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Abstract— This paper proposes a novel framework for fus-
ing multi-temporal, multispectral satellite images and Open-
StreetMap (OSM) data for the classification of local climate zones
(LCZs). Feature stacking is the most commonly used method of
data fusion but does not consider the heterogeneity of multimodal
optical images and OSM data, which becomes its main drawback.
The proposed framework processes two data sources separately
and then combines them at the model level through two fusion
models (the landuse fusion model and building fusion model) that
aim to fuse optical images with landuse and buildings layers of
OSM data, respectively. In addition, a new approach to detecting
building incompleteness of OSM data is proposed. The proposed
framework was trained and tested using the data from the
2017 IEEE GRSS Data Fusion Contest and further validated on
one additional test (AT) set containing test samples that are man-
ually labeled in Munich and New York. The experimental results
have indicated that compared with the feature stacking-based
baseline framework, the proposed framework is effective in fusing
optical images with OSM data for the classification of LCZs with
high generalization capability on a large scale. The classification
accuracy of the proposed framework outperforms the baseline
framework by more than 6% and 2% while testing on the test
set of 2017 IEEE GRSS Data Fusion Contest and the AT set,
respectively. In addition, the proposed framework is less sensitive
to spectral diversities of optical satellite images and thus achieves
more stable classification performance than the state-of-the-art
frameworks.

Index Terms— Canonical correlation forest (CCF), hetero-
geneous data fusion, local climate zones (LCZs), Open-
StreetMap (OSM), satellite images.
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I. INTRODUCTION

URBANIZATION has raised widespread concerns during
the past few decades [1]–[3]. Many urban climate models

have been formed in order to study the combined effect of
urban climate and climate change on urban areas and to assess
the vulnerability of urban populations [4]. It is, therefore,
necessary to use a quantitative urban landscape description
as the input of urban climate models [4].

Most of the studies dedicated to the urban landscape
description concentrated either on separating urban areas from
rural areas [5], [6] or generating local climates under differ-
ent standards [4]. However, the binary schemes that separate
urban areas from rural areas were not enough to character-
ize cities because there were many sublocal climates under
urban or rural categories that were nontrivial for urbanization
studies [4], [7]. Consequently, a standardized scheme to char-
acterize the cities was lacking, making it hard to compare
and combine their urbanization works on global and local
scales [4].

Local climate zones (LCZs) are the first classification
scheme providing a generic, complete, largely comprehensive,
and disjoint discretization of urban landscapes with respect
to the internal physical structures of urban areas on a global
scale [4], [8]. The LCZ scheme is based on urban func-
tions and climate-relevant surface properties, instead of only
buildups, which are more appropriate for urban studies [8].
Besides, it is a globally standardized and generalized scheme
with intercity comparability, and it is nonspecific to time,
place, and culture [4]. The LCZ scheme describes the urban
areas at different levels in detail. This paper considers the LCZ
scheme at level 0, where LCZs consist of ten built labels and
seven landcover labels (see Fig. 1) [4].

Compared with field studies, satellites provide high-
spatial-resolution images with continuous observations from
space, offering a large potential in urban mapping. More-
over, OpenStreetMap (OSM) [10] data have become one
of the most popular free-accessible maps (https://www.
openstreetmap.org), providing the effective complement of
satellite images [11], [12]. Furthermore, multi-source data
fusion offers much potential for urban mapping. Due to the
rich characteristics of natural processes and environments, it is
rare for a single acquisition method to provide a complete
understanding of certain phenomenon [13]–[15]. Multi-source
data fusion considers the task from various points of view
and then provides opportunities to view the whole picture.
Therefore, this paper aims to fuse satellite images and OSM
data for the classification of LCZs on a global scale. This
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Fig. 1. LCZ classification scheme [9].

involves three issues: classification, data fusion, and global
mapping.

A. Classification

In the past few decades, researchers have developed many
effective and efficient methods for image classification. For
instance, Lu and Weng [16] gave a comprehensive review and
grouped classification methods in various ways depending on
supervised or unsupervised, parametric or nonparametric, hard
or soft, and pixel, sub-pixel, or object-based. They summa-
rized different classification methods by the following four
points [16]. First, using supervised or unsupervised methods
depends on whether training samples are available or not.
Second, parametric methods assume that the data are subject
to certain statistical distributions, which are often violated,
especially in complex landscapes. Besides, much previous
research has indicated that nonparametric classifiers may pro-
vide better classification results compared with parametric
classifiers in complex landscapes. Third, hard classification
assigns each pixel to a certain class, and soft classification
gives a measure of belonging to each pixel. Furthermore,
soft classification provides more information and potentially
a more accurate result, especially for coarse spatial resolution
data classification. Fourth, which level(s) of classification we
use depends on the application. Pixel-level classification is
straightforward and easier to implement, but it ignores the
impact of mixed pixels. Sub-pixel-level classification considers
the heterogeneous information in one pixel and provides a
more appropriate representation and area estimation of land

covers than per-pixel approaches. Object-level classification
first merges the pixels into homogeneous areas and then
classifies based on homogeneous areas.

This paper concentrates on the supervised, nonparametric,
soft, and per-pixel classification method due to the follow-
ing reasons. First, training samples are available from the
contest [17]. Second, previous works indicate that nonpara-
metric and soft classifications give a better classification
performance, especially when classifying complicated urban
scenes [16]. Third, for simplicity, this paper concentrates on
the pixel-level classification and ignores the heterogeneous
information within one pixel. In addition, we do not use
object-based classification approaches, considering the appli-
cation. The difference between LCZ classification and land-
cover mapping [18] is that LCZ labels are defined as a certain
arrangement of various objects, while the labels of landcover
mapping are defined as objects. The segmentation process may
break the certain arrangement into several pieces in the LCZ
classification, where the segmented areas may lose physical
structures that are key to identifying LCZ labels.

Some works [16], [19]–[21] have summarized and com-
pared the most commonly used supervised and pixel-based
classifiers that are support vector machines (SVMs) [22],
random forest (RF) [23], and neural networks (NNs) [24].
An SVM aims to find optimal linear or non-linear bound-
aries in high-dimensional feature spaces with or without
using kernels. It is less sensitive to smaller training sets
than NNs but more sensitive to the training data quality
than an RF [19]. Additionally, its user-defined parameters are
fewer than NNs [19]. Compared with an RF, the computation
burden of an SVM is larger in the presence of a large
feature quantity and when using the kernel trick [19]. An
RF is an ensemble of many weak classifiers (decision trees).
It is less sensitive to smaller training sets than NNs and
less sensitive to the training data quality than SVMs [19].
It can generate soft classification results (votes of trees)
that provide more information. Furthermore, its user-defined
parameters are fewer than SVMs [19]. Recently, Rainforth
and Wood [25] proposed an improved forest method, called
canonical correlation forest (CCF), which naturally embeds
the correlation between input features and labels in hyperplane
splits and outperforms 179 classifiers considered in a recent
extensive survey paper [26]. Based on the studies reported
in [21], a CCF outperforms an SVM, RF, and NNs in terms
of classification accuracies for hyperspectral data. NNs are
currently a popular method and aim to tune hyper-parameters
of NNs. It can achieve a quite good classification perfor-
mance with well-determined conditions [20], [24]. An NN is
usually sensitive to smaller training sets and training data
quality and has severe over-fitting problems when there are
not enough training samples. The classification performance
highly depends on the architecture of NNs, which contains
many user-defined parameters [19], [24]. This creates a very
high computation burden, especially when the network goes
deeper [24].

