axis in Fig. 9 has been extended so it 

includes the maximum FAR value across all of the prescreeners.  

Similarly, each prescreener missed a different total number of 

the true buried threats, and therefore each ROC curve reaches a 

different maximum 𝑃𝑑 value (which is obtained at its 

corresponding maximum FAR value).   

The results in Fig. 9 indicate that CCY substantially 

outperforms F2 at all shared values of FAR.  However, the 

fusion of the two prescreeners (referred to as the “Fusion” 

prescreener in Fig. 9) obtains a much greater 𝑃𝑑 value than 

either F2 or CCY at all shared values of FAR.  The relative 

advantage of CCY over F2 suggests that it is important to 

leverage shape information in threat detection algorithms. CCY 

relies primarily (but not exclusively) on shape-based cues in the 

GPR data, while F2 relies primarily (though not exclusively) on 

signal energy. The large performance improvement yielded by 

their fusion demonstrates that, while a shape-focused approach 

has an overall advantage in our experiments, both energy and 

shape content appear to be important to obtain the best 

performance.  This is implied by the substantial performance 

gain when fusing the two prescreeners.   

Another important finding in Fig. 9 is that the Fusion 

prescreener obtains a greater maximum 𝑃𝑑 than either F2 or 

CCY.  This implies that the F2 prescreener identified some 

threats that were not identified by CCY, further corroborating 

the complementarity of CCY and F2. The discrimination 

algorithms, even if they perform perfectly (𝑃𝑑 = 1 with no false 

alarms) can never identify buried threats that were not already 

identified by the prescreener.  As a result, the maximum 𝑃𝑑 of 

a prescreener can be an important performance criterion, and 

one which is improved via the fusion of CCY and F2.    

 

 
Fig. 9:  Illustration of the process for computing the SED feature.  Around the 
spatial coordinates of the prescreener alarm location and at the time-index 

estimated using MSEK, a 15 × 15 pixel patch is extracted which is divided into 

a 3 × 3 grid of cells.  In each cell, a histogram of gradients is computed using 

4 angle bins.  The final descriptor vector supplied to the classifier is the average 

of computing SED on 50 temporal scans, with the first one computed at 5 

temporal locations above the MSEK temporal location and the last one is 44 

time samples lower. 

  



 

 

B. Individual discriminator results 

This section presents the results of evaluating the 

discrimination algorithms using lane-based cross-validation 

(Section III.B) on the alarms extracted by the fusion 

prescreener.  The decision statistics of the fusion prescreener 

alarms were thresholded at a pre-determined operating 

sensitivity threshold, yielding 4,372 threat locations (96.1% of 

the total present).  The total number of non-threat locations (i.e., 

false alarms) is omitted to obscure the precise performance 

capabilities of the system.  The cross-validation results for all 

discrimination algorithms that were applied to this dataset are 

presented in Fig. 11.   

The results indicate that no single algorithm consistently 

performs best (i.e., provides the best detection rate, 𝑃𝑑) across 

all of the FAR values.  In the lower FAR range SED performs 

the best, while in the higher FAR range, LG performs best.  

EHD never provides the best 𝑃𝑑 but it provides comparable 

performance to SED and LG over most of the considered FAR 

range.  The gprHOG algorithm briefly performs best at very low 

FAR, but then performs poorly for the remaining FAR range, 

providing lower 𝑃𝑑 than even the prescreener at most FARs.   

It is not surprising that the algorithms obtain (relatively) 

similar performance, due to the similarity in their processing 

strategies. The algorithm designs have gradually converged 

over time through the adoption of practices that have proven to 

be generally effective.  For example, all of the algorithms use 

the two-stage processing pipeline outlined in Fig. 5, comprised 

of feature extraction and classification.  Regarding feature 

extraction, each algorithm extracts features on GPR imagery 

(e.g., slices of the GPR volume) rather than the 3D cubes 

directly.  In addition, all of the features are designed to encode 

shape information in the imagery, especially the hyperbolic 

pattern that is commonly associated with buried threats.  