This paper aims to develop an efficient and worldwide
adaptive framework for the classification of LCZs. We, there-
fore, intend to choose one or several classifiers with less



ZHANG et al.: FUSION OF HETEROGENEOUS EARTH OBSERVATION DATA FOR THE CLASSIFICATION OF LCZs 7625

computational burden, less over-fitting, and higher transferabil-
ity among different geo-locations and better robustness over
noise. As a result, in this paper, the CCF was chosen among
all types of classifiers. A more detailed description of CCF
will be provided in Section III.

B. Data Fusion

The World Urban Database and Access Portal
Tools (WUDAPT) project (http://www.wudapt.org/) was
launched in 2012, with the aim of developing worldwide
urban local climate mappings [27]. It has provided a standard
classification framework that generates the LCZ maps by using
freely available optical satellite images, such as Landsat-8, and
manually selected ground truth on Google Earth. In addition
to the use of spectral bands captured by satellite images, some
frameworks have also jointly considered several data sources,
such as temperature [7], [28], building height [7], [29], mean
amplitude of synthetic aperture radar (SAR) images [28], and
OSM data [30]–[34]. Most of the above-mentioned fusion
studies extracted the features from different data sources and
then applied the feature stacking approach for data fusion
as feature stacking is one of the most commonly used and
fastest implemented fusion methods. Those studies assumed
that classification performance improves after using more
features extracted from multi-source data. Lopes et al. [30]
fused the OSM data directly with LCZ maps from WUDAPT
without using feature stacking. They manually correlated
the LCZ labels and OSM feature classes and then assigned
the areas with typical OSM feature classes into certain LCZ
labels.

Current approaches to fuse satellite images with OSM
data have several limitations aroused by data heterogeneity.
First, satellite images and OSM data have different kinds of
acquisition techniques. Satellite images are recorded by space
observations, whereas OSM data are recorded by local experts.
Second, satellite images and OSM data have different data
forms and spatial resolutions. Satellite images are raster data
with limited resolutions (10–100 m, in this paper), whereas
OSM data are in the vector format, which can be rasterized
into any resolutions. The differences in the data form bring
many difficulties in data fusion. On one side, downsampling
the OSM data into the resolution of satellite images results in
the loss of much valuable information on OSM; alternatively,
upsampling all satellite images will significantly increase the
computational burden without adding any useful information.
Third, satellite images and OSM data have different noise
sources. The noise sources of satellite images come from the
imaging chain (e.g., satellite platform vibration, atmosphere,
and so on), whereas the noise sources of OSM data are created
by the individuals recording the data, causing OSM data to
contain errors, or incomplete recordings. The approach to man-
ually correlating OSM and LCZ maps [30] could somehow
resolve the data heterogeneity problem, but it needs human
labor to consider the correlation, which costs much time and
money. The other drawback is that feature classes of OSM
and LCZ labels follow different classification schemes. There
is the minor possibility that some areas with certain OSM
features could be directly assigned to certain LCZ labels. This

demonstrates the necessity of forming novel approaches to
resolve issues with heterogeneous data fusion; this is a topic
deeply investigated in this paper.

C. Global Mapping

Global LCZ mapping assists greatly in studying and com-
paring local climates on regional and worldwide scales. Satel-
lite images are influenced by diverse spectral information
due to complicated physical procedures in the imaging chain.
This spectral diversity could decrease the classification per-
formance, especially when analyzing multi-temporal, multi-
spectral, and multi-location classification [35]. Many studies
have successfully generated LCZ maps of one city by labeling
samples of that city, and they have achieved a satisfactory
classification performance [e.g., overall accuracies (OAs) were
beyond 80%]. Meanwhile, it is of great interest to train the
models from the samples of some cities and apply the models
to other cities since it costs much time and human labor
to label all cities worldwide. One study [28] tried to select
training samples from one city for the classification of another
city by using an RF. The classification accuracies dropped
to 18.2%, which indicates that the knowledge transferability
between different cities should be carefully considered.

Thanks to the 2017 IEEE GRSS Data Fusion Contest [17]
organized by the IEEE Geoscience and Remote Sensing Soci-
ety, some promising works have been accomplished in the
multi-model remote sensing data fusion and their transfer-
ability studies in the application of LCZ classification. The
contest provided the training samples from five cities and the
test samples from four other cities. Four novel frameworks
with achieved top classification accuracies were selected; their
works are quite promising and intriguing. Yokoya et al. [31]
introduced CCFs [25] in analyzing knowledge transferability
between cities and received the best result (OA was 74.94%)
in the contest. A CCF is an advanced forest classifier that
naturally incorporates both the labels and the correlation
between the input features in the choice of projection for
computing decision boundaries in the projected feature space.
The results demonstrate that the CCF has much better perfor-
mance than other forest classifiers, such as the RF [23] and
rotation forest (RoF) [36], when the training and test samples
are not from the same domain [37]. Besides CCFs, three more
works have managed to approach the intercity transferability
problem by developing a co-training process [32], ensem-
bling various classifiers [33], and conducting object-based
classification [34] approaches. The best OAs that they have
achieved are 73.2%, 72.63%, and 72.38%. However, the spec-
tral diversity between the training and test samples still plays
a large impact on those frameworks. Therefore, further stud-
ies are needed on creating a generalized LCZ classification
framework with more stable behavior.

Accordingly, this paper proposes a novel framework of
fusing satellite images and OSM data for the classification
of LCZs on a global scale. First, we extract the features from
satellite images and OSM data and analyze these two features
separately. Second, we apply different models to the extracted
features from the satellite images and OSM data instead of
applying a simple stacking of those two features. In addition,
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we propose a simple yet effective approach to detect the areas
with incomplete recordings in the OSM data. Finally, we fuse
the results from different models by conducting a weighting
process. The main contributions of this paper are thus as
follows.

1) The proposed framework analyzes the heterogeneity
between satellite images and OSM data, and we con-
clude that current frameworks based on feature stacking
have many limitations.

2) This paper proposes a novel idea of fusing satellite
images and OSM data by taking the data heterogeneity
into account. In this context, instead of simply stacking
the heterogeneous features, we apply different models
to various data modality [38] in a separate manner and
then conduct a novel fusion approach.

3) The proposed fusion approaches achieve a robust clas-
sification performance on a global scale by carefully
fusing OSM with satellite images.

4) We propose a novel approach to detect building data
incompleteness by considering the correlation between
the buildings and the landuse layers of OSM.

The remainder of this paper is organized as follows.
In Section II, we introduce the data set, study regions, and
data preprocessing. In Section III, we introduce the proposed
framework. In Section IV, we define the baseline framework
and compare its classification performance with the proposed
framework. In addition, we also present the feature importance
rankings and the effectiveness of the approach of detecting
incomplete building recordings. Finally, we conclude this
paper and give future directions in Section V.

II. DATA SET

A. Data Fusion Contest Data Set

The data set of the data fusion contest (DFC)1 identified
as “grss_dfc_2017” [39] was made freely available by the
2017 IEEE GRSS Data Fusion Contest [17]. A detailed data
description can be found in [40]. The data consist of training
samples selected from five cities (Berlin, Hong Kong, Paris,
Rome, and Sao Paulo) and test samples selected from four
cities (Amsterdam, Chicago, Madrid, and Xi’an) (see Fig. 2).
In each city, the data contain multi-temporal Landsat-8 images,
single-temporal Sentinel-2 images, and OSM data. Satellite
images are of 1C-level and have 100-m spatial resolution.
OSM data include buildings, landuse, water, and natural layers
that are available in both raster and vector data formats.
The raster form of OSM data is of 5-m spatial resolution.
A buildings layer is a binary layer delineating building areas.
A landuse layer separates an area into different landuse
classes [41].2 OSM data also include road layers that are only
available in the vector data form. Moreover, the distribution
of training and test sizes is provided in Table I.

1The DFC data set refers to the 2017 IEEE GRSS Data Fusion Contest [17]
unless otherwise noted.

2Landuse layers may contain the following classes: forest, park, residential,
industrial, farm, cemetery, allotments, meadow, commercial, nature_reserve,
recreation_ground, retail, military, quarry, orchard, vineyard, scrub, grass,
heath, and national_park.

Fig. 2. Training cities (Berlin, Hong Kong, Paris, Rome, and Sao Paulo)
marked with black dots from grss_dfc_2017 [39], test cities (Amsterdam,
Chicago, Madrid, and Xi’an) marked with red dots from grss_dfc_2017 [39],
and AT cities (Munich and New York) marked with green dots from AT data
set.

TABLE I

TRAINING AND TEST SAMPLES

In this paper, we redownloaded the Landsat-8 images from
the U.S. Geological Survey (https://earthexplorer.usgs.gov/)
and Sentinel-2 images from the Sentinel Data Hub
(https://scihub.copernicus.eu/) to acquire the original spatial
resolution images. Then, atmospheric corrections were con-
ducted and cloud masks were generated. We only kept those
redownloaded images with exactly the same geo-location and
time acquisition as grss_dfc_2017 [39]. In this paper, buildings
and landuse layers from OSM data were only used because
it was discovered that the water and natural layers were
not available for all cities. In addition, road layers were not
considered in this paper.

Data preprocessing was conducted on Landsat-8 images,
Sentinel-2 images, the buildings layers of OSM, and the lan-
duse layers of OSM. For Landsat-8 images, atmospheric cor-
rections using ATCOR-2/3 version 9.0.0 with the haze removal
option were conducted, and then, the data were into 10-me
spatial resolution using bicubic interpolation. For Sentinel-
2 images, atmospheric corrections were conducted using
Sen2Cor version 2.3.1, and then, the data were up-sampled
into 10-m spatial resolution using bicubic interpolation. After
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preprocessing, Landsat-8 images contained Bands 1–8, 10,
and 11, and Sentinel-2 images contained Bands 2–8, 8A, 11,
and 12. We did not consider cirrus and water vapor bands
because they are mainly dedicated to cirrus detections and
water vapor corrections and are not usually used in urban
mapping [42]. We also did not consider coastal/aerosol bands
of Sentinel-2, because they are dedicated to aerosol retrieval
and cloud detection [42]. Besides, a cloud mask was generated
from satellite images at each acquisition time. The areas
that contained high cloud probability were removed in the
following process. For buildings and landuse layers of OSM
data in the raster form, each layer was normalized between
0 and 1. For the buildings layers of OSM data in the vector
form, the layers of building central points were extracted using
ArcMap version 10.5.1, and then, the layers of building central
points were rasterized into 5-m spatial resolution.

B. Additional Test Data Set

In addition to the four test cities available in
grss_dfc_2017 [39], we have used an AT data set by
selecting two extra test cities (Munich and New York; see
Fig. 2) to validate our proposed framework. Ground-truth data
were labeled according to the LCZ classification scheme [9].
Table I shows the distribution of test sizes. In each city,
we have downloaded the multi-temporal Sentinel-2 images
from the Sentinel Data Hub (https://scihub.copernicus.eu/)
and OSM data from Geofabrik (https://www.geofabrik.de/).
After that, Sentinel-2 images and OSM data were processed
according to the strategy in Section II-A.

III. METHODOLOGY

In this section, we propose a novel framework to fuse
satellite images with OSM data (see Fig. 3). First, spectral,
spatial, textural, and map features were extracted from satellite
images and OSM data. Second, three different models were
applied to these three kinds of extracted features. Specifically,
CCFs [25] were applied to the satellite features, and then,
a landuse fusion model and a building fusion model were
derived to fuse landuse features and building density features
with satellite features. In addition, a novel approach was
also proposed to mask out incomplete building areas. Finally,
postprocessing and decision fusion were conducted.

A. Feature Extraction

Spectral, spatial, and texture features were extracted from
the preprocessed Landsat-8 and Sentinel-2 images through
the same computation process at each acquisition time. First,
mean values and standard deviations of all the bands of
images in each patch of 100-m ground sample distance (GSD)
were computed. Second, three spectral indexes [normalized
difference vegetation index (NDVI), normalized difference
water index (NDWI), and bare soil index (BSI)] were derived,
and then, their mean values and standard deviations were
computed in each patch of 100 m GSD. Third, the mean values
of morphological profiles (MPs) of NDVI were computed in
each patch of 100-m GSD. Fourth, a weighted gray-level

TABLE II

EXTRACTED FEATURES

co-occurrence matrix (GLCM) algorithm [43] was used to
produce contrast, correlation, energy, and homogeneity texture
features, and then, their mean values were computed in each
patch of 100-m GSD. Besides, building density features were
extracted from the layers of building central points by counting
the building number in each patch of 100-m GSD. In addition,
the preprocessed landuse and buildings layers were also used
as the landuse and building features.

Table II lists the extracted features’ names, quantities, and
spatial resolutions. Since the feature extraction from Landsat-
8 or Sentinel-2 images shares the same computation process
and those extracted features from the two satellites have the
same feature names, the spectral, spatial, and textural features
in Table II represent the extracted features from either Landsat-
8 or Sentinel-2 images. Moreover, the spectral, spatial, and
textural features from either Landsat-8 or Sentinel-2 images
are named satellite features.