Finally, all of the features involve aggregating the extracted 

shape information over large spatio-temporal regions of the 

GPR data (aside from gprHOG, which employs relatively 

smaller regions). Within classification, with the exception of 

gprHOG, all of the approaches also use the same classifier: an 

SVM with a radial basis function kernel.   

 

VII. FURTHER ANALYSIS 

A. Fusion experiment 

In this section we attempt to assess the relative 

complementarity of the discrimination algorithms by measuring 

the performance of a simple fusion of their outputs.  Let 𝑡𝑖 be 

the decision statistic of the 𝑖𝑡ℎ discriminator; we use a fusion 

comprised of a simple unweighted multiplication of all four of 

the discriminator decision statistics: 𝑡𝑓𝑢𝑠𝑖𝑜𝑛 = ∏ 𝑡𝑖
4
𝑖=1  .  Before 

the fusion, we apply the popular Platt scaling [61] to the 

decision statistics of each discriminator. The Platt scaling 

applies a logistic regression (two parameters) to the statistics of 

each discriminator, after which 𝑡𝑖 ∈ [0,1], and the statistics 

approximate a class posterior probability. Unique scaling 

parameters were inferred for each algorithm using the decisions 

statistics generated by cross-validation. In order to minimize 

positive bias in the results, only the statistics from a single lane 

were used for parameter inference (i.e., training), and we note 

that the results were insensitive of the lane chosen for training.   

After this scaling, 𝑡𝑓𝑢𝑠𝑖𝑜𝑛 can be interpreted as an “AND” 

operation between the discriminators, in which an object is only 

labeled as a threat if all of the individual discriminators label it 

as a threat.   The results of this fusion are presented in Fig. 12.  

The results indicate that this simple fusion yields a substantial 

improvement in 𝑃𝑑 across all values of FAR.  The substantial 

benefit of fusion, without any subselection or weighting of the 

individual discriminators, suggests that the algorithms possess 

some complementary decision characteristics, despite utilizing 

seemingly similar processing approaches.    

  

 

 
Fig. 10: ROC curves for the two individual prescreeners, F2 and CCY, as well 

as their fusion.  Note that the y-axis has been truncated to the range Pd = [0.5,1].  

 
Fig. 11: ROC curves of all discrimination algorithms computed using in lane-

based cross-validation on the (fusion) prescreener alarms.  Note that the y-axis 

has been truncated to the range Pd = [0.5,1].  

 



 

 

B. Algorithm performance by burial depth 

In this section we evaluate the performance of the individual 

discrimination algorithms when measuring their performance 

on two disjoint populations of buried threats: threats that are 

buried at standard burial depths, and those with relatively deep 

burial depths. The definition of these categories is described in 

Table 1.  Note that the supervised portions of the algorithms 

were not re-trained in each case; instead we computed ROC 

curves on the subsets of buried threats with the designated 

burial depths.  These results are presented in Fig. 13 (standard 

burial depths) and Fig. 14 (deep burial depths).  

As would be anticipated, the results indicate that the deeply 

buried threats are substantially more difficult to detect than 

those with a more shallow burial depth.  This result is consistent 

with findings in the literature [1], [7], and is likely caused by 

the lower expected signal-to-noise ratio among deeply buried 

threats. It may also be exacerbated by the poor representation 

of deeply buried threats in the training dataset.    

Interestingly however, the LG algorithm offers a substantial 

performance advantage over the other discrimination 

algorithms on deeply buried threats.  This implies that, in 

addition to lower signal-to-noise ratios, deeply buried threats 

may also exhibit different signal characteristics that are 

captured more effectively by the LG features.  One unique 

characteristic of the LG feature is that it encodes shape content 

at multiple scales, which may make it well suited to the smaller 

and/or weaker signals typical of deeply buried threats.  Further 

investigation is needed to confirm this hypothesis however.  