B. Canonical Correlation Forest

CCF [25] is an ensemble model based on oblique decision
trees. Compared with an RF, which computes the hyperplane
splits in the coordinate system of input features, a CCF
naturally constructs a projected feature space by considering
the correlation between input features and their corresponding
labels [25]. It is more robust to the rotation, translation, and
global scaling of the input features [25]. One CCF model is
composed of many sub-models named canonical correlation
trees (CCTs). One CCT is a binary decision tree with many
sequential divisions and is regarded as the smallest predictive
unit in this paper. Each CCT is trained independently, and the
ensemble of CCTs can simultaneously improve predictive per-
formance and provide regularization against over-fitting [25].
This section applies a CCF to the stacked satellite features
(see Fig. 4) and then generates an initial classification result
of a test city. The classification result from one CCF could be
integrated into a votes cube. The first two dimensions are the
spatial dimensions (row and column directions), which have
the corresponding pixel coordinates for satellite features of the
test city. The third dimension has the same length with LCZ
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Fig. 3. Proposed framework.

labels, which is 17. votes(i, j, l) record the votes number of
the lth label in the pixel coordinate (i, j) of a test city. The
larger the vote number, the more convincing the pixel belongs
to that label.

C. Landuse Fusion Model
A landuse fusion model contains two parts. In the first

part, the relation between landuse classes and ground-truth
data is trained. In the second part, this relation is used
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Fig. 4. Feature stacking of satellite features.

as an active aid to fuse landuse features with satellite
features.

A landuse feature is denoted as landuse(i, j) = lu. (i, j),
which represents the pixel coordinates. lu records the value of
the pixel (i, j). Those pixels where landuse(i, j) = 0 were
removed in advance. First, landuse features and ground-truth
data from the training set were used to compute the prior
knowledge, which was a 2-D probability distribution matrix
named the landuse weight matrix. The row direction of the
matrix identifies different landuse classes, and the column
direction identifies LCZ labels. Each element in the matrix
records how large the probability is that each landuse class
belongs to each LCZ label. The sum of each row is equal
to 1. This matrix is denoted as lu_wn(lu, label), where
lu represents different landuse classes and label represents
different LCZ labels. lu_wn(lu, label) is then fused with the
votes cube generated from the CCF by using a weighting
procedure. For the landuse feature landuse of a test city and
its corresponding votes cube, the weighting procedure was
conducted in each patch of 100-m GSD. Since the spatial
resolution of landuse is 5 m and the spatial resolution of votes
is 100 m, one pixel in votes corresponds to 20 × 20 pixels in
landuse. For each 100-m GSD, the weighting procedure was
conducted using the following equation:

luwn_votes(i, j, :)=
400∑
d=1

lu_wn(lu(d), :) · votes(i, j, :) (1)

where lu(d) �= 0, (i, j) are the pixel coordinates in the spatial
domain of votes and luwn_votes(i, j, :) records the weighted
votes vector of pixel (i, j).

D. Building Fusion Model

The building fusion model also contains two parts. In the
first part, the relation between building density values and
ground-truth data is trained. In the second part, this relation
is used as an active aid to fuse building density features with
satellite features.

A buildings layer is denoted as build(i, j) = b. (i, j)
represent the pixel coordinates. b records the value of the pixel
(i, j) and is either 0 or 1. First, building density features and
ground-truth data from the training set were used to compute
the prior knowledge, which was a 2-D probability distribution

matrix named the building weight matrix. The row direction of
the matrix identifies different building density ranges, and the
column direction identifies LCZ labels. Each element in the
matrix records how large the probability is that each building
density range belongs to each LCZ label. The sum of each row
is also equal to 1. Assuming that the largest building density
value from training samples was bn_max , the building density
ranges bu were defined according to the following equation:
[0, gap], [gap+1, 2gap], . . . , [bn_max +1, bn_max +gap]

(2)

where gap is an empirical value equal to 5 in this paper.
We use the building density ranges, instead of each building

density value, because the building density values from train-
ing samples cannot cover all values from 0 to bn_max due to
the limited number of training samples.

The building weight matrix is denoted as bu_wn(bu, label),
where bu represents different building density ranges and
label represents different LCZ labels. bu_wn(bu, label) is
then fused with the votes cube generated from the CCF
by using a weighting procedure. For the building density
feature build of a test city and its corresponding votes
cube, the weighting procedure was conducted on each patch
of 100-m GSD. Since build and votes have the same spatial
resolution (i.e., 100 m), the weighting procedure could be
directly computed for each 100-m GSD according to the
following equation:

buwn_votes(i, j, :) = bu_wn(bu, :) · votes(i, j, :) (3)

where (i, j) are the pixel coordinates in the spatial domain
of votes and buwn_votes(i, j, :) records the weighted votes
vector of pixel (i, j).

One remaining problem still existed before using the build-
ing fusion model. Since the building density value is com-
puted by counting the number of buildings in a local area,
the building density value could be completely wrong if the
buildings features have incomplete data recordings in that
area. Therefore, it is necessary to generate building confidence
masks in order to automatically mask out those areas with
incomplete recordings of building data.

E. Building Confidence Mask Generation

This paper proposes a novel approach to compute building
confidence in a local area by jointly considering landuse and
building features under 5-m spatial resolution without using
satellite images (see Fig. 5). The idea is that at least one
building pixel should be near the local area of the pixel, which
indicates a high building probability. This approach consists
of four steps that will be discussed in Sections III-E1–4.

1) Building Probability Generation: Landuse and building
features from the OSM data contain correlated knowledge.
This step generated a 2-D probability distribution matrix (see
Fig. 6) recording the relation between landuse and building
features by using both training and test samples. Zero values in
landuse features were removed in advance. The row direction
of the matrix identifies two different building classes: building
and non-building. The column direction identifies different
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Fig. 5. Building confidence mask generation.

Fig. 6. Building-landuse probability distribution.

landuse classes. Each element in the matrix records how large
the probability is that each landuse class belongs to each
building class. The second row of this matrix is denoted as
p(build = 1|landuse = lu), which is used in this approach.
Fig. 6 shows some hints about this relation. For example,
the residential class in the landuse layers has a quite high
probability of being a building pixel in the buildings layers,
whereas the forest class in the landuse layers has a quite low
probability of being a building pixel in the buildings layers.

2) Local Searching: After generating the relation matrix,
local searching was then conducted in the buildings feature of
each city. The size of the searching area was given empirically
after considering building intervals and is equal to 5 pixels in
this paper. For each pixel in a landuse feature, we searched
building pixels around that pixel in the corresponding building
feature. We used a binary value f lag to record the search-
ing result. The building confidence con f _ p1 was computed
according to

con f _ p1 = p(build = 1|landuse = lu) · f lag (4)

TABLE III

BUILDING SURFACE FRACTION OF LCZs [8]

where

f lag =
{

1, searching succeeded

−1, searching f ailed.
(5)

3) Detection Complement: The previous step is not applica-
ble in those pixels where the values in landuse layers are zero.
Therefore, this step, which is independent of the previous step,
aims to provide supplementary information when the previous
step cannot be applied. Thanks to the quantitative standard
from the LCZ definition [8], each label of LCZs defines a
range of building surface fractions (see Table III).

The building surface fraction was computed in each patch
of 100-m GSD from building features. Then, the empirical
value of 10% was used to compute the building confidence
value con f _p2. con f _ p2 = 1 if the building surface fraction
was higher than 10%; otherwise, con f _ p2(i, j) = 0; 10%
was used as the threshold for two reasons. First, 10% is the
lowest boundary of building surface fractions among all built
types so that sparsely built can be kept. Second, this parameter
was not sensitive to the final result, which will be explained
in detail in Section IV.

4) Combination: The local searching result con f _ p1 is
combined with the building fraction result con f _p2 according
to the following equation:

con f _comb(i, j) =

⎧⎪⎨
⎪⎩

con f _p2(i, j), landuse(i, j) = 0

con f _p2(i, j) =1

con f _p1(i, j), otherwi se.

(6)

Afterward, we used an empirical value (e.g., 0.8) to
threshold con f _comb into a binary layer, where
con f _comb = 1 identified building confident areas and
con f _comb = 0 identified building unconfident areas.
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F. Postprocessing and Decision Fusion

The above-mentioned process could generate one weighted
votes cube at each satellite acquisition time for each satellite
in each test city. Therefore, if one has T acquisition times
for Landsat-8 images and one acquisition time for Sentinel-
2 images of one test city, then T + 1 weighted votes cubes
can be obtained. Next, T + 1 classification maps could be
computed by selecting the label with the largest votes number
per pixel. Then, the median filter was applied with the size
of [3, 3] to those classification maps. Finally, decision fusion
was conducted among the T + 1 classification maps through
majority voting.

IV. EXPERIMENT

In this section, we first introduce a baseline framework
and compute the contributions of the extracted features. Then,
the classification performance of the proposed framework
and the baseline framework is compared according to the
classification accuracies and framework transferability. After-
ward, another experiment demonstrates the effectiveness of the
proposed approach in generating building confidence masks.

The following parameters were set empirically in the exper-
iments.

1) MPs: A disk-shaped structuring element was used whose
sizes were 1, 4, 7, and 10.

2) GLCM: The number of gray levels was 32. Directions
were 0◦, 45◦, 90◦, and 135◦. The offset that defined the
distance of the spatial adjacency was 1 pixel.

3) CCF: The number of CCTs was 20 to follow the
literature in [31].

4) Building Fusion Model: The interval of building densi-
ties in the building weight matrix was 5. The radius
of the local building searching was 25-m GSD. The
threshold of the building surface fraction was 10%. The
threshold of generating building confidence masks was
0.8.

A. Baseline Framework and Feature Importance

The baseline framework was used to evaluate the perfor-
mance of the proposed classification framework. The baseline
framework directly stacks the features in Table II and feeds
those features into the CCF. The building and landuse features
with 5-m spatial resolution were first down-sampled into
100-m spatial resolution using the “nearest neighbor” before
feature stacking. Two groups were considered where OSM
data were stacked with Landsat-8 and Sentinel-2 images.
Therefore, the baseline and the proposed frameworks are com-
parable, and the difference in their classification performance
was aroused by the feature fusion models. In addition, feature
importance was computed by using training samples through
a fivefold cross validation to conclude which features con-
tributed more to the classification performance. Fig. 7 shows
the contributions of the extracted features from Landsat-8 and
OSM data. Fig. 8 shows the contributions of the extracted
features from Sentinel-2 and OSM data.

These two feature importance maps share many similar
characteristics. First, NDVI and its MPs, which contain the

Fig. 7. Feature importance of the Landsat-8 group.

Fig. 8. Feature importance of the Sentinel-2 group.

TABLE IV

PERVIOUS AND IMPERVIOUS SURFACE FRACTION OF LCZs [8]

information of vegetation abundance and its spatial informa-
tion, obviously have higher importance than other features.
The quantitative properties of LCZs could somehow explain
why NDVI and its MPs are quite important here. Table IV
shows the pervious and impervious surface fractions of LCZ
labels, indicating that vegetation abundance is related to built
types. For example, the compact high-rise, compact mid-rise,
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Fig. 9. Classification maps from the proposed framework (DFC data set). (a) Amsterdam. (b) Chicago. (c) Madrid. (d) Xi’an.

Fig. 10. Classification maps from the baseline framework (the DFC data set). (a) Amsterdam. (b) Chicago. (c) Madrid. (d) Xi’an.

and compact low-rise have different ranges of pervious and
impervious surface fractions in spite of the fact that they all
belong to the compact-built. Therefore, although vegetation
abundance could not make the built types completely sepa-
rable, it still played an important role in separating different
built types.

Second, both rankings of the buildings and landuse features
were quite low. The landuse feature ranked the last place and
the 33th place in the Landsat-8 and Sentinel-2 groups, respec-
tively. The building feature ranked the 37th place and the 35th
place in the Landsat-8 and Sentinel-2 groups, respectively.
These two facts indicate that landuse and building features
contribute trivial importance (even negative importance) in
the LCZ classification if directly using feature stacking due
to the data heterogeneity. Therefore, novel models are highly
necessary to fuse OSM and satellite features.

Third, the building density feature ranked higher than the
building feature itself, in the 22nd and 19th place, respectively.
This could be due to the building interval, one of the most
distinct criteria of separating different LCZ built types, which
is highly related to building density values in local areas.
Building features that only delineate building areas do not
contain spatial information and thus have a trivial contribution
to classification.

B. Accuracies’ Improvement

1) Data Fusion Contest Data Set: Figs. 9 and 10 show the
classification maps generated by the proposed framework with

both fusion models and the baseline framework on four test
cities. Table V compares their classification accuracies in terms
of OA and kappa coefficient (kappa).

First, the OA and kappa of the proposed framework
were 76.15% and 0.72, which outperformed the
baseline accuracy by 6.01% and 7%, respectively.
Furthermore, the OA and kappa of the proposed framework
still outperformed the winner of the 2017 IEEE GRSS
Data Fusion Contest [17], [31], [37] by 1.21% and 1%,
respectively, although fewer classifiers were used in this
paper.

Second, the use of the landuse or building model could
significantly improve the accuracies in general. For example,
compared with the baseline framework, the OA in Amsterdam
increased by 11.2% and 8.71%. The individual use of the lan-
duse or building model may sometimes decrease the accuracies
in some cities. For example, the OA decreased by 1.76% after
applying the landuse model to the city of Chicago and by
0.49% after applying the building model to the city of Madrid.
One reason could be that training samples are still quite
limited to well represent the complexities of the test samples,
especially when OSM data have many incomplete recordings.
Another reason could be that landuse and building fusion
models are applied to different areas of test cities if landuse
and buildings layers lack data in different areas. Consequently,
combining both models could tune the pre-classification results
to the largest extent. Although accuracies may occasionally
decrease when using a single fusion model, the decreased
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TABLE V

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND THE BASELINE FRAMEWORK (THE DFC DATA SET)

values are much smaller than the increased values when con-
sidering the four test cities. Therefore, applying the landuse or
building model solely to test cities still increases the accuracies
in general.