Among threats buried at common depths, the SED algorithm 

performs best over most of the ROC curve, and gains a 

noticeable performance advantage over LG.  EHD also gains 

performance relative to LG in this regard.  This is consistent 

with the hypothesis that threats may require different 

processing depending upon their burial depth.  This processing 

may not only involve unique features for each burial depth, but 

it may also require resampling the training data.  For example, 

it may be beneficial to replicate deeply buried threats when 

training any supervised classifier for application to that 

population.  

 

 

VIII. CONCLUSIONS  

In this work we report the results of a recent multi-

institutional effort to develop, and compare, buried threat 

detection algorithms.  The effort involved five institutions with 

an established track record in GPR-based BTD: Duke 

University, University of Louisville, University of Missouri, 

University of Florida, and Chemring Sensors and Electronic 

System (CSES).  A major objective of this effort was to identify 

the best processing approaches, and evaluate them in an 

unbiased manner, for potential inclusion in a real-world BTD 

system.  As a result, each institution was provided with the same 

period of time for algorithm development; the same 

 
Fig. 12: ROC curves of all the individual discrimination algorithms, and their 
fusion via a simple unweighted geometric mean.  Note that the y-axis has been 

truncated to the range Pd = [0.5,1].   

  

 
Fig. 13: ROC curves of all the individual discrimination algorithms when 

applied (but not trained) to threats buried at standard burial depths (i.e., not 

deep).  Note that the y-axis has been truncated to the range Pd = [0.5,1].   

  

 

Fig. 14: ROC curves of all the individual discrimination algorithms when 
applied (but not trained) on threats buried at deep burial depths.  Note that the 

y-axis has not been truncated to the range Pd = [0.5,1].  



 

experimental dataset; and advanced knowledge of the 

experimental design, and performance metrics.   

The institutions (excluding CSES) were specifically tasked 

with developing discriminators.  Discriminators must accept a 

small cube of GPR data (e.g., centered at a suspicious spatial 

location), and return a decision statistic, indicating the relative 

likelihood that a buried threat is located at that location.  The 

discriminators produced in this effort were compared using a 

large GPR dataset collected using a vehicle-mounted GPR BTD 

system. The GPR dataset collected using this system, and used 

to compare the discriminators, was comprised of 120,000 m2 of 

surface area, collected over 13 lanes at two different US test 

sites, and encompassing 4,552 buried threat encounters.   

A. Conclusions of the experimental results 

The results reveal similar performance among most of the 

algorithms, with the SED and LG algorithm providing the best 

performance over large subsets of the considered range of false 

alarm rates (FAR).  Further analysis revealed that the LG 

algorithm had a substantial advantage over the other algorithms 

on deeply buried threats, while SED most often outperformed 

other algorithms over buried threats with common burial depths 

(i.e., not deeply buried threats).  A simple fusion of the 

algorithms, involving no sub-selection or weighting of the 

individual algorithms, yielded substantial performance 

improvements.  This result suggests that the algorithms provide 

complementary detection capabilities, despite having many 

similar design characteristics. 

B. Conclusions regarding algorithm design  

In this work we also provided a technical overview of the 

discriminators that were submitted by each institution.  The 

algorithms employed many common designs, which provide 

insight into good design practices for BTD algorithms:  

 Each algorithm employed two-stage processing comprised 

of feature extraction and classification.  

 Each algorithm treats the GPR data like imagery, 

extracting features from slices of the GPR data rather than 

from 3D cubes directly.   

 All of the feature extractors encode some type of shape 

information in GPR imagery, and aggregate this 

information over large spatio-temporal regions.  

 Most of the approaches used an SVM classifier with a 

radial basis function kernel.   

 It may be beneficial to apply different processing strategies 

to deeply buried threats and those at common burial depths 

(see discussion in Section VII.B).   

In addition to these common practices, there were also many 

differences between the algorithms.  Section VII provided 

experimental evidence that there is complementarity in the 

algorithms, and further effective practices may be revealed in 

the future by distilling which unique designs of each algorithm 

give rise to their respective advantages.   
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