Third, the joint use of both fusion models always increases
the accuracies significantly and is consistently better than
using a single model. For example, the OA increased by
11.2% and 8.71%, respectively, after applying the landuse and
building fusion models separately to Amsterdam, but the OA
increased by 20.67% after applying both models to Amsterdam
at the same time. Additionally, the OA increased by 3.61%
and decreased by −0.49%, respectively, after applying the
landuse and building fusion models separately to Madrid,
but the OA increased by 4.88% after applying both models
to Madrid at the same time. This indicates that the use of
both models simultaneously is not only an improvement over
using each model alone but also demonstrates how the two
models can aid one another and further boost the classification
performance.

Fourth, landuse and building models impact the accuracies
in different test cities to various degrees. For example, the OA
increased by 20.67% in Amsterdam, but it only increased by
0.93% in Chicago after using both fusion models together. This
may indicate that training information from only five cities is
not adequate to train a generalized landuse or building fusion
model, especially considering that landuse and buildings layers
lack much data in certain cities, such as Xi’an, Sao Paulo,
Hong Kong, and so on.

Besides the OA and kappa, we also compared the improve-
ment of the distributions of producer accuracies (PAs) (see
Fig. 11). First, accuracies of all labels were improved except
for label 1 (compact high rise), where several samples were
incorrectly classified as label 8 (large low rise). The possible
reasons are as follows. First, test samples of label 1 are quite
few, and the building densities between labels 1 and 8 could be
similar. Second, the largest improvement occurred in label 12
(scattered trees), which was highly mixed with label 14 (low
plants) in the baseline framework. A typical example exists in
the classification map of Madrid (see Fig. 12). Compared with
the proposed framework, the areas of scattered trees changed
more significantly among different acquisition times in the
case of the baseline framework. It indicates that the proposed
framework is more robust to spectral changes, because OSM

Fig. 11. Distributions of PAs of the DFC data set from (top) baseline
framework and (bottom) proposed framework. Values show the percentage
of samples labeled as A in the ground-truth data, which were classified as B
in the classification maps, where A, B = 1, 2, . . . , 17. Only the percentages
above 10 were shown.

data have provided active aid to optical observation. Besides,
the proposed framework also demonstrates a large amount of
improvement in label 10 (heavy industry), label 6 (open low
rise), label 5 (open mid-rise), label 4 (open high rise), and
label 8 (large low rise). For example, the PA of label 10 (heavy
industry) was less than 10% through the use of the baseline
framework and was highly mixed with label 8 (large low rise),
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TABLE VI

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND THE BASELINE FRAMEWORK (AT DATA SET)

Fig. 12. Classification maps at each acquisition time in Madrid.

but it increased to 11% when using the proposed framework.
Analyzing satellite images is considerably helpful for retriev-
ing spectral, spatial, and textural information. Occasionally,
retrieved knowledge of two areas from satellite images may
appear to be similar (labels 8 and 10); however, these two
areas belong to different LCZ labels. Compared to satellite
images, OSM data contain advanced knowledge (e.g., urban
functionalities) that separates different classes through human
intelligence, offering nontrivial assistance in the classification
of LCZs.

Meanwhile, the accuracies of some labels are still not
satisfactory, mainly because of the complicated scheme of
LCZs. First, labels 3 (compact low rise) and 4 (open high
rise) are still highly mixed with other built types. It is still
challenging to precisely describe urban structures due to
the diverse construction of different cities. Second, label 9
(sparsely built) is highly mixed with label 6 (open low rise)
and label 14 (low plants), likely due to the classification scale.
After checking ground-truth data from Google Earth, it was
observed that sparsely built areas often follow a “cluster”
behavior. In other words, in sparsely built areas, buildings
appear to be dense in certain sections and absent in other
sections. Third, label 15 (bare rock or paved) is highly mixed
with label 8 (large low rise), likely due to training samples.
After checking ground-truth data from Google Earth, it was
observed that paved ground frequently appears near large low
rises and is occasionally selected for training samples of large
low rises.

2) Additional Test Data Set: Figs. 13 and 14 show the
classification maps generated by the proposed framework with
both fusion models and the baseline framework on Munich and
New York. Table VI compares their classification accuracies
in terms of OA and kappa.

Fig. 13. Classification maps from proposed framework (AT data set).
(a) Munich. (b) New York.

Fig. 14. Classification maps from baseline framework (AT data set).
(a) Munich. (b) New York.

First, the OA and kappa from the proposed framework were
71.97% and 0.66, which outperformed the baseline accuracy
by 2.22% and 3%, respectively. Given the fact that the training
samples were from grss_dfc_2017 [39], the classification
results demonstrated that our proposed framework was not
only effective on four test cities from grss_dfc_2017 [39] but
also showed satisfactory results on the newly selected test
cities. Thus, the proposed framework shows the advantages
of transferring knowledge from the training samples in one
data set to the test samples in the other data set based on the
same classification scheme (i.e., LCZs) and data sources (i.e.,
satellite images and OSM data).

Second, the building fusion model improved the accu-
racies more significantly than the landuse fusion model.
Compared with the baseline framework, the OA using the
building fusion model increased by 2.12% and 1.43% in
Munich and New York, respectively; the OA using the lan-
duse fusion model slightly increased in Munich (0.57%)
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Fig. 15. Distributions of the PAs of the AT data set from (Top) baseline
framework and (Bottom) proposed framework. Values show the percentage
of samples labeled as A in the ground-truth data, which were classified as B
in the classification maps, where A, B = 1, 2, . . . , 17. Only the percentages
above 10 were shown.

and slightly decreased (0.26%) in New York. A simi-
lar phenomenon also happened in the experimental results
of the DFC data set, where OA of Chicago slightly
increased using the landuse fusion model and slightly
decreased using the building fusion model. The joint use
of both models, however, always increases the accuracies
significantly and is consistently better than using a single
model.

In spite of the improvement of accuracies through the pro-
posed framework, classification accuracies of New York were
notably lower than those in Munich. The possible reason could
be that our proposed fusion models are based on statistical
knowledge (the probability of a value in landuse/buildings
layers belongs to an LCZ’s label), which needs enough training
samples. However, our training samples were quite limited
due to the availability of a few training cities and the lack of
OSM data. Moreover, OSM data may contain errors because
they are open source and could be recorded by any volunteers.
Another reason could be that the weighting process used in

Fig. 16. Comparison of classification accuracies at different acquisition times
(DFC data set).

the fusion models is simple (i.e., linear) so that it may not
be satisfied when dealing with complicated cases (i.e., highly
non-linear).

Fig. 15 shows the improvement of the distributions of PAs
for each label. First, PAs increased on most labels, especially
on label 3 (compact low rise, 19.12%), label 4 (open high
rise, 50.58%), and label 12 (scattered trees, 29.01%). Besides,
PAs of label 5 (open mid-rise, 11.94%) and label 13 (bush
or scrub, 9.76%) also increased significantly. Several samples
of label 1 (compact high rise) were misclassified as label 2
(compact mid-rise), resulting in the drop of PA on label 1.
This indicated that the similarity of the building density is
still a challenge to acquire satisfactory separation of all built
types. Beside label 1, samples of label 9 (sparsely built) were
easily misclassified to label 6 (open low rise) and label 12
(scattered trees), likely due to the classification scale as we
have mentioned in the experimental analysis of the DFC data
set.

Similar to the classification results of the DFC data set,
accuracies of some labels are still not satisfactory. The sep-
aration of different built types is still a big challenge mainly
because of the complexity and diversity of urban structures and
classification scale. The detailed analysis has been mentioned
in Section IV-B1.
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TABLE VII

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND
THE BASELINE FRAMEWORK AT EACH ACQUISITION TIME IN AMSTERDAM

TABLE VIII

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND

THE BASELINE FRAMEWORK AT EACH ACQUISITION TIME IN CHICAGO

TABLE IX

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND

THE BASELINE FRAMEWORK AT EACH ACQUISITION TIME IN MADRID

C. Framework Transferability

Spectral information plays an important role in the LCZ
classification when using optical satellite images, but it is
quite sensitive to acquisition conditions, such as time, angle,
atmospheric conditions, and so on. This sensitivity decreases
the robustness of the classification performance, especially

when considering transferability among multi-temporal images
in several study areas.

1) Data Fusion Contest Data Set: Tables VII–X and
Fig. 16 compare the classification accuracies between the pro-
posed framework and the baseline framework using four test
cities at different acquisition times. The results indicated that
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TABLE X

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND
THE BASELINE FRAMEWORK AT EACH ACQUISITION TIME IN XI’AN

TABLE XI

CLASSIFICATION ACCURACIES COMPARISON BETWEEN LANDSAT-8 AND SENTINEL-2

classification accuracies changed significantly among different
acquisition times when applying the baseline framework to
a test city. The difference in classification accuracies is still
quite large, even if the acquisition times of satellite images
are quite close (e.g., Amsterdam on March 12, 2015 and
April 20, 2015), which indicates that this sensitivity is not only
aroused by ground change but also due to other acquisition
conditions.

After applying both fusion models to test cities, this
sensitivity among different acquisition times of a test city
was reduced significantly. Meanwhile, classification accuracies
improved at all acquisition times. The reason for this signifi-
cant improvement is because OSM data offer positive contri-
butions after using the proposed fusion models. Compared to
satellite images, OSM data are not sensitive to the acquisition
conditions of satellite imagery since humans can provide
more advanced knowledge on recognition of the ground.

This knowledge effectively tunes the classification results
computed from satellite images and stabilizes the classification
results aroused by spectral diversity.

Furthermore, the increased transferability of the proposed
framework allows higher classification performance with less
temporal information. Table XI compares the classification
accuracies after applying frameworks to the multi-temporal
Landsat-8 group3 and single-temporal Sentinel-2 group4 of
test cities. When applying frameworks to multi-temporal data,
frameworks conduct majority voting among different acquisi-
tion times of each test city.

After applying the baseline framework to all test cities,
the OA difference between the Landsat-8 and Sentinel-

3Multi-temporal Landsat-8 group contains multi-temporal Landsat-8 images
and OSM data.

4Single-temporal Sentinel-2 group contains single-temporal Sentinel-
2 images and OSM data.



7638 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 10, OCTOBER 2019

TABLE XII

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND
THE BASELINE FRAMEWORK AT EACH ACQUISITION TIME IN MUNICH

2 groups is about 5.61%. However, this difference drops to
around 0.84% after applying the proposed framework to all
test cities. The city of Xi’an contributes greatly here as the OA
of Xi’an after applying the Sentinel-2 group is much higher
than the OA after applying the Landsat-8 group, which is a
quite interesting phenomenon for further studies. Moreover,
we compare the OA difference in three other cities in order to
remove the impact of Xi’an. After applying the baseline frame-
work to Amsterdam, Chicago, and Xi’an, the OA difference
of the three test cities, between the Landsat-8 and Sentinel-
2 groups, is about 9.1%. However, this difference drops to
around 3.94% after applying the proposed framework to these
three test cities. These results indicate that the proposed
framework could significantly improve classification perfor-
mance and acquire more trustworthy classification results with
less temporal information. This advantage is quite useful for
urban classification when ground change should be prevented.
Multi-temporal data may boost classification performance by
taking temporal–spectral variability into consideration [31].
Meanwhile, when applying frameworks to multi-temporal
data, the ground truth may not correspond to all data due
to ground change along different acquisition times, which
becomes a considerable problem. The proposed framework
significantly shrinks the gap between using multi-temporal
and single-temporal data. Therefore, single-temporal data
could also achieve a satisfactory classification performance if
multi-temporal data are not available or they contain many
ground changes.

Although the proposed framework could reduce the gap
between OAs from the Landsat-8 group and Sentinel-2 group,
classification performance is still stronger when using multi-
temporal, rather than single-temporal data for the following
reasons. First, multi-temporal data provide more opportunities
to record the ground reflectance in several data acquisition
times so that it improves the transferability between the cities
by increasing the spectral diversity of training and test cities.
For example, the spectral reflectance of the same ground
object may change occasionally due to various data acquisition
conditions, and thus, single-temporal images may not fully
represent the spectral information of ground objects. Second,
multi-temporal images could alleviate the cloud impact. The
areas covered by clouds contain limited ground information,
but it can be assumed that the clouds appear in different
areas at different acquisition times. The majority voting among
several classification maps generated from multi-temporal
images could mostly remove the cloud impact. For example,
the OA from Sentinel-2 in Chicago is significantly lower than

Fig. 17. Comparison of classification accuracies at different acquisition times
(AT data set).

that from Landsat-8, likely because the Sentinel-2 images in
Chicago have high cloud coverage.

2) Addition Test Data Set: Tables XII and XIII and
Fig. 17 compare the classification accuracies of the proposed
framework and the baseline framework using two test cities at
different acquisition times. Similar to the results on the DFC
data set, classification accuracies of the baseline framework
on the AT cities were sensitive to the acquisition times of
the satellite images. For example, the kappa of Munich in
April and July 2017 was 0.84 and it decreased to 0.78 in
October 2017. Kappa values of New York in June and
October 2017 were 0.56 and 0.54, respectively, and the kappa
value of New York in April 2018 dropped to 0.49.

After applying the proposed framework to test cities,
the classification results were less sensitive to different acqui-
sition times. Meanwhile, classification accuracies improved at
all acquisition times. For example, kappa values of Munich at
three acquisition times ranged from 0.89 to 0.90, and the kappa
values of New York ranged from 0.53 to 0.59. Therefore, it can
be concluded that the proposed framework also demonstrated
satisfactory transferability on the AT data set. The detailed
analysis of the framework transferability can be found in
Section IV-C1.

D. Building Confidence Masks

Building confidence masks remove most incomplete build-
ing areas and provide much cleaner building density features
for generating the building weight matrix. In this section,
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TABLE XIII

CLASSIFICATION ACCURACIES COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND
THE BASELINE FRAMEWORK AT EACH ACQUISITION TIME IN NEW YORK

Fig. 18. Examples of building confidence masks (upper: a buildings layer
overlaid with Sentinel-2 images; below: a building confidence mask overlaid
with Sentinel-2 images). (a) Hong Kong. (b) Sao Paulo. (c) Madrid. (d) Xi’an.

Fig. 19. Comparison of building densities—label distributions among
different approaches to generating building confidence masks under various
thresholds of building surface fraction. (a)–(k) Proposed approach using the
building surface fraction thresholds from 0% to 100% with a step of 10%.
(l) Building surface fraction rule. (m) All-pass masks.

we generate building weight matrices using different building
confidence masks with various approaches and thresholds (see
Fig. 19). Fig. 19(a)–(k) shows the matrices after applying the
proposed approach to generating building confidence masks
(the thresholds of the building surface fraction range from
0% to 100% with the step of 10%). Fig. 19(l) shows the
matrix after using the rule of the building surface fraction

Fig. 20. Correlation between different building densities—label distributions.
(a) Correlation between Fig. 19(a)–(k) and Fig. 19(l). (b) Correlation between
Fig. 19(a)–(k) and Fig. 19(m).

(see Table III) to generate building confidence masks.
Fig. 19(m) shows the matrix after using all-pass masks.
All matrices were computed by using training samples as
computing the matrix in Fig. 19(l) required ground-truth
data. The matrix in Fig. 19(l) could be regarded as quasi-
truth. It is assumed that an effective approach to generating
building confidence masks should have a high correlation
with the matrix in Fig. 19(l) and a low correlation with the
matrix in Fig. 19(m). The correlation between the matrices
generated from different building confidence masks are inves-
tigated in Fig. 20. Fig. 20(a) shows the correlation between
the matrices of Fig. 19(a)–(k) and the matrix of Fig. 19
(l) and (b) illustrates the correlation between the matrices of
Fig. 19(a)–(k) and the matrix of Fig. 19(m).

The results indicate that, first, building confidence masks
are not sensitive to the threshold of a building surface fraction
between 10 and 70. Second, the correlation significantly
increased from a threshold of 0–10 and then remained stable
between 10 and 70, indicating that a threshold of 10 is accept-
able for this paper. Third, the correlation became unsatisfied
after a threshold of 70 because the high threshold masked
out many areas that should have been retained. Fourth, these
two correlation graphs not only indicate that the generation of
building confidence masks is not sensitive to the threshold
of a building surface fraction but also provide a way to
automatically select the threshold. For example, a thresh-
old of 50 should be selected to retain a larger correlation
in Fig. 20(a) and a lower correlation in Fig. 20(b). We set
the threshold as 10 for the following two reasons. First, this
parameter is not sensitive. Second, sparsely built areas can be
retained, because 10 % is the lowest boundary of the building
surface fraction of that label.

Although this approach is effective from a statistical point of
view, several open issues remain. Certain empirical parameters
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are included, such as the searching radius, threshold of the
building surface fraction, and threshold of generating masks.
Since very high-resolution images are not available in the data
set [39], this approach still initiates a novel idea about building
data validation by considering the relations among OSM data.

V. DISCUSSION

The proposed framework with two fusion models acquires
higher classification accuracies while additionally achieving
more stable and generalized results on a worldwide scale.
First, feature stacking is the most commonly used and fastest
implemented approach of feature fusion. It stacks features
along the feature dimension and with the intent that the
classifier(s) will find the satisfactory hyperplane, but this is
not always the case. When features are heterogeneous, such
as having different noise sources, it will add many outliers
in the feature space, which significantly impacts hyperplane
splits. This paper has resolved this heterogeneity problem
by embedding the relation among multi-source data in the
proposed fusion models. This presents a novel idea to fuse
different data sources by considering both features and their
deep relations.

Second, it is of great interest to understand how the data
sources achieve optimal collaboration. OSM data containing
human intelligence should have a more advanced and stable
knowledge of the ground objects, compared with satellite
images, but they contain incomplete and incorrect recordings.
Satellite images recorded by sensors typically have more
objective and abundant information from the ground; however,
they are quite sensitive to acquisition conditions. In order to
stabilize the classification performance, the proposed frame-
work first creates an initial classification result through satellite
images and then tunes the initial result by using OSM data.

The proposed framework still contains several open prob-
lems. First, the proposed fusion models use a simple 2-D
probability distribution to map the relation between OSM
and satellite features, which may be not accurate. Therefore,
more complicated models that can embed deeper relations,
such as association rule learning [44], can be derived. Second,
to avoid a negative impact, we have resolved the problems of
the data incompleteness of OSM, but we omitted the problem
of incorrect recordings from OSM data. Third, certain empir-
ical parameters are needed to generate building confidence
masks. Fourth, because of multi-source and multi-temporal
data, the acquisition times of all data sources are not con-
sistent, which could lead to many problems in analyzing the
data without discrimination. Fourth, the model transferability
between cities requires further research. Due to the high cost
of selecting the training samples, it would be ideal to transfer
the knowledge trained from some cities to classify other cities.
CCF has already successfully demonstrated how to resolve this
problem, by embedding the correlation between features and
labels in the projected feature space. However, this solution
may not be accurate or the best method. Finally, urban scenes
contain many intermediate LCZ labels. Each label of LCZs
is defined as a certain combination of several ground types
with certain structure arrangements that have only a few range
values, instead of quantitatively precise definitions, to describe

each label [8]. This could generate many intermediate areas,
which may belong to multi-labels.

VI. CONCLUSION

This paper proposes a framework with two novel models
of fusing satellite optical images and OSM data for the
classification of LCZs. The contributions of extracted features
have been investigated, and it has been discovered that OSM
features possess trivial or even negative contributions to the
classification performance through the use of feature stacking.
Accordingly, we proposed a new framework that embeds the
multi-source data and their relations by considering the data
heterogeneity of optical images and OSM data. The proposed
framework achieves a better classification performance than
the state-of-the-art frameworks. Furthermore, its increased
robustness shows promise in generalizing the framework for
a worldwide scale with less temporal information use. In
addition, this paper introduces the novel idea of detecting
incomplete data areas in buildings layers by considering
their relation with landuse layers. This approach offers much
assistance in building incompleteness detection when very
high-resolution images are not available.

This paper contains certain open issues that are of interest
for further investigation. First, there is the prospect of form-
ing more sophisticated fusion models that embed additional
complex rules between heterogeneous data. Specifically, it can
be an excellent future work to extend this framework to fuse
other data sources, such as SAR images. Second, solving the
problem of incomplete and inaccurate recordings in OSM
data remains a challenging topic. Third, there is a need for
the investigation of knowledge transferability among different
study regions in order to generate classification maps on a
global scale.
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